
DE60110493T220060105
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 601 10 493 T2 2006.01.05

(12) Übersetzung der europäischen Patentschrift

(97) EP 1 154 575 B1
(21) Deutsches Aktenzeichen: 601 10 493.5
(96) Europäisches Aktenzeichen: 01 102 700.0
(96) Europäischer Anmeldetag: 07.02.2001
(97) Erstveröffentlichung durch das EPA: 14.11.2001
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 04.05.2005
(47) Veröffentlichungstag im Patentblatt: 05.01.2006

(51) Int Cl.8: H03M 7/40 (2006.01)

(54) Bezeichnung: Entropie Kodierer/Dekodierer zur schnellen Datenkompression und -dekompression

(30) Unionspriorität:
565015 04.05.2000 US

(73) Patentinhaber:
Hewlett-Packard Development Co., L.P., Houston,
Tex., US

(74) Vertreter:
Schoppe, Zimmermann, Stöckeler & Zinkler, 82049
Pullach

(84) Benannte Vertragsstaaten:
DE, FR, GB

(72) Erfinder:
Crane, Randy T., Fort Collins, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/15

DE 601 10 493 T2 2006.01.05
Beschreibung

Gebiet der Erfindung

[0001] Die vorliegende Erfindung bezieht sich allge-
mein auf einen Entropiecodierer/decodierer für eine
schnelle Datenkomprimierung und -dekomprimie-
rung. Genauer gesagt bezieht sich die vorliegende
Erfindung auf einen Entropiecodierer/decodierer, der
mit jedem Komprimierungsschema verwendet wer-
den kann, das einen Entropiecodierungsschritt um-
fasst.

Hintergrund der Erfindung

[0002] Bei Datenübertragungs- und Verarbeitungs-
anwendungen ist es üblich, dass Daten vor oder wäh-
rend der Verarbeitung oder Übertragung von Daten
gemäß verschiedenen Komprimierungsalgorithmen
komprimiert werden. Außerdem ist es üblich, dass
komprimierte (codierte) Daten während oder nach
der Verarbeitung oder Übertragung decodiert wer-
den, um die codierten Daten zurück zur ursprüngli-
chen Form umzuwandeln.

[0003] Einige übliche Komprimierungsschemata
(oder Algorithmen) umfassen, was als Entropiecodie-
rungsschritt bekannt ist. Beispiele dieser übliche Al-
gorithmen, die einen Entropiecodierungsschritt um-
fassen, umfassen LZW, verlustfreie JPEG, G3, G4
usw. Komprimierungsschemata, die einen Entropie-
codierungsschritt umfassen, erzeugen typischerwei-
se einen Ausgabebitstrom, der eine variable Länge
hat. Aufgrund der variablen Länge der codierten Aus-
gabe erfordert das Verarbeiten dieser Daten eine gro-
ße Menge an Rechnungsaufwand auf Seiten der Ver-
arbeitungshardware und des zentralen Prozessors
oder der zentralen Steuerung.

[0004] Typische Komprimierungshardware ist typi-
scherweise zweckgebunden zum Verarbeiten/Codie-
ren gemäß nur einem vordefinierten Komprimie-
rungsalgorithmus. Falls Daten, die unter Verwendung
verschiedener Komprimierungsalgorithmen codiert
wurden, verarbeitet oder übertragen werden sollen,
ist es aufgrund dieser Beschränkung notwendig,
dass mehrere Hardwareimplementierungen vorgese-
hen sind, um jedes der verfügbaren Komprimierungs-
algorithmen/-formate unterzubringen. Dies erhöht die
Kosten in Zusammenhang mit der Verarbeitung oder
Übertragung von Daten, die gemäß mehreren Kom-
primierungsalgorithmen codiert sind.

[0005] Beispiele bekannter Systeme und Techniken
zum Komprimieren von Daten wurden in dem US Pa-
tent 5,499,382 an Nusinov u.a. erörtert, für eine
Schaltung und ein Verfahren zum Bit-Verdichten und
Bit-Entpacken unter Verwendung eines Barrel-Schie-
bers, und in dem US-Patent 4,360,840 an Wolrum für
ein Echtzeitdaten-Komprimierungs-/Dekomprimie-

rungsschema für Facsimile-Übertragungssysteme.

[0006] Es ist die Aufgabe der vorliegenden Erfin-
dung, einen Codierer/Decodierer zu schaffen, der mit
jedem Komprimierungsschema verwendet werden
kann, das einen Entropiecodierungsschritt umfasst.

[0007] Diese Aufgabe wird durch einen Codie-
rer/Decodierer gemäß Anspruch 1 gelöst.

[0008] Die vorliegende Erfindung liefert ein System
zum Codieren und Decodieren von Informationen.

[0009] Kurz gesagt kann das System bezüglich der
Architektur wie folgt implementiert werden. Es ist ein
Codierer zum Codieren von Daten vorgesehen, der
ein Datenregister zum Empfangen und Speichern ei-
nes Codeworts variabler Länge, ein Bitstromregister
zum Empfangen von Daten, einen Multiplexer zum
Laden gültiger Bits von dem Steuerregister in die
höchstwertigsten Bits, die in dem Bitstromregister
verfügbar sind, ein Zuerst-Hinein-Zuerst-Hin-
aus-(FIFO-)Register zum Empfangen der Inhalte des
Bitstromregisters, wenn alle verfügbaren Bits des Bit-
stromregisters mit gültigen Datenbits geladen sind,
und eine Unterbrechungssteuerung zum Erzeugen
eines Unterbrechungssignals umfasst, um eine Aus-
lesung von Daten von dem FIFO-Register einzulei-
ten.

