

US 20050222401A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0222401 A1

(10) Pub. No.: US 2005/0222401 A1 (43) Pub. Date: Oct. 6, 2005

Donoho et al.

(54) NOVED HUMAN PROTEASES AND POLYNUCLEOTIDES ENCODING THE SAME

(76) Inventors: Gregory Donoho, The Woodlands, TX (US); John Scoville, Houston, TX (US); John Scoville, Houston, TX (US); C. Alexander Turner JR., The Woodlands, TX (US); Glenn Friedrich, Houston, TX (US); Alejandro Abuin, The Woodlands, TX (US); Brian Zambrowicz, The Woodlands, TX (US); Arthur T. Sands, The Woodlands, TX (US)

Correspondence Address: Lance K. Ishimoto LEXICON GENETICS INCORPORATED 8800 Technology Forest Place The Woodlands, TX 77381 (US)

- (21) Appl. No.: 11/036,185
- (22) Filed: Jan. 10, 2005

Related U.S. Application Data

- (60) Division of application No. 10/766,074, filed on Jan. 28, 2004, now Pat. No. 6,881,563, which is a division of application No. 10/214,811, filed on Aug. 7, 2002, now Pat. No. 6,743,621, which is a continuation of application No. 09/780,016, filed on Feb. 9, 2001, now Pat. No. 6,509,456.
- (60) Provisional application No. 60/181,924, filed on Feb. 11, 2000.

Publication Classification

(57) **ABSTRACT**

Novel human polynucleotide and polypeptide sequences are disclosed that can be used in therapeutic, diagnostic, and pharmacogenomic applications.

NOVED HUMAN PROTEASES AND POLYNUCLEOTIDES ENCODING THE SAME

[0001] The present application claims the benefit of U.S. Provisional Application No. 60/181,924 which was filed on Feb. 11, 2000 and is herein incorporated by reference in its entirety.

[0002] The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding proteins sharing sequence similarity with mammalian proteases. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed sequences, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed polynucleotides that can be used for diagnosis, drug screening, clinical trial monitoring, the treatment of physiological disorders or infectious disease.

BACKGROUND OF THE INVENTION

[0003] Proteases cleave protein substrates as part of degradation, maturation, and secretory pathways within the body. Proteases have been associated with inter alia, regulating development, diabetes, obesity, infertility, modulating cellular processes, and infectious disease.

SUMMARY OF THE INVENTION

[0004] The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPs) described for the first time herein share structural similarity with animal proteases, and particularly aminopeptidases.

[0005] The novel human nucleic acid (cDNA) sequences described herein, encode proteins/open reading frames (ORFs) of 507, 69, 290, 265, 211, 267, 186, 242, 453, 532, 428, 509, and 484 amino acids in length (see SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, and 26 respectively).

[0006] The invention also encompasses agonists and antagonists of the described NHPs, including small molecules, large molecules, mutant NHPs, or portions thereof that compete with native NHPs, NHP peptides, and NHP antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHPs (e.g., expression constructs that place the described sequence under the control of a strong promoter system), and transgenic animals that express a NHP transgene, or "knockout" animals (which can be conditional) that do not express a functional NHP. A gene trapped "knockout" murine ES cell line has been produced that mutates a murine homolog of the described NHPs. Accordingly, an additional aspect of the present invention includes a knockout mouse that is characterized by reduced levels of NHP expression.

[0007] Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHP and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.

DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES

[0008] The Sequence Listing provides the sequences of the NHP ORFs encoding the described NHP amino acid sequences. SEQ ID NO:27 describes a NHP ORF with flanking sequences.

DETAILED DESCRIPTION OF THE INVENTION

[0009] The NHPs, described for the first time herein, are novel proteins that are expressed in, inter alia, human cell lines, and human fetal brain, brain, pituitary, cerebellum, spinal cord, thymus, spleen, lymph node, bone marrow, trachea, kidney, fetal liver, liver, prostate, testis, thyroid, adrenal gland, pancreas, salivary gland, stomach, small intestine, colon, uterus, placenta, mammary gland, adipose, skin, esophagus, bladder, cervix, rectum, pericardium, hypothalamus, ovary, fetal kidney, and fetal lung cells.

[0010] The described NHPs share sequence similarity with aminopeptidases, and particularly aminopeptidase P, from a variety of organisms. Aminopeptidases have been implicated in a variety cellular and disease processes and have been subject to considerable scientific scrutiny. For example, U.S. Pat. No. 5,972,680 describes uses and applications for proteases such as the presently described NHPs and U.S. Pat. No. 5,656,603 describes a variety of chemical antagonists of aminopeptidase. P, both of which are herein incorporated by reference in their entirety.

[0011] The described sequences were compiled from gene trapped cDNAs and clones isolated from a human testis cDNA library (Edge Biosystems, Gaithersburg, Md.). The present invention encompasses the nucleotides presented in the Sequence Listing, host cells expressing such nucleotides, the expression products of such nucleotides, and: (a) nucleotides that encode mammalian homologs of the described sequences, including the specifically described NHPs, and the NHP products; (b) nucleotides that encode one or more portions of a NHP that correspond to functional domains of the NHP, and the polypeptide products specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated nucleotides that encode mutant versions, engineered or naturally occurring, of a described NHP in which all or a part of at least one domain is deleted or altered, and the polypeptide products specified by such nucleotide sequences, including but not limited to soluble proteins and peptides in which all or a portion of the signal sequence is deleted; (d) nucleotides that encode chimeric fusion proteins containing all or a portion of a coding region of a NHP, or one of its domains (e.g., a receptor or ligand binding domain, accessory protein/selfassociation domain, etc.) fused to another peptide or polypeptide; or (e) therapeutic or diagnostic derivatives of the described polynucleotides such as oligonucleotides, antisense polynucleotides, ribozymes, dsRNA, or gene therapy constructs comprising a sequence first disclosed in the Sequence Listing.

[0012] As discussed above, the present invention includes: (a) the human DNA sequences presented in the Sequence Listing (and vectors comprising the same) and additionally contemplates any nucleotide sequence encoding a contiguous NHP open reading frame (ORF), or a contiguous exon splice junction first described in the Sequence Listing, that hybridizes to a complement of a DNA sequence presented in the Sequence Listing under highly stringent conditions, e.g., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS) 1 mM EDTA at 65° C., and washing in 0.1×SSC/0.1% SDS at 68° C. (Ausubel F. M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3) and encodes a functionally equivalent gene product. Additionally contemplated are any nucleotide sequences that hybridize to the complement of the DNA sequence that encode and express an amino acid sequence presented in the Sequence Listing under moderately stringent conditions, e.g., washing in $0.2{\times}\text{SSC}/0.1\%$ SDS at 42° C. (Ausubel et al., 1989, supra), yet still encode a functionally equivalent NHP product. Functional equivalents of a NHP include naturally occurring NHPs present in other species and mutant NHPs whether naturally occurring or engineered (by site directed mutagenesis, gene shuffling, directed evolution as described in, for example, U.S. Pat. No. 5,837,458). The invention also includes degenerate nucleic acid variants of the disclosed NHP polynucleotide sequences.

[0013] Additionally contemplated are polynucleotides encoding a NHP ORF, or its functional equivalent, encoded by a polynucleotide sequence that is about 99, 95, 90, or about 85 percent similar or identical to corresponding regions of the nucleotide sequences of the Sequence Listing (as measured by BLAST sequence comparison analysis using, for example, the GCG sequence analysis package using standard default settings).

[0014] The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the described NHP nucleotide sequences. Such hybridization conditions may be highly stringent or less highly stringent, as described above. In instances where the nucleic acid molecules are deoxyoligonucleotides ("DNA oligos"), such molecules are generally about 16 to about 100 bases long, or about 20 to about 80, or about 34 to about 45 bases long, or any variation or combination of sizes represented therein that incorporate a contiguous region of sequence first disclosed in the Sequence Listing. Such oligonucleotides can be used in conjunction with the polymerase chain reaction (PCR) to screen libraries, isolate clones, and prepare cloning and sequencing templates, etc.

[0015] Alternatively, such NHP oligonucleotides can be used as hybridization probes for screening libraries, and assessing gene expression patterns (particularly using a micro array or high-throughput "chip" format). Additionally, a series of the described NHP oligonucleotide sequences, or the complements thereof, can be used to represent all or a portion of the described NHP sequences. An oligonucleotide or polynucleotide sequence first disclosed in at least a

portion of one or more of the sequences of SEQ ID NOS: 1-27 can be used as a hybridization probe in conjunction with a solid support matrix/substrate (resins, beads, membranes, plastics, polymers, metal or metallized substrates, crystalline or polycrystalline substrates, etc.). Of particular note are spatially addressable arrays (i.e., gene chips, microtiter plates, etc.) of oligonucleotides and polynucleotides, or corresponding oligopeptides and polypeptides, wherein at least one of the biopolymers present on the spatially addressable array comprises an oligonucleotide or polynucleotide sequence first disclosed in at least one of the sequences of SEQ ID NOS: 1-27, or an amino acid sequence encoded thereby. Methods for attaching biopolymers to, or synthesizing biopolymers on, solid support matrices, and conducting binding studies thereon are disclosed in, inter alia, U.S. Pat. Nos. 5,700,637, 5,556,752, 5,744,305, 4,631,211, 5,445,934, 5,252,743, 4,713,326, 5,424,186, and 4,689,405 the disclosures of which are herein incorporated by reference in their entirety.

[0016] Addressable arrays-comprising sequences first disclosed in SEQ ID NOS:1-27 can be used to identify and characterize the temporal and tissue specific expression of a gene. These addressable arrays incorporate oligonucleotide sequences of sufficient length to confer the required specificity, yet be within the limitations of the production technology. The length of these probes is within a range of between about 8 to about 2000 nucleotides. Preferably the probes consist of 60 nucleotides and more preferably 25 nucleotides from the sequences first disclosed in SEQ ID NOS:1-27.

[0017] For example, a series of the described oligonucleotide sequences, or the complements thereof, can be used in chip format to represent all or a portion of the described sequences. The oligonucleotides, typically between about 16 to about 40 (or any whole number within the stated range) nucleotides in length can partially overlap each other and/or the sequence may be represented using oligonucleotides that do not overlap. Accordingly, the described polynucleotide sequences shall typically comprise at least about two or three distinct oligonucleotide sequences of at least about 8 nucleotides in length that are each first disclosed in the described Sequence Listing. Such oligonucleotide sequences can begin at any nucleotide present within a sequence in the Sequence Listing and proceed in either a sense (5'-to-3') orientation vis-a-vis the described sequence or in an antisense orientation.

[0018] Microarray-based analysis allows the discovery of broad patterns of genetic activity, providing new understanding of gene functions and generating novel and unexpected insight into transcriptional processes and biological mechanisms. The use of addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-27 provides detailed information about transcriptional changes involved in a specific pathway, potentially leading to the identification of novel components or gene functions that manifest themselves as novel phenotypes.

[0019] Probes consisting of sequences first disclosed in SEQ ID NOS:1-27 can also be used in the identification, selection and validation of novel molecular targets for drug discovery. The use of these unique sequences permits the direct confirmation of drug targets and recognition of drug dependent changes in gene expression that are modulated

through pathways distinct, from the drugs intended target. These unique sequences therefore also have utility in defining and monitoring both drug action and toxicity.

[0020] As an example of utility, the sequences first disclosed in SEQ ID NOS:1-27 can be utilized in microarrays or other assay formats, to screen collections of genetic material from patients who have a particular medical condition. These investigations can also be carried out using the sequences first disclosed in SEQ ID NOS:1-27 in silico and by comparing previously collected genetic databases and the disclosed sequences using computer software known to those in the art.

[0021] Thus the sequences first disclosed in SEQ ID NOS:1-27 can be used to identify mutations associated with a particular disease and also as a diagnostic or prognostic assay.

[0022] Although the presently described sequences have been specifically described using nucleotide sequence, it should be appreciated that each of the sequences can uniquely be described using any of a wide variety of additional structural attributes, or combinations thereof. For example, a given sequence can be described by the net composition of the nucleotides present within a given region of the sequence in conjunction with the presence of one or more specific oligonucleotide sequence(s) first disclosed in the SEQ ID NOS:1-27. Alternatively, a restriction map specifying the relative positions of restriction endonuclease digestion sites, or various palindromic or other specific oligonucleotide sequences can be used to structurally describe a given sequence. Such restriction maps, which are typically generated by widely available computer programs (e.g., the University of Wisconsin GCG sequence analysis package, SEQUENCHER 3.0, Gene Codes Corp., Ann Arbor, Mich., etc.), can optionally be used in conjunction with one or more discrete nucleotide sequence(s) present in the sequence that can be described by the relative position of the sequence relative to one or more additional sequence(s) or one or more restriction sites present in the disclosed sequence.

