(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number $WO~2013/083616~{\rm Al}$

- (43) International Publication Date 13 June 2013 (13.06.2013)
- (51) International Patent Classification: A61M 5/24 (2006.01)
 (21) International Application Number:

PCT/EP2012/074471

(22) International Filing Date:

5 December 2012 (05.12.2012)

(25) Filing Language:

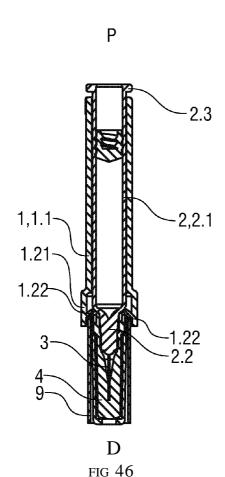
English

(26) Publication Language:

English

(30) Priority Data:

11192592. 1 8 December 201 1 (08. 12.201 1)


11172372. 1 6 December 201 1 (06. 12.201 1)

(71) Applicant: SANOFI-AVENTIS DEUTSCHLAND GMBH [DE/DE]; BruningstraBe 50, 65929 Frankfurt am Main (DE).

- (72) Inventors: HOURMAND, Yannick; 14 The Elms, Haslingfield Cambridgeshire CB23 1ND (GB). JEN¬ NINGS, Douglas Ivan; 73 Redwing Rise, Royston, Herts SG8 7XU (GB). EKMAN, Matthew; 59 Ecton Avenue, Cheshire, Macclesfield Cheshire SK10 1RD (GB).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

[Continued on nextpage]

(54) Title: SYRINGE CARRIER

(57) Abstract: Described is a syringe carrier (1) comprising a body (1.1) adapted to receive a barrel (2.1) of a syringe (2). The body (1.1) includes an enlarged distal portion (1.21) having a diameter greater than a diameter of the body (1.1). The enlarged distal portion (1.21) has one or more resilient barbs (1.22) adapted to engage a circumferential gap between the barrel (2.1) of the syringe (2) and a needle shield (4) covering a needle (3) of the syringe (2).

WO 2°13/@83616 A1

TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— f inventorship (Rule 4.17(iv))

Published:

with international search report (Art. 21(3))

1

Syringe carrier

Technical Field

5 The invention relates to syringe carrier.

Background of the Invention

In a conventional medicament delivery device (e.g., an autoinjector), a pre-filled syringe is housed in a carrier which is axially movable to achieve needle penetration in an injection site and, optionally, needle withdrawal. A conventional carrier provides shoulders that are adapted to engage a neck on the syringe and prevent the syringe from disengaging the carrier. Because syringes are generally supplied with rigid needle shields covering the needle and those needle shields have a diameter greater than a diameter between the shoulders, a separate assembly step is required - inserting the syringe in the carrier and then attaching the rigid needle shield to the needle. Accordingly, there is a need for a syringe carrier which does not require this separate assembly step.

20 Summary of the Invention

It is an object of the present invention to provide an improved syringe carrier.

In an exemplary embodiment, a syringe carrier according to the present invention comprises a body adapted to receive a barrel of a syringe. The body includes an enlarged distal portion having a diameter greater than a diameter of the body. The enlarged distal portion has one or more resilient barbs adapted to engage a circumferential gap between the barrel of the syringe and a needle shield covering a needle of the syringe.

30

25

10

15

In an exemplary embodiment, the one or more resilient barbs project radially toward a longitudinal axis of the body.

In an exemplary embodiment, the body includes one or more viewing windows.

In an exemplary embodiment, the body includes a retainer element adapted to provide an abutment surface to prevent the syringe from disengaging the syringe carrier in a proximal direction.

In an exemplary embodiment, a tool for inserting a syringe into the syringe carrier according to the present invention comprises a shell adapted to receive the needle shield. The shell has a first surface adapted to engage the one or more resilient barbs when the tool is inserted into the enlarged distal portion.

Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

20 Brief Description of the Drawings

The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:

25

5

10

15

- Figure 1 is a top view of an exemplary embodiment of a syringe carrier according to the present invention,
- Figure 2 is a lateral view of the syringe carrier of figure 1,

30

Figure 3 is a longitudinal section of the syringe carrier of figure 1 in the section plane A-A.

WO 2013/083616

	Figure 4	is a perspective view of the syringe carrier of figure 1,
5	Figure 5	is a top view of another exemplary embodiment of a syringe carrier according to the present invention,
	Figure 6	is a lateral view of the syringe carrier of figure 5,
10	Figure 7	is a longitudinal section of the syringe carrier of figure 5 in the section plane A-A,
	Figure 8	is a perspective view of the syringe carrier of figure 5,
15	Figure 9	is a top view of yet another exemplary embodiment of a syringe carrier according to the present invention,
	Figure 10	is a lateral view of the syringe carrier of figure 9,
20	Figure 11	is a longitudinal section of the syringe carrier of figure 9 in the section plane A-A,
	Figure 12	is a perspective view of the syringe carrier of figure 9,
25	Figure 13	is another perspective view of the syringe carrier of figure 9 with a syringe inserted,
	Figure 14	is a top view of yet another exemplary embodiment of a syringe carrier according to the present invention,

WO 2013/083616

	Figure 16	is a longitudinal section of the syringe carrier of figure 14 in the section plane A-A,
5	Figure 17	is a perspective view of the syringe carrier of figure 14,
Ü	Figure 18	is another perspective view of the syringe carrier of figure 14 with a syringe inserted,
10	Figure 19	is a top view of yet another exemplary embodiment of a syringe carrier according to the present invention,
	Figure 20	is a lateral view of the syringe carrier of figure 19,
15	Figure 21	is a longitudinal section of the syringe carrier of figure 19 in the section plane A-A,
	Figure 22	is a perspective view of the syringe carrier of figure 19,
20	Figure 23	is another perspective view of the syringe carrier of figure 19 with a syringe inserted,
	Figure 24	is a top view of yet another exemplary embodiment of a syringe carrier according to the present invention,
25	Figure 25	is a lateral view of the syringe carrier of figure 24,
	Figure 26	is a longitudinal section of the syringe carrier of figure 24 in the section plane A-A,
30	Figure 27	is a perspective view of the syringe carrier of figure 24,

	Figure 28	is another perspective view of the syringe carrier of figure 24 with a syringe inserted,
5	Figure 29	is a top view of yet another exemplary embodiment of a syringe carrier according to the present invention,
	Figure 30	is a lateral view of the syringe carrier of figure 29,
10	Figure 31	is a longitudinal section of the syringe carrier of figure 29 in the section plane A-A,
	Figure 32	is a perspective view of the syringe carrier of figure 29,
15	Figure 33	is another perspective view of the syringe carrier of figure 29 with a syringe inserted,
	Figure 34	is a top view of yet another exemplary embodiment of a syringe carrier according to the present invention,
20	Figure 35	is a lateral view of the syringe carrier of figure 34,
	Figure 36	is a longitudinal section of the syringe carrier of figure 34 in the section plane A-A,
25	Figure 37	is a perspective view of the syringe carrier of figure 34,
	Figure 38	is another perspective view of the syringe carrier of figure 34 with a syringe inserted,
30	Figure 39	is a top view of yet another exemplary embodiment of a syringe carrier according to the present invention,

6

Figure 40 is a lateral view of the syringe carrier of figure 39, Figure 41 is a longitudinal section of the syringe carrier of figure 39 in the section plane B-B, 5 Figure 42 is a perspective view of the syringe carrier of figure 39, Figure 43 is another perspective view of the syringe carrier of figure 39 with a syringe inserted, 10 Figure 44 is a top view of yet another exemplary embodiment of a syringe carrier according to the present invention, Figure 45 is a lateral view of the syringe carrier of figure 44, 15 Figure 46 is a longitudinal section of the syringe carrier of figure 44 in the section plane B-B, Figure 47 is a perspective view of the syringe carrier of figure 44, and 20 Figure 48 is another perspective view of the syringe carrier of figure 44 with a syringe inserted. Corresponding parts are marked with the same reference symbols in all figures. 25

Detailed Description

30

Generally, and applicable to all exemplary embodiments of the present invention, the syringe 2 comprises a barrel 2.1 and a neck 2.2 which has a smaller diameter than the barrel 2.1. A needle 3 is mounted to the neck 2.2 and a rigid needle shield (RNS) 4 is removably arranged on the needle 3. When coupled to the needle 3, a portion of the RNS may cover a portion of the neck 2.2, leaving a circumferential gap between the

7

barrel 2.1 and the RNS 4. The RNS 4 has a diameter substantially equal to the diameter of the barrel 2.1.