[0010] Bei einem weiteren Ausführungsbeispiel der
vorliegenden Erfindung ist ein Decodierer zum Deco-
dieren von Daten vorgesehen. Dieser Decodierer
umfasst ein erstes Register zum Empfangen codier-
ter Datenwortdaten fester Länge, ein Bitstromregister
zum Empfangen des codierten Datenworts fester
Länge, einen Multiplexer zum Laden Codewortdaten
variabler Länge von dem Bitstrompuffer in ein Daten-
register, und eine Unterbrechungssteuerung zum Er-
zeugen eines Unterbrechungssignals zum Einleiten
des Schreibens codierter Daten fester Länge in das
erste Register.

[0011] Die vorliegende Erfindung kann auch so ge-
sehen werden, dass sie ein Verfahren zum Codieren
liefert. Diesbezüglich kann das Verfahren durch die
folgenden Schritte grob zusammengefasst werden:
Empfangen von Codewortdaten variabler Länge, Be-
stimmen der Anzahl gültiger Bits der Codewortdaten,
Laden der Codewortdaten in einen Bitstrompuffer,
falls alle gültigen Bits passen. Falls nicht alle gültigen
Bits in den Bitstrompuffer passen, Laden eines ersten
Segments der gültigen Bits in den Bitstrompuffer und
dann Laden der Inhalte des Bitstromregisters in ein
FIFO-Register, und Laden eines zweiten Segments
der teilweise gültigen Bits in den Bitstrompuffer.

[0012] Ein weiteres Verfahren zum Decodieren von
Daten ist vorgesehen, das durch die folgenden
Schritte grob zusammengefasst werden kann: Emp-
2/15

DE 601 10 493 T2 2006.01.05
fangen eines Datenworts, Laden des Datenworts in
einen Puffer, Auslesen eines Codeworts variabler
Länge von dem Datenwort; und Laden des Code-
worts variabler Länge in ein Register fester Länge.

[0013] Andere Systeme, Verfahren, Merkmale und
Vorteile der vorliegenden Erfindung werden für einen
Fachmann auf diesem Gebiet bei der Untersuchung
der folgenden Zeichnungen und der detaillierten Be-
schreibung offensichtlich. Es ist beabsichtigt, dass
alle zusätzlichen Systeme, Verfahren, Merkmale und
Vorteile, die in dieser Beschreibung enthalten sind,
innerhalb des Schutzbereichs der vorliegenden Erfin-
dung liegen und durch die angehängten Ansprüche
geschützt sind.

Kurze Beschreibung der Zeichnungen

[0014] Die Erfindung ist besser verständlich mit Be-
zugnahme auf die folgenden Zeichnungen. Die Kom-
ponenten in den Zeichnungen sind nicht notwendi-
gerweise maßstabsgerecht, stattdessen wurde der
Schwerpunkt darauf gelegt, die Prinzipien der vorlie-
genden Erfindung deutlich darzustellen. Darüber hin-
aus bezeichnen in den Zeichnungen gleiche Bezugs-
zeichen entsprechende Teile in den mehreren An-
sichten.

[0015] Fig. 1 ist ein Diagramm, das ein System dar-
stellt, das den CODEC der vorliegenden Erfindung
umfasst;

[0016] Fig. 2 ist ein Blockdiagramm, das den CO-
DEC der vorliegenden Erfindung näher darstellt;

[0017] Fig. 3 ist ein Diagramm, das ein Steuerregis-
ter darstellt;

[0018] Fig. 4 ist ein Diagramm, das ein FIFO-Pegel-
register darstellt;

[0019] Fig. 5 ist ein Flussdiagramm, das das Co-
dierverfahren der vorliegenden Erfindung darstellt;

[0020] Fig. 6 ist ein Diagramm, das das Decodier-
verfahren der vorliegenden Erfindung darstellt; und

[0021] Fig. 7 ist ein Diagramm, das den Prozess
des Ladens/Entladens von Datenwörtern variabler
Länge in den Bitstrompuffer 150 darstellt.

Detaillierte Beschreibung des bevorzugten Ausfüh-
rungsbeispiels

[0022] Die vorliegende Erfindung bezieht sich auf
einen Codierer und Decodierer (CODEC), der mit im
Wesentlichen jedem Komprimierungsschema ver-
wendet werden kann, das einen Entropiecodierungs-
schritt umfasst. Ferner liefert die vorliegende Erfin-
dung Daten-FIFO und Barrel-Schieber, die verwen-

det werden können, um Daten entweder während der
Codier- oder Decodieroperation zu verarbeiten.

[0023] Fig. 1 stellt ein System dar, dass den Entro-
pie-CODEC der vorliegenden Erfindung umfasst.
Eine zentrale Verarbeitungseinheit (CPU) 10 ist vor-
gesehen, die über eine lokale Schnittstelle 102 eine
Schnittstelle mit dem CODEC 1 bildet.