[0023] For oligonucleotide probes, highly stringent conditions may refer, e.g., to washing in $6\times$ SSC/0.05% sodium pyrophosphate at 37° C. (for 14-base oligos), 48° C. (for 17-base oligos), 55° C. (for 20-base oligos), and 60° C. (for 23-base oligos). These nucleic acid molecules may encode or act as NHP gene antisense molecules, useful for example, in NHP gene regulation (for and/or as antisense primers in amplification reactions of NHP nucleic acid sequences). With respect to NHP gene regulation, such techniques can be used to regulate biological functions. Further, such sequences may be used as part of ribozyme and/or triple helix sequences that are also useful for NHP gene regulation.

[0024] Inhibitory antisense or double stranded oligonucleotides can additionally comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N-6isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.

[0025] The antisense oligonucleotide can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

[0026] In yet another embodiment, the antisense oligonucleotide will comprise at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

[0027] In yet another embodiment, the antisense oligonucleotide is an α -anomeric oligonucleotide. An α -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-O-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330). Alternatively, double stranded RNA can be used to disrupt the expression and function of a targeted NHP.

[0028] Oligonucleotides of the invention can be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides can be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), and methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

[0029] Low stringency conditions are well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual (and periodic updates thereof), Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y.

[0030] Alternatively, suitably labeled NHP nucleotide probes can be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for identifying polymorphisms (including, but not limited to, nucleotide repeats, microsatellite alleles, single nucleotide polymorphisms, or coding single nucleotide polymorphisms), determining the genomic structure of a given locus/allele, and designing diagnostic tests. For example, sequences derived from regions adjacent to the intron/exon boundaries of the human gene can be used to

design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics.

[0031] Further, a NHP homolog can be isolated from nucleic acid from an organism of interest by performing PCR using two degenerate or "wobble" oligonucleotide primer pools designed on the basis of amino acid sequences within the NHP products disclosed herein. The template for the reaction may be total RNA, mRNA, and/or cDNA obtained by reverse transcription of mRNA prepared from human or non-human cell lines or tissue known or suspected to express an allele of a NHP gene.

[0032] The PCR product can be subcloned and sequenced to ensure that the amplified sequences represent the sequence of the desired NHP gene. The PCR fragment can then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment can be labeled and used to screen a cDNA library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment can be used to isolate genomic clones via the screening of a genomic library.

[0033] PCR technology can also be used to isolate full length cDNA sequences. For example, RNA can be isolated, following standard procedures, from an appropriate cellular or tissue source (i.e., one known, or suspected, to express a NHP gene). A reverse transcription (RT) reaction can be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may then be "tailed" using a standard terminal transferase reaction, the hybrid may be digested with RNase H, and second strand synthesis may then be primed with a complementary primer. Thus, cDNA sequences upstream of the amplified fragment can be isolated. For a review of cloning strategies that can be used, see e.g., Sambrook et al., 1989, supra.

[0034] A cDNA encoding a mutant NHP gene can be isolated, for example, by using PCR. In this case, the first cDNA strand may be synthesized by hybridizing an oligo-dT oligonucleotide to mRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying a mutant NHP allele, and by extending the new strand with reverse transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide that hybridizes specifically to the 5' end of the normal gene. Using these two primers, the product is then amplified via PCR, optionally cloned into a suitable vector, and subjected to DNA sequence analysis through methods well known to those of skill in the art. By comparing the DNA sequence of the mutant NHP allele to that of a corresponding normal NHP allele, the mutation(s) responsible for the loss or alteration of function of the mutant NHP gene product can be ascertained.

[0035] Alternatively, a genomic library can be constructed using DNA obtained from an individual suspected of or known to carry a mutant NHP allele (e.g., a person manifesting a NHP-associated phenotype such as, for example, obesity, high blood pressure, connective tissue disorders, infertility, etc.), or a cDNA library can be constructed using RNA from a tissue known, or suspected, to express a mutant NHP allele. A normal NHP gene, or any suitable fragment thereof, can then be labeled and used as a probe to identify the corresponding mutant NHP allele in such-libraries. Clones containing mutant NHP gene sequences can then be purified and subjected to sequence analysis according to methods well known to those skilled in the art.

[0036] Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from a tissue known, or suspected, to express a mutant NHP allele in an individual suspected of or known to carry such a mutant allele. In this manner, gene products made by the putatively mutant tissue can be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised against normal NHP product, as described below. (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor.)

[0037] Additionally, screening can be accomplished by screening with labeled NHP fusion proteins, such as, for example, alkaline phosphatase-NHP or NHP-alkaline phosphatase fusion proteins. In cases where a NHP mutation results in an expressed gene product with altered function (e.g., as a result of a missense or a frameshift mutation), polyclonal antibodies to NHP are likely to cross-react with a corresponding mutant NHP gene product. Library clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis according to methods well known in the art.

[0038] The invention also encompasses (a) DNA vectors that contain any of the fore going NHP coding sequences and/or their complements (i.e., antisense); (b) DNA expression vectors that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences (for example, baculo virus as described in U.S. Pat. No. 5,869, 336 herein incorporated by reference); (c) genetically engineered host cells that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences in the host cell; and (d) genetically engineered host cells that express an endogenous NHP gene under the control of an exogenously introduced regulatory element (i.e., gene activation). As used herein, regulatory elements include, but are not limited to, inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include but are not limited to the cytomegalovirus (hCMV) immediate early gene, regulatable, viral elements (particularly retroviral LTR promoters), the early or late promoters of SV40 adenovirus, the lac system, the trp system, the TAC system, the TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase (PGK), the promoters of acid phosphatase, and the promoters of the yeast α -mating factors.

[0039] The present invention also encompasses antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists and agonists of a NHP, as well as compounds or nucleotide constructs that inhibit expression of a NHP gene (transcription factor inhibitors, antisense and ribozyme molecules, or gene or regulatory sequence replacement constructs), or promote the expression of a NHP (e.g., expression constructs in which NHP coding sequences are operatively associated with expression control elements such as promoters, promoter/enhancers, etc.).

[0040] The NHPs or NHP peptides, NHP fusion proteins, NHP nucleotide sequences, antibodies, antagonists and agonists can be useful for the detection of mutant NHPs or inappropriately expressed NHPs for the diagnosis of disease. The NHP proteins or peptides, NHP fusion proteins NHP nucleotide sequences, host cell expression systems, antibodies, antagonists, agonists and genetically engineered cells and animals can be used for screening for drugs (or high throughput screening of combinatorial libraries) effective in the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of a NHP in the body. The use of engineered host cells and/or animals may offer an advantage in that such systems allow not only for the identification of compounds that bind to the endogenous receptor for a NHP, but can also identify compounds that trigger NHP-mediated activities or pathways.

[0041] Finally, the NHP products can be used as therapeutics. For example, soluble derivatives such as NHP peptides/domains corresponding to NHP, NHP fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP, or a domain of a NHP, to an IgFc), NHP antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists or agonists (including compounds that modulate or act on downstream targets in a NHP-mediated pathway) can be used to directly treat diseases or disorders. For instance, the administration of an effective amount of soluble NHP, or a NHP-IgFc fusion protein or an antiidiotypic antibody (or its Fab) that mimics the NHP could activate or effectively antagonize an endogenous NHP receptor, accessory molecule, or substrate. Nucleotide constructs encoding such NHP products can be used to genetically engineer host cells to express such products in vivo; these genetically engineered cells-function as "bioreactors" in the body delivering a continuous supply of a NHP, a NHP peptide, or a NHP fusion protein to the body. Nucleotide constructs encoding functional NHP, mutant NHPs, as well as antisense and ribozyme molecules can also be used in "gene therapy" approaches for the modulation of NHP expression. Thus, the invention also encompasses pharmaceutical formulations and methods for treating biological disorders.

[0042] Various aspects of the invention are described in greater detail in the subsections below.

The NHP Sequences

[0043] The cDNA sequences and the corresponding deduced amino acid sequences of the described NHP are presented in the Sequence Listing. SEQ ID NO:27 describes a NHP ORF as well as flanking regions. The NHP nucleotides were obtained from human cDNA libraries using probes and/or primers generated from human gene trapped sequence tags. Expression analysis has provided evidence that the described NHPs are widely expressed in both human tissues as well as gene trapped human cells.

NHPs and NHP Polypeptides

[0044] NHPs, NHP polypeptides, NHP peptide fragments, mutated, truncated, or deleted forms of NHP, and/or NHP fusion proteins can be prepared for a variety of uses. These

uses include, but are not limited to, the generation of antibodies, as reagents in diagnostic assays, the identification of other cellular gene products related to a NHP, as reagents in assays for screening for compounds that can be as pharmaceutical reagents useful in the therapeutic treatment of mental, biological, or medical disorders and disease.

[0045] The Sequence Listing discloses the amino acid sequence encoded by the described NHP polynucleotides. The NHPs display initiator methionines in DNA sequence contexts consistent with a translation initiation site, and display a consensus signal sequence characteristic of secreted proteins.

[0046] The NHP amino acid sequences of the invention include the amino acid sequences presented in the Sequence Listing as well as analogues and derivatives thereof, as well as any oligopeptide sequence of at least about 10-40, generally about 12-35, or about 16-30 amino acids in length first disclosed in the Sequence Listing. Further, corresponding NHP homologues from other species are encompassed by the invention. In fact, any NHP encoded by the NHP nucleotide sequences described above are within the scope of the invention, as are any novel polynucleotide sequences encoding all or any novel portion of an amino acid sequence presented in the Sequence Listing. The degenerate nature of the genetic code is well known, and, accordingly, each amino acid presented in the Sequence Listing, is generically representative of the well known nucleic acid "triplet" codon, or in many cases codons, that can encode the amino acid. As such, as contemplated wherein, the amino acid sequences presented in the Sequence Listing, when taken together with the genetic code (see, for example, Table 4-1 at page 109 of "Molecular Cell Biology", 1986, J. Darnell et al. eds., Scientific American Books, New York, N.Y., herein incorporated by reference) are generically representative of all the various permutations and combinations of nucleic acid sequences that can encode such amino acid sequences.

[0047] The invention also encompasses proteins that are functionally equivalent to the NHPs encoded by the presently described nucleotide sequences as judged by any of a number of criteria, including, but not limited to, the ability to bind and cleave a substrate of a NHP, or the ability to effect an identical or complementary downstream pathway, or a change in cellular metabolism (e.g., proteolytic activity, ion flux, tyrosine phosphorylation, etc.). Such functionally equivalent NHP proteins include, but are not limited to, additions or substitutions of amino acid residues within the amino acid sequence encoded by the NHP nucleotide sequences described above, but which result in a silent change, thus producing a functionally equivalent gene product. Amino acid substitutions can be made on'the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid.

[0048] A variety of host-expression vector systems can be used to express the NHP nucleotide sequences of the invention. Where, as in the present instance, the NHP products or NHP polypeptides are thought to be soluble or secreted molecules, the peptide or polypeptide can be recovered from the culture media. Such expression systems also encompass engineered host cells that express a NHP, or a functional equivalent, in situ. Purification or enrichment of NHP from such expression systems can be accomplished using appropriate detergents and lipid micelles and methods well known to those skilled in the art. However, such engineered host cells themselves may be used in situations where it is important not only to retain the structural and functional characteristics of the NHP, but to assess biological activity, e.g., in drug screening assays.

[0049] The expression systems that may be used for purposes of the invention include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing NHP nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing NHP encoding nucleotide sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing NHP sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing NHP nucleotide sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

[0050] In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the NHP product being expressed. For example, when a large quantity of such a protein is to be produced for the generation of pharmaceutical compositions of or containing NHP, or for raising antibodies to a NHP, vectors that direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which a NHP coding sequence may be ligated individually into the vector in frame with the lacZ coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors (Pharmacia or American Type Culture Collection) can also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The PGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

[0051] In an insect system, *Autographa californica* nuclear polyhidrosis virus. (AcNPV) is used as a vector to express foreign sequences. The virus grows in *Spodoptera frugiperda* cells. A NHP coding sequence can be cloned

individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of NHP coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect *Spodoptera frugiperda* cells in which the inserted sequence is expressed (e.g., see Smith et al., 1983, J. Virol. 46: 584; Smith, U.S. Pat. No. 4,215,051).

[0052] In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the NHP nucleotide sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing a NHP product in infected hosts (e.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted NHP nucleotide sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire NHP gene or cDNA, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of a NHP coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (See Bitter et al., 1987, Methods in Enzymol. 153:516-544).

[0053] In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the posttranslational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukarvotic host cells that possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and in particular, human cell lines.

[0054] For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the NHP sequences described above can be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the NHP product. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the NHP product.

[0055] A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk⁻, hgprt⁻ or aprt⁻ cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid. (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

[0056] Alternatively, any fusion protein can be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972-8976). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni²⁺.nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imida-zole-containing buffers.

