(19) (19 DE 601 10 493 T2 2006.01.05

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift
(97) EP 1 154 575 B1 s1yntce: HO3M 7/40 (2006.01)

(21) Deutsches Aktenzeichen: 601 10 493.5
(96) Europaisches Aktenzeichen: 01 102 700.0
(96) Europaischer Anmeldetag: 07.02.2001
(97) Erstveroffentlichung durch das EPA: 14.11.2001
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 04.05.2005
(47) Veroffentlichungstag im Patentblatt: 05.01.2006

(30) Unionsprioritat: (74) Vertreter:
565015 04.05.2000 us Schoppe, Zimmermann, Stéckeler & Zinkler, 82049
Pullach
(73) Patentinhaber:
Hewlett-Packard Development Co., L.P., Houston, (84) Benannte Vertragsstaaten:
Tex., US DE, FR, GB
(72) Erfinder:
Crane, Randy T., Fort Collins, US

(54) Bezeichnung: Entropie Kodierer/Dekodierer zur schnellen Datenkompression und -dekompression

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 601 10493 T2 2006.01.05

Beschreibung
Gebiet der Erfindung

[0001] Die vorliegende Erfindung bezieht sich allge-
mein auf einen Entropiecodierer/decodierer fiir eine
schnelle Datenkomprimierung und -dekomprimie-
rung. Genauer gesagt bezieht sich die vorliegende
Erfindung auf einen Entropiecodierer/decodierer, der
mit jedem Komprimierungsschema verwendet wer-
den kann, das einen Entropiecodierungsschritt um-
fasst.

Hintergrund der Erfindung

[0002] Bei Datenubertragungs- und Verarbeitungs-
anwendungen ist es ublich, dass Daten vor oder wah-
rend der Verarbeitung oder Ubertragung von Daten
gemal verschiedenen Komprimierungsalgorithmen
komprimiert werden. AuRerdem ist es Ublich, dass
komprimierte (codierte) Daten wahrend oder nach
der Verarbeitung oder Ubertragung decodiert wer-
den, um die codierten Daten zurtick zur urspringli-
chen Form umzuwandeln.

[0003] Einige ubliche Komprimierungsschemata
(oder Algorithmen) umfassen, was als Entropiecodie-
rungsschritt bekannt ist. Beispiele dieser ubliche Al-
gorithmen, die einen Entropiecodierungsschritt um-
fassen, umfassen LZW, verlustfreie JPEG, G3, G4
usw. Komprimierungsschemata, die einen Entropie-
codierungsschritt umfassen, erzeugen typischerwei-
se einen Ausgabebitstrom, der eine variable Lange
hat. Aufgrund der variablen Lange der codierten Aus-
gabe erfordert das Verarbeiten dieser Daten eine gro-
Re Menge an Rechnungsaufwand auf Seiten der Ver-
arbeitungshardware und des zentralen Prozessors
oder der zentralen Steuerung.

[0004] Typische Komprimierungshardware ist typi-
scherweise zweckgebunden zum Verarbeiten/Codie-
ren gemafll nur einem vordefinierten Komprimie-
rungsalgorithmus. Falls Daten, die unter Verwendung
verschiedener Komprimierungsalgorithmen codiert
wurden, verarbeitet oder Ubertragen werden sollen,
ist es aufgrund dieser Beschrankung notwendig,
dass mehrere Hardwareimplementierungen vorgese-
hen sind, um jedes der verfiigbaren Komprimierungs-
algorithmen/-formate unterzubringen. Dies erhéht die
Kosten in Zusammenhang mit der Verarbeitung oder
Ubertragung von Daten, die gemaR mehreren Kom-
primierungsalgorithmen codiert sind.

[0005] Beispiele bekannter Systeme und Techniken
zum Komprimieren von Daten wurden in dem US Pa-
tent 5,499,382 an Nusinov u.a. erdrtert, fur eine
Schaltung und ein Verfahren zum Bit-Verdichten und
Bit-Entpacken unter Verwendung eines Barrel-Schie-
bers, und in dem US-Patent 4,360,840 an Wolrum flr
ein Echtzeitdaten-Komprimierungs-/Dekomprimie-

rungsschema fiir Facsimile-Ubertragungssysteme.

[0006] Es ist die Aufgabe der vorliegenden Erfin-
dung, einen Codierer/Decodierer zu schaffen, der mit
jedem Komprimierungsschema verwendet werden
kann, das einen Entropiecodierungsschritt umfasst.

[0007] Diese Aufgabe wird durch einen Codie-
rer/Decodierer gemall Anspruch 1 gelést.

[0008] Die vorliegende Erfindung liefert ein System
zum Codieren und Decodieren von Informationen.

[0009] Kurz gesagt kann das System beziglich der
Architektur wie folgt implementiert werden. Es ist ein
Codierer zum Codieren von Daten vorgesehen, der
ein Datenregister zum Empfangen und Speichern ei-
nes Codeworts variabler Lange, ein Bitstromregister
zum Empfangen von Daten, einen Multiplexer zum
Laden glltiger Bits von dem Steuerregister in die
héchstwertigsten Bits, die in dem Bitstromregister
verfigbar sind, ein Zuerst-Hinein-Zuerst-Hin-
aus-(FIFO-)Register zum Empfangen der Inhalte des
Bitstromregisters, wenn alle verfugbaren Bits des Bit-
stromregisters mit giltigen Datenbits geladen sind,
und eine Unterbrechungssteuerung zum Erzeugen
eines Unterbrechungssignals umfasst, um eine Aus-
lesung von Daten von dem FIFO-Register einzulei-
ten.