[0024] Mit Bezugnahme auf Fig. 2 ist ein Ausfüh-
rungsbeispiel des Entropie-CODEC 1 der vorliegen-
den Erfindung dargestellt. Der CODEC 1 arbeitet auf
zwei Weisen: Codiermodus und Decodiermodus. In
Fig. 2 ist eine Registerschnittstelle 100, ein Register-
block 110 und eine lokale Schnittstelle 120 gezeigt.
Die Registerschnittstelle 100 bildet eine Schnittstelle
mit der CPU 10 zum Steuern des Eingangs und Le-
sen von Daten in/von den Registern des Register-
blocks 110. Ein Zähler 170 ist vorgesehen zum Zäh-
len des Pegels/der Anzahl von Datenwörtern, die zu
einem Zeitpunkt in dem FIFO 160 gespeichert sind.
Der Zähler 170 liefert eine Eingabe zu der Unterbre-
chungssteuerung 180, wenn der Pegel/die Anzahl
von Datenwörtern, die in dem FIFO 160 gespeichert
sind, einen Wert erreicht, der dem Zähler 170 ent-
spricht.

[0025] Der Registerblock 110 umfasst ein Bits-Le-
gen-Längen-Register 110A, ein Bits-Legen-Codere-
gister 110B, ein FIFO-Pegelregister 110C, ein Rück-
setzregister 110D, ein Steuerregister 110E, ein
Flush-Zuerst-Hinein-Zuerst-Hinaus (FLUSH-FIFO)
Register 110F, ein Bits-Holen-Register 110G, ein Bit-
zeigerregister 110H und ein Gepackte-Ausgabewör-
ter-Register 110I. Außerdem sind eine Steuerung
130, die den Betrieb eines Multiplexers 140 steuert,
ein Bitstrompuffer 150 und ein Zuerst-Hinein-Zu-
erst-Hinaus-Registerblock (FIFO) 160 gezeigt. Die
Steuerung 130 arbeitet gemäß Befehlen von der
CPU 10. Der FIFO 160 ist beispielsweise ein 32 Bit ×
16 Wort FIFO-Registerblock. Der Multiplexer 140 ist
mit der lokalen Schnittstelle 120 verbunden, über die
Daten zu und von dem Registerblock 110 übertragen
werden.

[0026] Das Rücksetzregister 110D ist ein
Nur-Schreibe-Register, das verwendet wird, um die
Hardware, einschließlich allen Zeigern und des FIFO
160, der vorliegenden Erfindung 1 zurückzusetzen.
Das Steuerregister 110E speichert Daten, die die
Steuerbits darstellen, wie es in Fig. 3 dargestellt ist.
Mit Bezugnahme auf Fig. 3 ist ersichtlich, dass das
Steuerregister 110E so konfiguriert werden kann,
dass beispielsweise die Bits 0–4 einen vordefinierten
Wert oder einen FIFO-Unterbrechungspegel darstel-
len, der einen maximalen oder minimalen Pegel/An-
zahl von Datenwörtern darstellt, die in dem FIFO 160
gespeichert werden dürfen, abhängig von der Funkti-
onsweise. Das Bit 5 des Steuerregisters 110E ist das
Codier/Decodierbit (EN/DEC). Der Wert des
3/15

DE 601 10 493 T2 2006.01.05
EN/DEC-Bits zeigt an, ob der CODEC 1 Daten von
dem FIFO 160 decodiert oder Daten in den FIFO 160
codiert. Wenn das EN/DEC-Bit beispielsweise 0 ist,
codiert der CODEC 1. Dies wird auch als Codiermo-
dus bezeichnet. Wenn das EN/DEC-Bit beispielswei-
se 1 ist, decodiert der CODEC 1. Dies wird auch als
Decodiermodus bezeichnet. Das Bit 6 des Steuerre-
gisters 110E stellt das Unterbrechungsfreigabebit
dar. Das Unterbrechungsfreigabe-(IE)-Bit kann bei-
spielsweise eine 1 sein (hoch), was es dem CODEC
1 ermöglicht, die CPU 10 zu unterbrechen. Die ver-
bleibenden Bits des Steuerregisters 110E werden
verwendet, um Codewortdaten variabler Länge zu
sammeln. Diese Codewortdaten werden nachfolgend
von dem Steuerregister 110E ausgelesen und über
den Multiplexer 140 zu dem Bitstrompuffer 150 gelei-
tet. Alle Bits in dem Steuerregister 110 sind bei einer
Zurücksetzung auf 0 voreingestellt.

[0027] Ein Bitzeigerregister 110H ist vorgesehen.
Das Bitzeigerregister 110H ist vorzugsweise ein
Nur-Lese-Register, das während dem Codiermodus
Daten speichert, die einen Zeigerwert reflektieren,
der das nächst verfügbare höchstwertigste Bit (MSB)
in dem Bitstromregister 150 anzeigt, das mit Daten
geladen werden kann. Wo der Bitstrompuffer 150 bei-
spielsweise 32 Bits lang ist, kann das Bitstromzeiger-
register zu einem von 32 Bits, Bit 0 bis Bit 31, zeigen.
Wenn der Bitstrompuffer 150 voll ist, zeigt der Bit-
stromzeiger zu dem Bit 0, was anzeigt, dass der Bit-
strompuffer 150 voll ist. Falls das Bitstromzeigerre-
gister einen Wert zwischen 1 und 31 anzeigt, hat der
Bitstrompuffer 150 Bits verfügbar, um eine Datenein-
gabe anzunehmen. Falls das Bitzeigerregister 110H
beispielsweise einen Wert von 28 anzeigt, dann ist es
möglich, zusätzliche Daten in den Bitstrompuffer 150
zu laden, beginnend mit dem nächsten MSB 29 des
Bitstrompuffers 150. Kurz gesagt, der Wert in dem
Bitzeiger 110H spezifiziert das MSB-Bit in dem Bit-
strompuffer 150, in das Daten geladen werden kön-
nen.

