

US010923714B2

(12) United States Patent Cobb et al.

(54) STRUCTURES FOR INTERDIGITATED FINGER CO-EXTRUSION

(71) Applicant: PALO ALTO RESEARCH CENTER

INCORPORATED, Palo Alto, CA

(US)

(72) Inventors: Corie Lynn Cobb, Seattle, WA (US);

Ranjeet Rao, Redwood City, CA (US); Scott E. Solberg, San Jose, CA (US)

3, (-..)

(73) Assignee: PALO ALTO RESEARCH CENTER INCORPORATED, Palo Alto, CA

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 207 days.

(21) Appl. No.: 15/895,640

(22) Filed: Feb. 13, 2018

(65) **Prior Publication Data**

US 2018/0175383 A1 Jun. 21, 2018

Related U.S. Application Data

- (63) Continuation-in-part of application No. 13/727,937, filed on Dec. 27, 2012, now Pat. No. 9,899,669.
- (51) Int. Cl. *H01M 4/36* (2006.01) *H01M 4/131* (2010.01)

(Continued)

(52) U.S. Cl.

(2019.02);

(Continued)

(10) Patent No.: US 10,923,714 B2

(45) **Date of Patent:**

Feb. 16, 2021

(58) Field of Classification Search

CPC H01M 4/366; H01M 4/131; H01M 4/525; H01M 4/1391; H01M 2004/021;

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

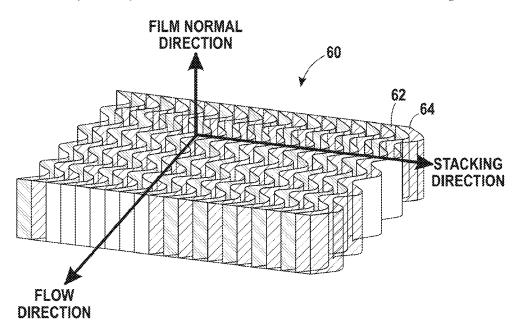
3,195,865 A 7/1965 Harder 3,382,534 A 5/1968 Veazey (Continued)

FOREIGN PATENT DOCUMENTS

EP 0802034 10/1997 EP 1757429 2/2007 (Continued)

OTHER PUBLICATIONS

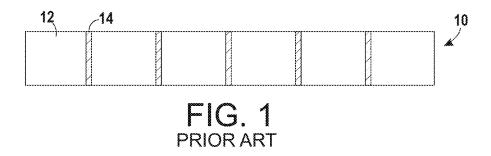
Fergus et al., "Recent Developments in Cathode Materials for Lithium Ion Batteries," Journal of Power Sources, Elsevier SA, Ch. vo. 195, No. 4, Feb. 15, 2010, pp. 939-954, XP026693512.

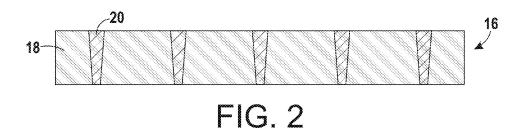

(Continued)

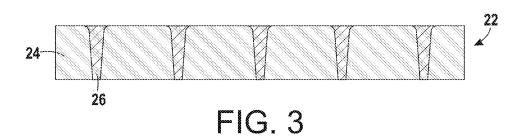
Primary Examiner — Jonathan G Jelsma
Assistant Examiner — Omar M Kekia
(74) Attorney, Agent, or Firm — Miller Nash Graham &
Dunn LLP

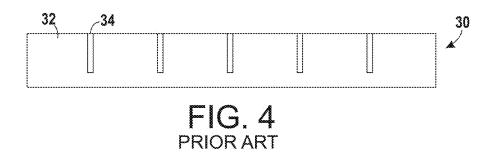
(57) ABSTRACT

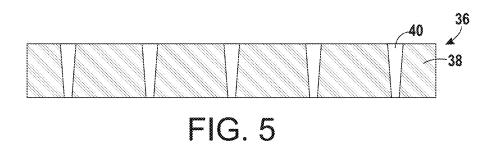
A structure has a substrate, a first material on the substrate, the first material having a binder and a first active material, periodically located trapezoidal voids that only partially extend from a top of the first active material towards the substrate, and an electrolyte material filling the trapezoidal voids.

