Surface Mounting Piezoelectric Filter

A piezoelectric filter element (1) is supported by the peripheral edge section of the main body (21) of a surface mount package with a pair of input-output vibrating electrodes (11 and 12) of the element (1) facing to the main body (21), and an earth-potential shield electrode (30) extended along the gap G between a pair of the electrodes (11 and 12) is formed at a prescribed interval from a piezoelectric substrate (10). Since the shield electrode (30) is formed along the gap G and is not faced to a pair of the electrodes (11 and 12) with a wide area, no stray capacitance is generated between a pair of the electrodes (11 and 12), and the electromagnetic coupling between a pair of the electrodes (11 and 12) can be inhibited even when the shield electrode (30) is extremely brought closer to the substrate (10).
（57）要約

圧電フィルタ素子1をその入出力振動電極を11、12が表面実装型のパッケージ本体21側を向くように、このパッケージ本体21にその周縁部で支持し、そのパッケージ本体21には、入出力振動電極を11、12間のギャップGに沿って伸びるアース電極のシールド電極30を、圧電性基板10に対して所定の間隔を設けた状態で形成する。シールド電極30はギャップGに沿って形成され、出力振動電極を11、12に対しては広い面積で対向していないため、入出力振動電極を11、12との間で浮遊容量を発生させ、圧電性基板10に対して極めて接近させても入出力振動電極を11、12間の電磁的結合を阻止することができる。
明細書

表面実装型圧電フィルタ

5 技術分野

本発明は表面実装型の圧電フィルタに関する。

背景技術

圧電性基板の厚さをすすり振動等を利用した圧電フィルタにおいては、一般に、水晶等の圧電性基板の一面に所定のギャップを開けて入出力振動電極対（分割電極）を形成するとともに、その反対側の面にはこれらと対向するように共通電極を形成した素子を、容器内に収容した構造を採る。

このような圧電フィルタは、近年、特に携帯型の通信機器等の用途向けには、小型化し、またその実装工程を簡易化するために、素子を小型化するとともに、その素子を表面実装型のパッケージ内に収容したものが要求されている。このような微小な表面実装型のパッケージ内に素子を収容した構造では、入出力振動電極間の電磁的結合に起因する漏れ電流が発生しやすいため、保証減衰量を低下させるという問題が顕著となる。

このような問題を解消するために、従来、表面実装型の絶縁体からなるパッケージ本体の内面の平坦部に、アース電位の一定な膜状のシールド電極を形成するとともに、入出力振動電極対を平坦な膜状のシールド電極に向けた状態で圧電フィルタ素子をパッケージ本体に支持した構成とし、この入出力振動電極対とシールド電極を、互いに微小な間隙を設けた状態で対向配置させる対策が提案されている（例えば特開平6－29776号、特開平6－85599号、US005382929A）。

ところで、以上のような対策では、上記各提案公報にも見られるように、パッケージ本体に設けたシールド電極と入出力振動電極対間の間隙を小
さくすることによって保証減衰量が増大するものの、その間隔をある一定量にまで接近させると保証減衰量がピークに達し、それよりも接近させた場合には、図10に模式的に示すように、人出力振動電極対71、72とシールド電極73間に浮遊容量Cが生じ、これによって人出力振動電極対71、72間に漏れ電流11が生じ、保証減衰量は次第に減少する傾向を示す。

すなわち、人出力振動電極対に対して所定の間隔を開けて平坦なシールド電極を対向させる対策によっては、保証減衰量を、シールド電極と人出力振動電極対間の間隔の大きさに基づいて定まるピーク値よりも増大させることはできず、限界がある。

