(54) Title: APPARATUSES AND METHODS

(57) Abstract: An apparatus comprises a first mould part (24; 124) suitable for receiving an object (1), die means (25; 125) arranged for surrounding a zone (5) of said object and a second mould part (26; 26a; 126) cooperating with said die means (25; 125) and with said first mould part (24; 124) so as to compression-mould plastics on said object (1) in said zone (5).

Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(ii))
— as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:
— without international search report and to be republished upon receipt of that report
Apparatuses and methods

The invention relates to apparatuses and methods for compression-moulding plastics on objects, in particular for compression-moulding a threaded portion on a dispensing element with which domes associable with containers are provided.

Containers are known that are made of cardboard or of cardboard associated with one or several layers made of plastics and/or of metal, at an end of which a dome comprising a dispensing element is fixed.

The dispensing element has an end in which an opening is made through which a product contained inside the containers can be dispensed.

Alternatively, this opening can be defined only after a closing portion of the aforesaid end has been removed from the dispensing element.

In this case, the aforesaid end can be provided with a weakening line that enables the aforesaid closing portion to be removed from the dispensing element.

The dome is made of plastics and may comprise one or more layers of material that constitutes a barrier to gases and/or to light, in such a way that the products contained in the containers are maintained whole.

The dome is obtained through injection-moulding of plastics. A drawback of known domes is that injection-moulding entails lengthy manufacturing and therefore low productivity of the forming apparatuses, as all the plastics that form a dome have to be injected through the same forming mould orifice, this orifice having very reduced dimensions.

In addition, if the dome is provided with a barrier layer, it is very difficult to inject simultaneously the material that forms an internal wall and an external wall of the dome and the material that forms the barrier layer.

The dome is still more difficult to make if several barrier layers are provided that are obtained from different materials and if the internal wall and the external wall of
the containers are made of materials that are different from one another.
An object of the invention is to facilitate manufacturing of objects made of plastics.
A further object is to facilitate manufacturing of objects comprising a portion having a complex shape and provided with a layer that acts as a barrier to light and/or to gases.
In a first aspect of the invention, an apparatus is provided comprising a first mould part suitable for receiving an object, die means arranged for surrounding a zone of said object and a second mould part cooperating with said die means and with said first mould part so as to compression-mould plastics on said object in said zone.
In a second aspect of the invention, an apparatus is provided comprising punch means arranged for engaging a hollow portion of an object, supporting and retaining means arranged for clamping said object against said punch means and mould cavity means arranged for receiving a dose of plastics, said punch means and said mould cavity means cooperating mutually for compression-moulding said dose of plastics on said object.
Owing to these aspects of the invention, it is possible to make an object and subsequently compression-mould a portion having a complex shape in a desired zone of the object.
The apparatus according to the invention is provided with great productivity, inasmuch as a dose of plastics intended for forming the portion with a complex shape is received between the second mould part and the die means, or between the punch means and the mould cavity means, and does not have to be injected through orifices of small dimensions, as occurs in the prior art.
In other words, with the apparatus according to the invention it is possible to obtain a portion with a complex shape on an object by means of a work cycle that is much
shorter than a work cycle of known injection-moulding machines.
In particular, in the case of closing devices associable with containers and provided with a layer of material having barrier properties to gases and/or to light, it is possible to manufacture a substantially planar multilayered laminar element, for example by co-extrusion, thermoforming, for example through drawing and/or blowing, the laminar element to obtain domes provided with a dispensing element devoid of a threaded portion and subsequently form plastics directly on the dispensing element to obtain the threaded portion.
This enables the difficulties to be avoided that are connected with co-injection of different materials to obtain an object with an articulated shape, such as a dome provided with a threaded portion.

In a third aspect of the invention, a method is provided, comprising delivering to a mould a container part provided with a dispensing element and plastics in a pasty state and pressing together said container part and said plastics for compression-moulding said plastics on said container part.
In an embodiment, said compression-moulding comprises making a container neck element with said plastics - in particular a container neck element provided with threading - on said dispensing element.
In a further embodiment, said compression-moulding comprises making a layer with said plastics that covers, at least partially, an external surface of said object and a container neck element - in particular a container neck element provided with threading - on said dispensing element.
The container part may comprise a layer of barrier material to gases and/or to light.
The container part may be obtained by thermoforming, for example through drawing and/or blowing, a substantially planar multilayered laminar element.
Owing to this aspect of the invention, it is possible to make a container part and subsequently compression-moulding a container neck element, i.e. a portion having a complex shape, on a dispensing element, i.e. on a desired zone, of the container part.

In an embodiment, the plastics that have to be compression-moulded comprise scraps of material used for manufacturing the container part, the aforesaid scraps being ground and heated before being delivered to the mould.

In particular, in the case of thermoforming, a substantially planar laminar element is deformed to obtain a plurality of container parts that are alongside one another and connected by non-deformed portions of the laminar element. Subsequently, the container parts are separated from the non-deformed portions of the laminar element and these latter are scrapped.

Owing to the invention, the non-deformed portions of the laminar element can be used to form on the dispensing element of a container part a container neck element, and possibly an external layer of the container part.

The non-deformed portions of the laminar element can be recycled, with clear economic advantages, even if the laminar element comprises a barrier material layer.

The barrier material, once it has been ground and heated, loses the barrier properties to gases and/or to light. However, this does not constitute a drawback as the plastics obtained by grinding and heating the scraps have to be applied to a container part that in turn comprises a barrier material layer.

In a fourth aspect of the invention, a method is provided, comprising delivering to a mould a sheet of plastics and plastics in a pasty state and pressing together said sheet and said plastics for obtaining from said sheet a container part provided with a dispensing element and for compression-moulding said plastics on said container part.
In an embodiment, said compression-moulding comprises making with said plastics a container neck element—in particular a container neck element provided with threading—on said dispensing element.

In a further embodiment, said compression-moulding comprises making with said plastics a layer that covers, at least partially, an external surface of said object and a container neck element—in particular a container neck element provided with threading—on said dispensing element.

The sheet of plastics may comprise a layer of material having barrier properties to gases and/or to light.

Owing to this aspect of the invention, it is possible to make a container part and simultaneously compression-moulding a container neck element, i.e. a portion having a complex shape, on a dispensing element, i.e. on a desired zone of the container part.

Owing to this aspect of the invention, it is not necessary to manufacture separately the container part, for example through thermoforming.

In an embodiment, the plastics that have to be compression-moulded comprise scraps of the sheet of plastics, the aforesaid scraps being ground and heated before being delivered to the mould.

In this way, it is possible to recycle wastes of material that would otherwise have to be scrapped.

This is particularly advantageous in the case of a sheet of plastics provided with a layer of barrier material to gases and/or to light, which is very costly.

In a fifth aspect of the invention, a method is made available that comprises placing a dose of plastics on an object housed on a first mould part, moving the object carried by the first mould part towards a second mould part with the dose adhering to the object, and at least partially surrounding the object with die means so as to define a forming cavity in which the dose is compression-moulded.
around the object, the aforesaid moving-towards operation being performed at least partially before said surrounding operation.

Owing to this aspect of the invention, it is possible to simplify and accelerate compression-overmoulding, exploiting the capacity of the dose of plastics to adhere in pasty state to the object to be overmoulded.

The invention can be better understood and implemented with reference to the attached drawings, which illustrate some embodiments thereof by way of non-limiting example, in which:

Figure 1 is a longitudinal section of a dome that is associable with a container and provided with a dispensing element;

Figure 2 is a plan view of the dome in Figure 1;

Figure 3 is a section like that in Figure 1 showing a dome on the dispensing element of which a threaded portion has been compression-moulded;

Figure 4 is a section like that in Figure 3 showing a threaded portion made according to a version;

Figure 5 is a section like that in Figure 3 showing a threaded portion made according to a further version;

Figure 6 is a section like that in Figure 3 showing a threaded portion made according to a still further version;

Figure 7 is a longitudinal section of an apparatus for compression-moulding plastics on an object;

Figures 8 to 21 are fragmentary longitudinal sections showing subsequent steps of an operating cycle of the apparatus in Figure 7;

Figure 22 is a fragmentary longitudinal section of the apparatus in Figure 7, showing a forming chamber arranged for receiving plastics;

Figures 23 to 25 are schematic longitudinal sections of a further embodiment of an apparatus for compression-moulding plastics on an object showing subsequent steps of an operating cycle of the apparatus;
Figure 26 is a schematic plan view of die means of an apparatus for compression-moulding plastics on an object in an open configuration;

Figure 27 is a view like that in Figure 26 showing the die means in a closed configuration;

Figures 28 to 36 are schematic longitudinal sections of a still further embodiment of an apparatus for compression-moulding plastics on an object showing subsequent steps of an operating cycle of the apparatus;

Figure 37 is an enlarged detail of Figure 36;

Figure 38 is a schematic plan view of a machine for compression-moulding plastics on objects;

Figure 39 is a view like that in Figure 38 showing a version of the machine;

Figure 40 is a view like that in Figure 38 showing a further version of the machine;

Figure 41 is a longitudinal section of an embodiment of an apparatus for compression-moulding plastics on an object;

Figure 42 is a longitudinal section of an apparatus for pressing together a sheet of plastics and a dose of plastics;

Figure 43 is a longitudinal section of an apparatus for pressing together a sheet of plastics and a dose of plastics made according to a further version;

Figures 44 to 50 are schematic longitudinal sections of a further embodiment of an apparatus for compression-moulding plastics on an object showing subsequent steps of an operating cycle of the apparatus;

Figures 51 to 53 are schematic longitudinal sections of a still further embodiment of an apparatus for compression-moulding plastics on an object showing subsequent steps of an operating cycle of the apparatus;

Figure 54 is a view of still another embodiment of the machine for compression-moulding plastics on objects;

Figure 55 is a partial bottom view of the machine in Figure 54;
Figure 56 is a view of the machine in Figure 54 from another perspective;
Figure 57 is an enlarged detail of Figure 56;
Figure 58 is another detail of Figure 56;
Figures 59 to 62 show four steps of the operation of a single moulding apparatus of the moulding machine in Figure 54;
Figures 63 to 66 show four enlargements of the Figures, respectively from 59 to 62.
With reference to Figures 1 to 6, a dome 1 is shown that is associative with a container, for example made of cardboard, or made of a multilayered laminar element obtained by associating one or more sheets of cardboard with one or more sheets of plastics and/or metallic material.
The cardboard - or the multilayered laminar element - is folded in such a way as to define a casing - for example with a substantially parallelepipedon shape - at an open end of which the dome 1 is fixed.
The dome 1 is made of plastics.
Advantageously, the dome 1 can be made through thermoforming a sheet material.
Thermoforming may comprise drawing and/or forming by blowing.
The sheet material may comprise one or more layers that are made of a material having barrier properties to light and/or to gases.
The sheet material can be obtained through co-extrusion.
The dome 1 comprises a first end 2 in which a connecting zone 3 is defined intended for being fixed to a container, and a second end 4, opposite the first end 2, in which a dispensing body 5 is defined.
The dispensing body 5 comprises a side wall 6 - for example with a cylindrical or conical shape - and an end wall 7 connected removably to the side wall 6.
The end wall 7 is intended to be removed from the side wall 6 during a first opening of the container in such a way that
in the dispensing body 5 there is defined a dispensing opening 8 through which a product contained inside the container can be dispensed.