[0057] Also encompassed by the present invention are fusion proteins that direct the NHP to a target organ and/or facilitate transport across the membrane into the cytosol. Conjugation of NHPs to antibody molecules or their Fab fragments could be used to target cells bearing a particular epitope. Attaching the appropriate signal sequence to the NHP would also transport the NHP to the desired location within the cell. Alternatively targeting of NHP or its nucleic acid sequence might be achieved using liposome or lipid complex based delivery systems. Such technologies are described in Liposomes: A Practical Approach, New, RRC ed., Oxford University Press, New York and in U.S. Pat. Nos. 4,594,595, 5,459,127, 5,948,767 and 6,110,490 and their respective disclosures which are herein incorporated by reference in their entirety. Additionally embodied are novel protein constructs engineered in such a way that they facilitate transport of the NHP to the target site or desired organ, where they cross the cell membrane and/or the nucleus where the NHP can exert its functional activity. This goal may be achieved by coupling of the NHP to a cytokine or other ligand that provides targeting specificity, and/or to a protein transducing domain (see generally U.S. applications Ser. Nos. 60/111,701 and 60/056,713, both of which are herein incorporated by reference, for examples of such transducing sequences) to facilitate passage across cellular membranes and can optionally be engineered to include nuclear localization sequences.

Antibodies to NHP Products

[0058] Antibodies that specifically-recognize one or more epitopes of a NHP, or epitopes of conserved variants of a NHP, or peptide fragments of a NHP are also encompassed by the invention. Such antibodies include but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, $F(ab')_2$ fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

[0059] The antibodies of the invention may be used, for example, in the detection of NHP in a biological sample and may, therefore, be utilized as part of a diagnostic or prognostic technique whereby patients may be tested for abnormal amounts of NHP. Such antibodies may also be utilized in conjunction with, for example, compound screening schemes for the evaluation of the effect of test compounds on expression and/or activity of a NHP gene product. Additionally, such antibodies can be used in conjunction gene therapy to, for example, evaluate the normal and/or engineered NHP-expressing cells prior to their introduction into the patient. Such antibodies may additionally be used as a method for the inhibition of abnormal NHP activity. Thus, such antibodies may, therefore, be utilized as part of treatment methods.

[0060] For the production of antibodies, various host animals may be immunized by injection with the NHP, an NHP peptide (e.g., one corresponding to a functional domain of an NHP), truncated NHP polypeptides (NHP in which one or more domains have been deleted), functional equivalents of the NHP or mutated variant of the NHP. Such host animals may include but are not limited to pigs, rabbits, mice, goats, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on the host species; including but not limited to Freund's adjuvant (complete and incomplete), mineral salts such as aluminum hydroxide or aluminum phosphate, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, and potentially useful human-adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Alternatively, the immune response could be enhanced by combination and or coupling with molecules such as keyhole limpet hemocyanin, tetanus toxoid, diptheria toxoid, ovalbumin, cholera toxin or fragments thereof. Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of the immunized animals.

[0061] Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, can be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture.

These include, but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Pat. No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo. Production of high titers of mAbs in vivo makes this the presently preferred method of production.

[0062] In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse; antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. Such technologies are described in U.S. Pat. Nos. 6,075,181 and 5,877,397 and their respective disclosures which are herein incorporated by reference in their entirety. Also encompassed by the present invention is the use of fully humanized monoclonal antibodies as described in U.S. Pat. No. 6,150, 584 and respective disclosures which are herein incorporated by reference in their entirety.

[0063] Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; Bird, 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward et al., 1989, Nature 341:544-546) can be adapted to produce single chain antibodies against NHP gene products. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

[0064] Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, such fragments include, but are not limited to the $F(ab')_2$ fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the $F(ab')_2$ fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

[0065] Antibodies to a NHP can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" a given NHP, using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1993, FASEB J 7(5):437-444; and Nissinoff, 1991, J. Immunol. 147(8):2429-2438). For example antibodies which bind to a NHP domain and competitively inhibit the binding of NHP to its cognate receptor can be used to generate anti-idiotypes that "mimic" the NHP and, therefore, bind and activate or neutralize a receptor. Such anti-idiotypic antibodies or Fab fragments of such anti-idiotypes can be used in therapeutic regimens involving a NHP signaling pathway.