本発明はこのような実情に鑑みてなされたもので、従来の対策に比して保証減衰量をより大きくすることのできる構造を持つ表面実装型圧電フィルタの提供を目的としている。

発明の開示

上記の目的を達成するために、本発明の表面実装型圧電フィルタは、圧電性基板の一面に互いに所定のギャップを開けて人出力振動電極対が形成され、その反対側の面にはこれらと対向するように共通電極が形成されてなる多重モード圧電フィルタ素子が、絶縁材料からなる表面実装型のパッケージ本体にこの圧電性基板の周縁部の所定位置で支持された圧電フィルタにおいて、このフィルタ素子はその入出力振動電極対をパッケージ本体側に向けて当該パッケージ本体に支持されているとともに、そのパッケージ本体の入出力振動電極に対向する面には、この入出力振動電極対間のギャップに沿って伸びるアース電位のシールド電極がこの圧電性基板に対して所定の間隔を開けた状態で形成されていることによって特徴づけられる。

ここで、本発明においては、シールド電極の幅寸法を、ギャップの幅寸
法の4倍以内とすることが好ましい。
また、このシールド電極は、断面形状が三角形状の突条の先端部分に形成された導電性材料膜で形成された構成としてもよいし、またワイヤで形成された構成としてもよい。

また、本発明においては、このパッケージ本体の入出力振動電極対に対向する面に、ギャップに沿って伸びるシールド電極とは別に、その側面に、入力振動電極および出力振動電極にそれぞれ対向する2つのシールド電極を形成してもよく、この場合、その2つのシールド電極は、ギャップに沿って伸びるシールド電極よりも圧電性基板との間の間隙を大きくする必要がある。

このような2つのシールド電極を有する構成の具体的な様式として、本発明では、パッケージ本体に2つのピットを形成し、その各ピットに入出力振動電極対の各電極をそれぞれ対向させた状態で、圧電フィルタ素子の周縁部所定部位をこれらピットの周縁部においてパッケージ本体に支持するとともに、各ピット間の隔壁の上面にギャップに沿って伸びるシールド電極を、さらに、各ピットの底面に入力振動電極および出力振動電極にそれぞれ対向するシールド電極をそれぞれ形成した構成を採用することができる。

また、本発明の他の様式として、パッケージ本体にピットを形成し、圧電フィルタ素子をそのピットに入出力振動電極対を対向させた状態で、その周縁部所定部位がこのピットの周縁部においてパッケージ本体に支持するとともに、入出力振動電極対の間隔に対向するピットの上面にこのギャップに沿って伸びるシールド電極を形成し、さらに、そのパッケージ本体の底部を形成する壁体内に、これら入力振動電極および出力振動電極に対向するシールド電極を形成した構成も採用することができる。

本発明の構成において、入出力振動電極対間のギャップに沿って設けられたアース電極のシールド電極により、これらの人出力振動電極対間に形
成される電気力線が遮断され、これらの入出力振動電極対間の電磁的結合が阻止される結果、保証減衰量が小さくなるという阻害の要因となる漏れ電流の発生が抑えられる。そして、このシールド電極は、入出力振動電極対に対して全面的に対向せず、これらの入出力振動電極対間のギャップに沿って形成されているため、圧電性基板に対して可能な限り接近させても入出力振動電極対の間に浮遊容量を生じることがなく、上記した電磁的結合の阻止能を劣化させることができない。また、このシールド電極を断面形状が三角形状の突条の先端部分に形成された導電性材料膜で形成された構成としても、またワイヤで形成された構成としても、上記と同様に入出力振動電極対間の電磁的結合を阻害することができる。

以上の様々なギャップに沿って形成されるシールド電極の幅を、ギャップの幅寸法の4倍以内とすることにより、入出力振動電極対間の間の浮遊容量の発生が抑制され、良好な保証減衰特性が得られることが確認されている。