[0010] Bei einem weiteren Ausfihrungsbeispiel der
vorliegenden Erfindung ist ein Decodierer zum Deco-
dieren von Daten vorgesehen. Dieser Decodierer
umfasst ein erstes Register zum Empfangen codier-
ter Datenwortdaten fester Lange, ein Bitstromregister
zum Empfangen des codierten Datenworts fester
Lange, einen Multiplexer zum Laden Codewortdaten
variabler Lange von dem Bitstrompuffer in ein Daten-
register, und eine Unterbrechungssteuerung zum Er-
zeugen eines Unterbrechungssignals zum Einleiten
des Schreibens codierter Daten fester Lange in das
erste Register.

[0011] Die vorliegende Erfindung kann auch so ge-
sehen werden, dass sie ein Verfahren zum Codieren
liefert. Diesbeziglich kann das Verfahren durch die
folgenden Schritte grob zusammengefasst werden:
Empfangen von Codewortdaten variabler Lange, Be-
stimmen der Anzahl guiltiger Bits der Codewortdaten,
Laden der Codewortdaten in einen Bitstrompuffer,
falls alle glltigen Bits passen. Falls nicht alle glltigen
Bits in den Bitstrompuffer passen, Laden eines ersten
Segments der glltigen Bits in den Bitstrompuffer und
dann Laden der Inhalte des Bitstromregisters in ein
FIFO-Register, und Laden eines zweiten Segments
der teilweise gultigen Bits in den Bitstrompuffer.

[0012] Ein weiteres Verfahren zum Decodieren von
Daten ist vorgesehen, das durch die folgenden
Schritte grob zusammengefasst werden kann: Emp-

2/15

DE 601 10493 T2 2006.01.05

fangen eines Datenworts, Laden des Datenworts in
einen Puffer, Auslesen eines Codeworts variabler
Lange von dem Datenwort; und Laden des Code-
worts variabler Lange in ein Register fester Lange.

[0013] Andere Systeme, Verfahren, Merkmale und
Vorteile der vorliegenden Erfindung werden fur einen
Fachmann auf diesem Gebiet bei der Untersuchung
der folgenden Zeichnungen und der detaillierten Be-
schreibung offensichtlich. Es ist beabsichtigt, dass
alle zusatzlichen Systeme, Verfahren, Merkmale und
Vorteile, die in dieser Beschreibung enthalten sind,
innerhalb des Schutzbereichs der vorliegenden Erfin-
dung liegen und durch die angehangten Anspriiche
geschiitzt sind.

Kurze Beschreibung der Zeichnungen

[0014] Die Erfindung ist besser verstandlich mit Be-
zugnahme auf die folgenden Zeichnungen. Die Kom-
ponenten in den Zeichnungen sind nicht notwendi-
gerweise mafstabsgerecht, stattdessen wurde der
Schwerpunkt darauf gelegt, die Prinzipien der vorlie-
genden Erfindung deutlich darzustellen. Dartber hin-
aus bezeichnen in den Zeichnungen gleiche Bezugs-
zeichen entsprechende Teile in den mehreren An-
sichten.

[0015] Fig. 1 ist ein Diagramm, das ein System dar-
stellt, das den CODEC der vorliegenden Erfindung
umfasst;

[0016] Fig. 2 ist ein Blockdiagramm, das den CO-
DEC der vorliegenden Erfindung néher darstellt;

[0017] Eig. 3 ist ein Diagramm, das ein Steuerregis-
ter darstellt;

[0018] Fig. 4 ist ein Diagramm, das ein FIFO-Pegel-
register darstellt;

[0019] Fig.5 ist ein Flussdiagramm, das das Co-
dierverfahren der vorliegenden Erfindung darstellt;

[0020] Fig. 6 ist ein Diagramm, das das Decodier-
verfahren der vorliegenden Erfindung darstellt; und

[0021] Fig.7 ist ein Diagramm, das den Prozess
des Ladens/Entladens von Datenwoértern variabler
Lange in den Bitstrompuffer 150 darstellt.

Detaillierte Beschreibung des bevorzugten Ausfih-
rungsbeispiels

[0022] Die vorliegende Erfindung bezieht sich auf
einen Codierer und Decodierer (CODEC), der mit im
Wesentlichen jedem Komprimierungsschema ver-
wendet werden kann, das einen Entropiecodierungs-
schritt umfasst. Ferner liefert die vorliegende Erfin-
dung Daten-FIFO und Barrel-Schieber, die verwen-

det werden kénnen, um Daten entweder wahrend der
Codier- oder Decodieroperation zu verarbeiten.

[0023] Fig. 1 stellt ein System dar, dass den Entro-
pie-CODEC der vorliegenden Erfindung umfasst.
Eine zentrale Verarbeitungseinheit (CPU) 10 ist vor-
gesehen, die Uber eine lokale Schnittstelle 102 eine
Schnittstelle mit dem CODEC 1 bildet.

[0024] Mit Bezugnahme auf Fig. 2 ist ein Ausfuh-
rungsbeispiel des Entropie-CODEC 1 der vorliegen-
den Erfindung dargestellt. Der CODEC 1 arbeitet auf
zwei Weisen: Codiermodus und Decodiermodus. In
Fig. 2 ist eine Registerschnittstelle 100, ein Register-
block 110 und eine lokale Schnittstelle 120 gezeigt.
Die Registerschnittstelle 100 bildet eine Schnittstelle
mit der CPU 10 zum Steuern des Eingangs und Le-
sen von Daten in/von den Registern des Register-
blocks 110. Ein Zahler 170 ist vorgesehen zum Zah-
len des Pegels/der Anzahl von Datenwoértern, die zu
einem Zeitpunkt in dem FIFO 160 gespeichert sind.
Der Zahler 170 liefert eine Eingabe zu der Unterbre-
chungssteuerung 180, wenn der Pegel/die Anzahl
von Datenwdrtern, die in dem FIFO 160 gespeichert
sind, einen Wert erreicht, der dem Zahler 170 ent-
spricht.