Between the end wall 7 and the side wall 6 a line of intended separation 9 extends, the line of intended separation 6 being made, for example, by a cutting tool, an ultrasonic device, a laser device, and the like.

Alternatively, the dispensing body 5 may be devoid of the end wall 7.

With the dispensing body 5 there is associated a container neck element 10 comprising a threaded portion 11. The container neck element 10 may further comprise an annular bead 12 arranged for interacting with an opening indicating device of a cap associable with the container neck element 10 and an annular ridge 13.

The container neck element 10 is obtained by compression-moulding plastics on the dispensing body 5 - as will be disclosed in greater detail below - in such a way that the container neck element 10 surrounds, at least partially, the side wall 5.

The container neck element 10 comprises an end zone 14 that defines in the container neck element 10 a further dispensing opening 15 that is substantially superimposed on the dispensing opening 8 to enable the product contained inside the container to be dispensed.

As shown in Figure 3, the end zone 14 extends substantially parallelly to the side wall 6 and constitutes a prolongation of the side wall 6. In particular, the end zone 14 is shaped in such a way as to receive the mouth of a user.

The further dispensing opening 15 has a diameter which is substantially the same as the diameter of the dispensing opening 8.

As shown in Figure 4, the end zone 14 comprises an annular appendage 16 that extends towards a longitudinal axis A of the dome 1 in such a way as to partially cover the end wall
7. In particular, the end zone 14 is shaped in such a way as to receive the mouth of a user.

The further dispensing opening 15 has a diameter which is less than the diameter of the dispensing opening 8.

As shown in Figure 5, the container neck element 10 comprises a further end wall 17 connected in a removable manner to the end zone 14.

The further end wall 17 is intended to be removed from the end zone 14 during a first opening of the container in such a way that in the dispensing body 5 the further dispensing opening 15 is defined.

Between the further end wall 17 and the end zone 14 a further line of intended separation 18 extends, the further line of intended separation 18 being made, for example, by a cutting tool, an ultrasonic device, a laser device, or directly during forming of the container neck element 10, as will be disclosed in greater detail below.

The further end wall 17 extends substantially parallelly to the end wall 7.

The further end wall 17 has a substantially constant thickness.

The further end wall 17 comprises a first face 19 that can be fixed to the end wall 7 and a second face 20 that can be fixed, for example through ultrasonic welding, to a cap associated with the container neck element 10, for example to a cap screwed onto the threaded portion 11.

When the cap is unscrewed from the threaded portion 11, the container neck element 10 breaks at the further line of intended separation 18 in such a way that the further end wall 17 separates from the container neck element 10, making the further dispensing opening 15 accessible.

Similarly, the dome 1 breaks at the line of intended separation 9, in such a way that the end wall 7 separates from the dispensing body 5, making the dispensing opening 8 accessible.
As shown in Figure 6, the further end wall 17 comprises a first zone 21, which is nearer the end zone 14, and a second zone 22, which is further from the end zone 14. The first zone 21 has a substantially annular shape whilst the second zone 22 has a substantially circular shape, the first zone 21 surrounding the second zone 22. The first zone 21 has a different thickness from the thickness of the second zone 22.

With reference to Figures 7 to 21 there is shown an apparatus 100 for compression-moulding plastics on objects, in particular an apparatus for compression-moulding a container neck element 10 - provided with a threaded portion 11 - on a dome 1.

The apparatus 100 comprises a mould 23 provided with a first mould part 24 arranged for receiving a dome 1 on which a container neck element 10 has to be compression-moulded, compression-moulding die means 25 and a second mould part 26.

The second mould part 26, the compression-moulding die means 25 and the first mould part 24 cooperate mutually so as to shape a dose 27 of plastics in a pasty state to obtain the container neck element 10.

The first mould part 24, the compression-moulding die means 25 and the second mould part 26 are substantially aligned along a longitudinal axis X of the mould 23.

In particular, the first mould part 24 is arranged above the compression-moulding die means 25 and the compression-moulding die means 25 is arranged above the second mould part 26.

The first mould part 24 comprises a supporting body 28 provided with an abutting surface 29 arranged for restingly receiving a dome 1.

The supporting body 28 is fixed to an upper frame 105 of the apparatus 100 and is maintained in a fixed position during operation of the apparatus 100.
The abutting surface 29 is shaped in such a way as to interact in a shapingly coupled manner with a corresponding internal surface 30 of the dome 1. The supporting body 28 comprises a protuberance 57 arranged for penetrating inside the dispensing body 5, when the internal surface 30 rests on the abutting surface 29. When the dome 1 is positioned on the supporting body 28, the dispensing body 5 faces downwards and is arranged at a lower height than the connecting zone 3. The supporting body 28 is crossed by a conduit 31 through which air can be sucked, in such a way that the dome 1 is made to adhere to the supporting body 28. In addition, air can be blown through the conduit 31 in such a way that the dome 1 - after a container neck element 10 has been compression-moulded thereupon- is induced to disengage from the supporting body 28. Alternatively, in the supporting body 28 a first conduit and a second conduit can be provided that are distinct from one another, the first conduit being arranged for sucking air and the second conduit being arranged for blowing air. The protuberance 57 can be subjected to surface treatment by means of which on the abutting surface 29 roughness - or grooves - are made, defining channels that promote evacuation of the air when the dome 1 is fitted on the supporting body 28. In addition to sucking air - or instead of sucking air - the dome 1 can be retained on the supporting body 28 through mechanical interference. The compression-moulding die means 25 comprises a first half mould 32 and a second half mould 33. The mould 23 comprises driving means 101, for example pneumatic or hydraulic cylinders, arranged for moving the first half mould 32 and the second half mould 33 towards and away from one another transversely to the longitudinal axis X.
The first half mould 32 and the second half mould 33 are movable between a closed configuration W, shown in Figures 9 to 17, in which the first half mould 32 and the second half mould 33 are placed in mutual contact, and an open configuration Z, shown in Figures 8, 20 and 21, in which the first half mould 32 and the second half mould 33 are mutually spaced apart to enable a dome 1 on which a container neck element 10 has been compression-moulded to be extracted.

When the first half mould 32 and the second half mould 33 are in the closed configuration W, in a first zone 59a of the compression-moulding die means 25 first opening means 59 is defined that faces the first mould part 24 and in a second zone 58a of the compression-moulding die means 25, opposite the first zone 59a, second opening means 58 is defined that faces the first mould part 24.

The first opening means 59 enables the protuberance 57 to penetrate inside the compression-moulding die means 25. Similarly, the second opening means 58 enables a forming element 37 of the second mould part 26 to press the dose 27 inside the compression-moulding die means 25. In particular, a protruding portion 117 of the base body 36 is received in a lower zone 118 of the second opening 58. In addition, the second opening means 58 enables the forming element 37 to penetrate inside the compression-moulding die means 25.

The first half mould 32 comprises a first moulding cavity 34 and the second half mould 33 comprises a second moulding cavity 35.

When the first half mould 32 and the second half mould 33 are in the closed configuration W, the first moulding cavity 34 and the second moulding cavity 35 cooperate with the dispensing body 5 to define a forming chamber 40, shown in Figure 22, inside which a dose 27 is given the shape of the container neck element 10.

The mould 23 further comprises moving means 116 arranged for moving the compression-moulding die means 25 along the
longitudinal axis X. The moving means 116 comprises a carriage 102 supporting the first half mould 32 and the second half mould 33 — and the driving means 101 — and slidable on guiding columns 103. The moving means 116 further comprises a linear guiding device provided with a driving motor.

The compression-moulding die means 25 comprises closure promoting means 41 arranged for maintaining the first half mould 32 and the second half mould 33 in the closed configuration W.

The closure promoting means 41 comprises first conical surface means 42 obtained in an end zone 43 of the first half mould 32 and of the second half mould 33 and arranged for cooperating with further first conical surface means 44 obtained in a closing element 104 of the first mould part 26. The closing element 104 has the shape of a sleeve extending around the supporting body 28 and is shaped in such a way as to prevent the first half mould 32 and the second half mould 33 from moving away from one another when the pressure of the plastics increases inside the forming chamber 40. The closing element 104 is movable along the longitudinal axis X. The closing element 104 comprises a piston body 106 received in a cylinder 107 fixed to the upper frame 105.

Between the cylinder 107 and the piston body 106 there is defined a chamber 108 arranged for receiving an operating fluid, for example pressurised air.

The cylinder 107 and the piston body 106 — and the operating fluid interposed therebetween — define a gas spring that pushes the closing element 104 towards the compression-moulding die means 25 and towards the second mould part 26.

The closure promoting means 41 further comprises second conical surface means 45 obtained in a further end zone 46 of the first half mould 32 and of the second half mould 33, opposite the end zone 43, and arranged for cooperating with further second conical surface means 47 obtained in a base
body 36 of the second mould part 26 arranged for interacting with the compression-moulding die means 25. The base body 36 is provided with a seat 38 in which the forming element 37 is slidable. The apparatus 100 comprises a main actuator 109, for example a hydraulic actuator, arranged for moving the second mould part 26 along the longitudinal axis X. The main actuator 109 comprises a main piston 110 that is slidable in a main cylinder 111 provided in a lower frame 112 of the apparatus 100. In particular, the base body 36 is fixed to an end of the main piston 110.
The main actuator 109 moves the second mould part 26 between a lowered position B, shown in Figures 8 to 13 and in Figures 17 to 21, in which the second mould part 26 does not interact with the compression-moulding die means 25 and with the first mould part 24, and a raised position C, shown in Figures 14 to 16, in which the second mould part 26 interacts with the compression-moulding die means 25 and with the first mould part 24.
The apparatus 100 further comprises a secondary actuator 113, for example a hydraulic actuator, arranged for moving the forming element 37 with respect to the base body 36 along the longitudinal axis X. The secondary actuator 113 comprises a secondary piston 114 that is slidable in a secondary cylinder 115 provided in the main piston 110. In particular, the forming element 37 defines an end portion of the secondary piston 114.
The secondary actuator 113 moves the forming element 37 between a retracted position G, shown in Figures 8 to 14 and in Figures 16 to 21, in which the forming element 37 is received inside the seat 38 in such a way that the forming element 37 and the seat 38 define a cavity 39 arranged for receiving the dose 27, and an extended position H, shown in Figure 15, in which the forming element 37 presses the dose 27 inside the forming chamber 40 to form a container neck element 10.
A work cycle of the apparatus 100 is disclosed with reference to Figures 8 to 21.
In Figure 8 there is shown a step of the work cycle in which a dome 1, on which a container neck element 10 was compression-moulded, has been removed from the mould 23.
The second mould part 26 is in the lowered configuration B and the forming element 37 is in the retracted position G.
The compression-moulding die means 25 is in a removal and supply position E, in which a dome 1, on which a container neck element 10 was compression-moulded, is removed from the compression-moulding die means 25 by a first handling device and a further dome 1, on which a container neck element 10 has to be compression-moulded, is deposited in the compression-moulding die means 25 by a second handling device. Alternatively, a single handling device may be provided that both removes and deposits the domes 1.
In a subsequent step of the work cycle, shown in Figure 9, the driving means 101 positions the first half mould 32 and the second half mould 33 in the closed configuration W.
In subsequent steps of the work cycle, shown in Figures 10 and 11, a dome 1 is inserted into a zone defined between the first mould part 24 and the compression-moulding die means 25 and is deposited in the compression-moulding die means 25. Alternatively, the dome 1 can be positioned on the supporting body 28 and retained on the supporting body 28 by sucking air through the conduit 31 and/or through mechanical interference.
Figure 12 shows a step of the work cycle in which the moving means 116 moves the compression-moulding die means 25 from the removal and supply position E to an insertion position D, in which the compression-moulding die means 25 is placed in contact with the closing element 104.
The compression-moulding die means 25, in the insertion position D, makes the dome 1 interact with the supporting body 28, in such a way that the protuberance 57 is received inside the dispensing body 5.
In the insertion position D the compression-moulding die means 25 clamps the dome 1, on which the container neck element 10 has to be compression-moulded, against the first mould part 24 and defines the forming chamber 40.