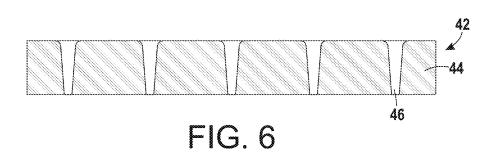

6 Claims, 10 Drawing Sheets

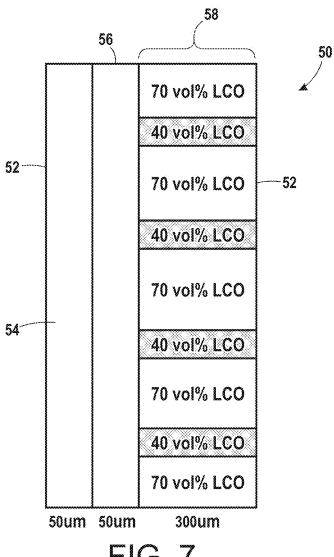
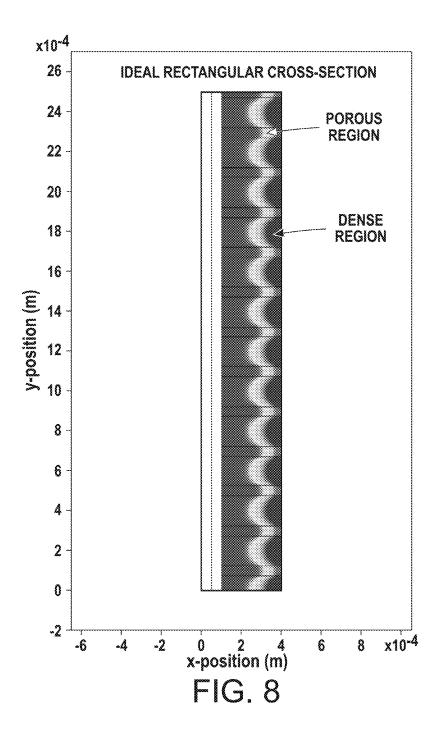
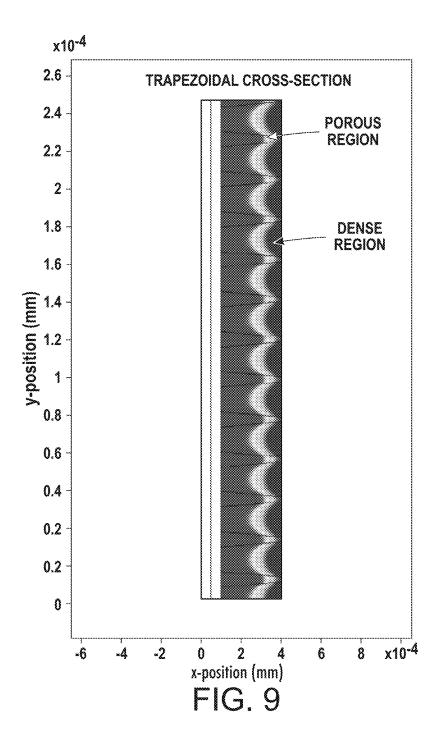
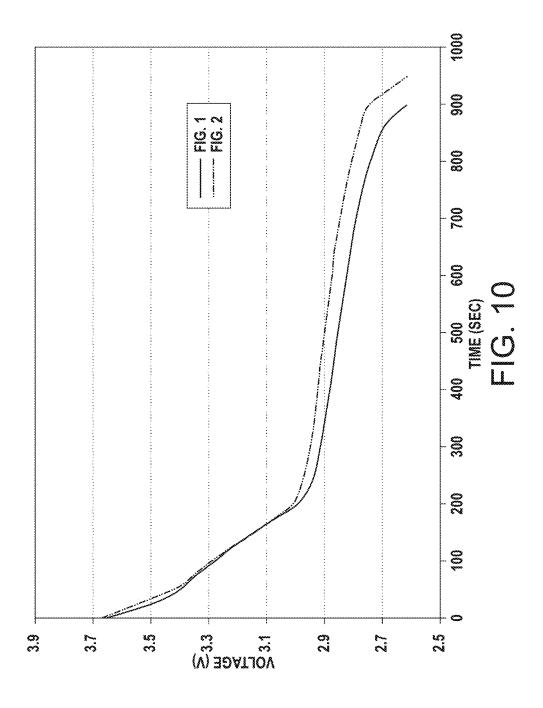
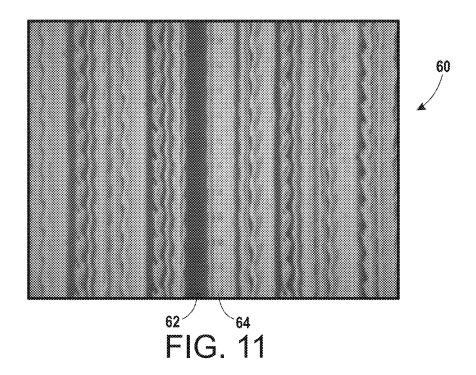