[0025] Der Registerblock 110 umfasst ein Bits-Le-
gen-Langen-Register 110A, ein Bits-Legen-Codere-
gister 110B, ein FIFO-Pegelregister 110C, ein Ruick-
setzregister 110D, ein Steuerregister 110E, ein
Flush-Zuerst-Hinein-Zuerst-Hinaus (FLUSH-FIFO)
Register 110F, ein Bits-Holen-Register 110G, ein Bit-
zeigerregister 110H und ein Gepackte-Ausgabewor-
ter-Register 110l. Auflerdem sind eine Steuerung
130, die den Betrieb eines Multiplexers 140 steuert,
ein Bitstrompuffer 150 und ein Zuerst-Hinein-Zu-
erst-Hinaus-Registerblock (FIFO) 160 gezeigt. Die
Steuerung 130 arbeitet gemalt Befehlen von der
CPU 10. Der FIFO 160 ist beispielsweise ein 32 Bit x
16 Wort FIFO-Registerblock. Der Multiplexer 140 ist
mit der lokalen Schnittstelle 120 verbunden, tber die
Daten zu und von dem Registerblock 110 tGbertragen
werden.

[0026] Das Ricksetzregister 110D ist ein
Nur-Schreibe-Register, das verwendet wird, um die
Hardware, einschlief3lich allen Zeigern und des FIFO
160, der vorliegenden Erfindung 1 zurtickzusetzen.
Das Steuerregister 110E speichert Daten, die die
Steuerbits darstellen, wie es in Fig. 3 dargestellt ist.
Mit Bezugnahme auf Fig. 3 ist ersichtlich, dass das
Steuerregister 110E so konfiguriert werden kann,
dass beispielsweise die Bits 0—4 einen vordefinierten
Wert oder einen FIFO-Unterbrechungspegel darstel-
len, der einen maximalen oder minimalen Pegel/An-
zahl von Datenwortern darstellt, die in dem FIFO 160
gespeichert werden dirfen, abhangig von der Funkti-
onsweise. Das Bit 5 des Steuerregisters 110E ist das
Codier/Decodierbit (EN/DEC). Der Wert des

3/15

DE 601 10493 T2 2006.01.05

EN/DEC-Bits zeigt an, ob der CODEC 1 Daten von
dem FIFO 160 decodiert oder Daten in den FIFO 160
codiert. Wenn das EN/DEC-Bit beispielsweise 0 ist,
codiert der CODEC 1. Dies wird auch als Codiermo-
dus bezeichnet. Wenn das EN/DEC-Bit beispielswei-
se 1 ist, decodiert der CODEC 1. Dies wird auch als
Decodiermodus bezeichnet. Das Bit 6 des Steuerre-
gisters 110E stellt das Unterbrechungsfreigabebit
dar. Das Unterbrechungsfreigabe-(IE)-Bit kann bei-
spielsweise eine 1 sein (hoch), was es dem CODEC
1 ermdglicht, die CPU 10 zu unterbrechen. Die ver-
bleibenden Bits des Steuerregisters 110E werden
verwendet, um Codewortdaten variabler Lange zu
sammeln. Diese Codewortdaten werden nachfolgend
von dem Steuerregister 110E ausgelesen und Uber
den Multiplexer 140 zu dem Bitstrompuffer 150 gelei-
tet. Alle Bits in dem Steuerregister 110 sind bei einer
Zurucksetzung auf 0 voreingestellt.

[0027] Ein Bitzeigerregister 110H ist vorgesehen.
Das Bitzeigerregister 110H ist vorzugsweise ein
Nur-Lese-Register, das wahrend dem Codiermodus
Daten speichert, die einen Zeigerwert reflektieren,
der das nachst verfigbare héchstwertigste Bit (MSB)
in dem Bitstromregister 150 anzeigt, das mit Daten
geladen werden kann. Wo der Bitstrompuffer 150 bei-
spielsweise 32 Bits lang ist, kann das Bitstromzeiger-
register zu einem von 32 Bits, Bit O bis Bit 31, zeigen.
Wenn der Bitstrompuffer 150 voll ist, zeigt der Bit-
stromzeiger zu dem Bit 0, was anzeigt, dass der Bit-
strompuffer 150 voll ist. Falls das Bitstromzeigerre-
gister einen Wert zwischen 1 und 31 anzeigt, hat der
Bitstrompuffer 150 Bits verfiigbar, um eine Datenein-
gabe anzunehmen. Falls das Bitzeigerregister 110H
beispielsweise einen Wert von 28 anzeigt, dannist es
moglich, zusatzliche Daten in den Bitstrompuffer 150
zu laden, beginnend mit dem nachsten MSB 29 des
Bitstrompuffers 150. Kurz gesagt, der Wert in dem
Bitzeiger 110H spezifiziert das MSB-Bit in dem Bit-
strompuffer 150, in das Daten geladen werden kon-
nen.

[0028] Das Flush-FIFO-Register 110F kann adres-
siert werden, um zu bewirken, dass Daten, die in den
Bitstrompuffer 150 gespeichert sind, in den FIFO 160
geschrieben werden. Vorzugsweise sollten die Inhal-
te des Bitzeigerregisters 110H ausgelesen werden,
bevor in das FLUSH-FIFO-Register 110F geschrie-
ben wird.