Figures 1-4 show a first exemplary embodiment of a syringe carrier 1 according to the present in invention. Figure 1 is a top view of the syringe carrier 1 for supporting a syringe 2. Figure 2 is a lateral view of the syringe carrier of figure 1. Figure 3 is a longitudinal section of the syringe carrier of figure 1 in the section plane A-A. Figure 4 is a perspective view of the syringe carrier of figure 1 without the syringe 2.

5

10

15

20

25

30

As shown in Figures 1-4, the syringe carrier 1 comprises an elongate body 1.1 arranged to receive the barrel 2.1. In this exemplary embodiment, the body 1.1 has a cylindrical shape with an internal diameter corresponding to the diameter of the barrel 2.1. The body 1.1 comprises a collar 1.2 at a proximal end dimensioned to allow axial insertion of the syringe 2 into the syringe carrier 1 in a distal direction D. Resilient sections 1.1.1 extend distally from the collar 1.2. Distal ends of the sections 1.1.1 include shoulder sections 1.4 shaped as portions of a circle arranged in a transverse plane with respect to a longitudinal axis of the carrier 1. The shoulder sections include facing surfaces 6. When the sections 1.1.1 are in a non-deflected position, the facing surfaces 6 may abut each other, and the shoulder sections 1.4 form a circular shoulder (because the facing surfaces 6 abut each other) adapted to engage the circumferential gap between the barrel 2.1 and the RNS 4.

The syringe 2, with RNS 4 attached to the needle 3, may be loaded into the syringe carrier 1 by sliding the syringe 2 in the distal direction D into the syringe carrier 2. When the RNS 4 abuts the shoulder sections 1.4, additional axial force may be applied to cause the arms 1.3 to deflect radially. When the RNS 4 has bypassed the shoulder sections 1.4, the sections 1.1 may return to the non-deflected position, and the shoulder sections 1.4 may engage the circumferential gap between the barrel 2.1 and the RNS 4 and prevent the syringe 2 from moving in the distal direction D relative to the syringe carrier 1.

8

In an exemplary embodiment, the proximal end 1.5 of the body 1.1 may be arranged to receive a finger flange 2.3 of the syringe 2.

In an exemplary embodiment, the shoulder sections 1.4 may include proximally-facing contoured surfaces to accommodate a proximal portion of the neck 2.2 of the syringe 2 and distally-facing planar surfaces to abut the RNS 4.

5

10

15

20

25

30

In an exemplary embodiment, viewing windows 5 may be arranged in the body 1.1 for allowing visual access to the barrel 2.1 of the syringe 2 when the syringe 2 is in the syringe carrier 2. In an exemplary embodiment, the windows 5 are formed when cutouts in the arms 1.3 are substantially contiguous when the arms 1.3 are in the non-deflected position (as shown in Figure 1). A projection 1.6 may be formed around each cut-out, and when the sections 1.1.1 are in the non-deflected position, the projections 1.6 may form an outline for the window 5. In another exemplary embodiment, the windows 5 may be formed in the sections 1.1.1.

Figures 5-8 show a second exemplary embodiment of a syringe carrier 1 according to the present invention. Figure 6 is a lateral view of the syringe carrier 1 of figure 5.

Figure 7 is a longitudinal section of the syringe carrier 1 of figure 5 in the section plane A-A. Figure 8 is a perspective view of the syringe carrier of figure 5 without the syringe 2.

As shown in Figures 5-8, the syringe carrier 1 comprises an elongate body 1.1 arranged to receive the barrel 2.1. In this exemplary embodiment, the body 1.1 is comprised of two resilient sections 1.1.1 which, when together, have a cylindrical shape with an internal diameter corresponding to the diameter of the barrel 2.1. Distal ends of the sections 1.1.1 of the body 1.1 comprise part of a collar 1.2 dimensioned to allow axial insertion of the syringe 2 into the syringe carrier 1. Resilient arms 1.3 are formed in the body 1.1. Distal ends of the arms 1.3 include shoulder sections 1.4 shaped as portions of a circle arranged in a transverse plane with respect to a longitudinal axis of the carrier 1. The shoulder sections include facing surfaces 6. When the arms 1.3 are in a non-deflected position, the facing surfaces 6 may abut the distal ends of the sections 1.1.1

9

of the body 1.1 to form a circular shoulder adapted to engage the circumferential gap between the barrel 2.1 and the RNS 4.

5

10

25

30

The syringe 2, with RNS 4 attached to the needle 3, may be loaded into the syringe carrier 1 by sliding the syringe 2 in the distal direction D into the syringe carrier 2. When the RNS 4 abuts proximal ends of the sections 1.1.1, the sections 1.1.1 may deflect radially. When the RNS 4 has bypassed the proximal ends of the section 1.1.1, the sections 1.1.1 may return to the non-deflected position. When the RNS 4 abuts the shoulder sections 1.4, the arms 1.3 may deflect until the RNS 4 bypasses the shoulder sections 1.4. Then, the arms 1.3 may return to the non-deflected position, and the shoulder sections 1.4 and the collar 1.2 may engage the circumferential gap between the barrel 2.1 and the RNS 4 and prevent the syringe 2 from moving in the distal direction D relative to the syringe carrier 1.

In an exemplary embodiment, the proximal end 1.5 of the body 1.1 may be arranged to receive a finger flange 2.3 of the syringe 2. The proximal end 1.5 may also include a retainer element 1.7 which is adapted to provide an abutment surface to prevent the syringe 2 from disengaging the syringe carrier 1 in the proximal direction D.

20 In an exemplary embodiment, the shoulder sections 1.4 may include proximally-facing contoured surfaces to accommodate a proximal portion of the neck 2.2 of the syringe 2 and distally-facing planar surfaces to abut the RNS 4.

In an exemplary embodiment, viewing windows 5 may be arranged in the body 1.1 for allowing visual access to the barrel 2.1 of the syringe 2 when the syringe 2 is in the syringe carrier 2. In an exemplary embodiment, the windows 5 are formed when cutouts in the sections 1.1.1 are substantially contiguous when the sections 1.1.1 are in the non-deflected position (as shown in Figure 5). A projection 1.6 may be formed around each cut-out, and when the sections 1.1.1 are in the non-deflected position, the projections 1.6 may form an outline for the window 5.

10

Figures 9-1 3 show a third exemplary embodiment of a syringe carrier 1 according to the present invention. Figure 9 is a top view of a third embodiment of a syringe carrier 1 for supporting a syringe 2. Figure 10 is a lateral view of the syringe carrier 1 of figure 9.

Figure 11 is a longitudinal section of the syringe carrier 1 of figure 9 in the section plane A-A. Figure 12 is a perspective view of the syringe carrier of figure 9 without the syringe 2. Figure 13 is another perspective view of the syringe carrier of figure 9.

