(54)发明名称
一种中高温环境下使用的高热导率镍合金及其制备方法

(57)摘要
本发明提供一种中高温环境下使用的高热导率镍合金及其制备方法，该镍合金的成分含量为：Mn：0.20~1.20wt.%,Ce：0.05~0.85wt.%，避免杂质≤0.15wt.%,其余为Mg。其制备方法包括：以纯镍锭、镍锰中间合金、镍铈中间合金为原料，将其熔化、合金化后制成坯锭，进行均质化处理，采用挤压、轧制等变形工艺加工成所需材料，再进行低温时效处理。本发明所制备的镍合金材料在90℃和250℃条件下，热导率≥130W/m·K，室温、90℃和250℃时的抗拉强度分别大于：300MPa、240MPa和150MPa，可作为航空航天中的电子器件、LED散热型材以及发动机外壳等散热系统结构材料。
1. 一种中高温环境下使用的高热导率镍合金，其特征在于，该镍合金的成分含量为：Mn的含量为0.53wt.%；Ce的含量为0.41wt.％；不可避免杂质≤0.15wt.%；其余为Mg；所述中高温环境是指温度分别为90℃和250℃的环境，且在90℃和250℃工作条件下，该合金的热导率在90℃时为138.4W/m·K，在250℃时为139.9W/m·K，室温时抗拉强度能够达到327MPa，90℃时抗拉强度能够达到265MPa，250℃时抗拉强度能够达到171MPa。

2. 一种如权利要求1所述中高温环境下使用的高热导率镍合金的制备方法，其特征在于，包括以下步骤：
 (1) 以纯镍锭、镍坯中间合金、镍锭中间合金为原料，进行机械打磨，按权利要求1中所述的高热导率镍合金成分含量的重量百分比进行计算配料；
 (2) 将全部纯镍锭放在低碳钢的熔炼坩埚中，在CO₂+0.5 vol.% SF₆混合气体保护下使其完全熔化，将熔体温度升温到690℃~760℃，将熔液表面的浮渣清理干净；
 (3) 将预热炉升温到300~400℃，将镍锭中间合金和镍坯中间合金放入到预热炉中，将合金预热到300~400℃；
 (4) 将熔体温度升温到800~820℃，将预热到300~400℃的镍锭中间合金缓慢地加入到已知完全熔化了的熔体中，搅拌3~5分钟，然后使熔体降温；
 (5) 当熔体降温至750±20℃时，将预热到300~400℃的镍坯中间合金缓慢地加入到已经完全熔化了的熔体中，搅拌3~5分钟；
 (6) 将熔体的温度控制在750±10℃，撤入RJ-5号溶剂，充分搅拌2~3分钟，将熔体温度控制在750±10℃，静置40~60分钟，完成精炼过程；
 (7) 将金属型铸造模具加热到300~400℃，并保温2个小时以备用；
 (8) 将熔体降温至690~720℃范围，浇注到经过充分预热的金属型铸造模具中凝固成铸坯；
 (9) 将铸坯随炉升温加热到420℃后保温12小时，出炉空冷，进行均匀化退火处理；
 (10) 采用挤压方法，将合金加工成3×60mm的板材的制品，其中热变形温度为400℃，挤压速率为100mm/min；
 (11) 将得到的制品进行冷轧形处理，压下量为10%；
 (12) 将制品进行低温时效处理，时效温度为160℃，时效时间为60h。
一种中高温环境下使用的高热导率镁合金及其制备方法