[0029] Ein Beispiel eines FIFO-Pegelregisters 110C
ist in Fig. 4 dargestellt. Hier ist ersichtlich, dass die
Bits 0—4 verwendet werden, um den FIFO-Pegel zu
speichern. Der FIFO-Pegel ist ein Wert, der die An-
zahl von Datenwortern darstellt, die in den FIFO 160
geladen werden kénnen, bevor die Inhalte des FIFO
160 ausgelesen werden, um Platz fiir zusatzliche Da-
tenworter zu machen. Der FIFO-Pegelregister 110C
kann sowohl wahrend dem Codier- als auch dem De-
codiermodus gelesen werden. Ein Bits-Legen-Code-

register 110B ist zum Speichern von Daten vorgese-
hen, die das Codewort der nachsten variablen Bitlan-
ge darstellen, das ausgegeben werden soll oder zu
der Ausgabedatenzeichenfolge geschrieben werden
soll. Daten, die in das Bits-Legen-Register 110B ge-
schrieben sind, sind vorzugsweise rechts ausgerich-
tet. Es ist auch ein Bits-Legen-Langenregister 110A
vorgesehen, das Daten speichert, die die Anzahl von
Bits des Bits-Legen-Coderegisters 110B anzeigt, die
in die Ausgabedatenzeichenfolge geschrieben wer-
den soll. Daten, die in das Bits-Legen-Langenregister
110A geschrieben werden, bewirken, dass der CO-
DEC 1 tatsachlich die Codedaten schreibt, die in dem
Bits-Legen-Coderegister 110B gespeichert sind. Bei
einem bevorzugten Ausfihrungsbeispiel werden Da-
ten zuerst in das Bits-Legen-Coderegister 110B ge-
schrieben, gefolgt vom Schreiben von Daten in das
Bits-Legen-Langenregister 110A.

[0030] Das Bits-Holen-Register 110G wird wahrend
dem Decodiermodus verwendet, um Codes variabler
Bitlange von dem Eingangsdatenstrom zu extrahie-
ren. Wo es beispielsweise gewunscht wird, dass die
nachsten funf Bits von dem Dateneingangsstrom ge-
lesen werden sollen, wird ein Wert von 5 in das
Bits-Holen-Register 110G geschrieben. Die finf nied-
rigwertigsten Bits des Bits-Holen-Registers 110G
enthalten dann das Codewort.

[0031] Ein Gepacktes-Ausgabewort-Register 110l
ist vorgesehen. Das Gepacktes-Ausgabewort-Regis-
ter 1101 kann beispielsweise Uber einen Blocklesebe-
fehl einer Steuerung oder eines Zentralprozessors
(CPU) zugegriffen/adressiert werden. Durch Lesen
der Daten, die in den adressierten Raumen des Ge-
packtes-Ausgabewort-Registers 1101 enthalten sind,
wird das nachste komprimierte Datenwort von dem
FIFO 160 zu der CPU 10 ausgegeben.

[0032] Es wird angemerkt, dass wahrend dem Co-
diermodus der Datenfluss im Allgemeinen von dem
Multiplexer 140 zu dem Bitstrompuffer 150 zu dem
FIFO 160 flief3t. In dem Decodiermodus fliel3t der Da-
tenfluss im Allgemeinen von dem FIFO 160 zu dem
Bitstrompuffer 150 zu dem Multiplexer 140.

CODIERMODUS

[0033] Im Codiermodus werden Daten in das Steu-
erregister 110E geschrieben, um den FIFO-Unterbre-
chungspegel und das Unterbrechungs-Freigabebit
zu setzen. Das Codier/Decodierbit wird auf Codieren
gesetzt. Daten, die zu codieren sind, werden in das
Bits-Legen-Coderegister 110B geladen. Diese Daten
bestehen aus Datenwodrtern variabler Lange. Die
Steuerung 130 bewirkt, dass der Multiplexer 140 die
glltigen Bits von dem Bits-Legen-Coderegister 110B
auswahlt, zum Lesen der giiltigen Bits von dem Da-
tenwort fester Lange in den Bitstrompuffer 150.

4/15

DE 601 10493 T2 2006.01.05

[0034] Sobald alle Bits des Bitstrompuffers 150 ge-
laden sind, werden die Inhalte derselben in das Zu-
erst-Hinein-Zuerst-Hinaus-(FIFO)Register 160 ver-
schoben. Der FIFO-Registerblock 160 ist einem Zah-
ler 170 zugeordnet, der die Anzahl von 32 Bitwdrtern
zahlt, die zu jedem bestimmten Zeitpunkt in dem
FIFO-Register 160 enthalten sind. Der Zahlwert des
Zahlers 170 wird in dem FIFO-Pegelregister 110C als
FIFO-Pegeldaten gespeichert. Diese Daten kénnen
durch die CPU 10 verwendet werden, um zu bestim-
men, ob die Daten in dem FIFO 160 gelesen oder ge-
schrieben werden oder nicht. Beispielsweise konnte
die CPU 10 das FIFO-Pegelregister abfragen, und
wenn die FIFO-Pegeldaten, die in dem FIFO-Pegel-
register 160 gespeichert sind, den FIFO-Unterbre-
chungspegeldaten entsprechen, die in dem Steuerre-
gister 110E gespeichert sind, abhangig von der Funk-
tionsweise, kénnte die CPU bewirken, dass Daten
von dem FIFO 160 gelesen werden oder in densel-
ben geschrieben werden. Daten kénnen auch von
dem FIFO 160 gelesen werden oder in denselben ge-
schrieben werden, wo der Wert des Zahlers 170 den
Inhalten der FIFO-Unterbrechungspegeldaten ent-
spricht, die in dem Steuerregister 110E gespeichert
sind. In diesem Fall bewirkt die Unterbrechungssteu-
erung 180, dass ein Unterbrechungssignal an die
CPU 10 gerichtet wird, um anzuzeigen, dass es fur
die CPU Zeit ist, die Inhalte von/in dem FIFO-Regis-
ter 160 zu lesen (wahrend dem Codiermodus) oder
zu schreiben (wahrend dem Decodiermodus).