5

10

15

20

As shown in Figures 9-13, the syringe carrier 1 comprises an elongate body 1.1 arranged to receive the barrel 2.1. In this exemplary embodiment, the body 1.1 is comprised of two sections 1.1.1 which, when together, have a cylindrical shape with an internal diameter corresponding to the diameter of the barrel 2.1. The sections 1.1.1 may be coupled by a side hinge which allows the section 1.1.1 to rotate relative to each other sufficient to receive the syringe 2. Proximal and distal ends of the sections 1.1.1 include shoulder sections 1.4 shaped as portions of a circle arranged in a transverse plane with respect to a longitudinal axis of the carrier 1. The shoulder sections include facing surfaces 6. When the sections 1.1.1 are in a closed position, the facing surfaces 6 may abut each other so that the shoulder sections 1.4 form circular shoulders adapted to proximally abut a finger flange 2.3 on the syringe 2 and to distally engage the circumferential gap between the barrel 2.1 and the RNS 4. The facing surfaces 6 of one section 1.1.1 may include holes 1.10 and the facing surfaces 6 of the other section 1.1.1 may include pins 1.11 adapted to engage (e.g., frictionally, snap-fit, etc.) the holes 1.10 to secure the sections 1.1.1 in the closed position.

The syringe 2, with RNS 4 attached to the needle 3, may be loaded into the syringe carrier 1 by opening the sections 1.1.1 about the hinge and placing the syringe 2 in the syringe carrier 2. When the sections 1.1.1 are closed, the pins 1.11 engage the holes 1.10, and the proximal shoulder sections 1.4 form circular shoulders adapted to proximally abut a finger flange 2.3 on the syringe 2 and the distal shoulder section s 1.4 to distally engage the circumferential gap between the barrel 2.1 and the RNS 4. Thus, the syringe 2 is prevented from moving axially relative to the syringe carrier 1.

11

In an exemplary embodiment, the proximal end 1.5 may include a retainer element 1.7 which is adapted to provide an abutment surface to prevent the syringe 2 from disengaging the syringe carrier 1 in the proximal direction D.

In an exemplary embodiment, the shoulder sections 1.4 may include proximally-facing contoured surfaces to accommodate a proximal portion of the neck 2.2 of the syringe 2 and distally-facing planar surfaces to abut the RNS 4.

10

15

20

In an exemplary embodiment, viewing windows 5 may be arranged in the body 1.1 for allowing visual access to the barrel 2.1 of the syringe 2 when the syringe 2 is in the syringe carrier 2. In an exemplary embodiment, the windows 5 are formed when cutouts in the sections 1.1.1 are substantially contiguous when the sections 1.1.1 are in the closed position. A projection 1.6 may be formed around each cut-out, and when the sections 1.1.1 are in the non-deflected position, the projections 1.6 may form an outline for the window 5.

Figures 14-18 show a fourth exemplary embodiment of a syringe carrier 1 according to the present invention. Figure 14 is a top view of a fourth embodiment of a syringe carrier 1 for supporting a syringe 2. Figure 15 is a lateral view of the syringe carrier 1 of figure 14. Figure 16 is a longitudinal section of the syringe carrier 1 of figure 14 in the section plane A-A. Figure 17 is a perspective view of the syringe carrier of figure 14 without the syringe 2. Figure 18 is another perspective view of the syringe carrier of figure 14.

As shown in Figures 14-18, the syringe carrier 1 comprises an elongate body 1.1 arranged to receive the barrel 2.1. In this exemplary embodiment, the body 1.1 has a cylindrical shape with an internal diameter corresponding to the diameter of the barrel 2.1. A distal end of the body 1.1 includes a shoulder sections 1.4 shaped as a portion of a circle arranged in a transverse plane with respect to a longitudinal axis of the carrier 1, and at least one door 1.12 hingedly coupled to the body 1.1 and including a shoulder section 1.4. A hinge 1.9 coupling the door 1.12 to the body 1.1 may be provided on an axis parallel to the longitudinal axis of the syringe carrier 1 or on an axis transverse to

WO 2013/083616

12

PCT/EP2012/074471

the longitudinal axis of the syringe carrier 1. The shoulder section 1.4 includes facing surfaces 6 which abut facing surfaces 6 of the door 1.12 when the door 1.12 is in a closed position (as shown in Figure 14). When the door 1.12 is in the closed position, the facing surfaces 6 may abut each other so that the shoulder sections 1.4 on the body 1.1 and the door 1.12 to form a circular shoulder adapted to engage the circumferential gap between the barrel 2.1 and the RNS 4. The facing surfaces 6 of the door 1.12 may include holes 1.10 and the facing surfaces 6 of the body 1.1 may include pins 1.1 1 (or vice-versa) adapted to engage (e.g., frictionally, snap-fit, etc.) the holes 1.10 to secure the door 1.12 in the closed position.

10

15

5

The syringe 2, with RNS 4 attached to the needle 3, may be loaded into the syringe carrier 1 by opening the door 1.12 and sliding the syringe 2 into the syringe carrier 1. When the circumferential gap between the barrel 2.1 and the RNS 4 engages the shoulder section 1.4 on the body 1.1, the door 1.12 may be closed to engage the gap and prevent the syringe 2 from moving axially relative to the syringe carrier 1.

In an exemplary embodiment, the shoulder sections 1.4 may include proximally-facing contoured surfaces to accommodate a proximal portion of the neck 2.2 of the syringe 2 and distally-facing planar surfaces to abut the RNS 4.

20

In an exemplary embodiment, viewing windows (not shown) may be arranged in the body 1.1 for allowing visual access to the barrel 2.1 of the syringe 2 when the syringe 2 is in the syringe carrier 2. In an exemplary embodiment, the windows are formed as cut-outs.

25

30

Figures 19-23 show a fifth exemplary embodiment of a syringe carrier 1 according to the present invention. Figure 19 is a top view of a fifth embodiment of a syringe carrier 1 for supporting a syringe 2. Figure 20 is a lateral view of the syringe carrier 1 of figure 19. Figure 21 is a longitudinal section of the syringe carrier 1 of figure 19 in the section plane A-A. Figure 22 is a perspective view of the syringe carrier of figure 19 without the syringe 2. Figure 23 is another perspective view of the syringe carrier of figure 19.

13

As shown in Figures 19-23, the syringe carrier 1 comprises an elongate body 1.1 arranged to receive the barrel 2.1. In this exemplary embodiment, the body 1.1 is comprised of two sections 1.1.1 which, when together, have a cylindrical shape with an internal diameter corresponding to the diameter of the barrel 2.1. The sections 1.1.1 may be coupled together by clips. In an exemplary embodiment, a clip may comprise a eye 1.14 on a first section adapted to engage a hook 1.13 on a second section. The eye 1.14 may have a cross-section substantially equal to the cross-section of the hook 1.13 such that the eye 1.14 and hook 1.13 engage in a snap-fit. Distal ends of the sections 1.1.1 include shoulder sections 1.4 shaped as portions of a circle arranged in a transverse plane with respect to a longitudinal axis of the carrier 1. The shoulder sections include facing surfaces 6. When the sections 1.1.1 are in a closed position, the facing surfaces 6 may abut each other so that the shoulder sections 1.4 form circular shoulders adapted engage the circumferential gap between the barrel 2.1 and the RNS 4. Those of skill in the art will understand that the sections 1.1.1 may be hingedly connected.

5

10

15

20

25

30

The syringe 2, with RNS 4 attached to the needle 3, may be loaded into the syringe carrier 1 by opening the sections 1.1.1 and placing the syringe 2 in the syringe carrier 2. When the sections 1.1.1 are closed, the eyes 1.14 engage the hooks 1.13 and the shoulder sections 1.4 engage the circumferential gap between the barrel 2.1 and the RNS 4. Thus, the syringe 2 is prevented from moving axially relative to the syringe carrier 1.