[0028] Das Flush-FIFO-Register 110F kann adres-
siert werden, um zu bewirken, dass Daten, die in den
Bitstrompuffer 150 gespeichert sind, in den FIFO 160
geschrieben werden. Vorzugsweise sollten die Inhal-
te des Bitzeigerregisters 110H ausgelesen werden,
bevor in das FLUSH-FIFO-Register 110F geschrie-
ben wird.

[0029] Ein Beispiel eines FIFO-Pegelregisters 110C
ist in Fig. 4 dargestellt. Hier ist ersichtlich, dass die
Bits 0–4 verwendet werden, um den FIFO-Pegel zu
speichern. Der FIFO-Pegel ist ein Wert, der die An-
zahl von Datenwörtern darstellt, die in den FIFO 160
geladen werden können, bevor die Inhalte des FIFO
160 ausgelesen werden, um Platz für zusätzliche Da-
tenwörter zu machen. Der FIFO-Pegelregister 110C
kann sowohl während dem Codier- als auch dem De-
codiermodus gelesen werden. Ein Bits-Legen-Code-

register 110B ist zum Speichern von Daten vorgese-
hen, die das Codewort der nächsten variablen Bitlän-
ge darstellen, das ausgegeben werden soll oder zu
der Ausgabedatenzeichenfolge geschrieben werden
soll. Daten, die in das Bits-Legen-Register 110B ge-
schrieben sind, sind vorzugsweise rechts ausgerich-
tet. Es ist auch ein Bits-Legen-Längenregister 110A
vorgesehen, das Daten speichert, die die Anzahl von
Bits des Bits-Legen-Coderegisters 110B anzeigt, die
in die Ausgabedatenzeichenfolge geschrieben wer-
den soll. Daten, die in das Bits-Legen-Längenregister
110A geschrieben werden, bewirken, dass der CO-
DEC 1 tatsächlich die Codedaten schreibt, die in dem
Bits-Legen-Coderegister 110B gespeichert sind. Bei
einem bevorzugten Ausführungsbeispiel werden Da-
ten zuerst in das Bits-Legen-Coderegister 110B ge-
schrieben, gefolgt vom Schreiben von Daten in das
Bits-Legen-Längenregister 110A.

[0030] Das Bits-Holen-Register 110G wird während
dem Decodiermodus verwendet, um Codes variabler
Bitlänge von dem Eingangsdatenstrom zu extrahie-
ren. Wo es beispielsweise gewünscht wird, dass die
nächsten fünf Bits von dem Dateneingangsstrom ge-
lesen werden sollen, wird ein Wert von 5 in das
Bits-Holen-Register 110G geschrieben. Die fünf nied-
rigwertigsten Bits des Bits-Holen-Registers 110G
enthalten dann das Codewort.

[0031] Ein Gepacktes-Ausgabewort-Register 110I
ist vorgesehen. Das Gepacktes-Ausgabewort-Regis-
ter 110I kann beispielsweise über einen Blocklesebe-
fehl einer Steuerung oder eines Zentralprozessors
(CPU) zugegriffen/adressiert werden. Durch Lesen
der Daten, die in den adressierten Räumen des Ge-
packtes-Ausgabewort-Registers 110I enthalten sind,
wird das nächste komprimierte Datenwort von dem
FIFO 160 zu der CPU 10 ausgegeben.

[0032] Es wird angemerkt, dass während dem Co-
diermodus der Datenfluss im Allgemeinen von dem
Multiplexer 140 zu dem Bitstrompuffer 150 zu dem
FIFO 160 fließt. In dem Decodiermodus fließt der Da-
tenfluss im Allgemeinen von dem FIFO 160 zu dem
Bitstrompuffer 150 zu dem Multiplexer 140.

CODIERMODUS

[0033] Im Codiermodus werden Daten in das Steu-
erregister 110E geschrieben, um den FIFO-Unterbre-
chungspegel und das Unterbrechungs-Freigabebit
zu setzen. Das Codier/Decodierbit wird auf Codieren
gesetzt. Daten, die zu codieren sind, werden in das
Bits-Legen-Coderegister 110B geladen. Diese Daten
bestehen aus Datenwörtern variabler Länge. Die
Steuerung 130 bewirkt, dass der Multiplexer 140 die
gültigen Bits von dem Bits-Legen-Coderegister 110B
auswählt, zum Lesen der gültigen Bits von dem Da-
tenwort fester Länge in den Bitstrompuffer 150.
4/15