また、ギャップに沿って形成されるシールド電極は、入出力振動電極対に対する外部との電磁遮蔽に有効ではないため、外部に対する電磁遮蔽のためには、入力および出力振動電極のそれぞれに対して、上記のシールド電極とは別のシールド電極を設けることが望ましい。この場合、外部に対する電磁遮蔽のためのシールド電極は入出力振動電極対間の電磁遮蔽を行うためのものではないので、この外部に対する電磁遮蔽のためのシールド電極と入出力振動電極対との間隔をある程度以上に大きくすることにより、この間隔における浮遊容量を発生を抑えることができる。

さらに、この外部に対する電磁遮蔽のためのシールド電極を、パッケージ本体の底部を形成する壁体内に、入力振動電極および出力振動電極に対向するように構成した場合にも、上記と同様に外部に対する電磁遮蔽効果を十分備えたものとなる。

なお、パッケージ本体の入出力振動電極に対向する面に形成され、この
人出力振動電極対間のギャップに沿って伸びるアース電位のシールド電極が、断面形状が三角形状の突条の先端部分に導電性材料膜を形成する構成において、この突条を含む、パッケージ本体の入出力振動電極対に対向する面に、一様にアース電位の導電性材料膜を形成する構成とすれば、導電性材料膜は突条の先端部分、つまりギャップに沿った部分のみ圧電性基板に極めて接近し、入力振動電極および出力振動電極にそれぞれ対向する部分は圧電性基板に対して十分な距離が開くことになる。従ってこの構成では、導電性材料膜のうち、突条の先端部分が実質的に入出力振動電極対間の電磁的結合を阻止するシールド電極を構成するとともに、その導電性材料膜の残余部分が外部に対する電磁遮蔽のためのシールド電極を構成することになり、上記の構成と同様の作用・効果を奏する。

図面の簡単な説明

図 1 は本発明の実施の形態の分解斜視図であり、図 2 は図 1 においてその組み立て状態において変更を除外して示す A-A 断面図であり、図 3 は図 2 の模式的要部拡大図である。

図 4 は、本発明の実施の形態の効果の説明図で、(A) はシールド電極 30 を除去した状態でのフィルタ特性を示すグラフで、(B) はシールド電極 30 を設けた状態でのフィルタ特性を示すグラフである。

図 5 は、本発明の実施の形態において、シールド電極 30 の幅 W のみを変更したときの保証減衰量の変化を示すグラフである。

図 6 は本発明の他の実施の形態の要部断面図である。

図 7 は本発明の更に他の実施の形態のパッケージ本体の斜視図である。

図 8 は本発明の更にまた他の実施の形態の説明図で、入出力振動電極対間のギャップに沿って切断したパッケージ本体の断面図である。

図 9 は本発明の更にまたもう 1 つの他の実施の形態の要部断面図である。
図10は、従来の圧電フィルタにおいて、人出力振動電極対を対向する面に全面的にシールド電極を形成して、これらの間の間隙を接近させたときに生じる浮遊容量Cの説明図である。

発明を実施するための最良の形態

図1は本発明の実施の形態の分解斜視図で、図2はその組み立て状態において蓋22を除外して示すA－A断面図である。

圧電フィルタ素子1は、圧電性基板10の一面に、互いに所定のギャップGを開けて入出力振動電極対11、12を形成し、その反対側の面にはこれらと対向するように共通電極13を形成したものである。この圧電フィルタ素子1は表面実装型のパッケージ2内に密閉収容されている。

パッケージ2は、例えばセラミック等の絶縁材料からなるパッケージ本体21と、そのパッケージ本体21の上面開口部にコバーリング（図示せず）を介して被せられる金属製の蓋22とによって構成されている。パッケージ本体21には2つのビット41、42が形成されており、これらのビット41と42は、組み立て状態において圧電フィルタ素子1の人出力振動電極11と出力振動電極12にそれぞれ対向し、また、各ビット41、42間の隔板43は、入出力振動電極対11、12間のギャップGに沿った状態となる。