In an exemplary embodiment, the proximal end may include a retainer element which is adapted to provide an abutment surface to prevent the syringe 2 from disengaging the syringe carrier 1 in the proximal direction D.

In an exemplary embodiment, the shoulder sections 1.4 may include proximally-facing contoured surfaces to accommodate a proximal portion of the neck 2.2 of the syringe 2 and distally-facing planar surfaces to abut the RNS 4.

14

In an exemplary embodiment, viewing windows may be arranged in the body 1.1 for allowing visual access to the barrel 2.1 of the syringe 2 when the syringe 2 is in the syringe carrier 2.

Figures 24-28 show a sixth exemplary embodiment of a syringe carrier 1 according to the present invention. Figure 24 is a top view of a sixth embodiment of a syringe carrier 1 for supporting a syringe 2. Figure 25 is a lateral view of the syringe carrier 1 of figure 24. Figure 26 is a longitudinal section of the syringe carrier 1 of figure 24 in the section plane A-A. Figure 27 is a perspective view of the syringe carrier of figure 24 without the syringe 2. Figure 28 is another perspective view of the syringe carrier of figure 24.

As shown in Figures 24-28, the syringe carrier 1 comprises an elongate body 1.1 arranged to receive the barrel 2.1. In this exemplary embodiment, the body 1.1 has a partially cylindrical shape with an internal diameter corresponding to the diameter of the barrel 2.1. The body 1.1 may include a longitudinal slot (e.g., a cut-out) which is adapted to snap over the barrel 2.1 of the syringe 2. Proximal and distal ends of the body 1.1 include clamps 1.15, 1.16 which are adapted to retain the syringe 2 when in the syringe carrier 1. The distal end of the body 1 further includes shoulder sections 1.4 shaped as a portion of a circle arranged in a transverse plane with respect to a longitudinal axis of the carrier 1. The shoulder sections 14 form circular shoulders adapted to engage the circumferential gap between the barrel 2.1 and the RNS 4.

The syringe 2, with RNS 4 attached to the needle 3, may be loaded into the syringe carrier 1 by pressing the barrel 2.1 against the clamps 1.15, 1.16, causing the clamps 1.15, 1.16 to deflect and widen the longitudinal slot in the body 1.1. When the barrel 2.1 bypasses the clamps 1.15, 1.16, the clamps 1.15, 1.16 return to their non-deflected position and retain the syringe 2 in the syringe carrier 1. The shoulder sections 1.4 engage the circumferential gap between the barrel 2.1 and the RNS 4. Thus, the syringe 2 is prevented from moving axially relative to the syringe carrier 1.

15

20

25

15

In an exemplary embodiment, the proximal end may include a retainer element which is adapted to provide an abutment surface to prevent the syringe 2 from disengaging the syringe carrier 1 in the proximal direction D.

In an exemplary embodiment, the shoulder sections 1.4 may include proximally-facing contoured surfaces to accommodate a proximal portion of the neck 2.2 of the syringe 2 and distally-facing planar surfaces to abut the RNS 4.

In an exemplary embodiment, a viewing window may be arranged in the body 1.1 for allowing visual access to the barrel 2.1 of the syringe 2 when the syringe 2 is in the syringe carrier 2.

Figures 29-33 show a seventh exemplary embodiment of a syringe carrier 1 according to the present invention. Figure 29 is a top view of a seventh embodiment of a syringe carrier 1 for supporting a syringe 2. Figure 30 is a lateral view of the syringe carrier 1 of figure 29. Figure 31 is a longitudinal section of the syringe carrier 1 of figure 29 in the section plane A-A. Figure 32 is a perspective view of the syringe carrier of figure 29 without the syringe 2. Figure 33 is another perspective view of the syringe carrier of figure 29.

20

25

30

15

As shown in Figures 29-33, the syringe carrier 1 comprises an elongate body 1.1 arranged to receive the barrel 2.1. In this exemplary embodiment, the body 1.1 has a partially cylindrical shape with an internal diameter corresponding to the diameter of the barrel 2.1. The body 1.1 includes a collar 1.2 at its proximal end and may include a longitudinal slot (e.g., a cut-out) formed in the body 1.1 distally of the collar 1.2 which is adapted to snap over the barrel 2.1 of the syringe 2. A pair of groove hinges 1.17 may be formed in the body 1.1 adjacent a proximal end of the slot. The distal end of the body 1 includes shoulder sections 1.4 shaped as a portion of a circle arranged in a transverse plane with respect to a longitudinal axis of the carrier 1. The shoulder sections 14 form circular shoulders adapted to engage the circumferential gap between the barrel 2.1 and the RNS 4.

5

20

25

The syringe 2, with RNS 4 attached to the needle 3, may be loaded into the syringe carrier 1 by sliding the syringe 2 through the collar 1.2 in the distal direction D. When the RNS 4 abuts the shoulder sections 1.4, the body 1.1 may radially deflect (e.g., rotate) about the groove hinges 1.17. When the RNS 4 bypasses the shoulder sections 1.4, the body 1.1 may return to its non-deflected position and retain the syringe 2 in the syringe carrier 1. The shoulder sections 1.4 engage the circumferential gap between the barrel 2.1 and the RNS 4. Thus, the syringe 2 is prevented from moving axially relative to the syringe carrier 1.

10 In an exemplary embodiment, the proximal end may include a retainer element which is adapted to provide an abutment surface to prevent the syringe 2 from disengaging the syringe carrier 1 in the proximal direction D.

In an exemplary embodiment, the shoulder sections 1.4 may include proximally-facing contoured surfaces to accommodate a proximal portion of the neck 2.2 of the syringe 2 and distally-facing planar surfaces to abut the RNS 4.

In an exemplary embodiment, a viewing window may be arranged in the body 1.1 for allowing visual access to the barrel 2.1 of the syringe 2 when the syringe 2 is in the syringe carrier 2.

Figures 34-38 show an eighth exemplary embodiment of a syringe carrier 1 according to the present invention. Figure 34 is a top view of an eighth embodiment of a syringe carrier 1 for supporting a syringe 2. Figure 35 is a lateral view of the syringe carrier 1 of figure 34. Figure 36 is a longitudinal section of the syringe carrier 1 of figure 34 in the section plane A-A. Figure 37 is a perspective view of the syringe carrier of figure 34 without the syringe 2. Figure 38 is another perspective view of the syringe carrier of figure 34.

As shown in Figures 34-38, the syringe carrier 1 comprises an elongate body 1.1 arranged to receive the barrel 2.1. In this exemplary embodiment, the body 1.1 has a cylindrical shape with an annular groove 1.19 adjacent its distal end which is adapted to

17

engage a circlip 8. The circlip 8 may engage the circumferential gap between the barrel 1.2 and the RNS 4.

The syringe 2, with RNS 4 attached to the needle 3 and the circlip 8 attached to the syringe 2, may be loaded into the syringe carrier 1 by sliding the syringe 2 into the syringe carrier 1 in the distal direction D. In a non-deflected position, an outer diameter of the circlip 8 may be substantially equal to a diameter of the body 1.1. Thus, when the syringe 2 with the circlip 8 is inserted into the syringe carrier 1, the circlip 8 may deflect radially until the circlip 8 reaches the annular groove 1.19. The circlip 8 may then expand to the non-deflected position and retain the syringe 2 in an axial position relative to the syringe carrier 1. That is, the circlip 8 may engage the annular groove 1.19 and the circumferential gap between the barrel 2.1 and the RNS 4. Thus, the syringe 2 is prevented from moving axially relative to the syringe carrier 1.

5

10

20

25

30

15 In an exemplary embodiment, the proximal end may include a retainer element which is adapted to provide an abutment surface to prevent the syringe 2 from disengaging the syringe carrier 1 in the proximal direction D.