In a subsequent step of the work cycle, shown in Figure 13, a dose 27 is deposited inside the cavity 39.

Subsequently, as shown in Figure 14, the main actuator 109 moves the second mould part 26 from the lowered position B to the raised position C. The forming element 37 is maintained in the retracted configuration G, in such a way that the dose 27 is contained in the cavity 39.

The driving motor of the linear guiding device of the moving means 116 is deactivated - i.e. placed in an idle operational configuration - just before the base body 36 interacts with the compression-moulding die means 25. In this way, the main actuator 109, through the second mould part 26, moves the compression-moulding die means 25 upwards, overcoming the resistance exerted by the gas spring defined by the cylinder 107 and by the piston body 106 and by the operating fluid interposed therebetween. The compression-moulding mould means 25 therefore passes from the insertion position D to a forming position M.

When the second mould part 26 is in the raised position C, the base body 36 and the compression-moulding die means 25 are in mutual contact in such a way that the cavity 39 and the forming chamber 40 are isolated from the external environment and are mutually connected. This ensures that there are no leaks of plastics from the mould 23 during the subsequent steps of the work cycle.

Subsequently, as shown in Figure 15, the secondary actuator 113 moves the forming element 37 from the retracted position G to the extended position H. In this way, the dose 27 is pressed inside the forming chamber 40 to form the container neck element 10 on the dome 1.
The secondary actuator 113 is operationally associated with a valve that controls the forming element 37 both through a pressure control and a force control. The secondary actuator 113 controls the movement of the forming element 37 with respect to the base body 36 - i.e. the raising of the forming element 37 - until a preset pressure value is reached inside the forming chamber 40. In this way, the final position reached by the forming element 37 can vary by passing from one work cycle to another work cycle. The forming element 37 thus enables plastics dosing errors to be compensated - i.e. errors due to doses comprising a quantity of plastics which is greater than or lesser than a theoretically set quantity - by varying the final position thereof. Doses that are different from one another give rise to container neck elements 10 that differ only in the thickness of the further end wall 17. Further end walls 17 having thicknesses that are variable within a certain range do not prejudice the properties of the domes 1, which are therefore qualitatively acceptable. This is in particular due to the fact that the further end walls 17 have to be removed from the domes 1 at the latest at the moment of the first opening of a cap associated with the container neck element 10. Still subsequently, the secondary actuator 113 moves the forming element 37 from the extended position H to the retracted position G, as shown in Figure 16, and the main actuator 109 moves the second mould part 26 from the raised position C to the lowered position B, as shown in Figure 17. The driving motor of the linear guiding device of the moving means 116 is maintained deactivated - i.e. placed in an idle operational configuration - until the main piston 110 has completed a preset stroke. In this way, the gas spring defined by the cylinder 107 and by the piston body 106 and by the operating fluid that is interposed therebetween moves the compression-moulding die means 25 downwards. The
compression-moulding die means 25 thus moves from the forming position M to the insertion position D. In a subsequent step of the work cycle, shown in Figure 18, the moving means 116 moves the compression-moulding die means 25 from the insertion position D to an extraction position F, in which the dome 1 on which the container neck element 10 is compression-moulded is separated from the supporting body 28.

When the compression-moulding die means 25 is in the extraction position F, the protuberance 57 is partially received inside the dispensing body 8. The driving means 101 moves the first half mould 32 and the second half mould 33 from the closed configuration W to a detachment configuration L, in which the dome 1 on which the container neck element 10 has been compression-moulded is detached from the first half mould 32 and from the second half mould 33.

The protuberance 57 acts as an abutting means that prevents the dome 1 from remaining attached to the first half mould 32 or to the second half mould 33 when the first half mould 32 or the second half mould 33 move away from one another. The first half mould 32 and the second half mould 33, in the detachment configuration L, support the dome 1.

In other words, the first half mould 32 and the second half mould 33, by passing from the closed configuration W to the detachment configuration L, move away from one another by a small distance, this distance enables the dome 1 to be separated from the first half mould 32 and from the second half mould 33, but does not prevent the compression-moulding die means 25 from being able to support the dome 1.

Subsequently, as shown in Figure 19, the moving means 116 moves the compression-moulding die means 25 from the extraction position F to the removal and supply position E. Still subsequently, the driving means 101 moves the first half mould 32 and the second half mould 33 from the closed configuration W to the open configuration Z, as shown in
Figure 20, and the dome 1 on which the container neck element 10 has been compression-moulded is removed from the mould 23, as shown in Figure 21. In an embodiment that is not shown the second mould part is maintained in a fixed position and the first mould part is movable towards and away from the second mould part. In a further embodiment that is not shown the first mould part and the second mould part are both movable. With reference to Figures 23 to 25, an apparatus 100 is shown schematically that is provided with a mould 23a comprising a first mould part 24 and compression-moulding die means 25 of the type shown in Figures 7 to 22 and a second mould part 26a made according to a version. The compression-moulding die means 25 is shown schematically in Figures 26 and 27. The second mould part 26a comprises a base body 36a and a forming element 37a that is slidable in a seat 38a obtained in the base body 36a. The forming element 37a is provided with a groove 55 inside which an elongated body 56 is slidable. The apparatus 100 comprises a secondary actuator, which is not shown, that is arranged for moving the forming element 37a between a retracted position G2, shown in Figures 23 and 24, in which the forming element 37a is received inside the seat 38a in such a way that the forming element 37a and the seat 38a define a cavity 39a arranged for receiving a dose 27a of plastics in a pasty state having an annular shape, and an extended position H2, shown in Figure 25, in which the forming element 37 presses the dose 27a inside the compression-moulding die means 25 to form a container neck element 10. The apparatus 100 further comprises a further secondary actuator arranged for moving the elongated body 56 with respect to the forming element 37a.
An initial part of a work cycle of the apparatus 100 is carried out in the manner disclosed with reference to Figures 8 to 13.

As shown in Figure 23, the second mould part 26 is in the lowered configuration B, the forming element 37 is in the retracted position G2. The compression-moulding die means 25 is in the insertion position D and the first half mould 32 and the second half mould 33 are in the closed configuration W.

The dose 27a is delivered to the mould 23a.

When the forming element 37a is in the retracted position G2, an end 56a of the elongated body 56 projects from the groove 55 to the compression-moulding die means 25, in such a way that the dose 27a surrounds the end 56a, as shown in Figure 24.

Subsequently, as shown in Figure 25, the main actuator moves the second mould part 26 from the lowered position B to the raised position C. The compression-moulding die means 25 moves from the insertion position D to the forming position M.

The secondary actuator moves the forming element 37a from the retracted position G2 to the extended position H2. In this way, the dose 27a is pressed inside the forming chamber 40 to form the container neck element 10 on the dome 1. Before the dose 27a occupies the forming chamber 40, the elongated body 56 is made to abut against the end wall 7 of the dome 1 positioned on the supporting body 28.

In this way, the elongated body 56 prevents the plastics that form the dose 27a from interacting with a central portion of the end wall 7.

The elongated body 56 thus enables container neck elements 10 to be obtained that are devoid of the further end wall 17, i.e. container neck elements 10 of the type shown in Figures 3 and 4.
Subsequently, a final part of a work cycle of the mould 23a is carried out in the manner disclosed with reference to Figures 16 to 21.

With reference to Figures 28 to 37, there is shown an apparatus 100 provided with a mould 123 comprising a first mould part 124 arranged for receiving a dome 1 on which a container neck element 10 has to be compression-moulded, compression-moulding die means 125 and a second mould part 126.

The second mould part 126, the compression-moulding die means 125 and the first mould part 124 cooperate together so as to shape a dose 27 of plastics to obtain the container neck element 10.

The first mould part 124, the compression-moulding die means 125 and the second mould part 126 are substantially aligned along a longitudinal axis Y of the mould 123.

In particular, the second mould part 126 is arranged above the compression-moulding die means 125 and the compression-moulding die means 125 is arranged above the first mould part 124.

The first mould part 124 comprises a supporting body 128 provided with an abutting surface 129 arranged for restingly receiving a dome 1.

The abutting surface 129 is shaped in such a way as to interact in a shapingly coupled manner with a corresponding internal surface 30 of the dome 1.

The supporting body 128 comprises a protuberance 157 arranged for penetrating inside the dispensing body 5, when the internal surface 30 rests on the abutting surface 129.

When the dome 1 is positioned on the supporting body 128, the dispensing body 5 faces upwards and is arranged at a height that is greater than the connecting zone 3.

The mould 123 further comprises an actuator, for example a hydraulic actuator, arranged for moving the first mould part 124 between a lowered position B1, shown in Figures 29 to 34, in which the supporting element 128 receives a dome 1,
and a raised position C1, shown in Figures 28 and 36, in which the supporting element 128 cooperates with the compression-moulding die means 125 and with the second mould part 126 to shape the dose 27 to obtain the container neck element 10.

The compression-moulding die means 125 comprises a first half mould 132 and a second half mould 133.

The apparatus 100 comprises driving means arranged for moving the first half mould 132 and the second half mould 133 towards and away from one another transversely with respect to the longitudinal axis Y.

The first half mould 132 and the second half mould 133 are movable between a closed configuration W1, shown in Figures 28, 29 and 32 to 36, in which the first half mould 132 and the second half mould 133 are placed in mutual contact, and an open configuration Z1, shown in Figures 30 and 31, in which the first half mould 132 and the second half mould 133 are mutually spaced apart to enable a dome 1 on which the container neck element 10 has been formed to be removed from the compression-moulding die means 125 and a further dome 1 on which a container neck element 10 has to be formed to be delivered to the compression-moulding die means 125.

When the first half mould 132 and the second half mould 133 are in the closed configuration W1, in a first zone 159a of the compression-moulding die means 125 first opening means 159 is defined that faces the first mould part 124 and in a second zone 158a of the compression-moulding die means 125, opposite the first zone 159a, second opening means 158 is defined that faces the second mould part 126.

The second opening means 158 enables a forming body 137 of the second mould part 126 to penetrate inside the compression-moulding die means 25.