DE 601 10 493 T2 2006.01.05
[0034] Sobald alle Bits des Bitstrompuffers 150 ge-
laden sind, werden die Inhalte derselben in das Zu-
erst-Hinein-Zuerst-Hinaus-(FIFO)Register 160 ver-
schoben. Der FIFO-Registerblock 160 ist einem Zäh-
ler 170 zugeordnet, der die Anzahl von 32 Bitwörtern
zählt, die zu jedem bestimmten Zeitpunkt in dem
FIFO-Register 160 enthalten sind. Der Zählwert des
Zählers 170 wird in dem FIFO-Pegelregister 110C als
FIFO-Pegeldaten gespeichert. Diese Daten können
durch die CPU 10 verwendet werden, um zu bestim-
men, ob die Daten in dem FIFO 160 gelesen oder ge-
schrieben werden oder nicht. Beispielsweise könnte
die CPU 10 das FIFO-Pegelregister abfragen, und
wenn die FIFO-Pegeldaten, die in dem FIFO-Pegel-
register 160 gespeichert sind, den FIFO-Unterbre-
chungspegeldaten entsprechen, die in dem Steuerre-
gister 110E gespeichert sind, abhängig von der Funk-
tionsweise, könnte die CPU bewirken, dass Daten
von dem FIFO 160 gelesen werden oder in densel-
ben geschrieben werden. Daten können auch von
dem FIFO 160 gelesen werden oder in denselben ge-
schrieben werden, wo der Wert des Zählers 170 den
Inhalten der FIFO-Unterbrechungspegeldaten ent-
spricht, die in dem Steuerregister 110E gespeichert
sind. In diesem Fall bewirkt die Unterbrechungssteu-
erung 180, dass ein Unterbrechungssignal an die
CPU 10 gerichtet wird, um anzuzeigen, dass es für
die CPU Zeit ist, die Inhalte von/in dem FIFO-Regis-
ter 160 zu lesen (während dem Codiermodus) oder
zu schreiben (während dem Decodiermodus).

[0035] Fig. 5 zeigt ein Flussdiagramm, das das Co-
dierverfahren der vorliegenden Erfindung darstellt.
Mit Bezugnahme auf Fig. 2 und Fig. 5 wird ange-
merkt, dass das Bits-Legen-Längenregister 110A
adressiert wird, um zu bewirken, dass ein Codewort
beispielsweise von dem Bits-Legen-Coderegister
110B geladen wird (500). Das Codewort hat eine va-
riable Länge und kann das Ergebnis eines Entropie-
codierungsprozesses sein. Das Bits-Legen-Codere-
gister 110B hat eine feste Anzahl von Bits (Länge).
Die Länge des Codeworts variabler Länge ist in dem
Bits-Legen-Längenregister 110A gespeichert. Die
Daten des Codeworts variabler Länge, die in das
Bits-Legen-Coderegister 110B geladen sind, erfor-
dern eventuell nicht alle verfügbaren Speicherbits
des Bits-Legen-Coderegisters 110B. Sobald die Da-
ten des Codeworts variabler Länge in das Bits-Le-
gen-Coderegister 110B geladen sind, können diesel-
ben alle verfügbaren Bits des Bits-Legen-Längenre-
gisters 110A besetzen oder nicht. Das Bits-Le-
gen-Coderegister 110B ist beispielsweise 16 Bits
lang und ein Codewort variabler Länge von 4 Bits
wird in das Bits-Legen-Coderegister 110B geladen.
Die 4 Bits des Bits-Legen-Coderegisters 110B, die
die Daten des Codeworts variabler Länge tatsächlich
speichern, werden als gültige Bits bezeichnet. Die
Anzahl von gültigen Bits von dem Bits-Legen-Code-
register 110B wird dann bestimmt (501) durch Bezug-
nahme auf die Datenwerte, die vorher in dem

Bits-Holen-Register 110G gespeichert waren. Diese
Bestimmung wird über die Steuerung 130 durchge-
führt. Es ist jedoch möglich, dass eine solche Bestim-
mung durch die CPU 10 ausgeführt wird. Es wird
dann bestimmt, ob alle gültigen Bits in verbleibende
offene Bits des Bitstrompuffers 150 passen (502).
Falls dies der Fall ist, werden diese gültigen Bits in
verbleibende offene Bits des Bitstrompuffers 150 ge-
laden (503) und nachfolgend als Datenwörter fester
Länge ausgelesen (511).

[0036] Falls die gültigen Bits nicht in den Bitstrom-
puffer (150) passen, wird alternativ bestimmt, ob ei-
nes der gültigen Bits in den Bitstrompuffer 150 passt
(504). Wo einige der gültigen Bits in den Bitstrompuf-
fer 150 passen, werden dieselben (erster Satz von
teilweise gültigen Bits) in den Bitstrompuffer 150 ge-
laden (505), um alle verfügbaren Bits des Bitstrom-
puffers 150 zu füllen. Die Bitstrompufferinhalte wer-
den dann durch ein Zuerst-Hinein-Zuerst-Hin-
aus-(FIFO)Register 160 (506) ausgelesen. Der Bit-
strompuffer 150 ist dann frei von jeglichen Daten und
der zweite Satz von teilgültigen Bits wird in den Bit-
strompuffer 150 geladen (507). Dieser Prozess ist in
Fig. 7 dargestellt, der nachfolgend näher erörtert
wird.