[0035] Fiq.5 zeigt ein Flussdiagramm, das das Co-
dierverfahren der vorliegenden Erfindung darstellt.
Mit Bezugnahme auf Fig. 2 und Eig. 5 wird ange-
merkt, dass das Bits-Legen-Langenregister 110A
adressiert wird, um zu bewirken, dass ein Codewort
beispielsweise von dem Bits-Legen-Coderegister
110B geladen wird (500). Das Codewort hat eine va-
riable Lange und kann das Ergebnis eines Entropie-
codierungsprozesses sein. Das Bits-Legen-Codere-
gister 110B hat eine feste Anzahl von Bits (Lange).
Die Lange des Codeworts variabler Lange ist in dem
Bits-Legen-Langenregister 110A gespeichert. Die
Daten des Codeworts variabler Lange, die in das
Bits-Legen-Coderegister 110B geladen sind, erfor-
dern eventuell nicht alle verfligbaren Speicherbits
des Bits-Legen-Coderegisters 110B. Sobald die Da-
ten des Codeworts variabler Lange in das Bits-Le-
gen-Coderegister 110B geladen sind, kdnnen diesel-
ben alle verfliigbaren Bits des Bits-Legen-Langenre-
gisters 110A besetzen oder nicht. Das Bits-Le-
gen-Coderegister 110B ist beispielsweise 16 Bits
lang und ein Codewort variabler Lange von 4 Bits
wird in das Bits-Legen-Coderegister 110B geladen.
Die 4 Bits des Bits-Legen-Coderegisters 110B, die
die Daten des Codeworts variabler Lange tatsachlich
speichern, werden als gultige Bits bezeichnet. Die
Anzahl von giltigen Bits von dem Bits-Legen-Code-
register 110B wird dann bestimmt (501) durch Bezug-
nahme auf die Datenwerte, die vorher in dem

Bits-Holen-Register 110G gespeichert waren. Diese
Bestimmung wird Uber die Steuerung 130 durchge-
fuhrt. Es ist jedoch mdglich, dass eine solche Bestim-
mung durch die CPU 10 ausgefihrt wird. Es wird
dann bestimmt, ob alle gtiltigen Bits in verbleibende
offene Bits des Bitstrompuffers 150 passen (502).
Falls dies der Fall ist, werden diese gultigen Bits in
verbleibende offene Bits des Bitstrompuffers 150 ge-
laden (503) und nachfolgend als Datenwdrter fester
Lange ausgelesen (511).

[0036] Falls die gultigen Bits nicht in den Bitstrom-
puffer (150) passen, wird alternativ bestimmt, ob ei-
nes der gultigen Bits in den Bitstrompuffer 150 passt
(504). Wo einige der giltigen Bits in den Bitstrompuf-
fer 150 passen, werden dieselben (erster Satz von
teilweise glltigen Bits) in den Bitstrompuffer 150 ge-
laden (505), um alle verfiigbaren Bits des Bitstrom-
puffers 150 zu fullen. Die Bitstrompufferinhalte wer-
den dann durch ein Zuerst-Hinein-Zuerst-Hin-
aus-(FIFO)Register 160 (506) ausgelesen. Der Bit-
strompuffer 150 ist dann frei von jeglichen Daten und
der zweite Satz von teilglltigen Bits wird in den Bit-
strompuffer 150 geladen (507). Dieser Prozess ist in
Fig. 7 dargestellt, der nachfolgend na&her erortert
wird.

[0037] Wo keines der glltigen Bits in den Bitstrom-
puffer passt, weil derselbe bereits voll mit Daten ist,
werden die Inhalte des Bitstrompuffers 150 in den
FIFO 160 geladen (508). Falls der FIFO 160 voll ist
(509), werden die Inhalte desselben geleert (510).
Der FIFO 160 ist einem Zahler 170 zugeordnet. Der
Zahler 170 behalt einen Zahlwert von beispielsweise
der Anzahl von 32 Bitwortern bei, die tatsachlich in
dem FIFO 160 geladen sind. Wenn der Zahlwert des
Zahlers 170 dem FIFO-Unterbrechungspegelwert
entspricht, der in dem Steuerregister 110C gespei-
chert ist, bewirkt die Unterbrechungssteuerung 180,
dass eine Unterbrechung erzeugt wird und an die
CPU 10 gerichtet wird. Die CPU 10 wird wiederum
eine vorbestimmte Anzahl von Wértern von dem
FIFO 160 auslesen. Dies macht Raum in dem FIFO
160 verfligbar, zum Aufnehmen zusatzlicher Code-
wortdaten von dem Bitstrompuffer 150.

DECODIERMODUS

[0038] Fig. 6 zeigt ein Flussdiagramm, das das De-
codierverfahren der vorliegenden Erfindung darstellt.
In dem Decodiermodus werden Daten in das Steuer-
register 110E geschrieben, um den FIFO-Unterbre-
chungspegel und das Unterbrechungsfreigabebit zu
setzen. Das Codier/Decodierbit wird auf Decodieren
gesetzt. Das Bits-Holen-Register 110G wird adres-
siert, um zu bewirken, dass ein Datenwort fester Lan-
ge beispielsweise in den FIFO 160 geladen wird. Der
Bitstrompuffer 150 empfangt ein Datenwort fester
Lange von dem FIFO 160. Das Datenwort fester Lan-
ge besteht aus mehreren Codewortern variabler Lan-

5/15

DE 601 10493 T2 2006.01.05

ge. Ein Codewort variabler Lange wird von dem Bit-
strompuffer 150 ausgelesen, gemafl Datenlangenin-
formationen, die in dem Bits-Holen-Register 110G
gespeichert sind. Der Multiplexer 140 leitet dann das
Codewort variabler Lange zu dem Bits-Holen-Regis-
ter 110G, von wo aus es dann als ein Codewort fester
Lange ausgelesen wird. Der Betrieb des Multiplexers
140, des Bitstrompuffers 150 und des FIFO 160 wer-
den durch die Steuerung 130 gemaf Daten gesteu-
ert, die in dem Registerblock 110 gespeichert sind.
Sobald alle Codewdrter variabler Lange von dem Co-
dewort fester Lange, das in den Bitstrompuffer 150
geladen ist, ausgelesen wurden, wird ein weiteres
Codewort fester Lange von dem FIFO 160 wiederge-
wonnen und in den Bitstrompuffer 150 geladen.