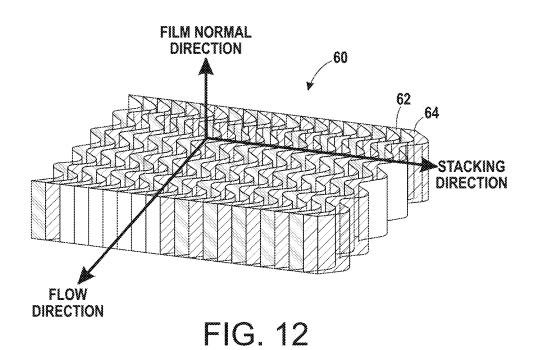

US 10,923,714 B2

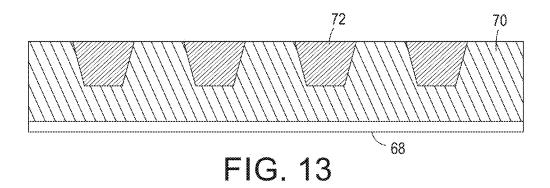

Page 2

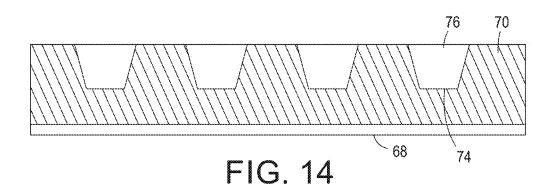

				5 0 0 5 D 0	5(2012	
(51)	Int. Cl.			6,025 B2		Natarajan
	H01M 4/1391	(2010.01)		6,468 B2		Chiang et al.
	H01M 4/04	(2006.01)		6,469 B2		Chiang et al.
	B29C 48/18	(2019.01)		1,789 B2		Chiang et al.
	B29C 48/19	. ,				Chiang et al.
		(2019.01)				Chiang et al.
	B29C 48/21	(2019.01)		74972 A1		Narang et al.
	H01M 4/525	(2010.01)				Wimberger-Friedl et al.
	H01M 10/0525	(2010.01)				Dudley et al.
	H01M 4/02	(2006.01)		82446 A1		Chiang et al.
(50)		(2000.01)		11762 A1		Floyd et al.
(52)	U.S. Cl.					Baer et al.
	CPC <i>H01M 4/0411</i> (2013.01); <i>H01M 4/131</i>			53833 A1*	3/2003	Hayashida H01M 4/0404
	(2013.01); H01M 4/1391 (2013.01); H01M	2006/003	04570 A1	2/2006	429/209
		013.01); <i>H01M 10/0525</i> (2013.01):	2000/002	24579 A1		Kolosnitsyn et al.
		H01M 2004/021 (2013.01)	2007/02		12/2007	
(50)	TI II 4 61 10	` '		03603 A1		Chiang et al.
(58)	Field of Classific		2011(00)	39700 A1		Winroth
	CPC . H01M 4/0	411; H01M 10/0525; B29C 48/18;		54999 A1 70489 A1		Chiang et al. Chiang et al.
		B29C 48/19; B29C 48/21				
	LISPC		2011/01.	10836 A1 78170 A1*	11/2011	Rong et al. Chiang G02F 1/1523
		le for complete search history.	2011/02	/81/U A1	11/2011	
	see application if	ie for complete search history.	2012/002	21407 41	2/2012	204/483
(= <)	70.4			31487 A1	6/2012	Kuang et al. Fork H01B 1/00
(56)	Ref	erences Cited		53211 A1*		252/62.2
	U.S. PAT	ENT DOCUMENTS		56364 A1		Fork et al.
				86519 A1	7/2014	
	3,556,833 A 1/1	1971 Nirenberg		86697 A1	7/2014	