圧電フィルタ素子1は、その人出力振動電極11および出力振動電極12をそれぞれビット41および42の底面側に向けた状態で、圧電性基板10の3つのコーナー部分でビット41、42の周縁部近傍においてパッケージ本体21に支持される。圧電性基板10の人出力振動電極11、12および共通電極13は、それぞれに対応する引き出し電極によって圧電性基板10の3箇所のコーナー部分に引き出されている。また、パッケージ本体21には、ビット41、42の周縁部近傍に上記のコーナー部と対応する位置に3つの接続パッド51が形成されている。そして、圧電性基板
10は、その3箇所のコーナー部分において導電性接着剤52によって振動を妨げられない状態で各接続パッド51上に機械的に固定されると同時に、入出力振動電極対11、12および共通電極13が、それぞれの接続パッド51に個別に電気的に接続される。なお、各接続パッド51は、パッケージ本体21を貫通してその裏面に形成された表面実装用の外部接続パッド（図示せず）に接続される。

さて、ビット41、42間の隔壁43の上表面にはシールド電極30が形成されており、従ってこのシールド電極30は、圧電フィルタ素子1の入出力振動電極対11、12間のギャップGに沿って伸びることになる。また、各ビット41および42の底面にもそれぞれシールド電極31および32が形成されている。

各シールド電極30、31、32は、それぞれ、例えばパッケージ本体21を形成するセラミックの該当箇所にスクリーン印刷によるW（タンクステン）メタライズを施し、そこにAuを電解メッキすることによって形成される。そして、これらの各シールド電極30、31、32は、パッケージ本体21を貫通するスルーホールを介してパッケージ本体21の裏面側に形成されたアース接続パッド30a、31a、32aに接続され、それぞれアース電位とされる。

この実施の形態において、図3に要部拡大図を模式的的に示すように、各シールド電極30、31、32の圧電性基板10との間隙TないしはT'は、隔壁43上のシールド電極30についてはT＝10μmであり、ビット41、42の底面のシールド電極31、32についてはその約20倍のT'＝0.2mmとなっている。また、ビット41、42間の隔壁43の幅は0.1mmであり、シールド電極30はその隔壁43の全幅にわたって形成されており、従ってこのシールド電極30の幅Wは0.1mmである。圧電フィルタ素子1の入出力振動電極対11、12間のギャップGの幅Wgは0.11mmである。
以上の実施の形態によると、入出力振動電極対11、12間のギャップGに沿って伸び、かつ、圧電性基板10に対して10μm程度と極めて接近して配置されたシールド電極30の存在によって、粒子の駆動時ににおいてこれらの電極対11、12の間の電磁的結合が阻止される結果、これらの電極対11、12間での漏れ電流が生じず、従って圧電フィルタの保証感度量が大幅に改善される。

すなわち、以上の実施の形態からシールド電極30のみを除去した状態では図4（A）に示すようなフィルタ特性を示していたものが、シールド電極30を設けることによって、図4（B）に示すような極めて良好なフィルタ特性を得ることができ、中心周波数F0を90MHzとし、F0ー1MHzでの感度量を保証感度量としたとき、シールド電極30を設けない状態で約55dBであったものが、上記した間隙Tおよび幅Wのシールド電極を設けることによって、約90dBにまで増大した。

また、シールド電極30と圧電性基板10との間隙Tを約10μmに固定し、かつ、入出力振動電極11、12間のギャップGの幅Wgを0.1mmと一定とした状態で、シールド電極30の幅Wのみを種々に変更したときの保証感度量の変化を図5にグラフで示す。なお、このグラフにおいても、フィルタの中心周波数F0が90MHz、保証感度量はF0ー1MHzの周波数における感度量としている。