[0039] Der FIFO 160 ist beispielsweise ein 32 Bit
mal 16 Wort FIFO-Register. Der Zahler 170 behalt ei-
nen Zahlwert der Anzahl von Datenwdrtern bei, die
zu einem bestimmten Zeitpunkt in dem FIFO 160 ge-
speichert sind, und speichert diesen Wert in dem
FIFO-Pegelregister 110C. Wenn der Wert, der in dem
FIFO-Pegelregister 110C gespeichert ist, einem
FIFO-Unterbrechungspegelwert entspricht, der in
dem Steuerregister 110 gespeichert ist, erzeugt die
Unterbrechungssteuerung 180 ein Unterbrechungs-
signal. Dieses Unterbrechungssignal wird an die
CPU 10 gerichtet, diese antwortet durch Bewirken,
dass zusatzliche Daten fester Lange in den FIFO 160
geladen werden.

[0040] Fig. 7 stellt dar, wie gultige Bits von Code-
wortern variabler Lange wahrend den Codiermodus-
operationen der vorliegenden Erfindung aus dem
Bits-Legen-Coderegister 110B ausgelesen und in
den Bitstrompuffer 150 geladen werden. Eig. 7 zeigt
auch, wie Codewodrter fester Lange aus dem Bit-
strompuffer 150 ausgelesen werden und in das
Bits-Legen-Coderegister 110B geladen werden,
wahrend den Codiermodusoperationen der vorlie-
genden Erfindung. Der Bitstrompuffer 150A zeigt den
Status des Bitstrompuffers 150, nachdem guiltige Bits
der Codeworter variabler Lange, die einen ersten
Teildatensatz umfassen, die verfligbaren Bits des Bit-
stromregisters 150 vollstandig geflillt haben. Der Bit-
strom 150B zeigt den Status des Bitstrompuffers 150,
nachdem ein zweiter Teilsatz der Codewdrter variab-
ler Lange in den Bitstrompuffer 150 geladen wurde.

[0041] Der Anfangszustand des Bitstrompuffers 150
ist frei und alle Bits sind verfigbar, um Daten aufzu-
nehmen. Es wird angemerkt, dass die Darstellung in
Fig. 7 den Bitstrompuffer 150 als ein 16-Bit-Register
zeigt. Bei einem bevorzugten Ausfuhrungsbeispiel ist
der Bitstrompuffer 150 jedoch 32 Bits lang. Es ist klar,
dass der Bitstrompuffer 150 jede Lange aufweisen
kann.

[0042] Bezlglich der Codiermodusoperationen ist
ersichtlich, dass die gliltigen Bits 701-704 eines ers-

ten Codeworts 700 in die héchstwertigsten vier (4)
Bits des Bitstrompuffers 150 geladen werden, die
verfugbar sind. Nachfolgend werden die glltigen Bits
801-806 des Codeworts 800 in die nachsten héchst-
wertigsten Bits des Bitstrompuffers 150A geladen,
die verfugbar sind. Als nachstes werden die gultigen
Bits 901-903 des Codeworts 900 in die nachsten
hoéchstwertigsten Bits des Bitstrompuffers 150A gela-
den, die verfugbar sind. Im Fall des Codeworts 1000
gibt es sechs glltige Datenbits 1001-1007. Der Bit-
strompuffer 150A hat jedoch nur drei (3) verfligbare
Bits, die zum Aufnehmen von Daten verbleiben. In
diesem Fall werden die Bits 1001-1003 in die verblei-
benden verfiigbaren Bits des Bitstrompuffers 150 ge-
laden. Nachfolgend werden die Inhalte des Bitstrom-
puffers 150A ausgelesen und in dem FIFO 160 ge-
speichert. Der Bitstrompuffer 150 ist dann frei (150B)
und offen, um zusétzliche Datenbits aufzunehmen.
Die verbleibenden Bits 1004-1006 werden dann in
die hdchstwertigsten Bits des Bitstrompuffers 150B
geschrieben. Dies wird fortgesetzt, bis alle verfiigba-
ren Bits des Bitstrompuffers 150 mit glltigen Code-
wortdaten geladen sind, oder es keine weiteren Co-
dewortdaten zum Laden gibt.

[0043] In dem Fall von Decodieroperationen werden
Codewdorter variabler Lange 701-704 von dem Bit-
strompuffer 150A ausgelesen und in das Bits-Le-
gen-Coderegister 110B geladen. Das Bits-Legen-Co-
deregister 110B wird dann ausgelesen und geldscht.
Die Codeworter variabler Lange 801-806 werden
dann von dem Bitstrompuffer 150A ausgelesen und
in das Bits-Legen-Coderegister 110B geladen. Dies
wird fortgesetzt, bis alle Codewdrter variabler Lange
aus dem Bitstrompuffer 150A ausgelesen sind. Wenn
die Codeworter variabler Ldnge 1001-1003 ausgele-
sen sind und in das Bits-Legen-Coderegister 110B
geladen sind, wird erkannt, dass diese Bits nur ein
Teilsegment des vollen Codeworts sind. In diesem
Fall wird das Bits-Legen-Coderegister 110B nicht un-
mittelbar ausgelesen und geldscht. Es wird jedoch
ein anderes Wort variabler Lange in den Bitstrompuf-
fer 150B geschrieben. Das zweite Segment des Co-
deworts variabler Lange, die Bits 1004—1006, werden
dann aus dem Bitstrompuffer 150B ausgelesen und
in das Bits-Legen-Register 110B geladen, das dann
ausgelesen wird und von Daten gel6scht wird.

[0044] Obwohl das Bitstromregister 150 hierin als
16-Bit-Register dargestellt ist, wird angemerkt, dass
es als Register jeder GréRe implementiert werden
kann, wie es fiir die spezifischen Zwecke geeignet ist,
einschlieBlich, aber nicht beschrankt auf, beispiels-
weise ein 8-Bit-Register, ein 32-Bit-Register oder ein
64-Bit-Register. Gleichartig dazu kénnen der Multip-
lexer 140 und der FIFO 160 in jeder Bitlange imple-
mentiert werden, die gewiinscht wird, oder als am ge-
eignetsten flir die entsprechende Anwendung be-
stimmt wird.