[0066] The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims. All cited publications, patents, and patent applications are herein incorporated by reference in their entirety.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 27
```

<210> SEQ ID NO 1 <211> LENGTH: 1524 <212> TYPE: DNA <213> ORGANISM: homo sapiens

<400> SEQUENCE: 1

60 atgeettgge tgetetcage ceceaagetg gttecegetg tageaaacgt cegeggeete tcaggatgta tgttgtgttc acagcgaagg tactcccttc agcctgtccc agaaaggagg 120 attecaaacc gatacttagg ccageccage ceetttacac acceacacet ceteagacca 180 ggggaggtaa ctccaggact atctcaggtg gaatatgcac ttcgcagaca caaactaatg 240 tctctgatcc agaaggaagc tcaagggcag agtgggacag accagacagt ggttgtgctc 300 360 tecaaceeta catactacat gageaacgat attecetata etttecacea agaeaacaat ttcctgtacc tatgtggatt ccaagagcct gatagcattc ttgtccttca gagcctccct 420 480 qqcaaacaat taccatcaca caaaqccata ctttttqtqc ctcqqcqaqa tcccaqtcqa

gaactt	tggg	atgg	taago	cg a	tctg	gcact	: gat	ggag	jcaa	tago	ctcta	aac t	ggag	gtagac	540
gaagcc	tata	cgct	agaaq	ga a-	tttca	aacat	cti	cctad	ccaa	aaat	gaaa	agc t	gaga	acgaac	600
atggtt	tggt	atga	ctgga	at ga	aggco	cctca	a cat	cgcad	cagc	ttca	actct	-ga d	ctata	atgcag	660
cccctg	actg	aggc	caaaq	gc ca	aagaq	gcaag	aa a	caago	gttc	aaa	gtgtt	ca q	gcago	ctgata	720
cagege	ctcc	ggct	gatca	aa g	tctco	ctgca	u gaa	aatto	jaac	gaat	gcaç	gat t	gcto	gggaag	780
ctgaca	tcac	aggc	tttca	at a	gaaa	ccato	f tto	cacca	agta	aago	ccct	gt g	ggaaq	gaagcc	840
tttctt	tatg	ctaa	gttto	ga a-	tttga	aatgo	c g	ggeto	cgtg	gcgo	cagao	cat t	ttag	gcctat	900
ccacct	gtgg	tggc	tggto	gg ta	aatco	ggtca	aad	cactt	tgc	acta	atgto	jaa a	aata	aatcaa	960
ctcatc	aagg	atgg	ggaaa	at g	gtgci	ttatg	g ga i	zggag	ggtt	gtga	agtct	tc c	ctgct	tatgtg	1020
agtgac	atca	cacg	tacgi	tg go	ccagi	tcaat	gga	caggt	tca	ccgo	cacct	ca o	gcaq	gaactc	1080
tatgaa	gccg	ttct	agaga	at co	caaaq	gagat	: tg1	ttgg	JCCC	tcto	getto	ccc t	adda	acaagc	1140
ttggag	aaca	tcta	cagca	at ga	atgei	tgaco	cto	gataq	ggac	agaa	agctt	taa a	agact	ttgggg	1200
atcatg	aaga	acat	taago	ga a	aataa	atgco	tto	caago	gctg	ctco	gaaaa	ata d	ctgto	ectcat	1260
catgtt	ggcc	acta	cctco	aa a	atgga	atgto	: cat	zgaca	actc	caga	acato	gee o	ccgtt	tccctc	1320
cctctg	cagc	ctgg	gatgo	gt a	atcad	caatt	: gao	laaco	Jgca	ttta	atatt	cc a	agago	gatgac	1380
aaagat	gccc	caga	gaagi	tt to	cdddd	gtctt	: ggi	tgtad	cgaa	ttga	aggat	:ga t	gtag	gtggtg	1440
actcag	gact	cacc	tctca	at co	cttto	ctgca	a gao	ctgto	ccca	aaga	agato	gaa t	gaca	attgaa	1500
cagata	tgca	gcca	ggcti	tc t	tga										1524
<210> 3 <211> 3 <212> 7 <213> 9	LENGTI	H: 50 PRT	07	o sag	piens	5									
<400>	SEQUE	NCE :	2												
Met Pr 1	o Trp	Leu	Leu 5	Ser	Ala	Pro	Lys	Leu 10	Val	Pro	Ala	Val	Ala 15	Asn	
Val Ar	g Gly		Ser	Gly	Cys	Met		Cys	Ser	Gln	Arg	-	Tyr	Ser	
Len Cl	n D~-	20 Val	Dwe	c1	۸~~	۸r~	25 Tlo	Dre	۸۰۳	۸۳۵	T 111	30 Lou	c1	Gln	
Leu Gl	35	vai	ΓĽΟ	σıu	лгу	40	тте	FIO	ADII	лıу	45	цец	сту	J111	
Pro Se 50	r Pro	Phe	Thr	His	Pro 55	His	Leu	Leu	Arg	Pro 60	Gly	Glu	Val	Thr	
Pro Gl	y Leu	Ser	Gln	Val		Tyr	Ala	Leu	Arg		His	Lys	Leu	Met	
65				70		-			75	,		-		80	
Ser Le	u Ile	Gln	L y s 85	Glu	Ala	Gln	Gly	Gln 90	Ser	Gly	Thr	Asp	Gln 95	Thr	
Val Va	l Val	Leu	Ser	Asn	Pro	Thr	Tyr	Tyr	Met	Ser	Asn	Asp	Ile	Pro	
		100					105					110			
Tyr Th	r Phe 115		Gln	Asp	Asn	Asn 120	Phe	Leu	Tyr	Leu	C y s 125	Gly	Phe	Gln	
Glu Pr	_	Ser	Ile	Leu		Leu	Gln	Ser	Leu		Gly	Lys	Gln	Leu	
13 Dra Ca		T	N 1-	T].	135	Dk -	170 7	D1	N 1	140	N	Dr: -	0.4.1	Ame	
Pro Se	r uts	LIVS.							Ard	Ard				ALU	
145		-1-	ALG	150	Leu	Pile	vai	110	155	5	тэр	FLO	001	160	
		-		150					155	-	-			160	

-continued

											-	con	tin	ued							
				165					170					175							
Thr	Gly	Val	Asp 180	Glu	Ala	Tyr	Thr	Leu 185	Glu	Glu	Phe	Gln	His 190	Leu	Leu						
Pro	Lys	Met 195	Lys	Ala	Glu	Thr	Asn 200	Met	Val	Trp	Tyr	As p 205	Trp	Met	Arg						
Pro	Ser 210	His	Ala	Gln	Leu	His 215	Ser	Asp	Tyr	Met	Gln 220	Pro	Leu	Thr	Glu						
Ala 225	Lys	Ala	Lys	Ser	L y s 230	Asn	Lys	Val	Arg	Gl y 235	Val	Gln	Gln	Leu	Ile 240						
Gln	Arg	Leu	Arg	Leu 245	Ile	Lys	Ser	Pro	Ala 250	Glu	Ile	Glu	Arg	Met 255	Gln						
Ile	Ala	Gly	Lys 260	Leu	Thr	Ser	Gln	Ala 265	Phe	Ile	Glu	Thr	Met 270	Phe	Thr						
Ser	Lys	Ala 275	Pro	Val	Glu	Glu	Ala 280	Phe	Leu	Tyr	Ala	L y s 285	Phe	Glu	Phe						
Glu	С у в 290	Arg	Ala	Arg	Gly	Ala 295	Asp	Ile	Leu	Ala	Ty r 300	Pro	Pro	Val	Val						
Ala 305	Gly	Gly	Asn	Arg	Ser 310	Asn	Thr	Leu	His	Ty r 315	Val	Lys	Asn	Asn	Gln 320						
Leu	Ile	Lys	Asp	Gly 325	Glu	Met	Val	Leu	Leu 330	Asp	Gly	Gly	Cys	Glu 335	Ser						
Ser	Сув	Tyr	Val 340	Ser	Asp	Ile	Thr	Arg 345	Thr	Trp	Pro	Val	Asn 350	Gly	Arg						
Phe	Thr	Ala 355	Pro	Gln	Ala	Glu	Leu 360	Tyr	Glu	Ala	Val	Leu 365	Glu	Ile	Gln						
Arg	Asp 370	Cys	Leu	Ala	Leu	С у в 375	Phe	Pro	Gly	Thr	Ser 380	Leu	Glu	Asn	Ile						
Ty r 385	Ser	Met	Met	Leu	Thr 390	Leu	Ile	Gly	Gln	Lys 395	Leu	Lys	Asp	Leu	Gly 400						
Ile	Met	Lys	Asn	Ile 405	Lys	Glu	Asn	Asn	Ala 410	Phe	Lys	Ala	Ala	Arg 415	Lys						
Tyr	Сув	Pro	His 420	His	Val	Gly	His	Ty r 425	Leu	Gly	Met	Asp	Val 430	His	Asp						
Thr	Pro	Авр 435	Met	Pro	Arg	Ser	Leu 440	Pro	Leu	Gln	Pro	Gly 445	Met	Val	Ile						
Thr	Ile 450	Glu	Pro	Gly	Ile	Ty r 455	Ile	Pro	Glu	Asp	Asp 460	Lys	Asp	Ala	Pro						
Glu 465	Lys	Phe	Arg	Gly	Leu 470	Gly	Val	Arg	Ile	Glu 475	Asp	Asp	Val	Val	Val 480						
Thr	Gln	Asp	Ser	Pro 485	Leu	Ile	Leu	Ser	Ala 490	Asp	Cys	Pro	Lys	Glu 495	Met						
Asn	Asp	Ile	Glu 500	Gln	Ile	Cys	Ser	Gln 505	Ala	Ser											
<21 <21	0> SH 1> LH 2> TY 3> OH	ENGTI PE:	H: 2 DNA	10	o saj	piens	3														
<40	0> SI	EQUEI	NCE:	3																	
atg	cctt	ggc ·	tgct	ctca	gc c	ccca	agct	g gt	tada	gctg	tag	caaa	cgt	ccgc	ggcctc	c 60	0				
tca	ggate	gta	tgtt	gtgt	tc a	cage	gaag	g ta	ctcc	cttc	agc	ctgt	ccc	agaa	aggagg	g 12(0				

attccaaacc gatacttagg ccagcccagc ccctttacac acccacacct cctcagacca 180 210 gactcgaatt cctgctggga agtcggctga <210> SEQ ID NO 4 <211> LENGTH: 69 <212> TYPE: PRT <213> ORGANISM: homo sapiens <400> SEQUENCE: 4 Met Pro Trp Leu Leu Ser Ala Pro Lys Leu Val Pro Ala Val Ala Asn 10 1 Val Arg Gly Leu Ser Gly Cys Met Leu Cys Ser Gln Arg Arg Tyr Ser 25 20 Leu Gln Pro Val Pro Glu Arg Arg Ile Pro Asn Arg Tyr Leu Gly Gln 40 35 Pro Ser Pro Phe Thr His Pro His Leu Leu Arg Pro Asp Ser Asn Ser 55 50 60 Cys Trp Glu Val Gly 65 <210> SEQ ID NO 5 <211> LENGTH: 873 <212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 5 60 atgccttggc tgctctcagc ccccaagctg gttcccgctg tagcaaacgt ccgcggcctc tcaggatgta tgttgtgttc acagcgaagg tactcccttc agcctgtccc agaaaggagg 120 attecaaacc gatacttagg ccageccage ceetttacac acceacacet ceteagacca 180 ggggaggtaa ctccaggact atctcaggtg gaatatgcac ttcgcagaca caaactaatg 240 tctctgatcc agaaggaagc tcaagggcag agtgggacag accagacagt ggttgtgctc 300 tccaacccta catactacat gagcaacgat attccctata ctttccacca agacaacaat 360 420 ttcctgtacc tatgtggatt ccaagagcct gatagcattc ttgtccttca gagcctccct ggcaaacaat taccatcaca caaagccata ctttttgtgc ctcggcgaga tcccagtcga 480 gaactttggg atggtccgcg atctggcact gatggagcaa tagctctaac tggagtagac 540 gaagcetata egetagaaga attteaacat ettetaecaa aaatgaaagt getettgeea 600 gctcttcaaa aggaggtact gttctccaag aacgatccat gcatcacagc atcagaatca 660 cctgctgaga cgaacatggt ttggtatgac tggatgaggc cctcacatgc acagcttcac 720 tctgactata tgcagcccct gactgaggcc aaagccaaga gcaagaacaa ggttcggggt 780 gttcagcagc tgatacagcg cctccggctg atcaagtctc ctgcagaaat tgaacgaatg 840 cagattgctg ggaagctgac atcacaggta tga 873 <210> SEQ ID NO 6 <211> LENGTH: 290 <212> TYPE: PRT <213> ORGANISM: homo sapiens <400> SEQUENCE: 6 Met Pro Trp Leu Leu Ser Ala Pro Lys Leu Val Pro Ala Val Ala Asn 5 10 15 1

-continued	l
------------	---

Val	Arg	Gly	Leu 20	Ser	Gly	Суз	Met	Leu 25	Cys	Ser	Gln	Arg	Arg 30	Tyr	Ser		
Leu	Gln	Pro 35	Val	Pro	Glu	Arg	Arg 40	Ile	Pro	Asn	Arg	Ty r 45	Leu	Gly	Gln		
Pro	Ser 50	Pro	Phe	Thr	His	Pro 55	His	Leu	Leu	Arg	Pro 60	Gly	Glu	Val	Thr		
Pro 65	Gly	Leu	Ser	Gln	Val 70	Glu	Tyr	Ala	Leu	Arg 75	Arg	His	Lys	Leu	Met 80		
Ser	Leu	Ile	Gln	L y s 85	Glu	Ala	Gln	Gly	Gln 90	Ser	Gly	Thr	Asp	Gln 95	Thr		
Val	Val	Val	Leu 100	Ser	Asn	Pro	Thr	Ty r 105	Tyr	Met	Ser	Asn	Asp 110	Ile	Pro		
Tyr	Thr	Phe 115	His	Gln	Asp	Asn	Asn 120	Phe	Leu	Tyr	Leu	С у в 125	Gly	Phe	Gln		
Glu	Pro 130	Asp	Ser	Ile	Leu	Val 135	Leu	Gln	Ser	Leu	Pro 140	Gly	Lys	Gln	Leu		
Pro 145	Ser	His	Lys	Ala	Ile 150	Leu	Phe	Val	Pro	Arg 155	Arg	Asp	Pro	Ser	Arg 160		
Glu	Leu	Trp	Asp	Gly 165	Pro	Arg	Ser	Gly	Thr 170	Asp	Gly	Ala	Ile	Ala 175	Leu		
Thr	Gly	Val	A sp 180	Glu	Ala	Tyr	Thr	Leu 185	Glu	Glu	Phe	Gln	His 190	Leu	Leu		
Pro	Lys	Met 195	Lys	Val	Leu	Leu	Pro 200	Ala	Leu	Gln	Lys	Glu 205	Val	Leu	Phe		
Ser	L y s 210	Asn	Asp	Pro	Суз	Ile 215	Thr	Ala	Ser	Glu	Ser 220	Pro	Ala	Glu	Thr		
Asn 225	Met	Val	Trp	Tyr	Asp 230	Trp	Met	Arg	Pro	Ser 235	His	Ala	Gln	Leu	His 240		
Ser	Asp	Tyr	Met	Gln 245	Pro	Leu	Thr	Glu	Ala 250	Lys	Ala	Lys	Ser	L y s 255	Asn		
Lys	Val	Arg	Gly 260	Val	Gln	Gln	Leu	Ile 265	Gln	Arg	Leu	Arg	Leu 270	Ile	Lys		
Ser	Pro	Ala 275	Glu	Ile	Glu	Arg	Met 280	Gln	Ile	Ala	Gly	L ys 285	Leu	Thr	Ser		
Gln	Val 290																
	0> SE																
<212	1> LE 2> TY 3> OF	PE:	DNA		s sap	oiens	5										
<400	0> SE	QUE	ICE :	7													
atq	cctto	ggc H	tgato	ctcad	jc c	ccca	agcto	g gti	cccc	gctg	tago	caaa	cgt (ccgco	ggcctc	6	50
															aggagg	12	20
															agacca	18	
			-			-	-								ctaatg	24	
															gtgctc	30	0
tcca	aacco	cta (cata	ctaca	at ga	agca	acgat	t ati	caat	tata	ctt	cca	cca a	agaca	aacaat	36	;0
ttc	ctgta	acc +	tatg	tggai	tt c	caaga	agcci	t gai	cagea	attc	ttgi	cct	tca 🤉	gage	ctccct	42	20