このグラフから明らかのように、シールド電極30の幅Wを広くすればするほど保証感度量が低下する傾向にあり、これは、シールド電極30の幅Wを広くすることによって、このシールド電極30と入出力振動電極対11、12との間に好ましくない浮遊容量が生じて、この浮遊容量が大きくなるほど入出力振動電極対11、12間に漏れ電流が発生するからに他ならない。実験によれば、シールド電極30の幅Wが、入出力振動電極対11、12間のギャップGの幅Wgの4倍までは上記のような浮遊容量による漏れ電流の発生が少なくな、良好な保証感度量特性を得ることが確かめ
られた。
また、実験によれば、シールド電極30と圧電性基板10との間の間隙Tは、狭くすればほど入出力振動電極対11、12間の電磁的結合の抵抗能が高く、良好な保証減衰量特性が得られることが確認されているが、製作の容易さや歩留りの点から、10 μm程度にすることが好ましい。ただし、この間隙Tは、シールド電極30の幅Wにもよるが、40 μm程度以下とすることによって、入出力振動電極対11、12間の電磁的結合を阻止して良好な保証減衰量特性が得られることが判っている。
ここで、以上の実施の形態におけるピット41、42の底面に設けられたシールド電極31、32は、主として圧電フィルタ素子1と外部との電磁的結合を阻止するものであり、入出力振動電極対11、12間の電磁的結合の阻止には余り寄与しない。従ってこれらのシールド電極31、32については、入出力振動電極対11、12との間の好ましくない浮遊容量の発生を防止するために、圧電性基板10との間の間隙T'を、シールド電極30と圧電性基板10との間の間隙Tに比して十分に大きくすることが望ましく、間隙TとT'との差を0.1 mm以上とすることが好ましい。
なお、以上の本発明の実施の形態におけるパッケージ本体21の構造並びに製造方法について言及すると、パッケージ本体21は、ビット41、42の底面より下の部分、ビット41、42の周囲部分、およびビット41、42より上の部分の3層構造とし、セラミックグリーンシートの段階でそれぞれの層について必要とされる形状にカッティングし、積層の後に焼結する製法を採用することができる。また、各シールド電極30、31、32の形成については、同じくグリーンシートの段階で該当部位をメタライズした後に電解めっきするといった方法を採用することができる。
このようなパッケージ構造並びに製造方法を採用することによって、ビット41、42の底面に形成されるシールド電極31、32については、
圧電性基板１０との間隙を十分に大きくとることができると同時に、隔壁
43上のシールド電極については、圧電性基板１０に対して容易に10μm程度にまで接近させることができ可能となる。
また、外部との間の電気的結合を阻止するためのシールド電極については、特にパッケージ本体２１の内面側に設ける必要はなく、図9に示すように、外部との間の電気的結合を阻止するためのシールド電極９１を、例えればパッケージ本体２１の底部を形成する壁体内に積層する構成としてもよい。この構成では、パッケージ本体２１は、ビット４５の底面より下の
2層２１ｂ、２１ａからなる部分と、ビット４５の周辺部分２１ｃの3層
構成となっており、外部に対する電磁遮蔽のためのシールド電極９１は、
入力振動電極１１および出力振動電極１２に対向する位置で、層２１ｂを層２１ａの間に挟まれた状態で積層されている。また、この入力振動電極
１１および出力振動電極１２間における電磁遮蔽のためのシールド電極９
０は、ビット４５上に、入出力振動電極対１１、１２間のギャップに沿っ
て形成されている。このシールド電極９０は、層２１ｂを貫通するスルーホール９２を介してシールド電極９１に接続されるとともに、このシールド電極９１は、層２１ａを貫通するスルーホール９３を介してパッケージ
本体２１裏面側に形成されたアース接続パッド９０ａに接続され、シールド電極９０、９１はアース電位とされる。
この実施の形態の製造方法は、セラミックグリーンシートの段階でそれ
ぞれの層について必要とされる形状にカッティングし、積層の後に焼結す
る製法を採用する点は、上記の製造方法と同様であるが、シールド電極９
０、９１はいずれも印刷技術を用い、平面に印刷を施す工程を採用できる
ので、高精度のパターンニングを実現できる点で有利である。
なお、本発明においては、このシールド電極３０、９０の形態について
は種々の変形が可能であり、以下にその変形例について幾つか述べる。
まず、図6に要部断面図を示す例では、パッケージ本体２１に、入出力
振動電極対 1 1 , 1 2 のギャップ G に沿った断面三角形状の突条 4 4 を形成するとともに、その突条 4 4 を含む、入出力振動電極対 1 1 , 1 2 に対向する面に一様にアース電位の導電性材料膜 3 4 を形成している。このような構造において、導電性材料膜 3 4 は突条 4 4 の先端部分、つまりギャップ G に沿った部分のみ圧電性基板 1 0 に極めて接近し、入力振動電極 1 1 および出力振動電極 1 2 にそれぞれ対向する部分は圧電性基板 1 0 に対して十分な距離が開くことになる。従ってこの図 6 の構造では、導電性材料膜 3 4 のうち、突条 4 4 の先端部分が実質的に前記した実施の形態におけるシールド電極 3 0 を構成するとともに、その導電性材料膜 3 4 の残余部分が同じく前記した実施の形態におけるシールド電極 3 1 , 3 2 を構成することになり、同様な効果を奏することができる。