Similarly, the first opening means 159 enables the protuberance 157 - with which the dispensing body 5 is associated - to penetrate inside the compression-moulding die means 125.
The first half mould 132 comprises a first moulding cavity 134 and the second half mould 133 comprises a second moulding cavity 135.
When the first half mould 132 and the second half mould 133 are in the closed configuration W1, the first moulding cavity 134 and the second moulding cavity 135 cooperate with the dispensing body 5 to define a forming chamber 140 inside which the dose 27 is given the shape of the container neck element 10.
The mould 123 further comprises moving means arranged for moving the compression-moulding die means 125 along the longitudinal axis Y. The compression-moulding die means 125 can assume a forming position M1, shown in Figures 28, 29 and 36, in which the compression-moulding die means 125 cooperates with the first mould part 124 and with the second mould part 126 to shape the dose 27 to obtain the container neck element 10, a delivery position E1, shown in Figures 30 to 32, in which the compression-moulding die means 125 is spaced apart from the first mould part 124 and from the second mould part 126 to deliver a dome 1 on which the container neck element 10 has been moulded, and a locking position II, shown in Figures 33 and 34, in which the compression-moulding die means 125 presses a further dome 1 on which a container neck element 10 has to be formed against the first mould part 124.
The compression-moulding die means 125 comprises closure promoting means 141 arranged for maintaining the first half mould 132 and the second half mould 133 in the closed configuration W1.
The closure promoting means 141 comprises first conical surface means 142 obtained in an end zone 143 of the first half mould 132 and of the second half mould 133 and arranged for cooperating with further first conical surface means 144 obtained in the first mould part 124.
The closure promoting means 141 further comprises second conical surface means 145 obtained in a further end zone 146
of the first half mould 132 and of the second half mould 133, opposite the end zone 143, and arranged for cooperating with further second conical surface means 147 obtained in the second mould part 126.

The forming body 137 is provided with a first member 160 that is further from the compression-moulding die means 125 and with a second member 161 fixed to the first member 160 and nearer the compression-moulding die means 125.

The second member 161 comprises a forming appendage 168 arranged for interacting with the dose 27.

The second mould part 126 further comprises a sleeve 162 provided with a seat 163 in which the second member 161 is received.

In the sleeve 162 the further second conical surface means 147 is obtained.

The forming body 137 is maintained in a fixed position, the sleeve 162 being slidable along the second member 161.

The sleeve 162 is movable between a rest position P1, shown in Figures 30 to 35, in which the sleeve 162 is further from the first member 160, and an operating position Q1, shown in Figures 28, 29 and 36, in which the sleeve 162 is nearer the first member 160.

The second mould part 126 may comprise elastic means, which is not shown, which induces the sleeve 162 to assume the rest configuration P1. The elastic means may be of the pneumatic spring type, as disclosed with reference to Figures 7 to 22.

The second mould part 126 further comprises chamber means 164 obtained in the second member 161 and inside which a piston 165 is movable.

The piston 165 defines in the chamber means 164 a first chamber 169 and a second chamber 170, each of which can be supplied with an operating fluid through conduit means, which is not shown.

To the piston 165 a stem 166 is fixed that extends to the compression-moulding die means 125 through a hole 167
obtained in the second member 161 and such as to pass
through the forming appendage 168.
The piston 165 and the chamber means 164 cooperate to define
a further actuator that drives the stem 166.
A work cycle of the apparatus 100 is disclosed with
reference to Figures 28 to 36.
In Figure 28 a step of the work cycle is shown in which a
container neck element 10 has been compression-moulded on a
dome 1.
The dome 1 is maintained in the mould 123 for a period of
time during which the container neck element 10 cools and
the shape thereof is stabilised.
The first mould part 124 is in the raised position C1, the
compression-moulding die means 125 is in the forming
position M1, the first half mould 132 and the second half
mould 133 are in the closed configuration W1, the sleeve 162
is in the operating position Q1.
Subsequently, as shown in Figure 29, the actuator moves the
first mould part 124 from the raised position C1 to the
lowered position B1.
The compression-moulding die means 125 is in the forming
position M1.
The sleeve 162 is in the operating position Q1.
The first half mould 132 and the second half mould 133 are
in the closed configuration W1 and retain the dome 1 on
which a container neck element 10 has been compression-
moulded.
In Figure 29 a handling device 148 is further shown
comprising a first end 149, facing the compression-moulding
die means 125, at which a first handling element 150 is
obtained, the first handling element 150 being arranged for
removing from the first half mould 132 and from the second
half mould 133 the dome 1 on which a container neck element
10 has been compression-moulded.
The handling device 148 further comprises a second end 151,
opposite the first end 149 and facing the first mould part
124, at which a second handling element 152 is obtained that is arranged for delivering to the first mould part 124 a further dome 1 on which the container neck element 10 has to be compression-moulded.

The handling device 148 is introduced between the first mould part 124 and the compression-moulding die means 125 and assumes a raised removal configuration S1, shown in Figures 29 and 30.

The first handling element 150 comprises a protruding element 153 - substantially shaped like the protuberance 157 - which, in the raised removal configuration S1 is aligned with the dome 1 on which a container neck element 10 was compression-moulded in such a way that the protruding element 153 and the dispensing body 5 - and the container neck element 10 that surrounds the dispensing body 5 - are substantially coaxial.

The second handling element 152 comprises a seat 154 that partially receives a further dome 1 on which the container neck element 10 has to be compression-moulded.

In the raised removal configuration S1, the further dome 1 on which the container neck element 10 has to be compression-moulded is spaced apart from the first mould part 124.

Subsequently, as shown in Figure 30, the first mould part 124 is in the lowered position B1.

The compression-moulding die means 125 passes from the forming position M1 to the delivery position E1.

The elastic means moves the sleeve 162 from the operating position Q1 to the rest position P1.

The driving means moves the first half mould 132 and the second half mould 133 from the closed configuration W1 to the open configuration Z1.

The dome 1 on which the container neck element 10 was moulded is released by the first half mould 132 and by the second half mould 133, reaches - for example by gravity -
the handling device 148 and engages the protruding element 153.

In the work cycle step shown in Figure 31, the first mould part 124 is in the lowered position B1, the compression-moulding die means 125 is in the delivery position E1 and the sleeve is in the rest position P1. The first half mould 132 and the second half mould 133 are in the open configuration Z1. Subsequently, the driving means moves the first half mould 132 and the second half mould 133 from the open configuration Z1 to the closed configuration W1. The handling device 148 is moved along the longitudinal axis Y in such a way as to assume a lowered releasing position J1, in which the seat 154 delivers the further dome 1 on which the container neck element 10 has to be compression-moulded to the first mould part 124.

In the work cycle step shown in Figure 32, the first mould part 124 is in the lowered position B1, the compression-moulding die means 125 is in the delivery position E1 and the sleeve 162 is in the rest position P1. The handling device 148 is moved along the longitudinal axis Y in such a way as to assume an intermediate moving position N1 in which the handling device 48 - and the dome 1 on which a container neck element 10 was compression-moulded - is extracted from a zone interposed between the first mould part 124 and the compression-moulding die means 125. The handling element 148, when it is in the intermediate moving position N1, can be moved transversely with respect to the longitudinal axis Y without interfering with the first mould part 124 and with the moulding die means 125. In an embodiment of the mould 123 which is not shown, the handling device can always be maintained at the same vertical height. In this case, the compression-moulding die means 125 and the first mould part 124 are moved along the longitudinal axis Y to, respectively, deliver the dome 1 on which a container
neck element 10 was compression-moulded and remove the further dome 1 on which the container neck element 10 has to be compression-moulded.
In subsequent steps of the work cycle shown in Figures 33 and 34, the first mould part 124 is in the lowered position B1, the first half mould 132 and the second half mould 133 are in the closed configuration W1 and the sleeve 162 is in the rest position P1.
The further moving means moves the compression-moulding die means 125 from the delivery position E1 to the locking position I1.
The driving means maintains the first half mould 132 and the second half mould 133 in the closed configuration W1.
The compression-moulding die means 125 and the first mould part 124 define a further cavity 183 arranged for receiving the dose 27.
In the locking position I1 the compression-moulding die means 125 clamps the further dome 1, on which the container neck element 10 has to be compression-moulded, against the first mould part 124 and defines the forming chamber 140.
Supplying means, which is not shown, delivers a dose 27 to the mould 123, the dose 27 being received in the further cavity 183.
Subsequently, as shown in Figures 34 and 35, the actuator moves the first mould part from the lowered position B1 to the raised position C1. The compression-moulding die means 125 moves from the locking position I1 to the forming position M1.
Subsequently, as shown in Figure 36, the die means 125 interacts with the sleeve 162 and, by overcoming the resistance of the elastic means, moves the sleeve 162 from the rest position P1 to the operating position Q1.
The dose 27, moved from the first mould part 124, interacts with the second mould part 126.
The forming appendage 168 pushes the dose 27 inside the forming chamber 40 to shape the dose 27.
The mould 123 assumes an operational configuration K1 in which both the forming body 137 and the protuberance 157 extend inside the die means 125 - respectively through the second opening means 158 and the first opening means 159 - to compression-mould the dose 27.

By suitably checking the quantity of operating fluid present in the first chamber 169 and in the second chamber 170 and the pressure of the operating fluid in the first chamber 169 and in the second chamber 170 it is possible to vary the position of the stem 166.

The stem 166 can be completely received in the hole 167, or protrude partially from the hole 167, as shown in Figure 37. The stem 166 enables domes 1 to be obtained, one of which is shown in Figure 6 as well as in Figure 37, provided with a container neck element 10 comprising a further end wall 17 having a non-uniform thickness.

In particular, the further end wall 17 comprises a peripheral annular zone 180 having a substantially constant thickness and a central zone 181 having a thickness that may assume values that are different from one dome to the other. The further end wall 17 can be welded, at the peripheral annular zone 180, to a cap that is screwable on a threaded container neck element.

In addition, at the peripheral annular zone 180 the further line of intended separation 18 can be made. Unlike the peripheral annular zone 180, the central zone 181 does not undergo any further processing after compression moulding.

As a result, a difference in the thickness of the central zone 181 - albeit of a very slight amount - that is detectable by comparing domes made in various work cycles does not constitute a defect of the domes.

The stem 166 enables plastics dosing errors and dimensional differences in the thickness of the sheet material from which the dome 1 was obtained by thermoforming to be compensated.
In particular, if in the mould 123 a dose is deposited that is smaller than a preset amount, the stem 166 is projected to the outside of the hole 167 - as shown in Figure 37 - to ensure effective compression of the plastics and thus correct forming.

In this case, the container neck element 10 comprises a further end wall 17 in which the central zone 181 has less thickness than that of the peripheral annular zone 180.

If a dose is deposited in the mould 123 that is greater than a preset amount, the stem 166 is pushed inside the hole 167 in such a way that the excess of plastics can be received in the hole 167.

In this case, the container neck element 10 comprises a further end wall 17 in which the central zone 181 has a greater thickness than that of the peripheral annular zone 180.

With reference to Figures 38 to 40, some embodiments of a machine 190 for compression-moulding plastics on objects are shown comprising a rotatable forming carousel 191 that supports a plurality of apparatuses 100, i.e. a plurality of moulds, of the same type as those disclosed above.

Subsequently, in order not to complicate the description, reference will be made to moulds 23 of the type disclosed with reference to Figures 7 to 22.