ggcaaacaat taccatcaca caaagccata ctttttgtgc ctcggcgaga tcccagtcga	480
gaactttggg atggtccgcg atctggcact gatggagcaa tagctctaac tggagtagac	540
gaagcctata cgctagaaga atttcaacat cttctaccaa aaatgaaagc tgagacgaac	600
atggtttggt atgactggat gaggccctca catgcacagc ttcactctga ctatatgcag	660
cccctgactg aggccaaagc caagagcaag aacaaggttc ggggtgttca gcagctgata	720
cagegeetee ggetgateaa gteteetgea gaaattgaae gaatgeagat tgetgggaag	780
ctgacatcac aggtatga	798
<210> SEQ ID NO 8 <211> LENGTH: 265 <212> TYPE: PRT <213> ORGANISM: homo sapiens	
<400> SEQUENCE: 8	
Met Pro Trp Leu Leu Ser Ala Pro Lys Leu Val Pro Ala Val Ala Asn 1 5 10 15	
Val Arg Gly Leu Ser Gly Cys Met Leu Cys Ser Gln Arg Arg Tyr Ser 20 25 30	
Leu Gln Pro Val Pro Glu Arg Arg Ile Pro Asn Arg Tyr Leu Gly Gln 35 40 45	
Pro Ser Pro Phe Thr His Pro His Leu Leu Arg Pro Gly Glu Val Thr	
Pro Gly Leu Ser Gln Val Glu Tyr Ala Leu Arg Arg His Lys Leu Met 65 70 75 80	
Ser Leu Ile Gln Lys Glu Ala Gln Gly Gln Ser Gly Thr Asp Gln Thr 85 90 95	
Val Val Leu Ser Asn Pro Thr Tyr Tyr Met Ser Asn Asp Ile Pro 100 105 110	
Tyr Thr Phe His Gln Asp Asn Asn Phe Leu Tyr Leu Cys Gly Phe Gln	
115 120 125 Glu Pro Asp Ser Ile Leu Val Leu Gln Ser Leu Pro Gly Lys Gln Leu	
130 135 140	
Pro Ser His Lys Ala Ile Leu Phe Val Pro Arg Arg Asp Pro Ser Arg 145 150 155 160	
Glu Leu Trp Asp Gly Pro Arg Ser Gly Thr Asp Gly Ala Ile Ala Leu 165 170 175	
Thr Gly Val Asp Glu Ala Tyr Thr Leu Glu Glu Phe Gln His Leu Leu 180 185 190	
Pro Lys Met Lys Ala Glu Thr Asn Met Val Trp Tyr Asp Trp Met Arg 195 200 205	
Pro Ser His Ala Gln Leu His Ser Asp Tyr Met Gln Pro Leu Thr Glu	
210 215 220 Ala Lys Ala Lys Ser Lys Asn Lys Val Arg Gly Val Gln Gln Leu Ile	
Ala Lys Ala Lys Ser Lys Ash Lys Val Arg Gly Val Gln Gln Leu He225230235240	
Gln Arg Leu Arg Leu Ile Lys Ser Pro Ala Glu Ile Glu Arg Met Gln 245 250 255	
Ile Ala Gly Lys Leu Thr Ser Gln Val 260 265	

-c	\sim	n	+	п.	n	11	ρ	Ы

<211> LENGTH: 636 <212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 9 60 ctctccaacc ctacatacta catgagcaac gatattccct atactttcca ccaagacaac 120 aatttcctgt acctatgtgg attccaagag cctgatagca ttcttgtcct tcagagcctc 180 cctggcaaac aattaccatc acacaaagcc atactttttg tgcctcggcg agatcccagt 240 cgagaacttt gggatggtcc gcgatctggc actgatggag caatagctct aactggagta 300 gacgaagcct atacgctaga agaatttcaa catcttctac caaaaatgaa agtgctcttg 360 ccagctcttc aaaaggaggt actgttctcc aagaacgatc catgcatcac agcatcagaa 420 480 tcacctgctg agacgaacat ggtttggtat gactggatga ggccctcaca tgcacagctt cactctgact atatgcagcc cctgactgag gccaaagcca agagcaagaa caaggttcgg 540 ggtgttcagc agctgataca gcgcctccgg ctgatcaagt ctcctgcaga aattgaacga 600 atgcagattg ctgggaagct gacatcacag gtatga 636 <210> SEQ ID NO 10 <211> LENGTH: 211 <212> TYPE: PRT <213> ORGANISM: homo sapiens <400> SEQUENCE: 10 Met Ser Leu Ile Gln Lys Glu Ala Gln Gly Gln Ser Gly Thr Asp Gln 5 10 Thr Val Val Leu Ser Asn Pro Thr Tyr Tyr Met Ser Asn Asp Ile 25 20 -30 Pro Tyr Thr Phe His Gln Asp Asn Asn Phe Leu Tyr Leu Cys Gly Phe 40 35 45 Gln Glu Pro Asp Ser Ile Leu Val Leu Gln Ser Leu Pro Gly Lys Gln 50 55 60 Leu Pro Ser His Lys Ala Ile Leu Phe Val Pro Arg Arg Asp Pro Ser 70 65 75 80 Arg Glu Leu Trp Asp Gly Pro Arg Ser Gly Thr Asp Gly Ala Ile Ala 85 90 95 Leu Thr Gly Val Asp Glu Ala Tyr Thr Leu Glu Glu Phe Gln His Leu 100 105 110 Leu Pro Lys Met Lys Val Leu Leu Pro Ala Leu Gln Lys Glu Val Leu 115 120 125 Phe Ser Lys Asn Asp Pro Cys Ile Thr Ala Ser Glu Ser Pro Ala Glu 130 135 140 Thr Asn Met Val Trp Tyr Asp Trp Met Arg Pro Ser His Ala Gln Leu 150 155 145 160 His Ser Asp Tyr Met Gln Pro Leu Thr Glu Ala Lys Ala Lys Ser Lys 170 165 175 Asn Lys Val Arg Gly Val Gln Gln Leu Ile Gln Arg Leu Arg Leu Ile 180 185 190 Lys Ser Pro Ala Glu Ile Glu Arg Met Gln Ile Ala Gly Lys Leu Thr 200 195 205 Ser Gln Val

15

-continued

<210> SEQ ID NO 11 <211> LENGTH: 804 <212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEOUENCE: 11 atgttgtgtt cacagcgaag gtactccctt cagcctgtcc cagaaaggag gattccaaac 60 cgatacttag gccagcccag cccctttaca cacccacacc tcctcagacc aggggaggta 120 actccaggac tatctcaggt ggaatatgca cttcgcagac acaaactaat gtctctgatc 180 cagaaggaag ctcaagggca gagtgggaca gaccagacag tggttgtgct ctccaaccct 240 acatactaca tgagcaacga tattccctat actttccacc aagacaacaa tttcctgtac 300 ctatgtggat tccaagagcc tgatagcatt cttgtccttc agagcctccc tggcaaacaa 360 ttaccatcac acaaagccat actttttgtg cctcggcgag atcccagtcg agaactttgg 420 gatggtccgc gatctggcac tgatggagca atagctctaa ctggagtaga cgaagcctat 480 acgctagaag aatttcaaca tcttctacca aaaatgaaag tgctcttgcc agctcttcaa 540 aaggaggtac tgttctccaa gaacgatcca tgcatcacag catcagaatc acctgctgag 600 acgaacatgg tttggtatga ctggatgagg ccctcacatg cacagcttca ctctgactat 660 atgcagcccc tgactgaggc caaagccaag agcaagaaca aggttcgggg tgttcagcag 720 ctgatacagc gcctccggct gatcaagtct cctgcagaaa ttgaacgaat gcagattgct 780 804 gggaagctga catcacaggt atga <210> SEQ ID NO 12 <211> LENGTH: 267 <212> TYPE: PRT <213> ORGANISM: homo sapiens <400> SEQUENCE: 12 Met Leu Cys Ser Gln Arg Arg Tyr Ser Leu Gln Pro Val Pro Glu Arg 1 5 10 15 Arg Ile Pro Asn Arg Tyr Leu Gly Gln Pro Ser Pro Phe Thr His Pro202530 His Leu Leu Arg Pro Gly Glu Val Thr Pro Gly Leu Ser Gln Val Glu 35 40 Tyr Ala Leu Arg Arg His Lys Leu Met Ser Leu Ile Gln Lys Glu Ala 55 60 50 Gln Gly Gln Ser Gly Thr Asp Gln Thr Val Val Val Leu Ser Asn Pro 70 75 65 80 Thr Tyr Tyr Met Ser Asn Asp Ile Pro Tyr Thr Phe His Gln Asp Asn 85 90 95 Asn Phe Leu Tyr Leu Cys Gly Phe Gln Glu Pro Asp Ser Ile Leu Val 100 105 110 Leu Gln Ser Leu Pro Gly Lys Gln Leu Pro Ser His Lys Ala Ile Leu 120 115 125 Phe Val Pro Arg Arg Asp Pro Ser Arg Glu Leu Trp Asp Gly Pro Arg 135 140 130 Ser Gly Thr Asp Gly Ala Ile Ala Leu Thr Gly Val Asp Glu Ala Tyr

155

160

150

-continued

-continued	
Thr Leu Glu Glu Phe Gln His Leu Leu Pro Lys Met Lys Val Leu Leu 165 170 175	
Pro Ala Leu Gln Lys Glu Val Leu Phe Ser Lys Asn Asp Pro Cys Ile 180 185 190	
Thr Ala Ser Glu Ser Pro Ala Glu Thr Asn Met Val Trp Tyr Asp Trp 195 200 205	
Met Arg Pro Ser His Ala Gln Leu His Ser Asp Tyr Met Gln Pro Leu 210 215 220	
Thr Glu Ala Lys Ala Lys Ser Lys Asn Lys Val Arg Gly Val Gln Gln	
225 230 235 240 Leu Ile Gln Arg Leu Arg Leu Ile Lys Ser Pro Ala Glu Ile Glu Arg	
245 250 255 Met Gln Ile Ala Gly Lys Leu Thr Ser Gln Val	
260 265	
<210> SEQ ID NO 13 <211> LENGTH: 561 <212> TYPE: DNA <213> ORGANISM: homo sapiens	
<400> SEQUENCE: 13	
atgtetetga tecagaagga ageteaaggg cagagtggga cagaceagae agtggttgtg	60
stotocoaco otacatacta catgagoaac gatattocot atactttoca ocaagacaac	120
aattteetgt acetatgtgg atteeaagag eetgatagea ttettgteet teagageete	180
gagaacttt gggatggtcc gcgatctggc actgatggag caatagctct aactggagta	300
yacgaagcct atacgctaga agaatttcaa catcttctac caaaaatgaa agctgagacg	360
aacatggttt ggtatgactg gatgaggccc tcacatgcac agcttcactc tgactatatg	420
agcccctga ctgaggccaa agccaagagc aagaacaagg ttcggggtgt tcagcagctg	480
atacagegee teeggetgat caagteteet geagaaattg aaegaatgea gattgetggg	540
aagctgacat cacaggtatg a	561
<210> SEQ ID NO 14 <211> LENGTH: 186 <212> TYPE: PRT <213> ORGANISM: homo sapiens	
<400> SEQUENCE: 14	
Met Ser Leu Ile Gln Lys Glu Ala Gln Gly Gln Ser Gly Thr Asp Gln 1 5 10 15	
Fhr Val Val Leu Ser Asn Pro Thr Tyr Tyr Met Ser Asn Asp Ile 20 25 30	
Pro Tyr Thr Phe His Gln Asp Asn Asn Phe Leu Tyr Leu Cys Gly Phe 35 40 45	
Gln Glu Pro Asp Ser Ile Leu Val Leu Gln Ser Leu Pro Gly Lys Gln 50 55 60	
Leu Pro Ser His Lys Ala Ile Leu Phe Val Pro Arg Arg Asp Pro Ser 65 70 75 80	
Arg Glu Leu Trp Asp Gly Pro Arg Ser Gly Thr Asp Gly Ala Ile Ala 85 90 95	
Leu Thr Gly Val Asp Glu Ala Tyr Thr Leu Glu Glu Phe Gln His Leu	

continued

-continued	
100 105 110	
Leu Pro Lys Met Lys Ala Glu Thr Asn Met Val Trp Tyr Asp Trp Met 115 120 125	
Arg Pro Ser His Ala Gln Leu His Ser Asp Tyr Met Gln Pro Leu Thr 130 135 140	
Glu Ala Lys Ala Lys Ser Lys Asn Lys Val Arg Gly Val Gln Gln Leu	
145 150 155 160	
Ile Gln Arg Leu Arg Leu Ile Lys Ser Pro Ala Glu Ile Glu Arg Met 165 170 175	
Gln Ile Ala Gly Lys Leu Thr Ser Gln Val 180 185	
<210> SEQ ID NO 15 <211> LENGTH: 729 <212> TYPE: DNA	
<213> ORGANISM: homo sapiens	
<400> SEQUENCE: 15	
atgttgtgtt cacagcgaag gtactccctt cagcctgtcc cagaaaggag gattccaaac	60
cgatacttag gccagcccag cccctttaca cacccacacc tcctcagacc aggggaggta	120
actccaggac tatctcaggt ggaatatgca cttcgcagac acaaactaat gtctctgatc	180
cagaaggaag ctcaagggca gagtgggaca gaccagacag tggttgtgct ctccaaccct	240
acatactaca tgagcaacga tattccctat actttccacc aagacaacaa tttcctgtac	300
ctatgtggat tccaagagcc tgatagcatt cttgtccttc agagcctccc tggcaaacaa	360
ttaccatcac acaaagccat actttttgtg cotcggcgag atcccagtcg agaactttgg	420 480
gatggtccgc gatctggcac tgatggagca atagctctaa ctggagtaga cgaagcctat	540
tatgactgga tgaggccctc acatgcacag cttcactctg actatatgca gcccctgact	600
gaggccaaag ccaagagcaa gaacaaggtt cggggtgttc agcagctgat acagcgcctc	660
cqqctqatca aqtctcctqc aqaaattqaa cqaatqcaqa ttqctqqqaa qctqacatca	720
caggtatga	729
<210> SEQ ID NO 16 <211> LENGTH: 242	
<212> TYPE: PRT <213> ORGANISM: homo sapiens	
<400> SEQUENCE: 16	
Met Leu Cys Ser Gln Arg Arg Tyr Ser Leu Gln Pro Val Pro Glu Arg 1 5 10 15	
Arg Ile Pro Asn Arg Tyr Leu Gly Gln Pro Ser Pro Phe Thr His Pro202530	
His Leu Leu Arg Pro Gly Glu Val Thr Pro Gly Leu Ser Gln Val Glu 35 40 45	
Tyr Ala Leu Arg Arg His Lys Leu Met Ser Leu Ile Gln Lys Glu Ala 50 55 60	
Gln Gly Gln Ser Gly Thr Asp Gln Thr Val Val Val Leu Ser Asn Pro 65 70 75 80	
Thr Tyr Tyr Met Ser Asn Asp Ile Pro Tyr Thr Phe His Gln Asp Asn 85 90 95	