図 7 にパッケージ本体 2 1 の斜視図を示す例は、シールド電極 3 0 をワイヤボンディングによって形成した例である。すなわち、パッケージ本体 2 1 の構造並びにシールド電極 3 1 , 3 2 については前記した実施の形態と全く同様とし、2 つのビット 4 1 , 4 2 間の隔壁 4 3 の上面に沿ってワイヤ 3 5 を配し、そのワイヤ 3 5 の両端をハング等の導電性材料 3 6 によってパッケージ本体 2 1 にボンディングして、そのワイヤ 3 5 を例えばボンディング部分に形成したスルーホールを介してパッケージ本体 2 1 の裏面側に形成したアース接続パッド（図示せず）に接続している。この例においても、ワイヤ 3 5 が入出力振動電極対間のギャップに沿い、かつ、そのワイヤ 3 5 を圧電性基板に対して極めて接近配置することが可能となり、上記した実施の形態と全く同等の効果を奏することができる。

また、入出力振動電極対間のギャップ G に沿うシールド電極としてワイヤを用いる場合、図 7 のように 2 つのビット 4 1 , 4 2 間の隔壁 4 3 に沿わせるほか、アーチ状のワイヤを用いることも可能である。すなわち、図 8 にパッケージ本体 2 1 を上記ギャップ G に沿って切断した断面図を示すように、パッケージ本体 2 1 に 1 つのビット 4 5 を形成してその周縁部に
おいて圧電フィルタ素子（図示せず）を支持する。そして、そのビット４
５の底面には入出力振動電極対に対向して全面的にシールド電極３７を形
成し、このビット４５底面から、入出力振動電極対間のギャップＧに沿う
位置にアーチ状にワイヤ３８を突出させている。そして、そのワイヤ３８
のアーチ頂部を圧電性基板１０に接近させるとともに、その両端を導電性
材料３９を介してシールド電極３７に接続して、このシールド電極３７を
スルーホールを介してパッケージ本体２１の裏面側のアース接続パッド（
図示せず）に接続している。このような構造においても、前記した各例と
同様の作用効果を奏することができる。

産業上の利用可能性

以上のように、本発明の表面実装型の圧電フィルタは、圧電フィルタ素
子の入出力振動電極対間のギャップに沿って伸びるアース電極のシールド
電極により、入出力振動電極対間の電磁的結合の阻止能を高くでき、良好
な保証減衰性特性を発揮できるため、特に小型化が要求される通信機器、
例えば携帯電話器等に組み込んだ場合に特に有効である。
請求の範囲