Everything that is affirmed with reference to the moulds 23 has to be considered to refer also to the moulds 23a in Figures 23 to 25 and to the moulds 123 in Figures 28 to 37 and to the moulds 501 that will be disclosed below with reference to Figures 44 to 50 and to the moulds 501a that will be disclosed below with reference to Figures 51 to 53.

The moulds 23 are mounted in a peripheral zone 192 of the forming carousel 191.

The moulds 23 are positioned at substantially constant angular intervals on the forming carousel 191.
An extruder 193 is further provided which is arranged for dispensing doses of plastics in a pasty state with which the forming carousel 191 is supplied.

Subsequently, in order not to complicate the description, reference will be made to doses 27 of the type disclosed with reference to Figures 7 to 22 and to Figures 28 to 37. Everything that is affixed with reference to the doses 27 has to be considered to refer also to the doses 27a in Figures 23 to 25.

The machine 190 further comprises a supplying carousel 195 arranged for removing the doses 27 from the extruder 193 and delivering the doses 27 to the moulds 23.

The supplying carousel 195 comprises a plurality of grasping elements 196 arranged peripherally on the supplying carousel 195.

The grasping elements 196 are positioned at substantially constant angular intervals on the supplying carousel 195. With reference to Figure 38, an embodiment of the machine 190 is shown comprising, in addition to the forming carousel 191 and to the supplying carousel 195, a transferring carousel 194 positioned laterally with respect to the forming carousel 191 and arranged for supporting a plurality of handling devices 48.

The handling devices 48 are mounted in a peripheral region of the transferring carousel 194.

The handling devices 48 are positioned at substantially constant angular intervals on the transferring carousel 194. The machine 190 further comprises a conveying device 197, provided with a flexible conveying element 198, arranged laterally with respect to the transferring carousel 194 and partially wound, near the transferring carousel 194, on a rotating body 199.

The transferring carousel 194 is rotated in a direction R1. The rotating body 199 is rotated in a further direction R2, opposite the direction R1.
In operation, each handling device 48 of the transferring carousel 194 delivers to the flexible conveying element 198 a dome 1a on which a container neck element 10 was compression-moulded and removes from the flexible conveying element 198 a dome 1b on which a container neck element 10 has to be compression-moulded.

Subsequently, the handling device 48 delivers to a mould 23 the further dome 1b on which a container neck element 10 has to be compression-moulded and removes from the mould 23 another dome 1a on which a container neck element 10 was compression-moulded.

Still subsequently, the supplying carousel 195 - arranged downstream of the transferring carousel 194 with respect to a rotation direction R of the forming carousel 191 - deposits a dose 27 in the mould 23 to which the dome 1b was delivered on which a container neck element 10 has to be compression-moulded.

Still subsequently, whilst the forming carousel 191 rotates, the container neck element 10 is compression-moulded according to what is disclosed with reference to Figures 7 to 22, or to Figures 23 to 25, or to Figures 28 to 37, or to Figures 42 to 50, or to Figures 51 to 53.

With reference to Figure 39, there is shown a further embodiment of the machine 190 comprising, in addition to the forming carousel 191 and to the supplying carousel 194, flexible conveying means 200 - provided, for example, with a belt conveying element, or with a chain conveying element - positioned laterally with respect to the forming carousel 191 and arranged for supporting a plurality of handling devices 48.

The flexible conveying means 200 comprises a first portion 204 provided with handling elements 48 that move away from the forming carousel 191 domes 1a on which a container neck element 10 was compression-moulded and a second portion 205 provided with handling elements 48 that move towards the
forming carousel 191 domes 1b on which a container neck element 10 has to be compression-moulded. The flexible conveying means 200 is partially wound, near the transferring carousel 194, on a first rotating body 201 and on a second rotating body 202. The forming carousel is rotated in a rotation direction R. The first rotating body 201 and the second rotating body 202 are rotated in a further rotation direction R3, opposite the rotation direction R. The first rotating body 201 and the second rotating body 202 are shaped in such a way that a further portion 203 of the flexible conveying means 200 - interposed between the first portion 204 and the second portion 205 - is arranged along a part of the trajectory T defined by the moulds 23 when the forming carousel 191 is rotated. In this way, an interval of time of considerable length is provided during which a handling device 48, after being inserted between the first mould part 24 and the compression-moulding die means 25 of a mould 23, can remove from the mould 23 a dome 1a on which a container neck element 10 was compression-moulded and can deliver to the mould 23 a further dome 1b on which a container neck element 10 has to be compression-moulded. Subsequently, the supplying carousel 195 - arranged downstream of the flexible conveying means 200 with respect to the rotation direction R - deposits a dose 27 in the mould 23 to which the further dome 1b was delivered on which a container neck element 10 has to be compression-moulded. Still subsequently, whilst the forming carousel 191 rotates, the container neck element 10 is compression-moulded according to what is disclosed with reference to Figures 7 to 22, or to Figures 23 to 25, or to Figures 28 to 37, or to Figures 42 to 50, or to Figures 51 to 53. With reference to Figure 40, a further embodiment of the machine 190 is shown that differs from the embodiment of the machine 190 in Figure 39 in that there is provided a
supplying carousel 195 that, instead of being arranged downstream of the flexible conveying means 200 with respect to the rotation direction R, is interposed between the first portion 204 of the flexible conveying means 200 and the second portion 205 of the flexible conveying means 200.

In particular, a zone of the conveying means 200 is arranged along a further trajectory T1 defined by the grasping elements 196 when the supplying carousel 195 is rotated. In an embodiment, the supplying carousel 195 is arranged coaxially to, or substitutes, the first rotating body 201.

In operation, the supplying carousel 195 delivers a dose 27 to a mould 23 immediately after a dome 1a - on which a container neck element 10 was compression-moulded - has been removed from the mould 23a and a further dome 1b has been delivered on which a container neck element 10 has to be compression-moulded.

In an embodiment that is not shown, there is provided a removing carousel for removing from a mould 23 a dome 1 on which a container neck element 10 was compression-moulded, an inserting carousel arranged for delivering to the mould 23 a further dome 1 on which a container neck element 10 have to be compression-moulded and a further transferring carousel arranged for depositing in the mould 23 a dose of plastics 27.

In another embodiment that is not shown, there is provided a single moving carousel configured so as to remove from a mould 23 a dome 1 on which a container neck element 10 has been compression-moulded, delivering to the mould 23 a further dome 1 on which a container neck element 10 has to be compression-moulded and depositing in the mould 23 a dose of plastics 27.

In a further embodiment that is not shown, the forming carousel 191 comprises a plurality of moving elements arranged for moving the domes 1. The moving elements are supported by the forming carousel 191 and are movable with respect to the forming carousel 191, for example along a
direction arranged substantially radially with respect to the forming carousel 191.
In particular, the forming carousel 191 comprises a number of moving elements that is the same as the number of moulds 23, a moving element corresponding to each mould 23.
Each moving element can be shaped as an arm having at one end a gripping element arranged for grasping a dome 1.
During operation, each moving element removes a dome 1 from a conveying device and delivers the dome 1 to a corresponding mould 23, before, or after, a dose 27 has been deposited in the mould 23.
Subsequently, the dose 27 is compression-moulded on the dome 1 to obtain a container neck element 10.
Still subsequently, the dome 1 on which the container neck element 10 was obtained is extracted from the mould 23 by a removal device and delivered to a further conveying device.
Alternatively, each moving element can remove from the mould 23 operationally associated therewith the dome 1 on which the container neck element 10 was obtained and deliver the dome 1 to the further delivering device.
Still alternatively, each moving element can remove from the mould 23 operationally associated therewith the dome 1 on which the container neck element 10 was obtained and move the dome 1 to a peripheral zone of the forming carousel 191 at which the dome 1 is collected by a removal device. In this way, the dome 1 can be removed from the forming carousel 191 more easily than is the case when it is extracted from the mould 23 directly by the removal device.
With reference to Figure 41 there is shown an apparatus 100 comprising a mould 23b that constitutes a version of the mould 23 disclosed with reference to Figures 7 to 22.
The mould 23b is provided with a second mould part 26 comprising weakening means 300.
The weakening means 300 comprises a tubular element 301 that surrounds the forming element 37 and is slidable with respect to the forming element 37. Movement promoting means
is provided that moves the tubular element 301 with respect to the forming element 37.

The movement promoting means may comprise a hydraulic, or pneumatic, or electric actuator that moves the tubular element 301 towards or away from the supporting body 28. Alternatively, the movement promoting means may comprise a hydraulic, or pneumatic, or electric actuator that moves the tubular element 301 towards the supporting body 28 and elastic means that moves the tubular element away from the supporting body 28.

Still alternatively, the movement promoting means may comprise a hydraulic, or pneumatic, or electric actuator that moves the tubular element 301 towards the supporting body 28. The tubular element 301 is subsequently moved away from the supporting body - as far as a dead point condition - by a dose 27 inserted inside the apparatus 100 during a subsequent operating cycle.

The tubular element 301 is provided, at an end facing the compression-moulding die means 25 and the second mould part 24, with a ridge 302 that deforms the plastics in a pasty state in the chamber 40 to make in the further end wall 17 a portion of reduced thickness, i.e. a portion having lesser thickness with respect to the thickness of a remaining part of the further end wall 17, this portion of reduced thickness defining the further line of intended separation 18, shown, for example, in Figure 5.

In this way, it is possible to make the further line of intended separation 18 during the moulding step of the container neck element 10, in particular, whilst the dome 1 is still inside the mould 23b.

This enables the work cycle and the production system to be simplified, inasmuch as it is not necessary to provide a weakening station arranged downstream of the apparatus 100 in which an incision is made in the further end wall 17, in particular a non-through incision, to obtain the further line of intended separation 18.
With reference to Figure 42 a method is disclosed to obtain a dome 1 provided with a container neck element 10 in which there is provided simultaneously pressing, into a compression-moulding mould 303 provided with a female half mould 304 and with a male half mould 305 that are mutually movable towards and away from one another, a sheet of plastics 306 and a dose of plastics 307.

The sheet of plastics 306 may comprise at least a barrier layer to gases and/or to light. The sheet of plastics is not previously formed, for example by thermoforming, before being inserted into the compression-moulding mould 303.

The method provides depositing the dose of plastics 307 in a cavity 308 of the female half mould 304. Subsequently, there is provided inserting the sheet of plastics 306 into the cavity 308, or possibly interposing the sheet of plastics 306 between the female half mould 304 and the male half mould 305. Still subsequently, there is provided closing the compression-moulding mould 303 so that the female half mould 304 and the male half mould 305 cooperate to form the dome 1 and the container neck element 10.

According to a first embodiment of the method, the sheet of plastics 306 has a thickness that is equal to a final thickness of the dome 1 that has to be obtained. In this case, the dose of plastics 307 forms the container neck element 10.

According to a second embodiment of the method, the sheet of plastics 306 has a lesser thickness than a final thickness of the dome 1 that has to be obtained. In this case, the dose of plastics 307, in addition to forming the container neck element 10, forms a layer that covers, at least partially, an external surface of the dome 1.