技术领域
[0001] 本发明属于有色金属材料技术领域，尤其涉及一种在中高温环境下使用的高热导率、低成本的镁合金及其制备方法。

背景技术
[0002] 镁合金作为目前最轻的金属结构材料得到了极大的关注，这主要是由于镁合金具有低密度、高比强度和比刚度、良好的电磁屏蔽性能和较高的热导率。纯镁室温下的热导率为158 W/m·K, 仅次于纯钢和纯铝，使其在某些对材料力学性能和热学性能同时要求的特殊领域具有巨大的发展潜力。
[0003] 近年来我国电子技术飞速发展，电子产业的高性能、微型化、集成化发展趋势，使得电子器件的总功率密度和发热量大幅度增加，散热问题越来越突出。尤其是对减重要求敏感的航空航天器件、便携电器和通讯设备、交通工具等产品的散热系统的复杂结构件，既要求导热性能、力学性能、生产加工性能优良的轻质材料。在镁合金的实际应用中，特别是在较高的服役温度下，散热问题成为一项技术难题。例如，随着大功率LED照明产业的快速发展，芯片所产生的热流量密度急剧增加从而导致芯片的温度升高，严重影响了产品的使用寿命及出光效率。因此，散热问题是大功率LED发展应用的瓶颈之一，为了使芯片的温度保持在安全范围之内，设计出同时兼具优异的导热性能和较高的力学性能的，适合在中高温环境下使用的高热导率镁合金，具有非常重要的研究和使用意义。
[0004] 现有的在中高温环境下使用的镁合金材料比如WE43、AZ91和AS21,其导热率分别为:51.3W/m·K, 45.1W/m·K, 68W/m·K，都不能满足航空航天中的电器电源、电子器件、LED照明系统的散热型材（工作温度在90℃左右的中温）以及发动机外壳（工作温度在250℃左右的较高温度）等散热系统结构材料对镁合金导热性能的要求。
[0005] 现有的研究报告和各国专利中亦未见到适合在中高温环境下使用，室温抗拉强度大于300MPa，且高温性能良好的高热导率镁合金。例如中国专利CN100575522C和CN100513606C分别提出了高热导率镁合金及其制备方法，其化学成分：前者为：1.5~11%Zn，0.5~5%Cu，0.15~1%Mn，0.1~2.5%Ag；后者为：2.5~11%Zn，0.15~1.5%Zr，0.1~2.5%Ag，0.3~3.5%Ce，0~1.5%Nd，0~2.5%La，0~0.5%Mg。两者的热导率都大于120W/m·K，在室温下也具有较好的强度，但是目前都没有针对在中高温环境中的热导率和力学性能的报道。据现有镁合金材料，还没有适合在中高温环境下使用的能同时兼顾导热性能、较高力学性能要求的镁合金。

发明内容
[0006] 针对现有技术存在的上述不足，本发明的目的在于提供一种在中高温环境下兼具高热导率和良好力学性能的镁合金，解决现有镁合金热导率低，不能在中高温条件下兼顾导热性能和力学性能的要求的缺陷。
[0007] 本发明的另一个目的是提供中高温环境下使用的高热导率镁合金的制备方法。
为实现上述目的，本发明采取以下技术方案：

一种中高温环境下使用的高热导率镁合金，该镁合金的成分含量为：Mn的含量为：0.20~1.20wt.%;Ce的含量为：0.05~0.85wt.%;不可避免杂质≤0.15wt.%;其余为Mg。

进一步，该镁合金的成分含量为：Mn的含量为：0.30~0.95wt.%;Ce的含量为：0.15~0.75wt.%;不可避免杂质≤0.15wt.%;其余为Mg。

进一步，该镁合金的成分含量为：Mn的含量为：0.53wt.%;Ce的含量为：0.41wt.%;不可避免杂质≤0.15wt.%;其余为Mg。

一种中高温环境下使用的高热导率镁合金的制备方法，包括以下步骤：

（1）以纯镁锭、镁铝合金、镁铲中间合金为原料，按上述的高导耐热镁合金各成分含量的重量百分比进行计算配料；

（2）将全部纯镁锭放在低碳钢的熔炼坩埚中，在CO₂+0.5 vol.% SF₆混合气体保护下使其完全熔化，将熔体温度升温到690°C~760°C，将熔液表面的浮渣清理干净；

