J. T. HAWKINS.

SHEET DELIVERY FOR PRINTING MACHINES.
No. 346,910.
Patented Aug. 10, 1886.

SHEET DELIVERY FOR PRINTING MACHINES.
No. 346,910.
Patented Aug. 10, 1886.

SHEET DELIVERY FOR PRINTING MAOHINES.
No. 346,910.
Patented Aug. 10, 1886.

SHEET DELIVERY FOR PRINTING MACHINES.
No. 346,910 .
Patented Aug. 10, 1886.

Attorvey.

SHEET DELIVERY FOR PRINTING MACHINES.
No. 346,910.
Patented Aug. 10, 1886.

United States Patent Office。

JOHN T. HAWKINS, OF TAUNTON, MASSACHUSETTS.

SHEET-DELIVERY FOR PRINTING-MACHINES.

GPRCIFROATION forming part of Letters Patent No, 346,910, dated August 10, 1886.

Application filed March 16, 1836. Serial No. 195,399. (No model.)

To all whom it may concern:
Be it known that I, John T. Hawkins, of Taunton, in the county of Bristol and State of Massachusetts, have invented certain new and 5 useful Improvements in Sheet-Deliveries for Oscillating-Cylinder Printing-Machines, which invention or improvements are fully set forth and illustrated in the following specification and accompanying drawings.

The object of the invention is to provide a delivery apparatus for the continuous delivery of sheets from an oscillating impression-cylinder, and to adapt said apparatus in duplicate to a double-acting machine printing a sheet cylinder.

The invention consists of the parts and combinations of parts as hereinafter described, and particularly set forth in the claims.
In the accompanying drawings, Figure 1 is a side elevation of the machine with the feedboard stands removed on the sight side, the more clearly to show inner parts. Fig. 2 is a plan with both feed-boards omitted in order to show the parts beneath, the delivery apparatus also being omitted from the drivinggear end of the machine in order the more clearly to exhibit said driving-gear. Fig. 3 is an end elevation from the driving-gear end with the sheet-flier and down-tapes removed. Fig. 4 is an end elevation, in section, on line $x x$, Fig. 1, viewed from the left hand of Figs. 1 and 2. Fig. 5 is an elevation, partly in section, on an enlarged scale, of details hereinafter described.
In said figures the several parts are indicated by letters, as follows:
$A A^{\prime}$ are the main frames; A^{2}, the impres-sion-cylinder; A^{3}, the bed-plate, and A^{4} arib40 girder tupon which the bed-rollers run.
$\mathrm{A}^{5} \mathrm{~A}^{6}$ are frame-standards for carrying the feed-boards and delivery apparatus, and are secured to the top of the frames $A A^{\prime}$. $A^{7} A^{8}$ are the feed-boards.
B is the type-bed, B^{\prime} the bed-rollers.
B^{2} is a toothed rack secured to the under side of the bed B.
B^{3} is a weighted carriage carrying a toothed rack, B^{\star}.

50
B^{5} are rollerssupporting the carriage B^{3} and running on suitable ways on the bed-plates A^{3}.
B^{6} is a rolling gear-wheel engaging both of the racks $B^{2} B^{4}$.

C C' are pairs of spur-gears secured to short shafts C^{15}, journaled in suitable bearings, \mathbf{C}^{2}, secured to the frames $A \cdot A^{\prime}$, and in similar bearings, C^{3}, secured to the rib-girder A^{4}.
C^{t} is a shaft journaled in the frames ΔA^{\prime}, and in suitable brackets, C^{5}, secured to a crossgirt, C^{6}, connecting the frames $A A^{\prime}$. The 60 shaft C^{t} has secured to it a series of spur-pinions, C^{7}, engaging the spur-gears $\mathrm{C} \mathrm{C}^{\prime}$.