In an exemplary embodiment, the shoulder sections 1.4 may include proximally-facing contoured surfaces to accommodate a proximal portion of the neck 2.2 of the syringe 2 and distally-facing planar surfaces to abut the RNS 4.

In an exemplary embodiment, a viewing window may be arranged in the body 1.1 for allowing visual access to the barrel 2.1 of the syringe 2 when the syringe 2 is in the syringe carrier 2.

Figures 39-43 show a ninth exemplary embodiment of a syringe carrier 1 according to the present invention. Figure 39 is a top view of a ninth embodiment of a syringe carrier 1 for supporting a syringe 2. Figure 40 is a lateral view of the syringe carrier 1 of figure 39. Figure 41 is a longitudinal section of the syringe carrier 1 of figure 39 in the section plane A-A. Figure 42 is a perspective view of the syringe carrier of figure 39 without the syringe 2. Figure 43 is another perspective view of the syringe carrier of figure 39.

18

As shown in Figures 39-43, the syringe carrier 1 comprises an elongate body 1.1 arranged to receive the barrel 2.1. In this exemplary embodiment, the body 1.1 has a cylindrical shape with an annular groove 1.19 having at least one aperture 1.20 adjacent its distall end which is adapted to engage a circlip 8.

The syringe 2, with RNS 4 attached to the needle 3, may be loaded into the syringe carrier 1 by sliding the syringe 2 into the syringe carrier 1 in the distal direction D. When the circumferential gap between the barrel 2.1 and the RNS 4 is aligned with the annular groove 1.19, the circlip 8 may be coupled to the body 1.1 and engage the apertures 1.20. By extending inwardly through the apertures, the circlip 8 may be coupled to the outside of the body 1.1 but engage the circumferential gap between the barrel 2.1 and the RNS 4. The engagement between the circlip 8 and the apertures 1.20 prevents the circlip 8 from translating relative to the body 1.1, and the engagement between the circlip 8 and the circumferential gap prevents the syringe 2 from moving axially relative to the syringe carrier 1.

In an exemplary embodiment, the proximal end may include a retainer element which is adapted to provide an abutment surface to prevent the syringe 2 from disengaging the syringe carrier 1 in the proximal direction D.

In an exemplary embodiment, the shoulder sections 1.4 may include proximally-facing contoured surfaces to accommodate a proximal portion of the neck 2.2 of the syringe 2 and distally-facing planar surfaces to abut the RNS 4.

25

5

10

15

20

In an exemplary embodiment, a viewing window may be arranged in the body 1.1 for allowing visual access to the barrel 2.1 of the syringe 2 when the syringe 2 is in the syringe carrier 2.

Figures 44-48 show a tenth exemplary embodiment of a syringe carrier 1 and a tool 9 for inserting a syringe 2 into the syringe carrier 1 according to the present invention.

As shown in Figures 39-43, the syringe carrier 1 comprises an elongate body 1.1 arranged to receive the barrel 2.1. In this exemplary embodiment, the body 1.1 has an enlarged portion 1.21 on its distal end. The body 1.1 has cylindrical shape with a first diameter and the enlarged portion 1.21 has a second diameter, larger than the first diameter. The enlarged portion 1.21 has one or more resilient barbs 1.22 extending toward a longitudinal axis of the body 1.1 and angled toward a proximal end of the body 1.1.

The syringe 2, with RNS 4 attached to the needle 3, may be loaded into the syringe carrier 1 by inserting the tool 9 into the enlarged portion 1.21 of the syringe carrier 1. The tool 9 may be a cylinder having an open end adapted to receive the RNS 4. The tool 9 may have a third diameter substantially equal to the second diameter. As the tool 9 is inserted into the enlarged portion 1.21, the tool 9 engages and deflects the resilient barbs 1.22. When the barbs 1.22 are deflected, the RNS 4 can pass the barbs 1.22 in the distal direction D and extend from a distal opening of the body 1.1. When a finger flange 2.3 of the syringe 2 abuts a proximal end of the body 1.1, the tool 9 may be removed and the barbs 1.22 may engage the circumferential gap between the barrel 2.1 and the RNS 4 to prevent the syringe 2 from moving axially relative to the syringe carrier 1.

20

30

5

10

15

In an exemplary embodiment, the proximal end may include a retainer element which is adapted to provide an abutment surface to prevent the syringe 2 from disengaging the syringe carrier 1 in the proximal direction D.

In an exemplary embodiment, the barbs 1.22 may include proximally-facing contoured surfaces to accommodate a proximal portion of the neck 2.2 of the syringe 2 and distally-facing planar surfaces to abut the RNS 4.

In an exemplary embodiment, a viewing window may be arranged in the body 1.1 for allowing visual access to the barrel 2.1 of the syringe 2 when the syringe 2 is in the syringe carrier 2.

20

It is apparent to those skilled in the art that the number of deflectable arms 1.3, shoulder sections 1.4, clips 8 may be varied without departing from the spirit and scope of the invention. Likewise, all the illustrated embodiments may be implemented with or without viewing windows 5, projections 1.6, restraining features retainer elements 1.7 and clips.