With reference to Figure 43 a further method is disclosed to obtain a dome 1 provided with a container neck element 10 in which there is provided simultaneously pressing, in the compression-moulding mould 303 disclosed with reference to
Figure 42, a semifinished product made of plastics 309 and a dose of plastics 307. The semifinished product made of plastics 309 is obtained by forming, for example by thermoforming, plastics. The semifinished product made of plastics 309 may comprise at least a barrier layer to gases and/or to light. The semifinished product made of plastics 309 has a lesser thickness than a final thickness of the dome 1 that has to be obtained.

The method provides depositing the dose of plastics 307 in a cavity 308 of the female half mould 304. Subsequently, there is provided inserting the semifinished product made of plastics 309 into the cavity 308. Still subsequently, there is provided closing the compression-moulding mould 303 so that the female half mould 304 and the male half mould 305 cooperate to form the dome 1 and the container neck element 10. The dose of plastics 307, in addition to forming the container neck element 10, forms a layer that covers, at least partially, an external surface of the dome 1. In other words, part of the plastics that form the dose 307 is distributed on the semifinished product made of plastics 209 in such a way as to obtain a dome 1 provided with the container neck element 10 and having a final thickness of desired extent.

The methods disclosed with reference to Figures 42 and 43 can also be actuated by using a mould 23 disclosed with reference to Figures 7 to 22, or a mould 23a disclosed with reference to Figures 23 to 25, or a mould 123 disclosed with reference to Figures 28 to 37, or a mould 23b disclosed with reference to Figure 41, or a mould 501 that will be disclosed below with reference to Figures 44 to 50, or a mould 501a that will be disclosed below with reference to Figures 51 to 53.

The doses of plastics that have to be compression-moulded on the dome 1 to obtain the container neck element 10 - and possibly at least a portion of an external layer of the dome
1 - can be obtained by grinding and heating wastes generated by production of the domes 1, or of the sheets of plastics 306, or of the semifinished products made of plastics 309. In particular, it is possible to thermoform portions of a sheet material to obtain the domes 1, or the semifinished products made of plastics 309, and subsequently separate the domes 1, or the semifinished products made of plastics 309, from further portions of the sheet material that have not been subjected to thermoforming.

This enables a considerable economic benefit to be obtained inasmuch as the aforesaid wastes - for example the portions of sheet material that have not been subjected to thermoforming and which should be scrapped - can be recycled completely. The barrier material to gases and/or to light, if present, does not adversely affect the possibility that the wastes is used to make the container neck element 10, or part of the dome 1, in the manner disclosed above.

With reference to Figures 44 to 50 there is shown an apparatus 500 for compression-moulding plastics on objects, in particular an apparatus for compression-moulding a container neck element 10 - provided with a threaded portion 11 - on a dome 1.

The apparatus 500 comprises a mould 501 provided with a male half mould 502 and with a female half mould 503, which are movable towards and away from one another along a moving direction D1, and with supporting and retaining means 504 arranged for supporting a dome 1 and for maintaining the dome 1 coupled with a punch 518 of the male half mould 502. The male half mould 502, the supporting and retaining means 504 and the female half mould 503 are aligned along the moving direction D1, the supporting and retaining means 504 being interposed between the male half mould 502 and the female half mould 503.

The punch 518 is shaped in such a way as to engage a hollow zone 506 of the dome 1.
The female half mould 503 comprises a plurality of female mould portions 505 that are movable between a forming configuration A1, shown in Figures 45 to 49, in which the female mould portions 505 define a mould cavity 517 that receives a dose of plastics 507 and forms the dose of plastics 507, and a release configuration A2, shown in Figures 44 and 50, in which the female mould portions 505 enable a dome 1 to be removed on which the dose 507 was compression-moulded to obtain a container neck 10.

The apparatus 500 comprises an actuating device 508 arranged for moving the female mould portions 505 from the forming configuration A1 to the release configuration A2, and vice versa.

The female mould portions 505 can comprise a first half mould 509 and a second half mould 510 hinged on a supporting element 511.

The supporting and retaining means 504 comprises a plurality of supporting and retaining elements 512 that are movable between an open position L1, shown in Figures 44 to 46, in which the supporting and retaining elements 512 enable a dome 1 to be removed from the punch 518, and a closed position L2, shown in Figures 47 to 50, in which the supporting and retaining portions 512 lock a dome 1 on the punch 518.

The apparatus 1 comprises driving means 515 arranged for moving the supporting and retaining elements 512 from the open position L1 to the closed position L2.

The supporting and retaining elements 512 may comprise a plurality of angular sectors 513 hinged on a supporting body 514.

A work cycle of the apparatus 500 is disclosed with reference to Figures 44 to 50.

In Figure 44 there is shown a work cycle step in which a dome 1 on which a container neck element 10 has been formed has been extracted from the mould 501. The female half mould 503 is distant from the male half mould 502, the female
mould portions 505 are in the release configuration A2 and the supporting and retaining elements 512 are in the open position L1.
In subsequent work cycle steps, shown in Figures 45 and 46, the actuating device 508 moves the female mould portions 505 from the release configuration A2 to the forming configuration A1. A transferring element 516 deposits a dose 507 inside the mould cavity 517.
Subsequently, as shown in Figure 47, the driving means 515 moves the supporting and retaining elements 512 from the open position L1 to the closed position L2 and a dome 1 is delivered to the supporting and retaining means 504 by distributing means that is not shown.
The supporting and retaining means 504 moves along the moving direction D1 until it comes to abut on an upper zone of the female half mould 503.
In a subsequent work cycle step, shown in Figure 48, the female half mould - and the supporting and retaining means 504 - are moved towards the male half mould 502 until the punch 518 penetrates inside the hollow zone 506 and the supporting and retaining means 504 clamps the dome 1 against the punch 502.
In particular, the punch 518 can be shaped so as to engage an inner wall of the dispensing body 5 in a shapingly coupled manner.
Still subsequently, as shown in Figure 49, the mould cavity 517 is moved from a lowered position 01, shown in Figures 44 to 48, in which the mould cavity 517 is far from the punch 518, to a raised position 02, shown in Figures 49 and 50, in which the punch 518, and the dome 1 adhering thereto, are received inside the mould cavity 517.
The mould cavity 517, the supporting and retaining means 504 and the punch 518 cooperate to define a moulding chamber 519 that receives the dispensing body 5 and inside which the dose 507 is pressed to assume the shape of the container neck element 10.
In particular, the mould cavity 517 cooperates with the punch 518 to define a prevalent portion of the moulding chamber 519 that forms the further end wall 17, if present, the threaded portion 11, and the bead 12 and a part of the annular ridge 13 of the container neck element 10. The mould cavity 517 cooperates with the supporting and retaining means 504 to define a remaining portion of the moulding chamber 519 that forms a further part of the annular ridge 13 and an end zone 520 of the container neck element 10.

In a subsequent work cycle step, shown in Figure 50, the actuating device moves the female mould portions 505 from the forming configuration A1 to the release configuration A2.

Subsequently, the female half mould 503 is moved away from the male half mould 502, whilst the supporting and retaining elements 512 - which are in the closed position L2 - continue to maintain the dome 1 in contact with the punch 518.

Still subsequently, the driving means 515 moves the supporting and retaining elements 512 from the closed position L2 to the open position L1 so that the dome 1 on which the container neck element 10 was obtained can be removed from the punch 518.

With reference to Figures 51 to 53 there is shown an apparatus 500a provided with a mould 501a that differs from the mould shown in Figures 44 to 50 by the fact that the female half mould 503 comprises a single portion of female mould 505a that defines the mould cavity 517, rather than a plurality of female mould portions 505.

The mould 501a differs from the mould shown in Figures 44 to 50 also through the fact that the supporting and retaining means 504 comprises a single supporting and retaining element 512a, shaped as a tubular body, rather than a plurality of supporting and retaining elements 512.
In an embodiment that is not shown the supporting and retaining means 504 comprises a plurality of supporting and retaining elements.

A work cycle of the apparatus 500a comprises a plurality of steps similar to those disclosed with reference to Figures 44 to 50.

Below, with reference to Figures 51 to 53, there are thus disclosed only some of the steps of the aforesaid work cycle.

In Figure 51 there is shown a work cycle step in which the mould cavity 517 that contains the dose of plastics 507 is in the lowered position 01. The punch is received inside the hollow zone 506 and the supporting and retaining means 504 clamps the dome 1 against the punch 518.

In the work cycle step shown in Figure 52, the mould cavity 517 is moved from the lowered position 01 towards the raised position 02. The dose of plastics 507 starts to be pressed between the punch 518 and the mould cavity 517.

In a subsequent work cycle step, shown in Figure 53, the mould cavity 517 has reached the raised position 02 and the dose of plastics has been shaped so as to form the container neck element 10 on the dome 1.

Subsequently, the female half mould 503 is moved away from the male half mould 502. The container neck element 10 - in particular the threaded portion 10 and the annular bead 12 - are forced to exit the mould cavity 517. The container neck element 10 - in particular the threaded portion 10 and the annular bead 12 - undergo a limited elastic deformation that enables the container neck element 10 to be extracted from the mould cavity 517.

As part of the annular ridge 13 is formed by the supporting and retaining means 504 - together with the mould cavity 517 - the annular ridge 13 does not constitute an undercut element that prevents the container neck element 10 from being extracted from the mould cavity 517.
With reference to Figures 54 to 58, there is illustrated a machine 600 for compression-moulding plastics on objects comprising a rotatable forming carousel 601 that supports a plurality of moulding apparatuses 602 mounted in a peripheral zone of the rotatable forming carousel 601. The moulding apparatuses 602 are positioned at substantially constant angular intervals on the forming carousel 601. Each moulding apparatus 602 operates with a work cycle that is repeated at each revolution of the forming carousel 601. An extruder 603 is arranged for dispensing a continuous flow of plastics in pasty state from which doses 604 of plastics are taken that are supplied, one after another, to the forming carousel 601.

A supplying conveyor 605 is arranged for conveying to the forming carousel 601 a series of domes 606, arranged one after another, on each of which a container neck element will be compression-moulded. A removing conveyor 607 is arranged for removing from the forming carousel 601 a series of overmoulded domes 608, arranged one after another, on each of which a container neck element has been compression-moulded.

A first transferring carousel 609 is arranged for transferring each dome 606 from an outlet end of the supplying conveyor 605 to a respective moulding apparatus 602.

A second transferring carousel 610 is arranged for transferring each overmoulded dome 608 from a respective moulding apparatus 602 to an inlet end of the removing conveyor 607.

A third transferring carousel 611 can be interposed, as in the illustrated example, between the second transferring carousel 610 and the inlet end of the removing conveyor 607 to transfer the overmoulded domes 608.