In the pair of spur-gears C is secured a crank-pin, C^{8}, and similarly in each pair of gears C^{\prime} a crank-pin, C^{9}.
C^{10} is a forked connecting-rod, articulated at the single end to the crank-pin C^{5} of the gears C and at the forked end to a shaft, C^{11}, secured in the rolling wheel B^{6}.
C^{12} are connecting-rods articulated at one yo end to the crank-pins C^{9} and at the other to the carriage B^{3}.

Ontside of the frame A^{\prime} tight and loose pulleys C^{13} and a fly-wheel, C^{18}, are mounted on the shaft C^{\star}, by means of which power is applied to operate the whole machine.
C^{16}, Fig. 4, are rollers for thesupport of the outer edges of the type-bed immediately under the impression-cylinder, which rollers run upon studs secured in the frames A. A'.

The bed-rollers B^{\prime} are run loosely upon pins B^{7}, carried in frames B^{3}.

To the upper side of the type-bed B are secured two racks, D, which engage tro corresponding gear-wheels, D^{\prime}, secured to the ends 85 of the impression-cylinder A^{2}.
D^{3} are the ink-fountains, and D^{+}the usual inking-rollers.
In the upper frames, $A^{5} A^{6}$, are journaled two shafts, D^{5}, each carrying a gear-wheel, $D^{i}, ~$ g engaging one of the cylinder-gears D^{\prime}.

Upon two shafts, D^{7}, secured in the frames $A^{5} A^{6}$, are mounted a series of curved strippers, D^{3}. Upon two similar shafts, D^{9}, are se. cured a series of curved strippers, D^{10}.

Shafts D^{5} carry a series of pulleys, \dot{D}^{11}.
In the frames $A^{5} A^{6}$ are journaled two pairs of shafts, $D^{12} D^{13}$, carrying, respectively, each a series of pulleys, $D^{14} D^{15}$. The pulleys D^{14} are driven by frictional contact with the pulleys ico D^{11}, and the pulleys D^{15} by frictional contact with the palleys D^{11}. The strippers D^{8} enter at
one end between the pulleys D^{14}, and at the other end lie close to the surface of the impression cylinder A^{2}. The cylinder A^{2} carries a series of sheet-lifter fingers, A^{10}, and a series of grip5 pers, A^{\prime}, both operated in any well-known way, the lifter-fingers at the proper time elevating the head of the sheet from the surface of the impression-cylinder, so as to pass over pulleys D^{11} and under the strippers \bar{D}^{3}.
A^{5} pon two shafts, E , secured in the frames $\mathbf{A}^{\mathbf{E}} \mathrm{A}^{\mathbf{6}}$, are adjustably secured a series of arms, two each carroing a tape-pulley, E^{2}. Upon two similar shafts, E^{3}, are adjustably secured a series of arms, E^{+}, each carrying a tape-pul5 ley, E^{5} A series of tapes, E^{7}, ran over palleys D^{15} and E^{5}, and a series of tapes, E^{6}, rum over pulleys $\mathrm{D}^{1 / 1}$ and E^{2}. The tapes E^{6} and \mathbf{E}^{2} are in contact where pulleys D^{14} and D^{15} meet, but diverge from that point toward pulleys $\mathrm{E}^{2} \mathrm{E}^{5}$.

Upon shaft E are adjustably secured another series of arms, E^{s}, carrying a series of tapepulleys, $\mathrm{E}^{\prime \prime}$, and upon shafts E^{3} are adjustably secured a series of arms, $\mathrm{E}^{\mathrm{L} 0}$, carrying a series 25 of tape-pulleys, E^{11}.