5 Different kinds of clips may likewise be applied.

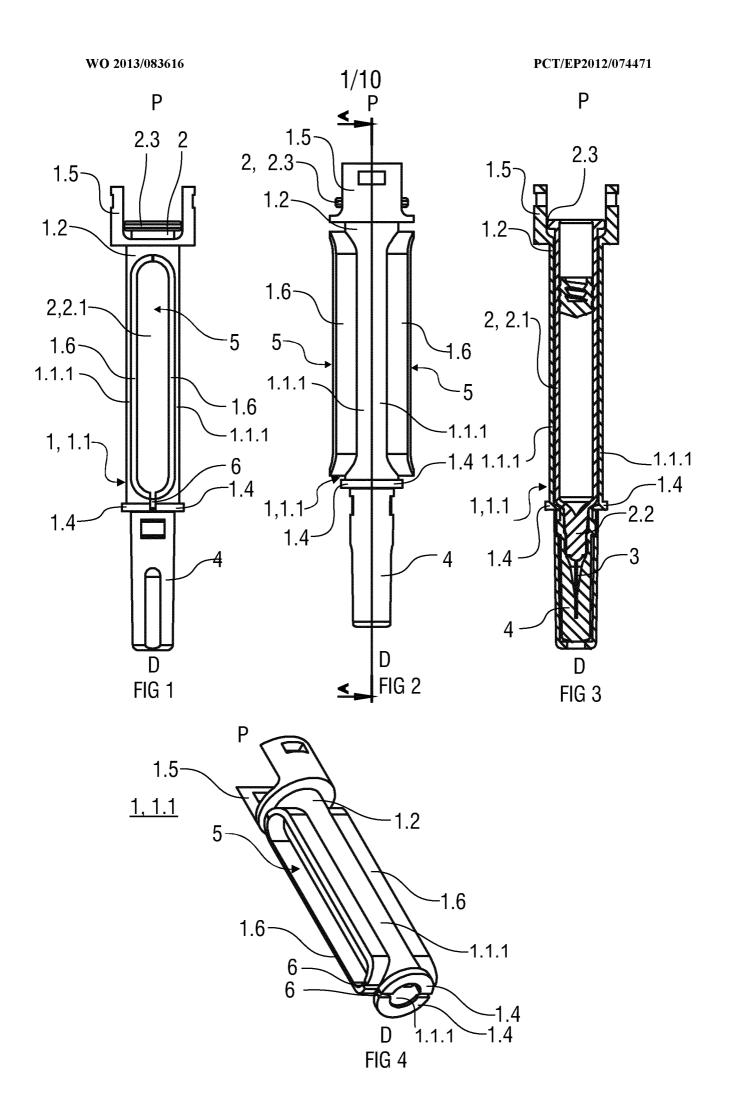
10

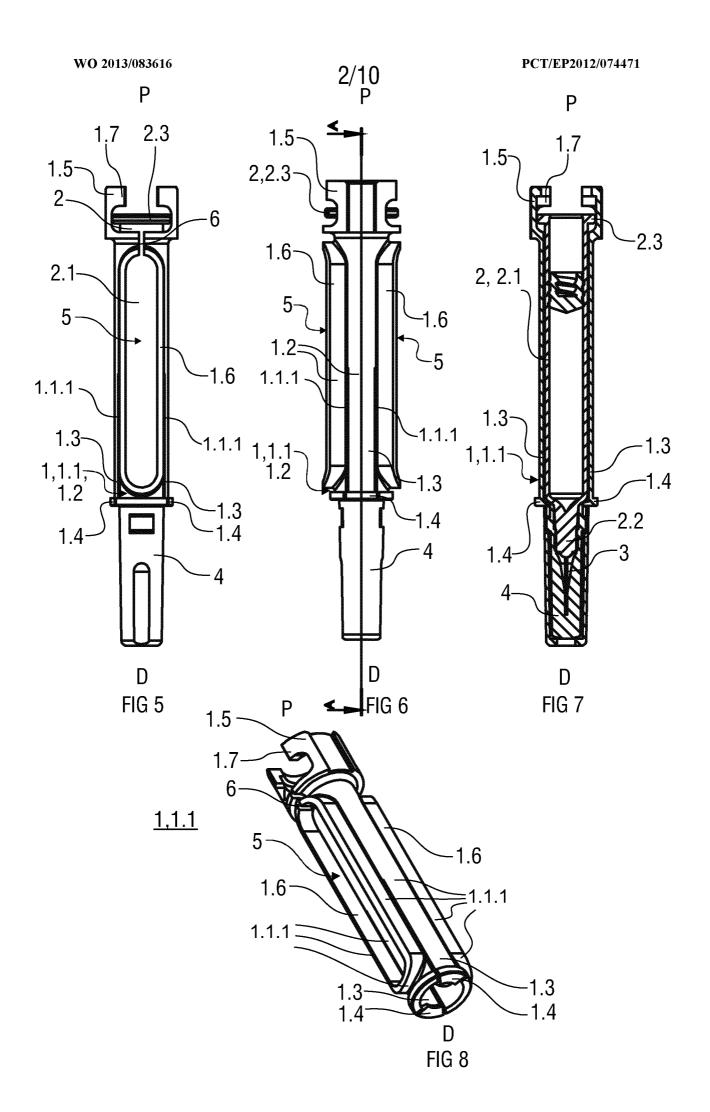
Those of skill in the art will understand that modifications (additions and/or removals) of various components of the apparatuses, methods and/or systems and embodiments described herein may be made without departing from the full scope and spirit of the present invention, which encompass such modifications and any and all equivalents thereof.