A lower part 612 of the second transferring carousel 610 is configured for periodically removing a dose 604 of plastics.
from the extruder 603 and transferring the dose 604 to a respective moulding apparatus 602.
Each of the aforesaid transferring carousels 609, 610 and 611 has a substantially known structure and operating mode and therefore such carousels will not be disclosed in greater detail.
In Figures 59 to 62 there is illustrated the operation of a single moulding apparatus 602.
Each moulding apparatus 602 has a first mould part 613 arranged for receiving a dome 606 with the concavity of the dome 606 facing downwards, die means 614 for defining at least a part of a cavity for compression-moulding an overmoulded element on the dome 606, and a second mould part 615 that cooperates with the first part 613 and the die means 614 for compression-moulding the overmoulded element. The die means 614 is optionally configured, as in the illustrated example, to define a threaded part of the overmoulded element.
The second transferring carousel 610 is configured to deposit each dose 604 above a respective dome 606 carried by the first mould part 613 that is arranged below the second part 615. The dose 604 made of plastics in pasty state can adhere to the upper wall of the dome 606 and thus move integrally therewith.
The die means 614 comprises two or more die elements 616 mounted on the second mould part 615. The die elements 614 can be coupled with the second mould part 615 with the possibility of assuming an open configuration (or delivery/release configuration shown in Figures 61 and 65) in which the die elements 616 facilitate the insertion and the removal of the first mould part 613 inside the die means 614, and a closed configuration (or forming configuration shown in Figures 59, 60, 62 and 63, 64, 66) in which the die elements 616 define at least partially the aforesaid forming cavity, with the possibility of retaining in position the overmoulded dome 608 even when the first (lower) mould part
613 is far from the second (upper) part 615 and from the die means 614. In the specific example, each of the die elements 616 is coupled with the second mould part 615 by a rotating pivot connection with the possibility of opening and closing (enlarging and tightening) around the first mould part 613. The die elements 616, in the specific case, are three, arranged angularly at 120° around a (vertical) axis of reciprocal movement between the first and the second mould part 613 and 615.

The second (upper) mould part 615 has a punch element 617 that is axially movable for compression-moulding the dose 604, i.e. the overmoulding on the dome 606 to obtain the overmoulded dome 608.

An operating sequence of a single moulding apparatus 602 of the forming carousel 601 shown in Figures 59 to 62 (enlarged in Figures 63 to 66) will now be disclosed in greater detail.

Figure 59 (or Figure 63) shows the compression-moulding step in which the dose 604 was formed in the forming cavity to make the overmoulded dome 608. The punch element 617 is in a (lowered) forming position, the die means 614 is in the (closed) forming configuration and the first mould part 613 is in a (raised) forming position.

In Figure 60 (or in Figure 64) there is shown a subsequent step in which an overmoulded dome 608 is retained by the die means 614 carried by the second (upper) mould part 615 whilst the first mould part 613 is lowered and has received a dome 606 from the first transferring carousel 609. The die means 614 is still in the (closed) forming configuration in which it retains the overmoulded dome 608. The distance (in the reciprocal movement direction of the mould parts 613 and 615 that in the specific case is the vertical direction) between the first (lower) mould part 613 and the second (upper) mould part 615 bearing the die means 614 is such as to generate an empty space in which the first transferring carousel 609 can act to position a dome 606 to be
overmoulded on the first mould part 613 (whilst the already overmoulded dome 608 is still associated with the second mould part 615 of the moulding apparatus 602).

Figure 61 (or Figure 65) shows a subsequent step in which a lower part 612 of the second transferring carousel 610 (not shown for the sake of greater clarity in Figure 61) has laid a dose 604 on the dome 606 that is carried by the first mould part 613 whilst an upper part of the second transferring carousel 610 has further received (shortly before, a little after or almost simultaneously to the placing of the dose 604) the overmoulded dome 608 released by the second mould part 615 (the release being achieved through the fact that the die means 614 has assumed the open configuration).

Figure 62 (or Figure 66) lastly shows a step that prepares and precedes compression-moulding, in which the first and the second mould part 613 and 615 have move towards one another (for example by raising of the first mould part 613) and the die means 614 has moved to the closed configuration defining the forming cavity (the die elements 616 being closed after the dome 606 that bears the dose 604 has been taken to the forming configuration). It should be noted that the dose 604 is in a resting relation but also in an adhering relation to the dome 606. The adhesion ensures movement of the dose 604 integrally with the dome 606 from the moment of placing the dose on the dome (Figure 61) to the moment preceding actual forming (Figure 62) in which the punch element 617 is ready to be lowered and to compress the dose 604. The adhesion effect is due to the pasty state of the plastics with which the dose 604 is made.

The moulding apparatus 602 illustrated in the example in Figures 54 to 66 could be provided with a first mould part and/or with die means and/or with a second mould part as in one or more of the examples of moulding apparatuses shown previously (such as, for example, in the apparatus shown in
Figures 28 to 37, with the die means controlled according to the method disclosed with reference to Figures 59 to 66).
CLAIMS

1. Apparatus, comprising a first mould part (24; 124) suitable for receiving an object (1), die means (25; 125) arranged for surrounding a zone (5) of said object (1) and a second mould part (26; 26a; 126) cooperating with said die means (25; 125) and with said first mould part (24; 124) so as to compression-mould plastics on said object (1) in said zone (5).

2. Apparatus according to claim 1, wherein said die means (25; 125) is configured in such a way as to shape a threaded portion (11) around said said zone (5).

3. Apparatus according to claim 1, or 2, wherein said die means (25; 125) is configured in such a way as to shape a container neck element (10) around said said zone (5).

4. Apparatus according to any preceding claim, wherein said die means (25; 125) comprises a first part (59a; 159a) in which first opening means (59; 159) is obtained and a second part (58a; 158a) in which second opening means (58; 158) is obtained.

5. Apparatus according to claim 4, wherein said first part (59a; 159a) and said second part (58a; 158a) are positioned in opposite regions of said die means (25; 125).

6. Apparatus according to claim 4, or 5, wherein said first opening means (59; 159) faces said first mould part (24; 124) and said second opening means (59; 159) faces said second mould part (26; 26a; 126).

7. Apparatus according to any one of claims 4 to 6, wherein operating portion means (37, 117; 37a, 56a; 168, 166) of said second mould part (26; 26a; 126) is insertable into said die means (25; 125) through said second opening means (58).

8. Apparatus according to any one of claims 4 to 7, wherein further operating portion means (57; 157) of said first mould part (24; 124) is insertable into said
9. Apparatus according to any preceding claim, wherein said second mould part (26) comprises weakening means (300) that is movable towards and away from said die means (25) and is arranged for deforming said plastics in said zone (5) to obtain a weakening defined by a portion of said zone (18) having a lesser thickness than the thickness of a remaining portion of said zone.

10. Apparatus according to claim 9 as appended to any one of claims 4 to 8, wherein said weakening means (300) is insertable into said die means (25) through said second opening means (58).

11. Apparatus according to any preceding claim, wherein said die means (25; 125) comprises first half-mould means (32; 132) and second half-mould means (33; 133) that are mutually movable towards and away from one another.

12. Apparatus according to claim 11, and further comprising driving means arranged for moving said first half-mould means (32; 132) and said second half-mould means (33; 133) between a closed configuration (W; W1), in which said die means (25; 125) defines forming chamber means (40; 140) for said plastics, and an open configuration (Z; Z1) in which said die means (25; 125) releases said object (1) after said plastics has been compression-moulded on said object (1).

13. Apparatus according to any preceding claim, wherein said second mould part (26; 26a) comprises a forming element (37; 37a) that is slidable in seat means (38; 38a) obtained in base body means (36; 36a).

14. Apparatus according to claim 13, wherein said forming element (37) is movable between a retracted position (G; G2), in which said forming element (37; 37a) is received in said seat means (38; 38a) and cooperates with said seat means (38; 38a) to define cavity means
(39; 39a) suitable for receiving a dose (27; 27a) of said plastics, and an extended position (H; H2) in which said forming element (37; 37a) presses said dose (27; 27a) in said die means (25).

15. Apparatus according to claim 13, or 14, wherein said forming element (37a) comprises groove means (55) inside which elongated body means (56) is slidable.

16. Apparatus according to claim 15, wherein said elongated body means (56) assumes an operational configuration in which an end (56a) of said elongated body means (56) interacts with a part (7) of said zone (5) to prevent said plastics adhering to said part (7).

17. Apparatus according to claim 15, or 16, and further comprising motor means arranged for moving said elongated body means (56) with respect to said forming element (37a).

18. Apparatus according to any one of claims 1 to 12, wherein said second mould part (126) comprises a forming body (137) arranged for being partially received in said die means (125) and provided with hole means (167) inside which stem means (166) is slidable.

19. Apparatus according to claim 18, wherein to said stem means (166) piston means (165) is fixed that is slidable in chamber means (164) obtained in said forming body (137).

20. Apparatus according to any preceding claim, wherein said first mould part (24) is crossed by conduit means (31) for fluid means.

21. Apparatus according to claim 20, and further comprising sucking means arranged for sucking said fluid means through said conduit means (31).

22. Apparatus according to claim 20, or 21, and further comprising blowing means arranged for blowing said fluid means through said conduit means (31).

23. Apparatus according to any preceding claim, wherein said first mould part (24; 124) comprises a supporting
body (28; 128) suitable for receiving said object (1), said supporting body (28; 128) having a surface (29) provided with corrugated elements that enable air to be evacuated when said object (1) is positioned on said supporting body (28; 128).

24. Apparatus according to any preceding claim, wherein said first mould part (24; 124), said die means (25; 125) and said second mould part (26; 26a; 126) are aligned along longitudinal axis means (X; Y) of said apparatus, said die means (25; 125) being interposed between said first mould part (24; 124) and said second mould part (26; 26a; 126).

25. Apparatus according to claim 24, and further comprising moving means arranged for moving said first mould part (124) along said longitudinal axis means (Y).

26. Apparatus according to claim 24, or 25 and further comprising further moving means arranged for moving said die means (25; 125) along said longitudinal axis means (X; Y).

27. Apparatus according to any one of claims 24 to 26, and further comprising still further moving means arranged for moving said second mould part (26; 26a) along said longitudinal axis means (X).

28. Apparatus according to any preceding claim wherein said object is a container part (1), said zone being defined in a dispensing body (5) of said container part (1).

29. Apparatus according to claim 28, wherein said container part (1) is shaped like a dome.

30. Machine for compression-moulding plastics on an object (1), comprising an apparatus (23; 23a; 23b; 123) according to any one of claims 1 to 29.

31. Machine according to claim 30, and comprising a plurality of apparatuses (23; 23a, 23b; 123) according to any one of claims 1 to 29.
32. Machine according to claim 31, and further comprising carousel forming means (191) supporting said apparatuses (23; 23a; 23b; 123).

33. Machine according to claim 32, and further comprising handling means (48) arranged for delivering said object (1) to an apparatus (23; 23a; 23b; 123) of said plurality of apparatuses and/or for removing said object (1) from an apparatus of said plurality of apparatuses (23; 23a; 23b; 123).

34. Machine according to claim 33, wherein said handling means comprises a plurality of handling devices (48).

35. Machine according to claim 34, and further comprising transferring carousel means (194) supporting said handling devices (48).

36. Machine according to claim 35, and further comprising a conveying device (197) arranged for receiving from said handling devices (48) objects (1a) on which plastics have been compression-moulded and delivering to said handling devices (48) further objects (1b) on which plastics have to be compression-moulded.

37. Machine according to claim 36, wherein said conveying device comprises a flexible conveying element (198).

38. Machine according to claim 37, and further comprising a rotating body (199), positioned near said transferring carousel means (194), on which said flexible conveying element (198) is partially wound.