```
-continued
```

Asn Phe Leu Tyr Leu Cys Gly Phe Gln Glu Pro Asp Ser Ile Leu Val 105 110 100 Leu Gln Ser Leu Pro Gly Lys Gln Leu Pro Ser His Lys Ala Ile Leu 115 120 Phe Val Pro Arg Arg Asp Pro Ser Arg Glu Leu Trp Asp Gly Pro Arg 130 135 140 Ser Gly Thr Asp Gly Ala Ile Ala Leu Thr Gly Val Asp Glu Ala Tyr 145 150 155 160 Thr Leu Glu Glu Phe Gln His Leu Leu Pro Lys Met Lys Ala Glu Thr 165 170 175 Asn Met Val Trp Tyr Asp Trp Met Arg Pro Ser His Ala Gln Leu His 185 180 190 Ser Asp Tyr Met Gln Pro Leu Thr Glu Ala Lys Ala Lys Ser Lys Asn 200 195 205 Lys Val Arg Gly Val Gln Gln Leu Ile Gln Arg Leu Arg Leu Ile Lys 210 215 220 Ser Pro Ala Glu Ile Glu Arg Met Gln Ile Ala Gly Lys Leu Thr Ser 225 230 235 240 Gln Val <210> SEQ ID NO 17 <211> LENGTH: 1362 <212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 17 60 ctctccaacc ctacatacta catgagcaac gatattccct atactttcca ccaagacaac 120 180 aatttcctqt acctatqtqq attccaaqaq cctqataqca ttcttqtcct tcaqaqcctc cctqqcaaac aattaccatc acacaaaqcc atactttttq tqcctcqqcq aqatcccaqt 240 cgagaacttt gggatggtcc gcgatctggc actgatggag caatagctct aactggagta 300 gacgaageet atacgetaga agaattteaa catettetae caaaaatgaa agtgetettg 360 ccagctcttc aaaaggaggt actgttctcc aagaacgatc catgcatcac agcatcagaa 420 tcacctgctg agacgaacat ggtttggtat gactggatga ggccctcaca tgcacagctt 480 cactctgact atatgcagcc cctgactgag gccaaagcca agagcaagaa caaggttcgg 540 ggtgttcagc agctgataca gcgcctccgg ctgatcaagt ctcctgcaga aattgaacga 600 atgcagattg ctgggaagct gacatcacag gctttcatag aaaccatgtt caccagtaaa 660 gcccctgtgg aagaagcctt tctttatgct aagtttgaat ttgaatgccg ggctcgtggc 720 gcagacattt tagcctatcc acctgtggtg gctggtggta atcggtcaaa cactttgcac 780 840 tatgtgaaaa ataatcaact catcaaggat ggggaaatgg tgcttctgga tggaggttgt gagtetteet getatgtgag tgacateaca egtaegtgge eagteaatgg eaggtteace 900 gcacctcagg cagaactcta tgaagccgtt ctagagatcc aaagagattg tttggccctc 960 tgcttccctg ggacaagctt ggagaacatc tacagcatga tgctgaccct gataggacag 1020 aagcttaaag acttggggat catgaagaac attaaggaaa ataatgcctt caaggctgct 1080 cgaaaatact gtcctcatca tgttggccac tacctcggga tggatgtcca tgacactcca 1140

continued	
gacatgcccc gttccctccc tctgcagcct gggatggtaa tcacaattga gcccggcatt	1200
tatattccag aggatgacaa agatgcccca gagaagtttc ggggtcttgg tgtacgaatt	1260
gaggatgatg tagtggtgac tcaggactca cctctcatcc tttctgcaga ctgtcccaaa	1320
gagatgaatg acattgaaca gatatgcagc caggettett ga	1362
<210> SEQ ID NO 18 <211> LENGTH: 453 <212> TYPE: PRT <213> ORGANISM: homo sapiens	
<400> SEQUENCE: 18	
Met Ser Leu Ile Gln Lys Glu Ala Gln Gly Gln Ser Gly Thr Asp Gln151015	
Thr Val Val Leu Ser Asn Pro Thr Tyr Tyr Met Ser Asn Asp Ile 20 25 30	
Pro Tyr Thr Phe His Gln Asp Asn Asn Phe Leu Tyr Leu Cys Gly Phe 35 40 45	
Gln Glu Pro Asp Ser Ile Leu Val Leu Gln Ser Leu Pro Gly Lys Gln 50 55 60	
Leu Pro Ser His Lys Ala Ile Leu Phe Val Pro Arg Arg Asp Pro Ser 65 70 75 80	
Arg Glu Leu Trp Asp Gly Pro Arg Ser Gly Thr Asp Gly Ala Ile Ala 85 90 95	
Leu Thr Gly Val Asp Glu Ala Tyr Thr Leu Glu Glu Phe Gln His Leu 100 105 110	
Leu Pro Lys Met Lys Val Leu Leu Pro Ala Leu Gln Lys Glu Val Leu 115 120 125	
Phe Ser Lys Asn Asp Pro Cys Ile Thr Ala Ser Glu Ser Pro Ala Glu 130 135 140	
Thr Asn Met Val Trp Tyr Asp Trp Met Arg Pro Ser His Ala Gln Leu 145 150 155 160	
His Ser Asp Tyr Met Gln Pro Leu Thr Glu Ala Lys Ala Lys Ser Lys 165 170 175	
Asn Lys Val Arg Gly Val Gln Gln Leu Ile Gln Arg Leu Arg Leu Ile 180 185 190	
Lys Ser Pro Ala Glu Ile Glu Arg Met Gln Ile Ala Gly Lys Leu Thr 195 200 205	
Ser Gln Ala Phe Ile Glu Thr Met Phe Thr Ser Lys Ala Pro Val Glu 210 215 220	
Glu Ala Phe Leu Tyr Ala Lys Phe Glu Phe Glu Cys Arg Ala Arg Gly 225 230 235 240	
Ala Asp Ile Leu Ala Tyr Pro Pro Val Val Ala Gly Gly Asn Arg Ser 245 250 255	
Asn Thr Leu His Tyr Val Lys Asn Asn Gln Leu Ile Lys Asp Gly Glu 260 265 270	
Met Val Leu Leu Asp Gly Gly Cys Glu Ser Ser Cys Tyr Val Ser Asp 275 280 285	
Ile Thr Arg Thr Trp Pro Val Asn Gly Arg Phe Thr Ala Pro Gln Ala 290 295 300	
Glu Leu Tyr Glu Ala Val Leu Glu Ile Gln Arg Asp Cys Leu Ala Leu 305 310 315 320	