[0037] Wo keines der gültigen Bits in den Bitstrom-
puffer passt, weil derselbe bereits voll mit Daten ist,
werden die Inhalte des Bitstrompuffers 150 in den
FIFO 160 geladen (508). Falls der FIFO 160 voll ist
(509), werden die Inhalte desselben geleert (510).
Der FIFO 160 ist einem Zähler 170 zugeordnet. Der
Zähler 170 behält einen Zählwert von beispielsweise
der Anzahl von 32 Bitwörtern bei, die tatsächlich in
dem FIFO 160 geladen sind. Wenn der Zählwert des
Zählers 170 dem FIFO-Unterbrechungspegelwert
entspricht, der in dem Steuerregister 110C gespei-
chert ist, bewirkt die Unterbrechungssteuerung 180,
dass eine Unterbrechung erzeugt wird und an die
CPU 10 gerichtet wird. Die CPU 10 wird wiederum
eine vorbestimmte Anzahl von Wörtern von dem
FIFO 160 auslesen. Dies macht Raum in dem FIFO
160 verfügbar, zum Aufnehmen zusätzlicher Code-
wortdaten von dem Bitstrompuffer 150.

DECODIERMODUS

[0038] Fig. 6 zeigt ein Flussdiagramm, das das De-
codierverfahren der vorliegenden Erfindung darstellt.
In dem Decodiermodus werden Daten in das Steuer-
register 110E geschrieben, um den FIFO-Unterbre-
chungspegel und das Unterbrechungsfreigabebit zu
setzen. Das Codier/Decodierbit wird auf Decodieren
gesetzt. Das Bits-Holen-Register 110G wird adres-
siert, um zu bewirken, dass ein Datenwort fester Län-
ge beispielsweise in den FIFO 160 geladen wird. Der
Bitstrompuffer 150 empfängt ein Datenwort fester
Länge von dem FIFO 160. Das Datenwort fester Län-
ge besteht aus mehreren Codewörtern variabler Län-
5/15

DE 601 10 493 T2 2006.01.05
ge. Ein Codewort variabler Länge wird von dem Bit-
strompuffer 150 ausgelesen, gemäß Datenlängenin-
formationen, die in dem Bits-Holen-Register 110G
gespeichert sind. Der Multiplexer 140 leitet dann das
Codewort variabler Länge zu dem Bits-Holen-Regis-
ter 110G, von wo aus es dann als ein Codewort fester
Länge ausgelesen wird. Der Betrieb des Multiplexers
140, des Bitstrompuffers 150 und des FIFO 160 wer-
den durch die Steuerung 130 gemäß Daten gesteu-
ert, die in dem Registerblock 110 gespeichert sind.
Sobald alle Codewörter variabler Länge von dem Co-
dewort fester Länge, das in den Bitstrompuffer 150
geladen ist, ausgelesen wurden, wird ein weiteres
Codewort fester Länge von dem FIFO 160 wiederge-
wonnen und in den Bitstrompuffer 150 geladen.

[0039] Der FIFO 160 ist beispielsweise ein 32 Bit
mal 16 Wort FIFO-Register. Der Zähler 170 behält ei-
nen Zählwert der Anzahl von Datenwörtern bei, die
zu einem bestimmten Zeitpunkt in dem FIFO 160 ge-
speichert sind, und speichert diesen Wert in dem
FIFO-Pegelregister 110C. Wenn der Wert, der in dem
FIFO-Pegelregister 110C gespeichert ist, einem
FIFO-Unterbrechungspegelwert entspricht, der in
dem Steuerregister 110 gespeichert ist, erzeugt die
Unterbrechungssteuerung 180 ein Unterbrechungs-
signal. Dieses Unterbrechungssignal wird an die
CPU 10 gerichtet, diese antwortet durch Bewirken,
dass zusätzliche Daten fester Länge in den FIFO 160
geladen werden.

[0040] Fig. 7 stellt dar, wie gültige Bits von Code-
wörtern variabler Länge während den Codiermodus-
operationen der vorliegenden Erfindung aus dem
Bits-Legen-Coderegister 110B ausgelesen und in
den Bitstrompuffer 150 geladen werden. Fig. 7 zeigt
auch, wie Codewörter fester Länge aus dem Bit-
strompuffer 150 ausgelesen werden und in das
Bits-Legen-Coderegister 110B geladen werden,
während den Codiermodusoperationen der vorlie-
genden Erfindung. Der Bitstrompuffer 150A zeigt den
Status des Bitstrompuffers 150, nachdem gültige Bits
der Codewörter variabler Länge, die einen ersten
Teildatensatz umfassen, die verfügbaren Bits des Bit-
stromregisters 150 vollständig gefüllt haben. Der Bit-
strom 150B zeigt den Status des Bitstrompuffers 150,
nachdem ein zweiter Teilsatz der Codewörter variab-
ler Länge in den Bitstrompuffer 150 geladen wurde.

[0041] Der Anfangszustand des Bitstrompuffers 150
ist frei und alle Bits sind verfügbar, um Daten aufzu-
nehmen. Es wird angemerkt, dass die Darstellung in
Fig. 7 den Bitstrompuffer 150 als ein 16-Bit-Register
zeigt. Bei einem bevorzugten Ausführungsbeispiel ist
der Bitstrompuffer 150 jedoch 32 Bits lang. Es ist klar,
dass der Bitstrompuffer 150 jede Länge aufweisen
kann.