39. Machine according to claim 38, wherein said transferring carousel means (194) is rotatable in a direction (R1) and said rotating body (199) is rotatable in a further direction (R2), said further direction (R2) being opposite said direction (R1).

40. Machine according to claim 34, and further comprising flexible conveying means (200) supporting said handling devices (48).

41. Machine according to claim 40, wherein an interaction portion (203) of said flexible conveying means (200) is
arranged along a part of a trajectory (T) defined by said apparatuses (23; 23a; 23b; 123) when said carousel forming means (191) is rotated.

42. Machine according to claim 40, or 41, wherein said flexible conveying means comprises a first portion (204) provided with handling devices (48) that move away from said carousel forming means (191), objects (1b) on which plastics have been compression-moulded and a second portion (205) provided with handling devices (48) that move towards said carousel forming means (191) further objects (1b) on which plastics have been compression-moulded.

43. Machine according to claim 42 as appended to claim 41, wherein said interaction portion (203) is interposed between said first portion (204) and said second portion (205).

44. Machine according to any one of claims 40 to 43, and further comprising rotating body means (201) and further rotating body means (202), positioned near said carousel forming means (191), on which said flexible conveying means (200) is partially wound.

45. Machine according to claim 44, wherein said carousel forming means (191) is rotatable in a movement direction (R) and said rotating body means (201) and said further rotating body means (202) are rotatable in a further movement direction (R3), said further movement direction (R3) being opposite said movement direction (R).

46. Machine according to any one of claims 30 to 45, and further comprising supplying carousel means (195) arranged for supplying said carousel forming (191) with said doses (27; 27a).

47. Machine according to claim 46 as appended to any one of claims 35 to 39, wherein said supplying carousel means (195) is positioned downstream of said transferring
carousel means (194) with respect to a rotation direction (R) of said carousel forming means (191).

48. Machine according to claim 46 as appended to any one of claims 40 to 45, wherein said supplying carousel means (195) is positioned downstream of said flexible conveying means (200) with respect to a rotation direction (R) of said carousel forming means (191).

49. Machine according to claim 46 as appended to claim 41, or to any one of claims 42 to 45 as appended to claim 41, wherein said supplying carousel means (195) is associated with said interaction portion (203).

50. Machine according to claim 49, wherein said supplying carousel means (195) is arranged along said interaction portion (203).

51. Machine according to any one of claims 30 to 50, and further comprising extruding means (193) arranged for dispensing doses (27) of plastics.

52. Method, comprising delivering to a mould (23; 23a; 23b; 123; 501, 501a) a container part (1; 309) provided with a dispensing element (5) and plastics (27; 27a; 307; 507) in a pasty state and pressing together said container part (1; 309) and said plastics (27; 27a; 307; 507) for compression-moulding said plastics (27; 27a; 307; 507) on said container part (1; 309).

53. Method according to claim 52, wherein said compression-moulding comprises making with said plastics (27; 27a; 307; 507) a container neck element (10) on said dispensing element (5).

54. Method according to claim 52, wherein said compression-moulding comprises making with said plastics (27; 27a; 307; 507) a layer on at least a portion of an external surface of said container part (1; 309) and a container neck element (10) on said dispensing element (5).

55. Method according to claim 53, or 54, wherein said container neck element (10) comprises a threaded portion (11).
56. Method according to any one of claims 52 to 55, wherein, before said delivering, thermoforming a laminar element of plastics to obtain said container part (1; 309) is provided.

57. Method according to any one of claims 52 to 56, wherein said container part (1; 309) comprises a layer of material having barrier properties to gases and/or to light.

58. Method according to any one of claims 52 to 59, wherein said container part comprises a dome provided with a connecting zone (3) suitable for being fixed to a container body and from which said dispensing element (5) leads away.

59. Method according to any one of claims 52 to 58, wherein said plastics (27; 27a; 307; 507) comprise scraps of a material from which said container part (1; 309) is made.

60. Method according to claim 59, and further comprising grinding said scraps before delivering said plastics (27; 27a; 307; 507) to said mould (23; 23a; 23b; 123; 501; 501a).

61. Method according to claim 59, or 60, and further comprising heating said scraps before delivering said plastics (27; 27a; 307; 507) to said mould (23; 23a; 23b; 123; 501, 501a).

62. Method according to any one of claims 52 to 61, wherein, during said compression-moulding, deforming said plastics in a zone (5) is provided to obtain a weakening defined by a portion (18) of said zone (5) having a lesser thickness than the thickness of a remaining portion of said zone (5).

63. Method, comprising delivering to a mould (23; 23a; 23b; 123; 501, 501a) a sheet (306) of plastics and plastics (27; 27a; 307; 507) in a pasty state and pressing together said sheet (306) and said plastics (27; 27a; 307; 507) for obtaining from said sheet (308) a
container part (1) provided with a dispensing element (5) and for compression-moulding said plastics (27; 27a; 307; 507) on said container part (1; 309).

64. Method according to claim 63, wherein said compression-moulding comprises making with said plastics (27; 27a; 307; 507) a container neck element (10) on said dispensing element (5).

65. Method according to claim 63, wherein said compression-moulding comprises making with said plastics (27; 27a; 307; 507) a layer that covers at least a portion of an external surface of said object (1) and a container neck element (10) on said dispensing element (5).

66. Method according to claim 64, or 65, wherein said container neck element (10) comprises a threaded portion (11).

67. Method according to any one of claims 63 to 66, wherein said sheet (306) comprises a layer of material having properties acting as a barrier to gases and/or to light.

68. Method according to any one of claims 63 to 67, wherein said container part comprises a dome provided with a connecting zone (3) suitable for being fixed to a container body and from which said dispensing element (5) leads away.

69. Method according to any one of claims 63 to 68, wherein said plastics (27; 27a; 307; 507) comprise scraps of a material with which said sheet (306) is made.

70. Method according to claim 69, and further comprising grinding said scraps before delivering said plastics (27; 27a; 307; 507) to said mould (23; 23a; 23b; 123; 501, 501a).

71. Method according to claim 69, or 70, and further comprising heating said scraps before delivering said plastics (27; 27a; 307; 507) to said mould (23; 23a; 23b; 123; 501, 501a).
72. Method according to any one of claims 63 to 71, wherein, during said compression-moulding, deforming said plastics in a zone (5) is provided to obtain a weakening defined by a portion (18) of said zone (5) having a lesser thickness than the thickness of a remaining portion of said zone (5).

73. Apparatus, comprising punch means (518) arranged for engaging a hollow portion (506) of an object (1), supporting and retaining means (504) arranged for clamping said object (1) against said punch means (518) and mould cavity means (517) arranged for receiving a dose of plastics (507), said punch means (518) and said mould cavity means (517) cooperating mutually for compression-moulding said dose of plastics (507) on said object (1).

74. Apparatus according to claim 73, wherein said mould cavity means (517) is shaped so as to shape a threaded portion (11) on said object (1).

75. Apparatus according to claim 73, or 74, wherein said mould cavity means (517) is shaped so as to shape a container neck element (10) on said object (1).

76. Apparatus according to any one of claims 73 to 75, wherein said punch means (518), said mould cavity means (517) and said supporting and retaining means (504) define forming chamber means (519) inside which said dose of plastics (507) is compression-moulded.

77. Apparatus according to claim 76, wherein said mould cavity means comprises a plurality of mutually movable female mould portions (505).

78. Apparatus according to claim 77, wherein said female mould portions (505) are movable between a forming configuration (A1) in which said female mould portions (505) define a mould cavity (517) arranged for receiving said dose of plastics (507) and for forming said dose of plastics (507), and a release configuration (A2), in which said female mould portions
(505) enable said dome (1), on which said dose of plastics (507) has been compression-moulded, to be extracted from said mould cavity means.

79. Apparatus according to claim 76, wherein said mould cavity means comprises a single female mould portion (505a).

80. Apparatus according to any one of claims 73 to 79, wherein said supporting and retaining means (504) comprises a plurality of mutually movable supporting and retaining elements (512).

81. Apparatus according to any one of claims 73 to 79, wherein said supporting and retaining means (504) comprises a single supporting and retaining element (512a).

82. Apparatus according to claim 81, wherein said supporting and retaining element (512a) is shaped as a tubular body.

83. Apparatus according to any one of claims 73 to 82 wherein said object is a container part (1), said dose of plastics (517) being formed on a dispensing body (5) of said container part (1).

84. Apparatus according to claim 83, wherein said container part is shaped like a dome (1).

85. Method, comprising the following operations:
 - delivering an object (606) to a first mould part (613);
 - placing a dose (604) of plastics on said object (606) which has been delivered to said first mould part (613);
 - moving said first mould part (613), bearing said object (606), towards a second mould part (615), said dose (604) adhering to said object (606);
 - surrounding at least partially said object (606) with die means (614) so that said second mould part (615) and said die means (614) define a forming cavity around said object (606);
- compression-moulding said dose (604) around said object (606) in said forming cavity; said moving-towards operation preceding at least partially said surrounding operation.

86. Method according to claim 85, wherein after said operation of placing a dose (604), said first mould part (613) and said die means (614) are moved towards one another.

87. Method according to claim 85 or 86, wherein during said operation of placing a dose (604), said die means (614) is arranged above said object (606).

88. Method according to any one of claims 85 to 87, wherein during said operation of placing a dose (604), said second mould part (615) is arranged above said first mould part (613).

89. Method according to any one of claims 85 to 88, wherein said object (606) is concave and is delivered to said first mould part (613) with the concavity facing downwards.

90. Method according to any one of claims 85 to 89, wherein said operation of placing a dose (604) comprises removing said dose from a continuous flow of plastics in pasty state dispensed by an extruder (603) and transferring said dose (604) still in pasty state on said object (606).

91. Method according to any one of claims 85 to 90, wherein said moving-towards operation comprises moving said first mould part (613) at least partially upwards.

92. Method according to any one of claims 85 to 91, wherein during said moving-towards operation, said die means (614) assumes an open configuration for facilitating the introduction of said object (606) and said dose (604) into said die means, and wherein before compression-moulding said dose (604), said die means (614) is taken to a closed configuration in which it defines said forming cavity.
93. Method according to any one of claims 85 to 92, wherein said object (606) comprises a container part provided with a dispensing element.

94. Method according to claim 93, wherein said compression-moulding comprises forming with said dose (604) a container neck element on said dispensing element.

95. Method according to claim 94, wherein said container neck element comprises a threaded portion.

96. Method according to any one of claims 93 to 95, wherein said container part comprises a dome provided with a connecting zone suitable for being fixed to a container body and from which said dispensing element leads away.

97. Apparatus, optionally according to any one of claims 1 to 25, comprising a first mould part (613) suitable for receiving an object (606), die means (614) arranged for surrounding a zone of said object (606) and a second mould part (615) cooperating with said die means (614) and with said first mould part (613) so as to compression-mould plastics on said object (606) in said zone, said die means (614) being configured so as to assumes at least a closed configuration for defining at least partially a forming cavity that surrounds said zone, and at least an open configuration for receiving/releasing said object (606), said die means (614) being connected to said second mould part (615) so that a movement between said open and closed configurations comprises a rotation.

98. Apparatus according to claim 97, wherein said die means (614) comprises two or more die elements (616) pivoted on said second mould part (615).
Fig. 10