```
-continued
```

-continued
Cys Phe Pro Gly Thr Ser Leu Glu Asn Ile Tyr Ser Met Leu Thr 325 330 335
Leu Ile Gly Gln Lys Leu Lys Asp Leu Gly Ile Met Lys Asn Ile Lys 340 345 350
Glu Asn Asn Ala Phe Lys Ala Ala Arg Lys Tyr Cys Pro His His Val 355 360 365
Gly His Tyr Leu Gly Met Asp Val His Asp Thr Pro Asp Met Pro Arg 370 375 380
Ser Leu Pro Leu Gln Pro Gly Met Val Ile Thr Ile Glu Pro Gly Ile 385 390 395 400
Tyr Ile Pro Glu Asp Asp Lys Asp Ala Pro Glu Lys Phe Arg Gly Leu 405 410 415
Gly Val Arg Ile Glu Asp Asp Val Val Thr Gln Asp Ser Pro Leu 420 425 430
Ile Leu Ser Ala Asp Cys Pro Lys Glu Met Asn Asp Ile Glu Gln Ile 435 440 445
Cys Ser Gln Ala Ser 450
<210> SEQ ID NO 19 <211> LENGTH: 1599 <212> TYPE: DNA <213> ORGANISM: homo sapiens
<400> SEQUENCE: 19
atgccttggc tgctctcagc ccccaagctg gttcccgctg tagcaaacgt ccgcggcctc 60
tcaggatgta tgttgtgttc acagcgaagg tactcccttc agcctgtccc agaaaggagg 120
attecaaace gataettagg ecageecage ecetttaeae acceacacet ecteagaeea 180
ggggaggtaa ctccaggact atctcaggtg gaatatgcac ttcgcagaca caaactaatg 240
tetetgatee agaaggaage teaagggeag agtgggaeag aceagaeagt ggttgtgete 300
tccaacccta catactacat gagcaacgat attccctata ctttccacca agacaacaat 360
tteetgtaee tatgtggatt ceaagageet gatageatte ttgteettea gageeteeet 420
ggcaaacaat taccatcaca caaagccata ctttttgtgc ctcggcgaga tcccagtcga 480
gaactttggg atggtccgcg atctggcact gatggagcaa tagctctaac tggagtagac 540
gaageetata egetagaaga attteaacat ettetaceaa aaatgaaagt getettgeea 600
gctcttcaaa aggaggtact gttctccaag aacgatccat gcatcacagc atcagaatca 660
cctgctgaga cgaacatggt ttggtatgac tggatgaggc cctcacatgc acagcttcac 720
tctgactata tgcagcccct gactgaggcc aaagccaaga gcaagaacaa ggttcggggt 780
gttcagcagc tgatacagcg cctccggctg atcaagtctc ctgcagaaat tgaacgaatg 840
cagattgctg ggaagctgac atcacaggct ttcatagaaa ccatgttcac cagtaaagcc 900
cctgtggaag aagcctttct ttatgctaag tttgaatttg aatgccgggc tcgtggcgca 960
gacattttag cctatccacc tgtggtggct ggtggtaatc ggtcaaacac tttgcactat 1020
gtgaaaaata atcaactcat caaggatggg gaaatggtgc ttctggatgg aggttgtgag 1080
tetteetget atgtgagtga cateacaegt aegtggeeag teaatggeag gtteaeegea 1140
cctcaggcag aactctatga agccgttcta gagatccaaa gagattgttt ggccctctgc 1200
ttccctggga caagcttgga gaacatctac agcatgatgc tgaccctgat aggacagaag 1260

cttaaagact	tggggatc	at gaag	aacat	t aa	ggaa	aata	atg	cctt	caa o	ggcto	gctcga
aaatactgtc	ctcatcat	gt tggc	cacta	c ct	cddd	atgg	atg	tcca [.]	tga d	cacto	ccagac
atgccccgtt	ccctccct	ct gcag	cctgg	g at	ggta	atca	caa	ttga	gcc (cggca	atttat
attccagagg	atgacaaa	ga tgcc	ccaga	g aa	gttto	cddd	gtc	ttgg [.]	tgt a	acgaa	attgag
gatgatgtag	tggtgact	ca ggac	tcacc	t ct	catco	cttt	ctg	caga	ctg 1	tccca	aaagaq
atgaatgaca	ttgaacag	at atgc	agcca	d dc.	ttct	tga					
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN	H: 532 PRT	o sapie	ns								
<400> SEQUE	NCE: 20										
Met Pro Trp 1	Leu Leu 5	Ser Al	a Pro	Lys	Leu 10	Val	Pro	Ala	Val	Ala 15	Asn
Val Arg Gly	Leu Ser 20	Gly Cy	s Met	Leu 25	Cys	Ser	Gln	Arg	Arg 30	Tyr	Ser
Leu Gln Pro 35	Val Pro	Glu Ar	g Arg 40	Ile	Pro	Asn	Arg	Ty r 45	Leu	Gly	Gln
Pro Ser Pro 50	Phe Thr	His Pr 55	o His	Leu	Leu	Arg	Pro 60	Gly	Glu	Val	Thr
Pro Gly Leu 65	ı Ser Gln	Val Gl 70	u Tyr	Ala	Leu	Arg 75	Arg	His	Lys	Leu	Met 80
Ser Leu Ile	e Gln Lys 85	Glu Al	a Gln	Gly	Gln 90	Ser	Gly	Thr	Asp	Gln 95	Thr
Val Val Val	Leu Ser 100	Asn Pr	o Thr	Ty r 105	Tyr	Met	Ser	Asn	Asp 110	Ile	Pro
Tyr Thr Phe 115		Asp As	n Asn 120	Phe	Leu	Tyr	Leu	C y s 125	Gly	Phe	Gln
Glu Pro Asp 130) Ser Ile	Leu Va 13		Gln	Ser	Leu	Pro 140	Gly	Lys	Gln	Leu
Pro Ser His 145	s Lys Ala	Ile Le 150	u Phe	Val	Pro	Arg 155	Arg	Asp	Pro	Ser	Arg 160
Glu Leu Trp	Asp Gly 165	Pro Ar	g Ser	Gly	Thr 170	Asp	Gly	Ala	Ile	Ala 175	Leu
Thr Gly Val	. Asp Glu 180	-	r Thr			Glu		Gln			Leu
Pro Lys Met 195	-	Leu Le	u Pro 200	Ala	Leu	Gln	Lys	Glu 205	Val	Leu	Phe
Ser Lys Asr 210	1 Asp Pro	Cys Il 21		Ala	Ser	Glu	Ser 220	Pro	Ala	Glu	Thr
Asn Met Val 225	. Trp Tyr	Asp Tr 230	p Met	Arg	Pro	Ser 235	His	Ala	Gln	Leu	His 240
Ser Asp Tyr	Met Gln 245	Pro Le	u Thr	Glu	Ala 250	Lys	Ala	Lys	Ser	L y s 255	Asn
Lys Val Arc	Gly Val 260	Gln Gl	n Leu	Ile 265	Gln	Arg	Leu	Arg	Leu 270	Ile	Lys
Ser Pro Ala 275		Glu Ar	g Met 280		Ile	Ala	Gly	L y s 285	Leu	Thr	Ser
Gln Ala Phe	e Ile Glu	Thr Me	t Phe	Thr	Ser	Lys	Ala	Pro	Val	Glu	Glu

											-	con	tin	ued							
2	290					295					300										
Ala E 305	Phe	Leu	Tyr	Ala	L y s 310	Phe	Glu	Phe	Glu	C y s 315	Arg	Ala	Arg	Gly	Ala 320						
Asp I	Ile	Leu	Ala	Ty r 325	Pro	Pro	Val	Val	Ala 330	Gly	Gly	Asn	Arg	Ser 335	Asn						
Thr I	Leu	His	Ty r 340	Val	Lys	Asn	Asn	Gln 345	Leu	Ile	Lys	Asp	Gly 350	Glu	Met						
Val I		Leu 355	Asp	Gly	Gly	Cys	Glu 360	Ser	Ser	Cys	Tyr	Val 365	Ser	Asp	Ile						
Thr A 3	Arg 370	Thr	Trp	Pro	Val	Asn 375	Gly	Arg	Phe	Thr	Ala 380	Pro	Gln	Ala	Glu						
Leu I 385	ſyr	Glu	Ala	Val	Leu 390	Glu	Ile	Gln	Arg	Asp 395	Cys	Leu	Ala	Leu	Cys 400						
Phe F	?ro	Gly	Thr	Ser 405	Leu	Glu	Asn	Ile	Ty r 410	Ser	Met	Met	Leu	Thr 415	Leu						
Ile G	Gly	Gln	Lys 420	Leu	Lys	Asp	Leu	Gly 425	Ile	Met	Lys	Asn	Ile 430	Lys	Glu						
Asn A		Ala 435	Phe	Lys	Ala	Ala	Arg 440	Lys	Tyr	Суз	Pro	His 445	His	Val	Gly						
lis T 4	fy r 150	Leu	Gly	Met	Asp	Val 455	His	Asp	Thr	Pro	Asp 460	Met	Pro	Arg	Ser						
Leu F 165	?ro	Leu	Gln	Pro	Gly 470	Met	Val	Ile	Thr	Ile 475	Glu	Pro	Gly	Ile	Ty r 480						
Ile F	?ro	Glu	Asp	Asp 485	Lys	Asp	Ala	Pro	Glu 490	Lys	Phe	Arg	Gly	Leu 495	Gly						
Val A	Arg	Ile	Glu 500	Asp	Asp	Val	Val	Val 505	Thr	Gln	Asp	Ser	Pro 510	Leu	Ile						
Leu S		Ala 515	Asp	Сув	Pro	Lys	Glu 520	Met	Asn	Asp	Ile	Glu 525	Gln	Ile	Сув						
Ser G 5	31n 530	Ala	Ser																		
<210> <211> <212> <213>	> LE > TY	NGTH PE:	H: 12 DNA	287	o sag	piens	5														
<400>	> SE	QUEN	ICE :	21																	
tgto	ctct	:ga t	cca	gaag	ga a	gctca	aaggo	g caç	gagto	ggga	caga	accaç	gac a	agtgo	ıttgtg		60				
tctc	ccaa	icc d	ctaca	atac	ta ca	atga	gcaad	c gat	tatto	ccct	ata	cttto	cca (ccaa	Jacaac	:	L20				
attt	cct	gt a	acct	atgto	gg a	ttcca	aagaq	g cct	cgata	agca	ttc	ttgto	cct f	caga	igcete	:	L80				
ctgg	gcaa	ac a	aatta	acca [.]	tc a	cacaa	aagco	c ata	actti	ttg	tgc	ctcg	gcg a	agato	ccagt	:	240				
cgaga	aact	tt o	Jdda.	tggt	cc g	cgato	ctggo	c act	gato	ggag	caa	tagci	tct a	acto	gagta	:	300				
gacga	aagc	ct a	ataco	gcta	ga a	gaati	ttcaa	a cat	ctto	ctac	caa	aaato	gaa a	ageto	Jagacg		360				
aacat	cggt	tt o	ggta	tgac [.]	tg ga	atgag	ggcco	c tca	acato	gcac	agc [.]	ttca	ctc 1	cgact	atatg		120				
caged	ccct	ga d	ctga	ggcca	aa a	gccaa	agago	c aag	gaaca	aagg	ttc	aaaa	tgt 1	cago	agctg		180				
ataca	agcg	rcc t	ccg	gctga	at ca	aagto	ctcct	t gca	agaaa	attg	aac	gaato	gca o	gatto	ıctggg	!	540				
aagct	cgac	at o	caca	ggct	tt ca	ataga	aaaco	c ato	gttca	acca	gta	aagco	ccc f	gtgg	Jaagaa		500				
gcctt	tct	tt a	atge	taag	tt t	gaati	ttgaa	a tgo	ccddd	gctc	gtg	gegea	aga d	catt	tagcc		560				

tatccacctg tggtggctgg tggtaatcgg tcaaacactt tgcactatgt gaaaaataat caactcatca aggatgggga aatggtgctt ctggatggag gttgtgagtc ttcctgctat gtgagtgaca tcacacgtac gtggccagtc aatggcaggt tcaccgcacc tcaggcagaa ctctatgaag ccgttctaga gatccaaaga gattgtttgg ccctctgctt ccctgggaca agettggaga acatetacag catgatgetg accetgatag gacagaaget taaagaettg gggatcatga agaacattaa ggaaaataat gccttcaagg ctgctcgaaa atactgtcct catcatgttg gccactacct cgggatggat gtccatgaca ctccagacat gccccgttcc ctccctctgc agcctgggat ggtaatcaca attgagcccg gcatttatat tccagaggat gacaaagatg ccccagagaa gtttcggggt cttggtgtac gaattgagga tgatgtagtg gtgactcagg actcacctct catcctttct gcagactgtc ccaaagagat gaatgacatt gaacagatat gcagccaggc ttcttga <210> SEQ ID NO 22 <211> LENGTH: 428 <212> TYPE: PRT <213> ORGANISM: homo sapiens <400> SEQUENCE: 22 Met Ser Leu Ile Gln Lys Glu Ala Gln Gly Gln Ser Gly Thr Asp Gln Thr Val Val Leu Ser Asn Pro Thr Tyr Tyr Met Ser Asn Asp Ile Pro Tyr Thr Phe His Gln Asp Asn Asn Phe Leu Tyr Leu Cys Gly Phe Gln Glu Pro Asp Ser Ile Leu Val Leu Gln Ser Leu Pro Gly Lys Gln 50 55 60 Leu Pro Ser His Lys Ala Ile Leu Phe Val Pro Arg Arg Asp Pro Ser Arg Glu Leu Trp Asp Gly Pro Arg Ser Gly Thr Asp Gly Ala Ile Ala Leu Thr Gly Val Asp Glu Ala Tyr Thr Leu Glu Glu Phe Gln His Leu Leu Pro Lys Met Lys Ala Glu Thr Asn Met Val Trp Tyr Asp Trp Met 115 120 125 Arg Pro Ser His Ala Gln Leu His Ser Asp Tyr Met Gln Pro Leu Thr Glu Ala Lys Ala Lys Ser Lys Asn Lys Val Arg Gly Val Gln Gln Leu Ile Gln Arg Leu Arg Leu Ile Lys Ser Pro Ala Glu Ile Glu Arg Met Gln Ile Ala Gly Lys Leu Thr Ser Gln Ala Phe Ile Glu Thr Met Phe Thr Ser Lys Ala Pro Val Glu Glu Ala Phe Leu Tyr Ala Lys Phe Glu Phe Glu Cys Arg Ala Arg Gly Ala Asp Ile Leu Ala Tyr Pro Pro Val Val Ala Gly Gly Asn Arg Ser Asn Thr Leu His Tyr Val Lys Asn Asn

-continued	
Gln Leu Ile Lys Asp Gly Glu Met Val Leu Leu Asp Gly Gly Cys Glu 245 250 255	
Ser Ser Cys Tyr Val Ser Asp Ile Thr Arg Thr Trp Pro Val Asn Gly 260 265 270	
Arg Phe Thr Ala Pro Gln Ala Glu Leu Tyr Glu Ala Val Leu Glu Ile	
275 280 285	
Gln Arg Asp Cys Leu Ala Leu Cys Phe Pro Gly Thr Ser Leu Glu Asn 290 295 300	
Ile Tyr Ser Met Met Leu Thr Leu Ile Gly Gln Lys Leu Lys Asp Leu305310315320	
Gly Ile Met Lys Asn Ile Lys Glu Asn Asn Ala Phe Lys Ala Ala Arg 325 330 335	
Lys Tyr Cys Pro His His Val Gly His Tyr Leu Gly Met Asp Val His	
340 345 350	
Asp Thr Pro Asp Met Pro Arg Ser Leu Pro Leu Gln Pro Gly Met Val 355 360 365	
Ile Thr Ile Glu Pro Gly Ile Tyr Ile Pro Glu Asp Asp Lys Asp Ala 370 375	
Pro Glu Lys Phe Arg Gly Leu Gly Val Arg Ile Glu Asp Asp Val Val 385 390 395 400	
Val Thr Gln Asp Ser Pro Leu Ile Leu Ser Ala Asp Cys Pro Lys Glu	
405 410 415	
Met Asn Asp Ile Glu Gln Ile Cys Ser Gln Ala Ser 420 425	
<210> SEQ ID NO 23 <211> LENGTH: 1530 <212> TYPE: DNA <213> ORGANISM: homo sapiens	
<400> SEQUENCE: 23 atgttgtgtt cacagcgaag gtactccctt cagcctgtcc cagaaaggag gattccaaac	60
cgatacttag gccagcccag cccctttaca cacccacacc tcctcagacc agggggggta	120
actocaggac tatotoaggt ggaatatgoa ottogoagac acaaactaat gtototgato	180
cagaaggaag ctcaagggca gagtgggaca gaccagacag tggttgtgct ctccaaccct	240
acatactaca tgagcaacga tattccctat actttccacc aagacaacaa tttcctgtac	300
ctatgtggat tccaagagcc tgatagcatt cttgtccttc agagcctccc tggcaaacaa	360
ttaccatcac acaaagccat actttttgtg cctcggcgag atcccagtcg agaactttgg gatggtccgc gatctggcac tgatggagca atagctctaa ctggagtaga cgaagcctat	420 480
acgetagaag aattteaaca tettetacca aaaatgaaag tgetettgee agetetteaa	540
aaggaggtac tgttctccaa gaacgatcca tgcatcacag catcagaatc acctgctgag	600
acgaacatgg tttggtatga ctggatgagg ccctcacatg cacagcttca ctctgactat	660
atgcagcccc tgactgaggc caaagccaag agcaagaaca aggttcgggg tgttcagcag	720
ctgatacage geeteegget gateaagtet eetgeagaaa ttgaaegaat geagattget	780
gggaagctga catcacaggc tttcatagaa accatgttca ccagtaaagc ccctgtggaa gaagcctttc tttatgctaa gtttgaattt gaatgccggg ctcgtggcgc agacatttta	840 900
gcctatccac ctgtggtggc tggtggtaat cggtcaaaca ctttgcacta tgtgaaaaat	960

-continued	
aatcaactca tcaaggatgg ggaaatggtg cttctggatg gaggttgtga gtcttcctgc	1020
tatgtgagtg acatcacacg tacgtggcca gtcaatggca ggttcaccgc acctcaggca	1080
gaactctatg aagccgttct agagatccaa agagattgtt tggccctctg cttccctggg	1140
acaagcttgg agaacatcta cagcatgatg ctgaccctga taggacagaa gcttaaagac	1200
ttggggatca tgaagaacat taaggaaaat aatgccttca aggctgctcg aaaatactgt	1260
cctcatcatg ttggccacta cctcgggatg gatgtccatg acactccaga catgccccgt	1320