6/15

DE 601 10493 T2 2006.01.05

[0045] Das Verfahren der vorliegenden Erfindung
kann in Hardware, Software, Firmware oder einer
Kombination derselben implementiert werden. Bei
den bevorzugten Ausflihrungsbeispielen ist das Ver-
fahren in Software oder in Firmware implementiert,
die in einem Speicher gespeichert ist, und die durch
ein geeignetes Befehlsausflihrungssystem ausge-
fuhrt wird. Falls dasselbe in Hardware implementiert
ist, wie bei einem alternativen Ausfiihrungsbeispiel,
kann das Verfahren mit jeder oder einer Kombination
der folgenden Technologien implementiert sein, die
alle in der Technik gut bekannt sind: eine diskrete Lo-
gikschaltung mit Logikdaten zum Implementieren von
Logikfunktionen auf Datensignale hin, eine anwen-
dungsspezifische integrierte Schaltung (ASIC) mit
entsprechenden Kombinationslogikdaten, ein pro-
grammierbares Gatterarray (PGA), ein feldprogram-
mierbares Gatterarray (FPGA), usw.

[0046] Die Flussdiagramme von Fig. 5 und Fig. 6
zeigen die Architektur, Funktionalitdt und den Betrieb
einer mdglichen Implementierung des Codierungs-
und Decodierungsverfahrens der vorliegenden Erfin-
dung. Diesbezlglich stellt jeder Block ein Modul, ein
Segment oder einen Abschnitt des Codes dar, der ei-
nen oder mehrere ausfiuhrbare Befehle zum Imple-
mentieren der spezifizierten logischen Funktion(en)
umfasst. Es sollte auch angemerkt werden, dass bei
einigen alternativen Ausfihrungsbeispielen die Funk-
tionen, die in den Blécken angemerkt werden, aulRer-
halb der Reihenfolge auftreten kénnen, die in Fig. 5
oder FEig. 6 angemerkt ist. Beispielsweise kénnen
zwei Bldcke, die in Eig. 5 oder Eig. 6 aufeinanderfol-
gend gezeigt sind, in der Tat im Wesentlichen gleich-
zeitig ausgefihrt werden, oder die Blocke kdnnen
manchmal in umgekehrter Reihenfolge ausgefihrt
werden, abhangig von der betreffenden Funktionali-
tat, wie es oben erortert ist.

[0047] Es sollte betont werden, dass die oben be-
schriebenen Ausflihrungsbeispiele der vorliegenden
Erfindung insbesondere jegliche ,bevorzugte" Aus-
fuhrungsbeispiele lediglich moégliche Beispiele von
Implementierungen sind und lediglich fur ein klares
Verstandnis der Prinzipien der Erfindung beschrie-
ben sind.

Patentanspriiche

1. Ein Codierer/Decodierer, der konfiguriert ist,
um abwechselnd in einem ersten Betriebsmodus und
einem zweiten Betriebsmodus zu arbeiten, wobei der
Codierer/Decodierer folgende Merkmale aufweist:
ein Datenregister (110), das eine vorbestimmte An-
zahl von Bits umfasst;
ein Bitstromregister (150), das eine vorbestimmte
Anzahl von Bits umfasst;
einen Multiplexer (140);
ein Zuerst-Hinein-Zuerst-Hinaus-(FIFO-)Register
(160), das eine Mehrzahl von verfugbaren Mehrbitre-

gistern umfasst;

eine Unterbrechungssteuerung (180) zum Erzeugen
eines Unterbrechungssignals;

wobei das Datenregister (110) konfiguriert ist, um
wahrend dem ersten Betriebsmodus ein Codewort
variabler Lange zu empfangen und zu speichern, das
gultige Datenbits umfasst, die durch einen Entropie-
codierungsalgorithmus komprimiert werden, und um
wahrend dem zweiten Betriebsmodus Daten, die ein
Codewort variabler Lange umfassen, das durch ei-
nen Entropiedecodierungsalgorithmus dekompri-
miert werden soll, zu empfangen und zu speichern;
wobei das Bitstromregister (150) konfiguriert ist, um
wahrend dem ersten Betriebsmodus Daten zu emp-
fangen und wahrend dem zweiten Betriebsmodus ein
codiertes Datenwort fester Lange von dem FIFO-Re-
gister (160) zu empfangen;

wobei der Multiplexer konfiguriert ist, um wahrend
dem ersten Betriebsmodus zumindest einen Teil der
glitigen Bits von dem Datenregister (110) in die
héchstwertigsten nichtverwendeten Bits in dem Bit-
stromregister (150) zu laden, und wahrend dem zwei-
ten Betriebsmodus ein Codewort variabler Lange ge-
maRk einem ausgewahlten Wert, der in den Codie-
rer/Decodierer geschrieben ist, von dem Bitstromre-
gister (150) in das Datenregister (110) zu laden;
wobei das FIFO-Register (160) wahrend dem ersten
Betriebsmodus konfiguriert ist, um den Inhalt des Bit-
stromregisters (150) zu empfangen, wenn die vorbe-
stimmte Anzahl von Bits des Bitstromregisters (150)
mit einem Teil der gultigen Bits von Daten geladen
sind und der Rest der giiltigen Bits geladen werden
muss;

wobei das FIFO-Register (160) wahrend dem zwei-
ten Betriebsmodus konfiguriert ist, um Daten zu emp-
fangen, die aus dem codierten Datenwort fester Lan-
ge bestehen, wobei das Datenwort das Codewort va-
riabler LAnge umfasst;

wobei die Unterbrechungssteuerung (180) konfigu-
riert ist, um wahrend dem ersten Betriebsmodus ein
Auslesen von Daten von dem FIFO-Register (160)
auszuldsen; und

wobei die Unterbrechungssteuerung (180) ferner
konfiguriert ist, um wahrend dem zweiten Betriebs-
modus das Schreiben des codierten Datenworts fes-
ter Lange in das FIFO-Register (160) auszuldsen.