1. 压電性基板の一面に互いに所定のギャップを開けて入出力振動電極対が形成され、その反対側の面にはこれらと対向するように共通電極が形成されてなる多重モード圧電フィルタ素子が、絶縁材料からなる表面実装型のパッケージ本体に上記圧電性基板の周縁部の所定位置で支持された圧電フィルタにおいて、上記フィルタ素子はその入出力振動電極対をパッケージ本体側に向けて当該パッケージ本体に支持されているとともに、そのパッケージ本体の入出力振動電極に対向する面には、上記入出力振動電極対間のギャップに沿って伸びるアース電極のシールド電極が上記圧電性基板に対して所定の間隔を開けた状態で形成されていることを特徴とする表面実装型圧電フィルタ。

2. 上記シールド電極の幅寸法が、上記ギャップの幅寸法の4倍以内であることを特徴とする、請求の範囲第1項に記載の表面実装型圧電フィルタ。

3. 上記シールド電極は、断面形状が三角形状の突起の先端部分に形成された導電性材料膜で形成されていることを特徴とする請求の範囲第1項に記載の表面実装型圧電フィルタ。

4. 上記シールド電極は、ワイヤで形成されていることを特徴とする請求の範囲第1項に記載の表面実装型圧電フィルタ。

5. 上記パッケージ本体の入出力振動電極対に対向する面に、上記ギャップに沿って伸びるシールド電極とは別に、その両側に、入力振動電極および出力振動電極にそれぞれ対向する2つのシールド電極が形成され、その2つのシールド電極は、上記ギャップに沿って伸びるシールド電極よりも圧電性基板との間の間隙が大きいことを特徴とする、請求の範囲第1項、第2項、第3項または第4項に記載の表面実装型圧電フィルタ。

6. 上記パッケージ本体に2つのビットが形成され、上記圧電フィルタ素
子はその各ビットに上記出力振動電極対の各電極をそれぞれ対向させた
状態で、その周縁部所定部位がこれらビットの周縁部においてパッケージ
本体に支持されているとともに、その各ビット間の隔壁の上面に上記ギャ
ップに沿って伸びるシールド電極が形成され、かつ、その各ビットの底面
に上記入力振動電極および出力振動電極にそれぞれ対向するシールド電極
が形成され、その2つのシールド電極は、上記ギャップに沿って伸びるシ
ールド電極よりも圧電性基板との間の間隙が大きいことを特徴とする請求
の範囲第1項、第2項、第3項または第4項に記載の表面実装型圧電フィ
ルタ。

7. 上記パッケージ本体にビットが形成され、上記圧電フィルタ素子はそ
のビットに上記出力振動電極対を対向させた状態で、その周縁部所定部
位がこのビットの周縁部においてパッケージ本体に支持されているととも
に、上記入出力振動電極対の間隙に対向するビットの上面に上記ギャップ
に沿って伸びるシールド電極が形成され、かつ、そのパッケージ本体の底
部を形成する壁体内に、上記入力振動電極および出力振動電極に対向する
シールド電極が形成されていることを特徴とする請求の範囲第1項、第2
項、第3項または第4項に記載の表面実装型圧電フィルタ。

8. 上記断面形状が三角形状の突入を含む、当該パッケージ本体の出力
振動電極対に対向する面に、一様にアース電位の導電性材料膜が形成され
ていることを特徴とする請求の範囲第3項に記載の表面実装型圧電フィル
タ。
図3

図4

(A)

(B)

図5

保護帯減衰量phon (dB)

シールド電極30の幅W (mm)

差替え用紙 (規則26)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl6 H03H9/56, H03H9/17

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEACHED

Minimum documentation searched (classification system followed by classification symbols)

Int. Cl6 H03H9/00-9/13, H03H9/15-9/19, H03H9/56

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1926 - 1997
Kokai Jitsuyo Shinan Koho 1971 - 1997
Toroku Jitsuyo Shinan Koho 1994 - 1997