		1971 Harder		86698 A1	7/2014	
	3,752,616 A 8/1	1973 Matsui et al.	2014/018	86700 A1	7/2014	Cobb
		1975 Newman, Jr.				
	4,511,528 A 4/1	1985 Kudert et al.		FOREIG	N PATE	NT DOCUMENTS
	5,094,793 A 3/1	1992 Schrenk et al.				
	5,143,681 A 9/1	1992 Daubenbuchel et al.	EP	2056	352	5/2009
	5,154,934 A 10/1	1992 Okamoto	\mathbf{EP}	2249	417 A2	11/2010
	5,583,359 A 12/1	1996 Ng et al.	\mathbf{EP}	2466	594	6/2012
	5,628,950 A 5/1	1997 Schrenk et al.	EP	2750.	222 A1	7/2014
	5,843,385 A 12/1	1998 Dugan	EP	3193	393 A1	7/2017
		1998 Haggard et al.	FR	1308	573	11/1962
		1999 Guillemette	JP	9183		7/1997
		2000 Hutchinson	JP		139 B2	11/2004
	6,337,156 B1 * 1/2	2002 Narang H01M 4/13		2006326		12/2006
		429/218.1	WO	0121	688	3/2001
		2004 O'Connor et al.				
		2006 Reddy et al.		OTI	IED DIT	BLICATIONS
		2006 Kegasawa et al.		OIL	IEK PU.	BLICATIONS
		2010 Guillemette et al.		G 1 D		14 2014 ED 1 1' 1' N
		2010 Lavoie et al.			rı, dated 2	Apr. 14, 2014, EP Application No.
		2010 Fork et al.	13198599	.6, 7 pages.		
		2010 Fork et al.	Cobb, Coo	le L. and Soll	berg, Scot	t E., "Communication-Analysis of
		2010 Fork et al.				Higher-Energy-and-Power Lithium-
		2011 Tonkovich et al.				cal Society, 164(7) A1339-A1341
		2011 Fork et al.	(2017).	, J. Diec		200101, 10 (1) 111000 111041
		2011 Chiang et al.	(2017).			
		2012 Chiang et al.	* aitad h	r oromica.		
	8,168,326 B2 5/2	2012 Chiang et al.	- cited b	y examiner		




FIG. 7





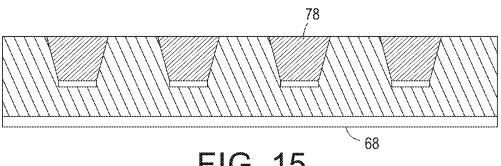
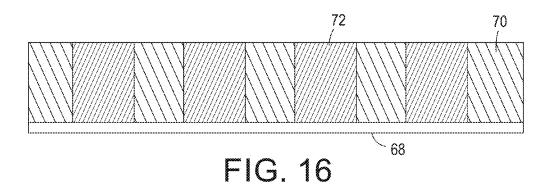
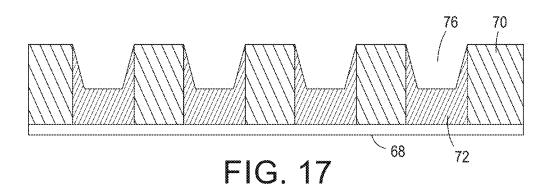
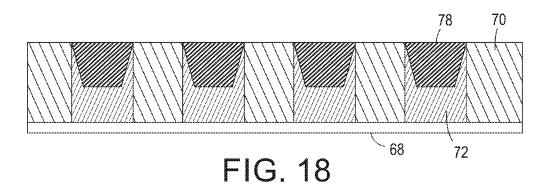
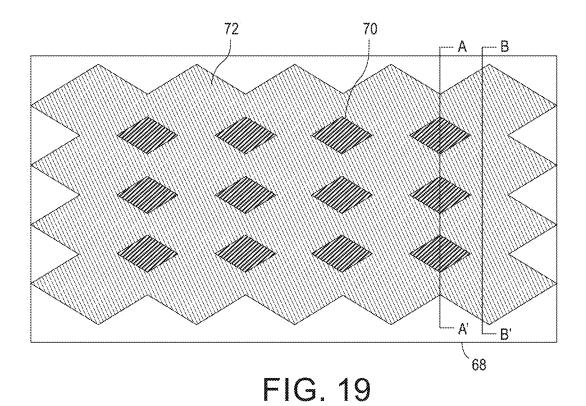