Journaled in the onter ends of the frames $A^{5} A^{6}$ are two shafts, F-carrying a series of tape-pulleys, F^{\prime}-and two rollers, F^{*}. (The rollers F^{2} may be replaced by a shaft carrying tape-pulleys, when desirable.)
Journaled in the frames A A' are two shafts, \mathbf{F}^{3}, each carrying a series of tape-pulleys, \mathbf{F}^{4}. A series of tapes, F^{5}, rum over palleys F^{\prime} and \mathbf{E}^{9}, a similar series, \mathbf{F}^{6}, run over pulleys E^{11} and rollers F^{2}, and a third series of tapes, \mathbf{F}^{\top}, run over rollers F^{2} and pulleys F^{4}.

Journaled in brackets G, secured to the frame A, is a shaft, G^{\prime}, extending from end to end of the machine. Upon one end of shaft to C^{15}, is secured one of a pair of miter-wheels, G^{3}, the other of the pair, G^{3}, being secured upon the shaft G^{\prime}.

Upon each extremity of shaft G^{\prime} is secured a bevel-wheel, G^{4}, engaging a similar bevel45 wheel, G^{3}, secured to one end of each of the shafts F^{3}. The shaft G^{\prime}, being continuously rotated, imparts continnous motion to the tapes $\mathrm{F}^{\top}, \mathrm{F}^{5}$, and F^{6}.
The shafts D^{5}, being reversibly rotated sio multaneously with the oscillating cylinder A^{2}, run alternately in the directions imparted to them.

Fulcrumed upon two studs, I, secured to frame A, are two levers, I^{\prime}, carrying rollers I^{\prime}.

of which the rollers I^{2} engage.

Journaled in the frames $\mathrm{A} \mathrm{A}^{\prime}$ are two rockshafts, I^{4}, to which are secured a series of flyfingers, ${ }^{1}$.
to Secured to one end of the rock-shafts I^{4} are lever-arms I^{i}.

To the free ends of levers I^{\prime} and I^{6} are articulated the connecting-rods I^{3}.

By the rotation of the cams I^{3} the fly fingers
$65 I^{5}$ are operated to deposit the sheets upon a suitable receiving-table. (Not shown.)

In Fig. 3 the tapes $\mathrm{E}^{\mathrm{c}} \mathrm{F}^{\mathrm{c}}$ are omitted.
It is understood that there are two sets of grippers and two sets of sheet-lifter fingers in the cylinder A^{2}, so as to take a shcet from each feed-board and deliver said sheets to each of the series of pulleys D^{11} and strippers D^{8}. It is not necessary to show said grippers and fingers, as they are well known in the art, and may be operated in divers well-known 7 ways.
The complete operation of the machine is as follows: Power being applied to shaft C^{4}, it is transmitted through the gears C^{7} to the crank-gears C C^{\prime}. The crank - pins $\mathrm{C}^{\prime \prime}$, being 8 placed opposite the crank-pin C', the rollinggear B^{6} is moved in one direction, while the carriage B^{3} is moved in the opposite direction a like distance. If the carriage B^{3} and its rack B^{4} remained at rest, the bed B would have a 85 rectilinear motion equal to double the diameter of the circle described by the crank-pin C^{\Downarrow}. The rack B^{4} being, however, moved in the opposite direction, imparts one-half more motion to the bed in each direction. The carriage B^{3} is made of sufficient weight, as compared with the type-bed B, to have equal momentum with it, or sufficiently greater to also compensate for the rotary momentum of the cylinder A^{2} and other rotating parts driven by it, this rotary momentum being imparted to and absorbed from the type-bed B. The effect of the above-described operation of the parts is therefore to equilibrate the momentum of the moving parts, transmitting the strains to the crank-gears $\mathbb{C} \mathrm{C}^{\prime}$, and through them to the shaft C^{*}, while requiring a radius of crank but a small fraction of the travel of the type-bed. The impression-cylinder A^{2} is of such diameter as to make nearly two revolutions in each direction, so that a sheet taken from either feed-board will be printed and its head end carried to the point of contact of the tapes $\mathrm{F}^{5} \mathrm{~F}^{6}$, where they run over the pulleys $\mathbf{E}^{9} \mathbf{E}^{11}$, and the distance between the centers of pulleys E^{9} and the point of contact of tapes $\mathbf{E}^{6} \mathbf{E}^{7}$, where they run over the pulleys $D^{14} D^{15}$, is made greater than the length of a sheet. The grippers of cylinder A^{2} release the sheet at the nearest point of approach of pulleys D^{11} to cylinder A^{2}, the lifterfingers causing it to pass under the strippers D^{3}, over pulleys D^{11}, under pulleys D^{14}, where it is deflected upward by strippers D^{10}, over pulleys D^{75}, and between tapes $\mathrm{E}^{6} \mathrm{E}^{7}$. The tapes $\mathbf{E}^{6} \mathbf{E}^{7}$ diverging, will not hold the sheet after the head end has passed into the bite of tapes $\mathrm{F}^{5} \mathrm{~F}^{\circ}$, where they run over pulleys $\mathrm{E}^{19} \mathrm{E}^{1}$; and at this point the bed B, cylinder A^{2}, and all the reversibly-moving parts will have reached the extremity of motion in one direction. From this point the tapes E^{6} E^{\top}, move in a contrary direction to the sheet, but no longer holding it, the sheet being thereafter carried to the flier by the continuouslymoving tapes $\mathrm{F}^{5} \mathrm{~F}^{6} \mathbf{F}^{5}$. The cams I^{3} are properly timed upon the shaft G^{\prime}, to cause the fly-