（3）将预热炉升温到300~400°C，将镁铲中间合金和镁铲中间合金放入到预热炉中预热到300~400°C；

（4）将镁铲熔体温度升温到800±20°C，将预热到300~400°C的镁铲中间合金缓慢地加入到熔体中，搅拌3-5分钟，然后使熔体降温；

（5）当熔体降温至750±20°C时，将预热到300~400°C的镁铲中间合金缓慢地加入到已经完全熔化了的熔体中，搅拌3-5分钟；

（6）将熔体的温度控制在750±10°C，投入RJ-5号溶剂，充分搅拌2~3分钟，将熔体温度控制在750±10°C，静置40~60分钟，完成精炼过程；

（7）将金属型铸造模具加热到300~400°C，并保温2个小时以上备用；

（8）将镁铲熔体降温至780°C~720°C范围，浇注到经过充分预热的金属型铸造模具中凝固成铸坯；

（9）将铸坯进行均匀化退火处理，随炉升温加热到360~480°C后保温4~24小时，出炉空冷；

（10）采用挤压、轧制方法，将合金热变形加工成棒材、型材或板材的制品，其中热变形温度范围为300°C~550°C。

（11）将得到的制品进行冷变形处理，变形量为5~20%。

（12）将制品进行低温时效处理，时效温度为100~200°C，时效时间为0.5~60h。

本发明相比现有技术，具有以下显著优点：

1. 本发明制备的中高温环境下使用的高导热率镁合金的合金化元素仅有Mn和Ce，含量较低，因而该镁合金的成本较低，且仍保持较小的密度。

2. 导热性能优异。本发明制备的镁合金在90°C和250°C工作条件下，该合金的热导率均大于130W/m·K。该镁合金材料可用于LED散热器、发动机外壳等在较高温度下工作的材料，LED散热器的工作温度一般为90°C，发动机外壳等更高温度环境可达250°C以上。

3. 综合性能优异，兼具较高热导率和强度。90°C和250°C下的热导率均大于130 W/m·K，室温条件下抗拉强度大于300MPa,90°C时抗拉强度大于240MPa,250°C时抗拉强度大于150MPa。

4. 本发明提供的中高温环境下使用的高导热率镁合金的制备方法，制备工艺简
说明书

单、可靠，容易控制，易于推广应用。

[0030] 附图说明：

[0031] 图1为本发明示例1中镁合金材料的铸态金相照片。

[0032] 图2为本发明示例4中镁合金材料的铸态金相照片。

[0033] 具体实施方式：

[0034] 下面结合具体实施方式对本发明的技术方案做进一步的详细介绍。

[0035] - 1，主导热金铝合金的成分：

[0036] 一种中高温环境下使用的高热导率镁合金，该合金的成分含量为：Mn的含量为0.20～1.20wt.%；Ce的含量为0.05～0.85wt.％，不可无避免杂质≤0.15wt.%；其余为镁。所述中高温环境是指温度分别为90℃和250℃的环境。

[0037] 根据研究发现，合金的导热性能与该合金中的固溶原子，晶界的体积分数、第二相的数量和形貌，以及第二相与基体的关系等密切相关。本发明设计新型的导热镁合金，为了获得较高的热导率，采用多种成分和工艺调整控制措施，使得镁合金基体中的固溶原子数量控制在一定范围内，析出相不与基体共格，并且化合物尺寸不太大等。

[0038] 根据Mg-Mn二元合金相图可知，653℃时Mn在Mg中的固溶度为2.2wt.％，500℃时固溶度为0.75wt.％，400℃时固溶度为0.25wt.％。由于Mg和Mn不形成化合物，所以固溶体中析出的α-Mn为纯Mn。不同种类的合金化元素添加进纯镁形成合金后，单位添加量所引起的合金热导率变化程度不同，Mn元素固溶引起镁合金热导率下降的程度较严重。但由于Mn在镁中的固溶度较低，即便在精炼时配以较高的Mn含量，在正常的凝固过程中也会大量析出，因固溶度有限而对热导率的影响较小。镁合金中配制多余固溶合金的Mn的作用包括：Mn可以有效除去铁中的铁、硅等杂质元素，纯化晶界，降低杂质元素对于合金热导率和力学性能的影响；Mn的添加还可提高镁合金中低熔点相的熔点，从而提高合金的耐高温性能。