FIG. 15

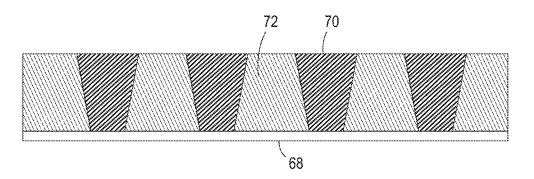


FIG. 20

1

STRUCTURES FOR INTERDIGITATED FINGER CO-EXTRUSION

RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 13/727,937, filed Dec. 27, 2012, which is incorporated by reference herein in its entirety.

This application is related to U.S. patent application Ser. No. 12/972,370 filed Dec. 17, 2010, now U.S. Pat. No. 9,004,001 issued Apr. 14, 2015; U.S. patent application Ser. No. 12/972,384 filed Dec. 17, 2010, now U.S. Pat. No. 9,589,692 issued Mar. 7, 2017; U.S. patent application Ser. No. 13/727,960 filed Dec. 27, 2012, now U.S. Pat. No. 9,012,090 issued Apr. 21, 2015; U.S. patent application Ser. No. 13/727,993 filed Dec. 27, 2012, now U.S. Pat. No. 9,590,232 issued Mar. 7, 2017; and U.S. patent application Ser. No. 13/728,016 filed Dec. 27, 2010, now U.S. Pat. No. 9,337,471 issued May 10, 2016.

BACKGROUND

Numerous applications exist in which batteries, fuel cells, electrical interconnects, ultracapacitors and others benefit 25 from tightly spaced interdigitated stripes of dissimilar materials. These materials can be co-extruded using a co-extrusion print head as disclosed in US Patent Publication 2012/0156364, with a similar but alternative print head being shown in U.S. Pat. No. 7,799,371. Being co-extruded in this context mean that the materials are not mixing as they flow. However, the resulting structures have rectangular geometries in cross sectional form with a straight uniform print in the direction perpendicular to the interdigitated geometries.

However, modeling has shown that non-rectangular ³⁵ cross-section geometries have performance enhancement gains in capacity and energy density. Typically, electrodes result from slot coating processes or thin film and semiconductor fabrication techniques. These methods have not yet reached cost effectiveness for large scale production of ⁴⁰ structured electrodes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a prior art interdigitated structure.

FIGS. **2-3** show embodiments of interdigitated structures. FIG. **4** shows a prior art embodiment of an interdigitated structure.

FIGS. **5-6** show embodiments of interdigitated structures. FIG. **7** shows an embodiment of a battery structure.

FIGS. 8 and 9 show plots of material utilization for a prior art and a current embodiment of a lithium structure.

FIG. 10 shows a plot of a discharge performance between prior art and a current embodiment of a lithium structure.

FIGS. 11 and 12 show embodiments of a wavy pattern of 55 extruded materials.

FIG. 13 shows an embodiment of an interdigitated structure having partial, trapezoidal stripes.

FIG. **14** shows an embodiment of an interdigitated structure having partial, trapezoidal voids.

FIG. 15 shows an embodiment of an interdigitated structure having partial, trapezoidal electrolytes.

FIG. **16** shows an embodiment of an interdigitated structure having rectangular interdigitated stripes.

FIG. 17 shows an embodiment of an interdigitated struc- 65 ture having rectangular interdigitated stripes with trapezoidal voids.