2. Ein Codierer/Decodierer gemafl Anspruch 1,
bei dem der Multiplexer (140) ein Barrel-Schiebere-
gister umfasst.

3. Ein Codierer/Decodierer gemafll Anspruch 1,
der ferner einen Zahler (170) zum Zahlen der Anzahl
von Mehrbitwortern umfasst, die in dem FIFO-Regis-
ter (160) gespeichert sind.

4. Ein Codierer/Decodierer gemal® Anspruch 3,
bei dem die Unterbrechungssteuerung (180) das Un-
terbrechungssignal erzeugt, wenn der Zahler (170)

7/15

DE 601 10493 T2 2006.01.05
einen vorbestimmten Unterbrechungswert erreicht.

Es folgen 7 Blatt Zeichnungen

8/15

DE 601 10493 T2 2006.01.05

Anhangende Zeichnungen

%

CODEC

N

120

LOKALE SCHNITTSTELLE

cPU
2

N

NZ

9/15

FIGUR 1

DE 601 10493 T2 2006.01.05

¢ 4Nl

08F.

|
|
. {
< ONNHANILS fegpm 0T !
INH3INI 43 LHOMSINYISNY !
_ 2NV “
04 HIHYZ HOL 1]
_.Y - 43937119 |
[aw)

L 3 &
= £ 5001 8 .
oot - NITOH S1/9 % |
\ = 3077 z2| !
+ 3 5 N3HIS01 041 z !
oo = 0 2

H344NdNOYISLIE m 2T nz
A A”v Y31SID3HEINLS = | 3T ndownz

V . qory _
¥ B NIZIISHONH . _
- ovT E |
> DTN 01T ° _
SNLYIS |
8011 .
_ 3009-N3937-SLIg _
0Et |
ONNYINALS VoIt _
IONYI-NIDIT-S1Ig |
N\ / oiv [
|
|

T ——r S A s e G —p — — —— —— —— — — — — — — —— Ofn_ w— — —— — —— — w— —

10/15

DE 601 10493 T2 2006.01.05

€ dNnold

1393dSINNHIIHEHILINN-04Id

J3aN3

3l

01l9

19

¢ 18

€119

v 119

G119

9119

11/15

DE 601 10493 T2 2006.01.05

o
=
a
v
=
[aa]
-—
o
[aN]
= o
= o <
oo
o
—)
— —
(22} L
-
=
a

12/15

DE 601 10493 T2 2006.01.05

805 I,\

N34337 0414 S30 FLTVHNI

A
vr

0lS

60S

|

N3AV1 SLi8 NIDILTNOTEL
NOA ZLVS W3LI3MZ 1IN 4S9

'y

N3QY1 0414 NI 3LTVHNI YS4

3

N3AV1SLI8 NIDILTNDTEL
NOA Z1VS IN31SH3 LIIN 4S4

|
505 |\ e

N30AV1 0414 NI JLTVHNI-4SE

- NIIN

v0S

G dnold

¢458 Svd
NI JHOTIMANTOHI
NISSvd

H0S

00S

/.l 208

/l I9NY1
431534
90S
1HOMNILVQ
Lis I\ 1

N3S31SNV

N34T SLI8 NIDILTND LIN HSe

4S8
SYANIITIV
N3SSvd

NIANILSIE
SLig ¥391L109 THYZNY

A

NIQVT H3LSIDFY NI
JONYT 4319VIHVA LHOM3IA0D

e

13/15

DE 601 10493 T2 2006.01.05

[

N3S31SNV

€09 .I\

N

909

209

J9NY 431534 LHOMNALYG
t\ S$313NHOI3Z394NY
609
9 4Nol4 !
NIQYT 3IONY
431534 31519343009 NI
JONY] HI1AVIHVA 1HOMIA0D
I\ NEIN
NI JONYT H31S34 ¥A1SI934 | 09
NI SLHOMIT0D $30 3L N3LSHI[vr
=
NIQV1 933NdNOYLSLid
NI LHOMNILYQ
€09
]
NISIISNY
NISTISNV JONY T
S1YOM3IQ09 $30 1131 N3LIAMZ STV HOM300)
209 »
NIQV1
JONYT ¥I1S34 H3LSI9IY NI N30V 4344NdNOYLSLiE
SLHOM300D S30 1131 N3LAMZ NI LHOMN3LYA

808

108

009 n\

N3GV 04i4 NI LHOMNILYA

14/15

DE 601 10493 T2 2006.01.05

. 4Nl

805t 9004 00!
IM _moe
£00L 1004 206 908 ©08 208 0L ZOL
e [[T T T T TTTTTT Toli]+]esw _Noﬂw mﬁmm_sm mom_ gog | 108 TE 10L
v \..
A o7 esafofi[i[iToTiJoJo FT%LLJ?A L | gsw
S RIS A Y y
...\x... P e g e - \.\\U\\ \.\\ .\\.\ \\\ \
P L - » s »-\..\\ \\\ \\\ \ VoSt .\.
- e . e\.. \\.\ \\.\ \\. rd \
. 4 ..\.\ \\\\\. . ..\.... e - Ve \... . ‘\. J
T T / / \ /
.. . e o \.......... ...\..\.... L g .\. ...\ \ \
- = ...h.”“” ...\\. .\..\.....] e P .\.\ \. .\\ \ \.
oft|tfo]r]s viol ofoft|o]s|s tlofe]s
aSW asSn SN 8SW
9004-000} _ £06-106 _ 908-108 $02-10L

. ,
0001 l\ |\> L.
006 008 00,

15/15

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