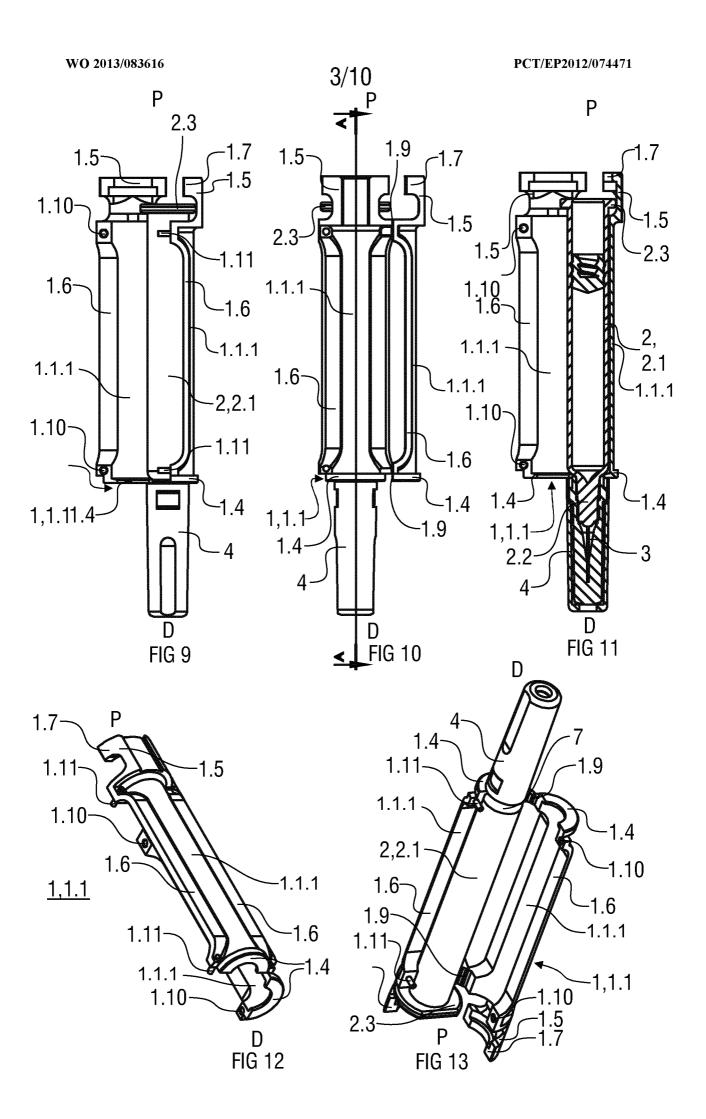
21

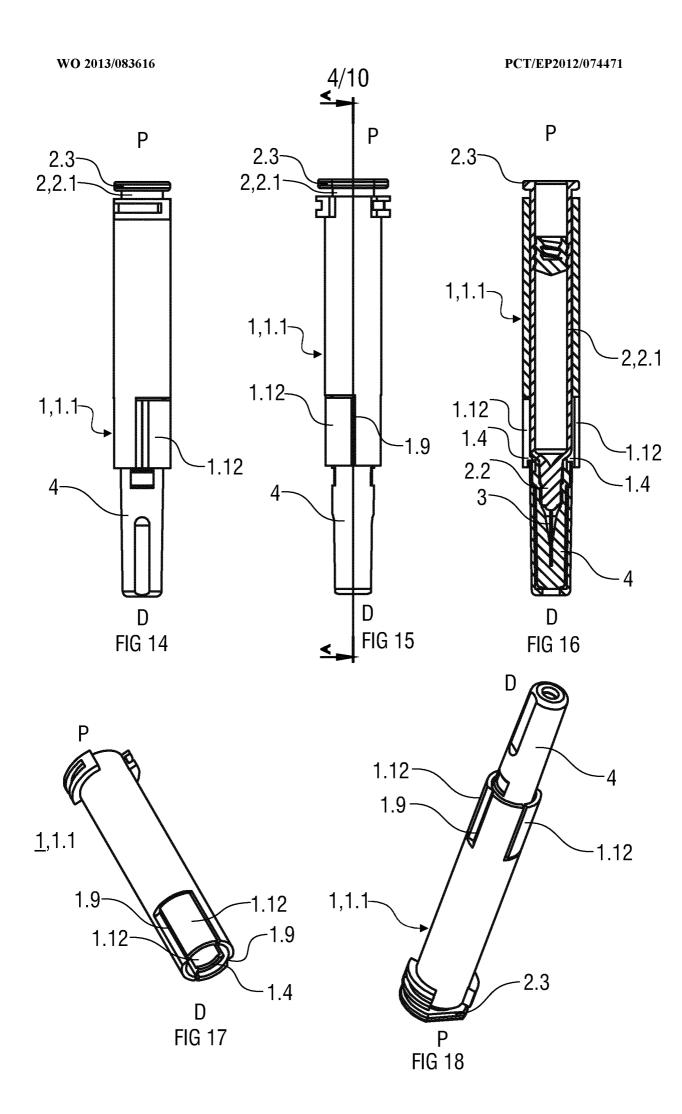
Claims

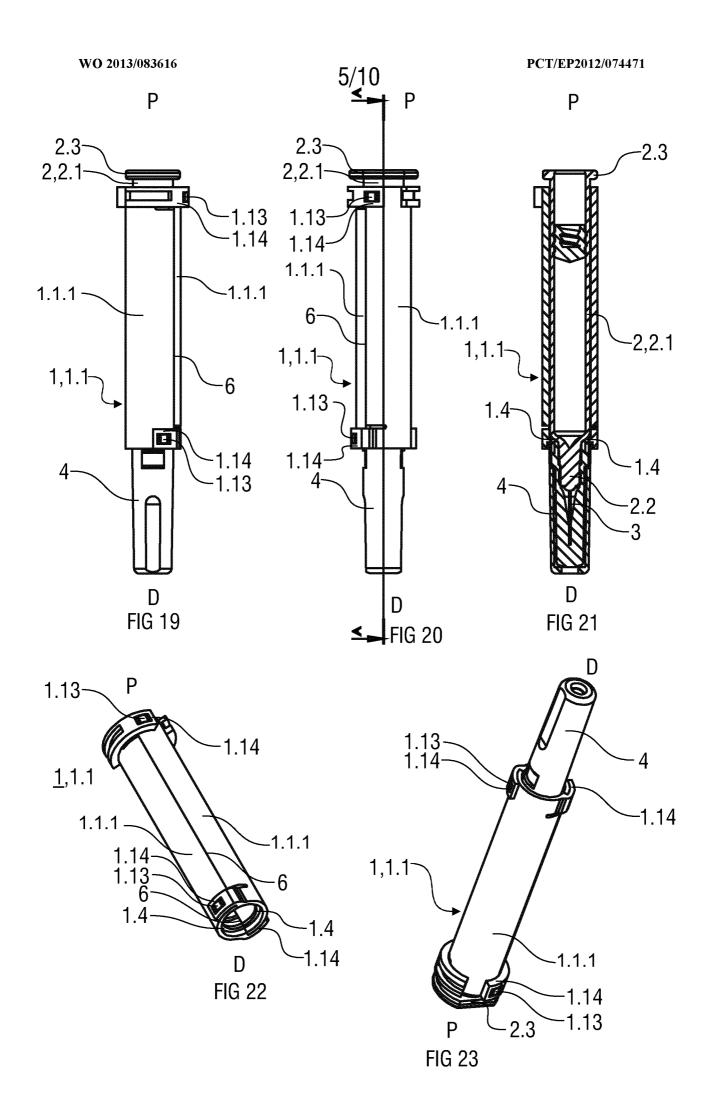
5

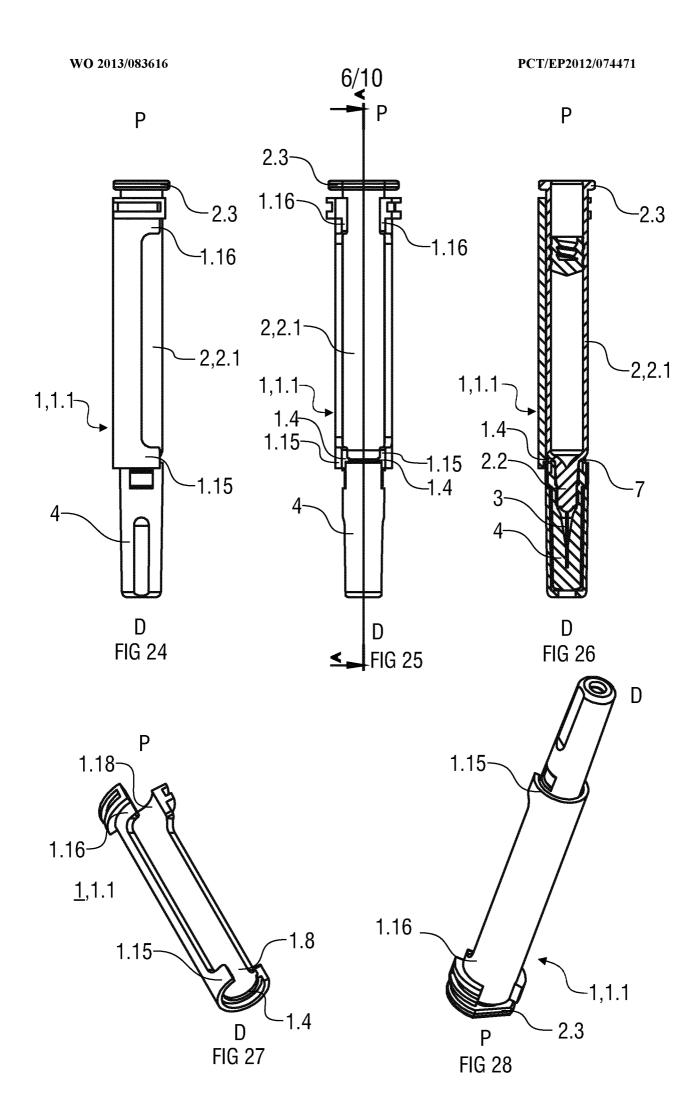

15

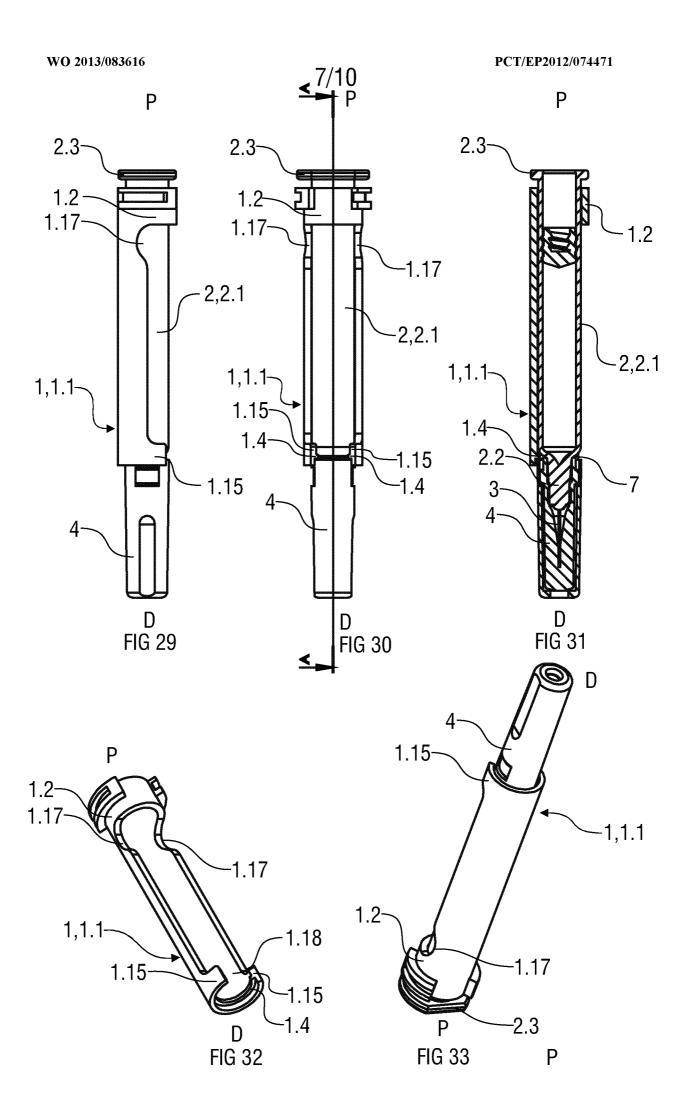

20

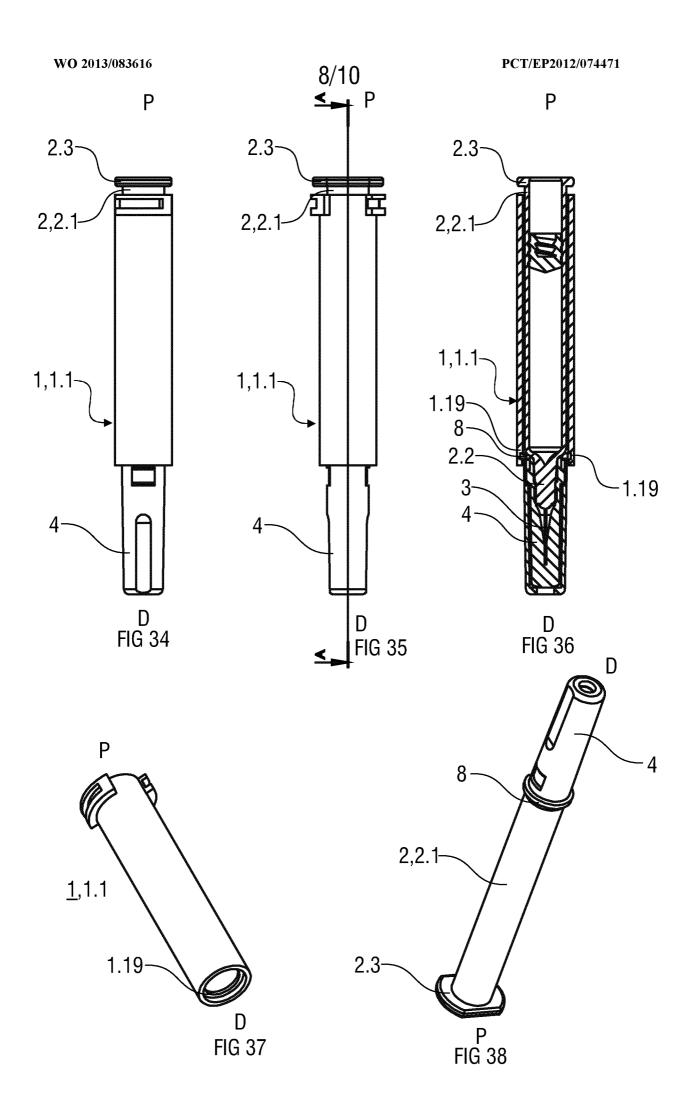

25

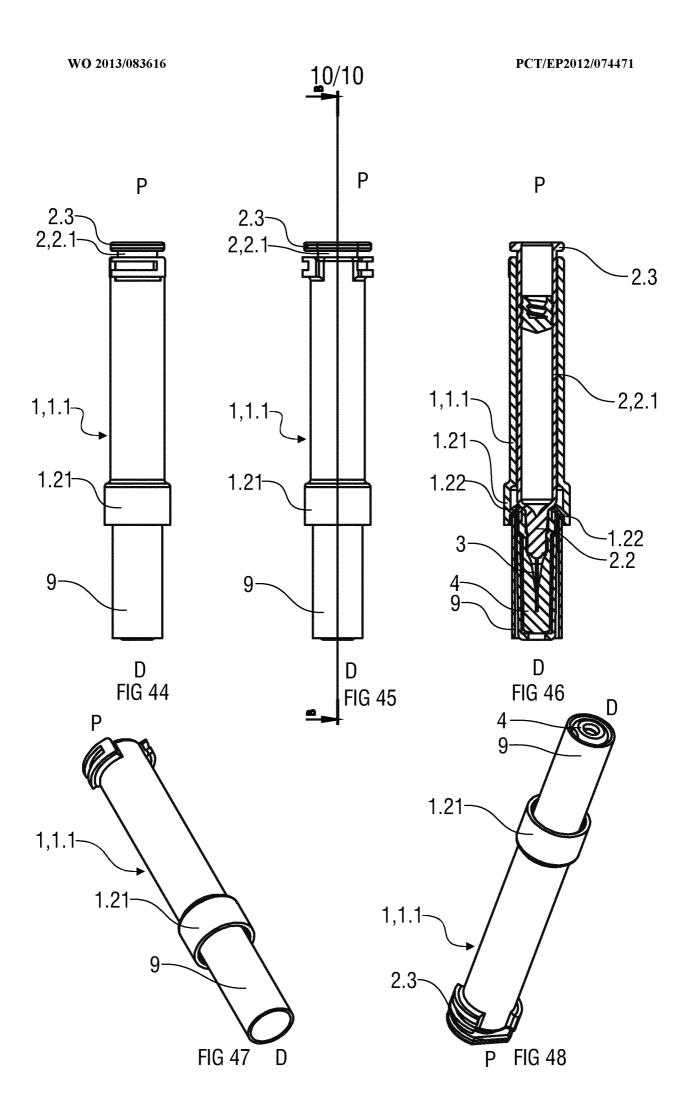

- 1. A syringe carrier (1) comprising:
- a body (1.1) adapted to receive a barrel (2.1) of a syringe (2), the body (1.1) including an enlarged distal portion (1.21) having a diameter greater than a diameter of the body (1.1), the enlarged distal portion (1.21) having one or more resilient barbs (1.22) adapted to engage a circumferential gap between the barrel (2.1) of the syringe (2) and a needle shield (4) covering a needle (3) of the syringe (2).
- 10 2. The syringe carrier (1) according to claim 1, wherein the one or more resilient barbs (1.22) project radially toward a longitudinal axis of the body (1.1).
 - 3. The syringe carrier (1) according to any one of the preceding claims, wherein the body (1.1) includes one or more viewing windows (5).
 - 4. The syringe carrier (1) according to any one of the preceding claims, wherein the body (1.1) includes a retainer element adapted to provide an abutment surface to prevent the syringe (2) from disengaging the syringe carrier (1) in a proximal direction (P)-
 - 5. A tool (9) for inserting the syringe (2) into the syringe carrier (1) according to any one of the preceding claims, wherein the tool (9) comprises:


a shell adapted to receive the needle shield (4), the shell having a first surface adapted to engage the one or more resilient barbs (1.22) when the tool (9) is inserted into the enlarged distal portion (1.21).