[0042] Bezüglich der Codiermodusoperationen ist
ersichtlich, dass die gültigen Bits 701–704 eines ers-

ten Codeworts 700 in die höchstwertigsten vier (4)
Bits des Bitstrompuffers 150 geladen werden, die
verfügbar sind. Nachfolgend werden die gültigen Bits
801–806 des Codeworts 800 in die nächsten höchst-
wertigsten Bits des Bitstrompuffers 150A geladen,
die verfügbar sind. Als nächstes werden die gültigen
Bits 901–903 des Codeworts 900 in die nächsten
höchstwertigsten Bits des Bitstrompuffers 150A gela-
den, die verfügbar sind. Im Fall des Codeworts 1000
gibt es sechs gültige Datenbits 1001–1007. Der Bit-
strompuffer 150A hat jedoch nur drei (3) verfügbare
Bits, die zum Aufnehmen von Daten verbleiben. In
diesem Fall werden die Bits 1001–1003 in die verblei-
benden verfügbaren Bits des Bitstrompuffers 150 ge-
laden. Nachfolgend werden die Inhalte des Bitstrom-
puffers 150A ausgelesen und in dem FIFO 160 ge-
speichert. Der Bitstrompuffer 150 ist dann frei (150B)
und offen, um zusätzliche Datenbits aufzunehmen.
Die verbleibenden Bits 1004–1006 werden dann in
die höchstwertigsten Bits des Bitstrompuffers 150B
geschrieben. Dies wird fortgesetzt, bis alle verfügba-
ren Bits des Bitstrompuffers 150 mit gültigen Code-
wortdaten geladen sind, oder es keine weiteren Co-
dewortdaten zum Laden gibt.

[0043] In dem Fall von Decodieroperationen werden
Codewörter variabler Länge 701–704 von dem Bit-
strompuffer 150A ausgelesen und in das Bits-Le-
gen-Coderegister 110B geladen. Das Bits-Legen-Co-
deregister 110B wird dann ausgelesen und gelöscht.
Die Codewörter variabler Länge 801–806 werden
dann von dem Bitstrompuffer 150A ausgelesen und
in das Bits-Legen-Coderegister 110B geladen. Dies
wird fortgesetzt, bis alle Codewörter variabler Länge
aus dem Bitstrompuffer 150A ausgelesen sind. Wenn
die Codewörter variabler Länge 1001–1003 ausgele-
sen sind und in das Bits-Legen-Coderegister 110B
geladen sind, wird erkannt, dass diese Bits nur ein
Teilsegment des vollen Codeworts sind. In diesem
Fall wird das Bits-Legen-Coderegister 110B nicht un-
mittelbar ausgelesen und gelöscht. Es wird jedoch
ein anderes Wort variabler Länge in den Bitstrompuf-
fer 150B geschrieben. Das zweite Segment des Co-
deworts variabler Länge, die Bits 1004–1006, werden
dann aus dem Bitstrompuffer 150B ausgelesen und
in das Bits-Legen-Register 110B geladen, das dann
ausgelesen wird und von Daten gelöscht wird.

[0044] Obwohl das Bitstromregister 150 hierin als
16-Bit-Register dargestellt ist, wird angemerkt, dass
es als Register jeder Größe implementiert werden
kann, wie es für die spezifischen Zwecke geeignet ist,
einschließlich, aber nicht beschränkt auf, beispiels-
weise ein 8-Bit-Register, ein 32-Bit-Register oder ein
64-Bit-Register. Gleichartig dazu können der Multip-
lexer 140 und der FIFO 160 in jeder Bitlänge imple-
mentiert werden, die gewünscht wird, oder als am ge-
eignetsten für die entsprechende Anwendung be-
stimmt wird.
6/15

DE 601 10 493 T2 2006.01.05
[0045] Das Verfahren der vorliegenden Erfindung
kann in Hardware, Software, Firmware oder einer
Kombination derselben implementiert werden. Bei
den bevorzugten Ausführungsbeispielen ist das Ver-
fahren in Software oder in Firmware implementiert,
die in einem Speicher gespeichert ist, und die durch
ein geeignetes Befehlsausführungssystem ausge-
führt wird. Falls dasselbe in Hardware implementiert
ist, wie bei einem alternativen Ausführungsbeispiel,
kann das Verfahren mit jeder oder einer Kombination
der folgenden Technologien implementiert sein, die
alle in der Technik gut bekannt sind: eine diskrete Lo-
gikschaltung mit Logikdaten zum Implementieren von
Logikfunktionen auf Datensignale hin, eine anwen-
dungsspezifische integrierte Schaltung (ASIC) mit
entsprechenden Kombinationslogikdaten, ein pro-
grammierbares Gatterarray (PGA), ein feldprogram-
mierbares Gatterarray (FPGA), usw.

[0046] Die Flussdiagramme von Fig. 5 und Fig. 6
zeigen die Architektur, Funktionalität und den Betrieb
einer möglichen Implementierung des Codierungs-
und Decodierungsverfahrens der vorliegenden Erfin-
dung. Diesbezüglich stellt jeder Block ein Modul, ein
Segment oder einen Abschnitt des Codes dar, der ei-
nen oder mehrere ausführbare Befehle zum Imple-
mentieren der spezifizierten logischen Funktion(en)
umfasst. Es sollte auch angemerkt werden, dass bei
einigen alternativen Ausführungsbeispielen die Funk-
tionen, die in den Blöcken angemerkt werden, außer-
halb der Reihenfolge auftreten können, die in Fig. 5
oder Fig. 6 angemerkt ist. Beispielsweise können
zwei Blöcke, die in Fig. 5 oder Fig. 6 aufeinanderfol-
gend gezeigt sind, in der Tat im Wesentlichen gleich-
zeitig ausgeführt werden, oder die Blöcke können
manchmal in umgekehrter Reihenfolge ausgeführt
werden, abhängig von der betreffenden Funktionali-
tät, wie es oben erörtert ist.