2

FIG. 18 shows an embodiment of an interdigitated structure having rectangular interdigitated stripes with trapezoidal electrolyte regions.

FIG. 19 shows an embodiment of structure having isolated features.

FIG. 20 shows a cross sectional view of a structure having isolated features.

DETAILED DESCRIPTION OF THE EMBODIMENTS

FIGS. 1-6 show various embodiments of structures formed using a co-extrusion print head such as that shown in U.S. Pat. No. 7,799,371. FIG. 1 shows a prior art embodiment of an electrode structure 10. The structure has a first material 12 in wider portions interdigitated with a second material 14. The material 12 consists of densely packed active electrode material, and the material 14 consists of a highly porous material for enhanced ionic or electrical conductivity. The material 14 may have more or the same electrical conductivity of the first material and will more than likely have higher ionic conductivity.

FIG. 4 shows a similar prior art scenario, except that the regions 34 result from a sacrificial material having been removed. Only the dense regions such as 32 remain. This would allow an electrolyte to file the regions in the embodiment of a battery electrode.

FIGS. 2-3 show densely packed regions 18 and 24, and the porous regions 20 and 26 with non-rectangular cross sections. Through control of the process conditions, such as pressure tuning, fluid flow rates and fluid rheology, the structures 16 and 22 may result. Regarding the fluid rheology, viscosity of the two materials should be matched with similar densities. However, the density may vary because of the concentrations of the conductive materials, but the matching of the viscosities remains important.

The non-rectangular cross sections of regions 18 and 24 allow better control of the concentration gradient across the electrode structures 16 and 22. These structures have more surface area of the densely packed regions exposed to the porous region. Larger concentration gradients across a battery electrode cause a larger ohmic drop, which affects the energy density and power density of a battery cell. By controlling the concentration gradient, one can avoid the large gradients and increase the efficiency of the battery cell. The non-rectangular cross-section may have sharp corners or rounded corners.

FIGS. 5 and 6 shows similar structures 36 and 42 with non-rectangular regions 38 and 44 of the densely packed material, and non-rectangular spaces such as 40 and 46. In these structures, the spaces would be filled with the electrolyte material, exposing more surface area of the densely packed material to the electrolyte.

FIG. 7 shows a simplified block diagram of a battery model used to determine the performance improvement in the non-rectangular electrode cross sections compared to the rectangular cross section embodiments. The structure 50 has current collector boundaries 52. In this embodiment the anode 54 consists of lithium foil having a thickness in the range of 50 micrometers. A separator 56 separates the anode 52 from the cathode structure 58. The cathode structure 58 in this embodiment consists of alternating regions of densely packed and highly porous materials. While the block diagram of FIG. 7 shows these regions as rectangular, they actually have the shape of FIGS. 2 and 3. In this embodiment, the densely packed region consists of lithium cobalt

3

oxide (LCO) at 70% concentration of active material and the highly porous regions consist of 40% concentrations of LCO

The material may be any type of battery material with any range of active material concentration, but typically the highly porous regions will have less active material than the dense regions. Further, the materials may be used in other structures than batteries. Examples of materials that may be used include lithium cobalt oxide (LCO), lithium nickel cobalt manganese oxide (NCM), or a mixture of the two. Other materials may include lithium nickel cobalt aluminum oxide (NCA), lithium manganese oxide (LMO), or lithium iron phosphate (LFeP). The anode material may be lithium titanate (LTO).

FIGS. **8** and **9** show material utilization plots for the electrode structures of FIG. **1** and FIG. **2** respectively after a '1C' discharge, where the applied current density is 12.9 mA/cm². A 'C' rate discharge is a measure of the rate at which a battery discharges relative to its maximum capacity. A '1C' rate is the current at which the battery will discharge its entire capacity in 1 hour. Mass and volume are conserved between the porous and dense regions of the structures with the only difference being the geometry of the cross-section. The structure of FIG. **2** has approximately 10% greater active material utilization over the structure of FIG. **1** at the 1C rate.