[0039] Ce元素在镁中的固溶度仅为0.52wt.％。Ce可以细化晶粒，改善铸造性能和耐蚀性能，提高室温和高温力学性能。Ce原子扩散能力差，既可以提高镁合金再结晶温度，减缓再结晶过程，又可以析出非常细小的弥散相颗粒，从而能大幅度提高镁合金的室温力学性能。并且Ce元素可与Mg形成金属间化合物，这些金属间化合物熔点高，一般在晶界及基体中析出，能够有效阻碍位错运动和晶界滑移，所以能有效提高镁合金的耐高温性能和抗蠕变能力。由于Mn和Ce在镁基体中的固溶度很低，容易形成第二相析出，其对镁合金的热导率的影响较小，使得本发明的合金在拥有较高强度的同时具有较高的热导率：在90℃和250℃条件下降导率大于130W/m·K，在室温条件下抗拉强度大于300Mpa，90℃时抗拉强度大于240Mpa，250℃时抗拉强度大于150Mpa，因此该合金具有在中高温条件下使用的优势。

[0040] 本发明的中高温环境下使用的高热导率镁合金设计方案将选择Mn和Ce元素进行合金化，各种添加元素都控制在一定的范围之内，以保证在中高温条件下使用时可以兼顾高热导率和良好的高温力学性能。

[0041] 本发明在获得适合在中高温环境下使用的一种高热导率镁合金的最佳成分。Mn添加量在高于固溶度时，添加更多Mn也不能继续增加固溶度而降低热导率，而单质Mn和含Mn的金属间化合物的存在对热导率的影响可以忽略。因而镁合金配以较高的Mn含量对热导率的影响不大，在室温下合金中的Mn固溶量及其有限，而且通过本发明的后续处理方法，过饱和的Mn会大量从合金基体中析出，从而提高合金的热导率。因此，在确定Mn的含量时要考
虑Mn在镁合金除去镁中的铁和硅等杂质元素，以及析出相的第二相强化作用，综合考虑纯化除杂和各方面的性能调整的需要，本发明中选取的Mn含量范围为0.20~1.20wt.%。Ce元素可与Mg形成金属间化合物，化合物一般在晶界及基体内出现，能够明显阻碍位错运动和晶界滑移，提高合金强度，但是当Ce含量大于1.0wt.%时，含Ce的金属间化合物将会形成连续的网状结构，将严重降低合金的热导率，同时合金的力学性能也会显著下降，因为Mg~Ce相易碎相，其在晶界等地方偏聚，容易成为裂纹源而降低合金的强度。因此本发明中选取的Ce含量为0.05~0.85wt.%。

【0042】下面结合实施例进行说明，实施例及测试效果如表1所示：表1中成分为wt.%。其实例1和实施例4中得到的镁合金材料的铸态金相照片如图1.2所示。本发明采用以下方法进行测试：根据ASTM E1461标准，将本发明实施例所述的镁合金材料加工成标准的圆片状试样，采用激光热导仪NETZSCH LFA 447对其热导率进行测量，并且根据国标GB228-2002的标准，将本发明实施例所述镁合金材料经过挤压后加工成标准拉伸试样进行拉伸试验，拉伸样品为圆棒状，其轴线方向平行于材料的纵向。

【0043】表1：

<table>
<thead>
<tr>
<th>实施例</th>
<th>Mn</th>
<th>Ce</th>
<th>杂质%</th>
<th>Mg</th>
<th>50℃时的热导率(W/m·K)</th>
<th>250℃时的热导率(W/m·K)</th>
<th>室温抗拉强度(MPa)</th>
<th>90℃时的抗拉强度(MPa)</th>
<th>250℃时的抗拉强度(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例1</td>
<td>0.52</td>
<td>0.18</td>
<td>0.15</td>
<td>余量</td>
<td>133.6</td>
<td>135.1</td>
<td>303</td>
<td>247</td>
<td>151</td>
</tr>
<tr>
<td>实施例2</td>
<td>0.53</td>
<td>0.44</td>
<td>0.16</td>
<td>余量</td>
<td>138.4</td>
<td>139.9</td>
<td>327</td>
<td>266</td>
<td>171</td>
</tr>
<tr>
<td>实施例3</td>
<td>0.75</td>
<td>0.60</td>
<td>0.10</td>
<td>余量</td>
<td>132.4</td>
<td>134.3</td>
<td>321</td>
<td>258</td>
<td>163</td>
</tr>
<tr>
<td>实施例4</td>
<td>1.00</td>
<td>0.47</td>
<td>0.16</td>
<td>余量</td>
<td>130.7</td>
<td>131.6</td>
<td>305</td>
<td>249</td>
<td>156</td>
</tr>
</tbody>
</table>