INTERNATIONAL SEARCH REPORT

International application No PCT/EP2012/074471

a. classification of subject matter 1NV. A61M5/24ADD. According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) A61M Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal , WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Χ US 5 078 698 A (STI EHL MARK A [US] ET AL) 1,2 7 January 1992 (1992-01-07) Y abstract; figures 1,13 3-5 us 3 144 178 A (SARNOFF STANLEY J) Χ 1,2 11 August 1964 (1964-08-11) claim 1; figures 1-3 3-5 Α us 5 356 395 A (CHEN SHIH-SHUAN [TW]) 1-5 18 October 1994 (1994-10-18) figure 1 abstract; X See patent family annex. Further documents are listed in the continuation of Box C. * Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand "A" document defining the general state of the art which is not considered to be of particular relevance the principle or theory underlying the invention "E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive filing date "L" documentwhich ocumentwhich may throw doubts on priority claim(s) orwhich is cited to establish the publication date of another citation or other step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "O" document referring to an oral disclosure, use, exhibition or other "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 13 March 2013 22/03/2013 Name and mailing address of the ISA/ Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016 Mausser, Thomas

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2012/074471

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
us 5078698	A	07-01-1992	AU AU CA US	643866 B2 1014692 A 2059426 A I 5078698 A	25-11-1993 27-08-1992 20-08-1992 07-01-1992
us 3144178	Α	11-08-1964	NONE		
us 5356395	A	18-10-1994	NONE		