The capacity, energy and power numbers in the table below show the relative performance improvement between the structures but not the absolute performance improvement one can realize for lithium cobalt oxide. FIG. 10 in conjunction with the below table shows the energy, power and capacity gains made using the non-rectangular structure. On the graph in FIG. 10, the upper line is the structure of FIG. 2 and the lower line is the structure of FIG. 1. The plots show that the structure of FIG. 2 has a longer run time and a lower voltage drop than the structure of FIG. 1. This is due to the increase in the active material utilization and the lower concentration gradient in the cathode structure.

	Specific Capacity (mAh/g)	Energy Density (Wh/kg)	Power Density (W/kg)
Non-rectangular	36.126	106.917	405.160
Rectangular	34.225	100.318	401.273
% Improvement	5.6%	6.6%	1.0%

As mentioned previously, these gains do not come from higher volume in the structures or more mass, merely from the change in the geometries.

Up to this point, the discussion has focused on the geometrical change of the cross section relative to battery electrode structures. However, as mentioned previously, control of the process parameters may accomplish non-rectangular structures formed by the print head as etch 55 masks and interconnects. In this environment, the structures shown in FIGS. 5 and 6 would make up the material left behind once the sacrificial material is removed. The material could be conductive or polymer, depending upon the purpose of the material in the resulting structure. For example, 60 for circuit interconnects, the material would be conductive, either metal or a conductive polymer, used as contacts after removal of the sacrificial material.

The print head discussed in US Patent Publication 2012/0156364 has what are referred to as 'swept' flow paths, 65 where the edges and corners of the flow paths are angled and/or beveled to alleviate dead spots where material can

4

build up. This built up material may reach a critical mass and then burst into the flow path, or it can cause the flow path to become constricted. In either case, by sweeping the flow paths, the uniformity of the resulting material deposit on a surface is preserved in a straight monolithic pattern. However, by using 'unswept' flow paths, or by pulsing the material flow into the print head using pressure differentials or mechanical motion, one can form more randomized, undulating or 'wavy' flow patterns of the materials onto a surface.

FIG. 11 shows an example of such a randomized material pattern. The resulting deposit consists of wavy lines of the two different materials 62 and 64. As mentioned previously, one of the materials may be removed, acting as a sacrificial material. The voids left by the removal may be filled with a different material. Alternatively, the remaining material may form interconnects and contact pads, or may form an etch mask for an underlying material.

FIG. 12 shows a simplified version of the material pattern. The flow direction is defined as the direction from which the material flows from the print head. The print head would travel from the edge of the pattern closest to the viewer, pulling back away from the viewer. The direction normal to the film would be the top view of the film. The stacking direction refers to the ability of this pattern to be 'stacked' sideways by running the print head in multiple parallel paths to form a much larger pattern by stacking smaller patterns together sideways in the direction shown.

Other variations on these structures are possible. Like the structure of FIG. 2, one material may have a trapezoidal profile but not extend all the way through the substrate. FIGS. 13-15 show one embodiment of a process of manufacturing a structure. As shown in FIG. 13, a first material 70 is deposited onto a substrate 68, with a second material 72 deposited such that it forms partial, trapezoidal structures. The term 'partial' as used here indicates that the structure formed from material 72 does not reach to the substrate. The embodiments here may consist of structures in which the second material is a partial structure, or structures in which both materials form complete structures.

In the embodiments here, the first material will typically consist of a first active material, a solvent, and a binder. The second material consists of a solvent and a second active material. The relationship between the first and second active materials may take many forms. The first active material may have a higher density than the second material. The two materials may have different porosities, with the first active material having a higher porosity than the second. In addition, the second active material may consist of a more dilute version of the first active material. For example, the second active material may be very similar to the first active material, such as being the same material but in a more dilute solution.

FIG. 14 shows the next part of this embodiment of the process. The structure undergoes drying that removes the second material 72. This removal process will more than likely result in a residue forming on at least one surface of the void 76 formed by removal of the second material. This residue shown as 74.

In FIG. 15, an electrolyte 78 may fill the voids 76 when the structure of FIG. 14 undergoes packaging as a battery. A housing encloses the structure and it fills with electrolyte, including the voids.