【0045】从表1可知，本发明制备的镁合金，在90℃的中温条件下和250℃的高温条件下兼具高热导率（即热导率大于130 W/m·K）和良好力学性能（即90℃时抗拉强度大于240MPa，250℃时抗拉强度大于150MPa）。同时在室温下，抗拉强度大于300 MPa。

【0046】二、导热镁合金的制备方法和工艺调控：

【0047】上述实施例1~4的高导热率镁合金均采用以下制备方法制得，具体步骤包括：

【0048】（1）以纯镁锭、镁锆中间合金、镁锆中间合金为原料，进行机械打磨，按上述的高导热耐热镁合金成分含量的重量百分比进行计算配料；

【0049】（2）将全部纯镁锭放在低碳钢的熔炼坩埚中，在CO₂+0.5 vol.% SF₆混合气体保护下使其完全熔化，将熔融温度升温到690℃~760℃（最优温度为750℃），将熔液表面的浮渣清理干净；

【0050】（3）将预热炉升温到300~400℃，将镁锆中间合金和镁锆中间合金放入到预热炉中，将合金预热到300~400℃；

【0051】（4）将镁锆温度升温到800±20℃，将预热到300~400℃的镁锆中间合金缓慢地加入到已经完全熔化了的镁锆体中，搅拌3~5分钟，然后使熔体降温；

【0052】（5）当熔体降温至750±20℃时，将预热到300~400℃的镁锆中间合金缓慢地加入到已经完全熔化了的熔体中，搅拌3~5分钟；

【0053】（6）将熔体的温度控制在750±10℃，放入RJ-5号溶剂，充分搅拌2~3分钟，将熔体温度控制在750±10℃，静置40~60分钟，完成精炼过程；

【0054】（7）将金属型铸模模具加热到300~400℃，并保温2个小时以备用；

【0055】（8）将熔体降温至690~720℃（最优温度为700℃）范围，浇注到经过充分预热的金
属型铸造模具中凝固成铸坯：
[0056] (9) 将铸坯随炉升温加热到360-480℃后保温4-24小时，出空冷，进行均匀化退火处理。
[0057] (10) 采用挤压、轧制方法，将合金加工成棒材、型材或板材的制件，其中可选的热变形温度范围为300℃-550℃。
[0058] (11) 将得到的制件进行冷变形处理，变形量为5-20%（最优变形量为10%）。
[0059] (12) 将制件进行低温时效处理，时效温度为100-200℃，时效时间为0.5-60h。（最优时效工艺为160℃下进行低温时效60h）。
[0060] 除此之外，实施例1-4中采用的工艺如下：均化工艺均为420℃*12h，挤压工艺为400℃，3*60mm板材，挤压速度：100mm/min，冷轧处理：压下量为10%，时效处理：冷轧板材随后在160℃下进行低温时效60h。该制备方法制造工艺简单、可靠，容易控制，易于推广应用。
[0061] 为了得到上述的最优工艺方法，采用以下步骤方法进行调整：
[0062] (1) 选取高热导率镁合金的成分含量为0.53wt.%Mn，0.41wt.%Ce，其余为Mg。以纯镁铸、镁铸中间合金和镁铸中间合金为原料，按此设计的镁合金成分的种类百分比进行配料。将全部纯镁铸放在低碳钢的熔炼坩埚中，在CO₂和Si₁₆混合气体保护下使其完全熔化，将镁铸中间合金和镁铸中间合金放在预热炉中加热至300-400℃。待镁熔体完全熔化后按顺序加入预热后的镁铸中间合金和镁铸中间合金，然后将其温度控制在750±10℃，撒入R₁-5号溶剂，充分搅拌2-3分钟，将熔体温度控制在750±10℃，静置40-60分钟，最后采用金属模浇注制备热镁合金的铸件。
[0063] (2) 首先对该高热导率镁合金进行变形工艺的调整，研究变形工艺对合金热导性能的影响。该合金的均化退火工艺为420℃*12h，挤压速率为100mm/min，挤压成3*60mm的板材，调控挤压温度对该合金热导性能的影响。
[0064] 表2：