[0047] Es sollte betont werden, dass die oben be-
schriebenen Ausführungsbeispiele der vorliegenden
Erfindung insbesondere jegliche „bevorzugte" Aus-
führungsbeispiele lediglich mögliche Beispiele von
Implementierungen sind und lediglich für ein klares
Verständnis der Prinzipien der Erfindung beschrie-
ben sind.

Patentansprüche

1. Ein Codierer/Decodierer, der konfiguriert ist,
um abwechselnd in einem ersten Betriebsmodus und
einem zweiten Betriebsmodus zu arbeiten, wobei der
Codierer/Decodierer folgende Merkmale aufweist:
ein Datenregister (110), das eine vorbestimmte An-
zahl von Bits umfasst;
ein Bitstromregister (150), das eine vorbestimmte
Anzahl von Bits umfasst;
einen Multiplexer (140);
ein Zuerst-Hinein-Zuerst-Hinaus-(FIFO-)Register
(160), das eine Mehrzahl von verfügbaren Mehrbitre-

gistern umfasst;
eine Unterbrechungssteuerung (180) zum Erzeugen
eines Unterbrechungssignals;
wobei das Datenregister (110) konfiguriert ist, um
während dem ersten Betriebsmodus ein Codewort
variabler Länge zu empfangen und zu speichern, das
gültige Datenbits umfasst, die durch einen Entropie-
codierungsalgorithmus komprimiert werden, und um
während dem zweiten Betriebsmodus Daten, die ein
Codewort variabler Länge umfassen, das durch ei-
nen Entropiedecodierungsalgorithmus dekompri-
miert werden soll, zu empfangen und zu speichern;
wobei das Bitstromregister (150) konfiguriert ist, um
während dem ersten Betriebsmodus Daten zu emp-
fangen und während dem zweiten Betriebsmodus ein
codiertes Datenwort fester Länge von dem FIFO-Re-
gister (160) zu empfangen;
wobei der Multiplexer konfiguriert ist, um während
dem ersten Betriebsmodus zumindest einen Teil der
gültigen Bits von dem Datenregister (110) in die
höchstwertigsten nichtverwendeten Bits in dem Bit-
stromregister (150) zu laden, und während dem zwei-
ten Betriebsmodus ein Codewort variabler Länge ge-
mäß einem ausgewählten Wert, der in den Codie-
rer/Decodierer geschrieben ist, von dem Bitstromre-
gister (150) in das Datenregister (110) zu laden;
wobei das FIFO-Register (160) während dem ersten
Betriebsmodus konfiguriert ist, um den Inhalt des Bit-
stromregisters (150) zu empfangen, wenn die vorbe-
stimmte Anzahl von Bits des Bitstromregisters (150)
mit einem Teil der gültigen Bits von Daten geladen
sind und der Rest der gültigen Bits geladen werden
muss;
wobei das FIFO-Register (160) während dem zwei-
ten Betriebsmodus konfiguriert ist, um Daten zu emp-
fangen, die aus dem codierten Datenwort fester Län-
ge bestehen, wobei das Datenwort das Codewort va-
riabler Länge umfasst;
wobei die Unterbrechungssteuerung (180) konfigu-
riert ist, um während dem ersten Betriebsmodus ein
Auslesen von Daten von dem FIFO-Register (160)
auszulösen; und
wobei die Unterbrechungssteuerung (180) ferner
konfiguriert ist, um während dem zweiten Betriebs-
modus das Schreiben des codierten Datenworts fes-
ter Länge in das FIFO-Register (160) auszulösen.

2. Ein Codierer/Decodierer gemäß Anspruch 1,
bei dem der Multiplexer (140) ein Barrel-Schiebere-
gister umfasst.

3. Ein Codierer/Decodierer gemäß Anspruch 1,
der ferner einen Zähler (170) zum Zählen der Anzahl
von Mehrbitwörtern umfasst, die in dem FIFO-Regis-
ter (160) gespeichert sind.

4. Ein Codierer/Decodierer gemäß Anspruch 3,
bei dem die Unterbrechungssteuerung (180) das Un-
terbrechungssignal erzeugt, wenn der Zähler (170)
7/15

DE 601 10 493 T2 2006.01.05
einen vorbestimmten Unterbrechungswert erreicht.

Es folgen 7 Blatt Zeichnungen
8/15

DE 601 10 493 T2 2006.01.05
Anhängende Zeichnungen
9/15

DE 601 10 493 T2 2006.01.05
10/15

DE 601 10 493 T2 2006.01.05
11/15

DE 601 10 493 T2 2006.01.05
12/15

DE 601 10 493 T2 2006.01.05
13/15

DE 601 10 493 T2 2006.01.05
14/15

DE 601 10 493 T2 2006.01.05
15/15

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