FIGS. 16-18 show an alternative embodiment. Interdigitated stripes of the first material 70 and the second material 72 are deposited on the substrate 68. These stripes may have square or trapezoidal shapes. The interdigitated structure of

5

FIG. 16 then undergoes drying. This results in the structure shown in FIG. 17. The voids such as 76, form in the second material, rather than in the first material. In FIG. 18, the trapezoidal voids then fill with electrolyte 78.

Controlling the pressures used when the materials are 5 being deposited can form the various structures discussed here. Since each material feed is controlled independently. and very often dispensed at different flow rates and pressures, it is possible to manipulate the relative pressures of each material as a print is occurring in order to manipulate the shape and composition of the deposited material. Various control strategies are possible to make a range of structures. This may include turning off the feed of the first material completely to form isolated structures. The second material continues to have the pressure applied that dispenses the second material onto the substrate. This causes the second material to surround the isolated structures during deposition. FIG. 19 shows an embodiment of this intermediate structure in which the isolated structures are formed of the first material 70 surrounded by the sacrificial material 72.

FIG. 20 shows a cross-sectional view along line A-A' in FIG. 19. The first material 70 has regions of the sacrificial material 72 surrounding them. While this structure looks very similar to the previous structures, one should note that a cross section taken at another point in the structure of FIG. 19, such as along line B-B' would only show a solid region of material 72. One should also note that the view of FIG. 19 is a top-down view, so the substrate 68 lies underneath the entire structure.

In this manner, one can form more efficient, higher performing electrode structures for batteries by forming the electrode structures with non-rectangular cross sections. The non-rectangular structures may be formed from pre-existing print heads having swept flow paths through control of the process parameters, or from print heads like the pre-existing print heads, but having 'unswept' paths. Similarly, randomized structures usable as interconnects or randomized etch masks may be formed through process controls using pre-existing print heads or using the print heads with unswept flow paths.

It will be appreciated that several of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also, that various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.

What is claimed is:

- 1. A structure, comprising:
- a substrate;
- a first material on the substrate, the first material having a binder and a first active material, the first material having a top surface opposite from the substrate;

periodically located voids having trapezoidal cross sections that only partially extend from the top surface of the first active material towards the substrate; 6

- a second active material residing on at least a portion of an inside surface of the trapezoidal voids, the second active material having a lower density that the first material; and
- an electrolyte material filling the voids.
- 2. The structure of claim 1, wherein the second active material is a more dilute suspension of the first material.
 - 3. A method of manufacturing a structure, comprising:
 - depositing a first material on a substrate, the first material comprising a first active material, a solvent, and a binder, the first active material having a top surface opposite the substrate;
 - depositing a second material interdigitated with the first material such that the second material forms trapezoidal structures extending only partially from the top surface of the first material towards the substrate, the second material comprising a second active material and a solvent to form an interdigitated structure with the first material;
- drying the interdigitated structure to remove the solvent from the first material and to partially remove the second material, forming trapezoidal voids extending partially from the top surface of the first material towards the substrate having a trapezoidal cross section leaving at least a portion of an inside surface of the trapezoidal voids coated by the second material; and

filling the voids with electrolyte.

- 4. A structure, comprising:
- a substrate;

50

- a first material on the substrate, the first material having a binder and a first active material, the first material having a top surface opposite from the substrate;
- a second active material interdigitated with the first active material, the second active material having a lower density than the first active material;
- trapezoidal voids in the second active material extending only partially from the top surface towards the substrate; and
- an electrolyte material filling the voids.
- 5. The structure as claimed in claim 4, wherein the second active material is a more dilute suspension of the first active material.
 - 6. A method of manufacturing a structure, comprising: depositing a first material on a substrate, the first material comprising a first active material, a solvent, and a binder, the first active material having a top surface opposite the substrate and the first material reaches the substrate;
 - depositing a second material interdigitated with the first material such that the second material forms trapezoidal structures extending from the top surface of the first material to the substrate, the second material comprising a second active material and a solvent;
 - drying the interdigitated structure to remove the solvent from the first material and to remove the second material, forming voids extending from the top surface of the first material to the substrate having a trapezoidal cross section; and

filling the voids with electrolyte.

* * * * *