<table>
<thead>
<tr>
<th>例号</th>
<th>挤压温度(℃)</th>
<th>90℃时的导热率(W/m·K)</th>
<th>250℃时的导热率(W/m·K)</th>
<th>600℃时的导热率(W/m·K)</th>
<th>90℃时的抗拉强度(MPa)</th>
<th>250℃时的抗拉强度(MPa)</th>
<th>600℃时的抗拉强度(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>340</td>
<td>111.7</td>
<td>113.8</td>
<td>115.3</td>
<td>302</td>
<td>288</td>
<td>194</td>
</tr>
<tr>
<td>B</td>
<td>370</td>
<td>114.4</td>
<td>116.3</td>
<td>118.9</td>
<td>334</td>
<td>275</td>
<td>188</td>
</tr>
<tr>
<td>C</td>
<td>400</td>
<td>119.0</td>
<td>120.9</td>
<td>123.1</td>
<td>327</td>
<td>265</td>
<td>171</td>
</tr>
<tr>
<td>D</td>
<td>430</td>
<td>121.7</td>
<td>123.6</td>
<td>124.9</td>
<td>308</td>
<td>249</td>
<td>183</td>
</tr>
</tbody>
</table>
[0065] 从表2可知，随着变形温度的增加，合金的热导率逐渐增加，强度逐渐下降，并且对比C和D试样，热导率相差很小，C的强度大于D，综合考虑热导率、力学性能以及生产成本等，选取400℃为优选的变形温度。
[0066] (3) 其次，调控该高热导率镁合金中后续处理工艺对合金热导率的影响，为便于研究后续处理工艺对合金热导率的影响。选定热镁合金中的变形工艺为400℃挤压成3*60mm的板材，挤压速度为100mm/min，调控后续处理工艺对合金热导率的影响：
[0067] 例E：均化退火工艺为420℃*12h，挤压工艺为400℃挤压成3*60mm的板材，160℃下低温时效60h；
[0068] 例F：均化退火工艺为420℃*12h，挤压工艺为400℃挤压成3*60mm的板材，冷轧处理：压下量为10%；
[0069] 例G：均化退火工艺为420℃*12h，挤压工艺为400℃挤压成3*60mm的板材，冷轧
处理：压下量为10%，时效处理；冷轧态板材随后在160℃下进行低温时效60h。

【0071】表3：

<table>
<thead>
<tr>
<th>材料</th>
<th>90℃时的热导率(μ•K)</th>
<th>250℃时的热导率(μ•K)</th>
<th>终温拔丝强度(MPa)</th>
<th>90℃时的拔丝强度(MPa)</th>
<th>250℃时的拔丝强度(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>137.3</td>
<td>139.2</td>
<td>334</td>
<td>279</td>
<td>182</td>
</tr>
<tr>
<td>F</td>
<td>131.9</td>
<td>133.2</td>
<td>356</td>
<td>250</td>
<td>154</td>
</tr>
<tr>
<td>G</td>
<td>139.4</td>
<td>139.9</td>
<td>340</td>
<td>286</td>
<td>187</td>
</tr>
</tbody>
</table>

【0073】通过表3可知，经过热挤压变形后，再经过低温时效处理可以增加合金热导率，强度变化不大，这主要是因为低温时效处理可以促进基体中的固溶原子析出，促使合金热导率增加；经过热挤压变形后再进行冷轧处理可增加合金的强度，但与此同时合金的热导率显著下降，这主要是因为冷轧变形会导致合金中的位错密度急剧增加，从而合金的热导率略有降低；热挤压变形后经过冷轧变形再低温时效处理，可增加合金热导率，这主要归因于冷变形中形成的位错容易成为沉淀相析出的形核核心，诱发第二相析出。时效过程中容易发生回复，通过消除变形位错而使合金热导率较挤压后直接时效的合金热导率高。

【0074】(4) 根据上述工艺的调控可知，较优的后续处理工艺为实施例G。

【0075】最后说明的是，以上实施例仅用以说明本发明的技术方案而非限制，尽管参照较佳实施例对本发明进行了详细说明，本领域的普通技术人员应当理解，可以对本发明的技术方案进行修改或者等同替换，而不脱离本发明技术方案的宗旨和范围，其均应涵盖在本发明的权利要求范围当中。
图1

图2