75

fingers I^{j} to lay the sheet down upon a receir-ing-board upon its arrival down in front of said fly-fingers.

I do not claim the mechanism herein de-
5 scribed for imparting reciprocating motion to the type-bed and oscillating motion to the im-pression-cylinder, laving claimed the same in another application filed herewith, and numbered 195,400; but
As of my invention herein I claim-

1. In a sheet-delivery for an oscillating-cylinder printing-machine, the combination, with an oscillating cylinder carrying grippers and sheet-lifter fingers, of a series of pulleys, as $5 \mathrm{D}^{11}$, driven in unison with said impressioncylinder, a series of deflecting-strippers, as D^{8}, a second series of deflecting-strippers, as D^{10}, two series of diverging tapes, as $\mathrm{E}^{6} \mathrm{E}^{\mathrm{i}}$, having alternating motion imparted to them in unison o with the impression-cylinder, and two series of continuously moved tapes, as $\mathrm{F}^{5} \mathrm{~F}^{6}$, in contact throughont their Iength, whereby a sheet, when released by the grippers and elevated by the lifter-fingers of said cylinder, is de25 flected into and between said two scries of diverging tapes, conveyed by them until held between said two series of continuously-moving tapes, and then conveyed away for final delivery by said continuously-moving tapes, 30 while said diverging tapes perform their retro.
grade motion with the said impression-cylinder, substantially as and for the purposes set forth.
2. In a sheet-delivery for an oscillating-cylinder printing-machine, in combination with two feed-boards, as $A^{\top} A^{s}$, an oscillating cylinder carrying two sets of grippers and two sets of sheet-lifter fingers, two series of pulleys, as D^{11}, driven in mison with said im-pression-cylinder, two series of deflectingstrippers, is D^{s}, two series of deflecting-strippers, as D^{16}, four series of diverging tapes, as $\mathrm{E}^{6} \mathrm{E}^{7}$, having altermating motions imparted to them in unison with the impression-cylinder, four series of continuously-moved tapes, as F^{5} F^{i}, in contact throughont their length, and two series of down-tapes, as I^{7}, whereby a sheet, when released by the respective sets of cylinder-grippers, is deflected and delivered from said cylinder at each of its single oscillations, and conveyed away by said tapes for final delivery upon opposite sides of the machine to or upon suitable tables or receptacles, substantially as and for the purposes set forth.

JOHN T. HAWKINS.

Witnesses:
Elisha T. Jackson, Benjamin L. Wood.