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 7-79127, A (Nihon Dempa Kogyo Co., Ltd.), March 20, 1995 (20. 03. 95) (Family: none)</td>
<td>1, 2, 4, 5</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 63-65707, A (Toyo Communication Equipment Co., Ltd.), March 24, 1988 (24. 03. 88), Fig. 1(b) (Family: none)</td>
<td>1-5, 8</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 6-85599, A (Nihon Dempa Kogyo Co., Ltd.), March 25, 1994 (25. 03. 94), Fig. 1(b) & US, 5382929, A</td>
<td>1-5, 8</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 3-86623, U (TDK Corp.), September 2, 1991 (02. 09. 91) (Family: none)</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>JP, 2-261211, A (Nihon Dempa Kogyo Co., Ltd.), October 24, 1990 (24. 10. 90), Fig. 2 (Family: none)</td>
<td>6</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. See patent family annex.

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search
November 11, 1997 (11. 11. 97)

Date of mailing of the international search report
November 26, 1997 (26. 11. 97)

Name and mailing address of the ISA/

Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP, 2-56361, U (K.K. Fuji Denka), April 24, 1990 (24. 04. 90), Fig. 3 (Family: none)</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>JP, 2-79574, U (K.K. Fuji Denka), June 19, 1990 (19. 06. 90), Fig. 6 (Family: none)</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>JP, 8-97668, A (Murata Mfg. Co., Ltd.), April 12, 1996 (12. 04. 96) (Family: none)</td>
<td>7</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））
Int. Cl* H03H9/56
Int. Cl* H03H9/17

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int. Cl* H03H9/00-9/13
Int. Cl* H03H9/15-9/19
Int. Cl* H03H9/56

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1926-1997年
日本国公開実用新案公報 1971-1997年
日本国登録実用新案公報 1994-1997年
日本国実用新案登録公報 1996-1997年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献の</th>
<th>引用文献名</th>
<th>及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する</th>
<th>請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>カテゴリー*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP, 7-79127, A（日本発波工業株式会社）, 20. 3月, 1995（20.03.95）（ファミリーなし）</td>
<td></td>
<td>1, 2, 4, 5</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP, 63-65707, A（東洋通信機株式会社）, 24. 3月, 1988（24.03.88），第1図(b) （ファミリーなし）</td>
<td></td>
<td>1-5, 8</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP, 6-85599, A（日本発波工業株式会社）, 25. 3月, 1994（25.03.94），第1図(b) & US, 5382929, A</td>
<td></td>
<td>1-5, 8</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP, 3-86623, U（ティーディーケイ株式会社）, 2. 9月, 1991（02.09.91）（ファミリーなし）</td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

C欄の続きにも文献が列挙されている。

| バラントファミリーに関する別紙を参照。 |

※ 引用文献のカテゴリー
「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」先行文献ではあるが、国際出願日以後に公表されたもの
「L」優先権主催に延長を提出する文献又は他の文献の発行日若しくは他の特別の理由を確立するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日前で、かつ優先権の主催の基礎となる出願の日の後に公表された文献

国際調査を完了した日 11.11.97
国際調査報告の発送日 26.11.97

国際調査機関の名称及びあて先
日本特許庁（ISA／JP）
郵便番号 100
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

電話番号 03-3581-1101 内線 9571

様式PCT／ISA／210（第2ページ）（1992年7月）
<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP，2-261211，A（日本電気工業株式会社），24.10月.1990（24.10.90），第2図。（ファミリーなし）</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>JP，2-56361，U（株式会社フジ電機），24.4月.1990（24.04.90），第3図。（ファミリーなし）</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>JP，2-79574，U（株式会社フジ電機），19.6月.1990（19.06.90），第6図。（ファミリーなし）</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>JP，8-97668，A（株式会社村田製作所），12.4月.1996（12.04.96）（ファミリーなし）</td>
<td>7</td>
</tr>
</tbody>
</table>