tccctccctc tgcagcctgg gatggtaatc acaattgagc ccggcattta tattccagag	1380
gatgacaaag atgccccaga gaagtttcgg ggtcttggtg tacgaattga ggatgatgta	1440
gtggtgactc aggactcacc tctcatcctt tctgcagact gtcccaaaga gatgaatgac	1500
attgaacaga tatgcagcca ggcttcttga	1530
<210> SEQ ID NO 24 <211> LENGTH: 509 <212> TYPE: PRT <213> ORGANISM: homo sapiens <400> SEQUENCE: 24	
Met Leu Cys Ser Gln Arg Arg Tyr Ser Leu Gln Pro Val Pro Glu Arg 1 5 10 15	
Arg Ile Pro Asn Arg Tyr Leu Gly Gln Pro Ser Pro Phe Thr His Pro 20 25 30	
His Leu Leu Arg Pro Gly Glu Val Thr Pro Gly Leu Ser Gln Val Glu 35 40 45	
Tyr Ala Leu Arg Arg His Lys Leu Met Ser Leu Ile Gln Lys Glu Ala 50 55 60	
Gln Gly Gln Ser Gly Thr Asp Gln Thr Val Val Val Leu Ser Asn Pro 65 70 75 80	
Thr Tyr Tyr Met Ser Asn Asp Ile Pro Tyr Thr Phe His Gln Asp Asn 85 90 95	
Asn Phe Leu Tyr Leu Cys Gly Phe Gln Glu Pro Asp Ser Ile Leu Val 100 105 110	
Leu Gln Ser Leu Pro Gly Lys Gln Leu Pro Ser His Lys Ala Ile Leu 115 120 125	
Phe Val Pro Arg Arg Asp Pro Ser Arg Glu Leu Trp Asp Gly Pro Arg130135140	
Ser Gly Thr Asp Gly Ala Ile Ala Leu Thr Gly Val Asp Glu Ala Tyr 145 150 155 160	
Thr Leu Glu Glu Phe Gln His Leu Leu Pro Lys Met Lys Val Leu Leu 165 170 175	
Pro Ala Leu Gln Lys Glu Val Leu Phe Ser Lys Asn Asp Pro Cys Ile 180 185 190	
Thr Ala Ser Glu Ser Pro Ala Glu Thr Asn Met Val Trp Tyr Asp Trp 195 200 205	
Met Arg Pro Ser His Ala Gln Leu His Ser Asp Tyr Met Gln Pro Leu 210 215 220	
Thr Glu Ala Lys Ala Lys Ser Lys Asn Lys Val Arg Gly Val Gln Gln225230235240	
Leu Ile Gln Arg Leu Arg Leu Ile Lys Ser Pro Ala Glu Ile Glu Arg 245 250 255	

-continued

<pre>Het Gln 11= Als Gly Lys Leu The See Gln Als Phe I1= Glu The Met 260 275 Jean Control of the set of the se</pre>												-	con	tin	ued							
275280285Glu Me Glu Cys Arg Ale Arg Gly Ale Asp IIs Leu Als Tyr Pro Pro290yal Yai Ale Glu Cys Arg Ale Arg Gly Ale Asp IIs Iru Kis Tyr Val Lys Asa 3005301Man Glu Leu IIs Lys Asp Gly Glu Met Yal Leu Leu Asp Gly Gly Cys 1255302303304305305305306306307308308309309309309300300301302303303304305305305306306307308308309309309309300300301302303304305305306307308308309309309309300300301302303303304305305305306307308308309309309300300300300300300300300300300300300300 <tr< td=""><td>let</td><td>Gln</td><td>Ile</td><td></td><td>Gly</td><td>Lys</td><td>Leu</td><td>Thr</td><td></td><td>Gln</td><td>Ala</td><td>Phe</td><td>Ile</td><td></td><td>Thr</td><td>Met</td><td></td><td></td><td></td><td></td><td></td><td>-</td></tr<>	let	Gln	Ile		Gly	Lys	Leu	Thr		Gln	Ala	Phe	Ile		Thr	Met						-
290295300Val Val Ala Gly Gly Aan Arg Ser Aan Thr Lew I 315115 fis Tyr Val Lys Aan 320Aan Gln Leu Ile Lys Aap Gly Glu Met Val Leu Leu Aep Gly Gly Cys 335Glu Ser Ser Cys Tyr Val Ser Aap Tie Thr Arg Thr Trp Pro Val Aan 340Aan Gln Leu Ile Lys Aap Gly Glu Leu Tyr Glu Ala Val Leu Glu 365Gly Arg Pher Thr Ala Pro Gln Ala Glu Leu Tyr Glu Ala Val Leu Glu 370370371372373373374375375376376377378378379379379370370370370370370371372373373375375376377378378379379370370370370371372373373375375375376377378378379379379370370371372373375375375375375375375375375375375375375375375375<	Phe	Thr		Lys	Ala	Pro	Val		Glu	Ala	Phe	Leu	_	Ala	Lys	Phe						
305 310 315 320 Aam Gin Leu Ile Lay Aap Gly Gly Ule Met Val Leu Law Aap Gly Gly Cys 335 Glu Ser Ser Cys Tyr Val Ser Aap Ile Thr Arg Thr Trp Pro Val Aan 350 Solo 345 Tr Trp Pro Val Aan Solo 350 345 Glu Arg Abp Cys Leu Ala Leu Cys Phe Pro Gly Thr Ser Leu Glu 360 370 370 360 Leu Olu Arg Abp Cys Leu Ala Leu Cys Phe Pro Gly Thr Ser Leu Glu 370 370 370 370 Aam Ile Tyr Ser Met Met Leu Thr Leu Ile Gly Gln Lys Leu Lys Aap 400 Jaso 390 395 Leu Oly Ile Met Lys Aon Ile Lys Glu Aan Aan Ala Phe Lys Ala Ala 410 Att An An Ala Phe Lys Ala Ala 410 Arg Lys Tyr Cys Pro His His Val Gly His Tyr Leu Gly Met Aap Val 433 Att	Jlu		Glu	Сув	Arg	Ala		Gly	Ala	Asp	Ile		Ala	Tyr	Pro	Pro						
325 330 335 Glu Ser Ser Cys Tyr Val Ser Asp Ile Thr Arg Thr Trp Pro Val Asn 355 350 Gly Arg Phe Thr Ala Pro Gln Ala Glu Leu Tyr Glu Ala Val Leu Glu 355 350 Ie Gln Arg Asp Cys Leu Ala Leu Cys Phe Pro Gly Thr Ser Leu Glu 370 360 370 375 375 380 375 376 381 10 11e Cyr Ser Net Met Leu Thr Leu Ile Cly Gln Lys Leu Lys Asp 395 381 11e Tyr Ser Net Met Leu Thr Leu Ile Cly Gln Lys Leu Lys Asp 395 340 Arg Lys Tyr Cys Pro Hie His Val Gly His Tyr Leu Gly Met Asp Val 425 440 Arg Lys Tyr Cys Pro Hie His Val Gly His Tyr Leu Gly Met Asp Val 430 440 His Asp Thr Pro Asp Met Pro Arg Ser Leu Pro Leu Gln Pro Gly Met 435 440 Val Ile Thr Ile Glu Pro Gly Ile Tyr Ile Pro Glu Asp Asp Lys Asp 450 440 Val Thr Gln Asp Ser Pro Leu Ile Leu Ser Ala Asp Cys Pro Lys 435 450 Glu Met Asn Asp Ile Glu Gln Ile Cys Ser Gln Ala Ser 500 505 210> SEQ ID NO 25 212 775 212> Wettr INA 221> ORGANIENT Homo saplens 450 212> ORGANIENT Homo saplens 450 212> Wettr INA 221> Wettr INA 221> ORGANIENT HOM 2120 212> Wettr INA 221> ORGANIENT HOM 2120 <			Ala	Gly	Gly		Arg	Ser	Asn	Thr		His	Tyr	Val	Lys							
340345350Gly Arg Phe Thr Ale Pro Gln Ala Glu Leu Tyr Glu Ala Val Leu Glu 360360Jan He Tyr Ser Net Met Leu The Leu The Cly Gly Thr Ser Leu Glu 375Ann He Tyr Ser Net Met Leu Thr Leu Ils Gly Gln Lys Leu Lys App 395380Jan He Tyr Ser Net Met Leu Thr Leu Ils Gly Gln Lys Leu Lys App 395381Arg Lys Tyr Cys Pro Hie Hie Val Gly Hie Tyr Leu Gly Met Asp Val 420420421420422423424425424425426427428429429420420421420423423424425425426427428429429420421421422423423424425424425426427428429429421421422422423424424425425426427428429429439431435435435435435435435435435435435435<	Asn	Gln	Leu	Ile		Asp	Gly	Glu	Met		Leu	Leu	Asp	Gly		Cys						
Gly Arg Phe Thr Ala Pro Gln Ala Glu Leu Tyr Glu Ala Val Leu Glu 365 11e Gln Arg Aep Cys Leu Ala Leu Cys Phe Pro Gly Thr Ser Leu Glu 375 375 1275 128 Gln Arg Aep Cys Leu Ala Leu Cys Phe Pro Gly Gln Lys Leu Lys Asp 385 129 Tyr Ser Met Met Leu Thr Leu 11e Gly Gln Lys Leu Lys Asp 400 120 Ala Phe Lys Ala Ala 410 121 Hent Lys Asn Ile Lys Glu Asn Asn Ala Phe Lys Ala Ala 410 121 Hent Lys Asn Ile Lys Glu Asn Asn Ala Phe Lys Ala Ala 420 121 Hent Lys Asn Ile Lys Glu Asn Asn Ala Phe Lys Ala Ala 420 120 Asn Phr Pro App Met Pro Arg Ser Leu Pro Leu Gly Met Asp Val 420 421 Hent Ile Glu Pro Gly Ile Tyr Ile Pro Glu Asp Asp Lys Asp 450 450 450 450 450 450 450 450	Glu	Ser	Ser		Tyr	Val	Ser	Asp		Thr	Arg	Thr	Trp		Val	Asn						
Ile Gin Arg Aep Cys Leu Ala Leu Cys Phe Pro Gly Thr Ser Leu Glu Arm Ile Tyr Ser Met Met Leu Thr Leu Ile Gly Gin Lys Leu Lys Aep 335 Ban Ile Tyr Ser Met Met Leu Thr Leu Ile Gly Gin Lys Leu Lys Aep 400 Arg Lys Tyr Cys Pro His His Val Gly His Tyr Leu Gly Met Aep Val 420 His Aep Thr Pro Aep Met Pro Arg Ser Leu Pro Leu Gln Pro Gly Met 455 Val The Thr Ile Glu Pro Gly Leu Gly Val Arg Tile Glu Aep Aep Lys Aep 465 470 470 485 470 485 470 470 470 470 470 470 470 470 470 470 470 470 470 471 470 470 470 470 470 470 470 470 470 470 470 470 470 470 <td>Gly</td> <td>Arg</td> <td></td> <td></td> <td>Ala</td> <td>Pro</td> <td>Gln</td> <td></td> <td></td> <td>Leu</td> <td>Tyr</td> <td>Glu</td> <td></td> <td></td> <td>Leu</td> <td>Glu</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Gly	Arg			Ala	Pro	Gln			Leu	Tyr	Glu			Leu	Glu						
Ann lle Tyr Ser Met Met Leu Thr Leu Ile Gly Gln Lys Leu Lys Ann 395 Leu Gly Ile Met Lys Ann Ile Lys Glu Ann Ann Ala Phe Lys Ala Ala 405 Arg Lys Tyr Cys Pro His His Val Gly His Tyr Leu Gly Met Asp Val 420 His Ang Thr Pro Ang Met Pro Arg Ser Leu Pro Leu Gln Pro Gly Met 445 Val The Thr Ile Glu Pro Gly Ile Tyr Ile Pro Glu Anp Ang Lys Ang 450 Val Val Thr Gln Ang Ser Pro Leu Gly Val Arg Ile Glu Ang Ang Lys Ang 465 Val Val Thr Gln Ang Ser Pro Leu Ile Leu Ser Ala Ang Cys Pro Lys 485 Clu Met Ann Ang Ile Glu Gln Ile Cys Ser Gln Ala Ser 500 So S So S	Ile		Arg	Asp	Cys	Leu			Cys	Phe	Pro			Ser	Leu	Glu						
Leu Gly Ile Met Lys Ann Ile Lys Glu Ann Ann Ala Phe Lys Ala Ala 400 Arg Lys Tyr Cys Pro His His Val Gly His Tyr Leu Gly Met Asp Val 420 Arg Lys Tyr Cys Pro Asp Met Pro Arg Ser Leu Pro Leu Gly Met Asp Val 420 Arg Lys Tyr Ile Glu Pro Gly Ile Tyr Ile Pro Glu Asp Asp Lys Asp 450 Arg Tyr Glu Lys Phe Arg Gly Leu Gly Val Arg Ile Glu Asp Asp Val 455 Asp Thr Glu Asp Ser Pro Leu Ile Leu Ser Ala Asp Cys Pro Lys 485 Asp Thr Glu Asp Ser Pro Leu Ile Leu Ser Ala Asp Cys Pro Lys 485 Asp TrFF: DNA 4210 Met Asn Asp Ile Glu Gli Ile Cys Ser Gln Ala Ser 505 505 505 505 505 505 505 50		Ile		Ser	Met			Thr	Leu	Ile		Gln	Lys	Leu	Lys							
Arg Lys TyrCysPro His His ValGly His TyrLeuGly Met AspVal420420Arg SerLeu ProLugGln Pro Gly Met435FroAlgArg SerLeu ProLug AspAsp455Glu LysPhe Arg Gly LeuGly ValArgIle Glu Asp AspVal465470Glu ValArgIle Glu Asp AspValAsp455470LeuGly ValArgIle Glu Asp AspVal465470LeuGly ValArgIle Glu Asp AspVal465470LeuGly ValArgIle Glu Asp AspVal465485Fro LeuIle Leu SerAla Asp CysPro Lys486485505SoSo49560Met Asp AspInterviewSo49561Met Asp AspInterviewGlu Asp Asp CysPro Lys421LENGTH:1165So5054210 > SEQUENCE: 25SoSequence: 25604300 > SEQUENCE: 25So120actocaggaa tattocagt gaatatgaa attocaca tactat gaccaacaa ttactotgaa120acataactaa tgagcaacga dagtgggacagaccagaacga attocacac120acataactaa tgagcaacga tattocata acttaccaaagaccaacaa ttactotgaa300ctattgtggat taccaaggac tgatagaatctatgtgatagaag attaccaad300ctattgtggat taccaagaag attactaat attacttacaaattaccatca agaagaacaa480acataactaa acaaagaacat atttttgtg attaccaat attggaagaag attaccaagaag </td <td></td> <td></td> <td>Ile</td> <td>Met</td> <td></td> <td></td> <td>Ile</td> <td>Lys</td> <td>Glu</td> <td></td> <td></td> <td></td> <td>Phe</td> <td>Lys</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Ile	Met			Ile	Lys	Glu				Phe	Lys								
His Asp Thr Pro Asp Net Pro Arg Ser Leu Pro Leu Gln Pro Gly Met 450 Val Ile Thr Ile Glu Pro Gly Ile Tyr Ile Pro Glu Asp Asp Lys Asp 450 Ala Pro Glu Lys Pha Arg Gly Leu Gly Val Arg Ile Glu Asp Asp Val 457 Val Val Thr Gln Asp Ser Pro Leu Ile Leu Ser Ala Asp Cys Pro Lys 485 Glu Met Asn Asp Ile Glu Gln Ile Cys Ser Gln Ala Ser 505 <210> SEQ ID NO 25 <210> SEQ UD NO 25 <211> LEMGTH: 1455 <212> TYPE INNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 25 atgttgtgtt cacagegaag gtactcocct cagcctgtcc cagaaaggag gattcaaaca tactccaggac tactccaggt ggatatgca cttcgcagaa acaaactaat gtcctgtatc tagaaaggaag tcaaaggca gattgggaca gaccagacag tggttgtgt ctccaaacca tagttggtt tcaaagagca tattcocta acttttgtg cctcggcgag atcccagtc gagaacttgg taccaatca caaaagccat acttttgtg cctcggcgag atcccagtc gagaacttgg 420 actaccatca caaaagccat tattttgt cctcggcgag atcccagtca gagacttgg 420 actaccatca caaaagccat tattttgt cctcggcgag atcccagtc gagaactttgg 420 actactacta caaaagccat tattttgt cctcggcgag atcccagtca gagaccttg 420 actactaca caaaagccat tattttgt cctcggcgag atcccagtcg agaactttgg 420 actactacta caaaagccat tattttgt cctcggcgag atcccagtcg agaactttgg 420 actactactac acaaagccat tattttgt cctcggcgag atcccagtcg agaactttgg 420 420 420 420 420 420 420 420	Arg	Lys	Tyr	Cys		His	His	Val	Gly		Tyr	Leu	Gly	Met		Val						
435 440 445 Val IIe Thr Ile Glu Pro Gly Ile Tyr Ile Pro Glu Asp Asp Lys Asp 450 450 Ala Pro Glu Lys Phe Arg Gly Leu Gly Val Arg Ile Glu Asp Asp Val 465 470 475 480 475 Val Val Thr Gln Asp Ser Pro Leu Ile Leu Ser Ala Asp Cys Pro Lys 495 495 Glu Met Asn Asp Ile Glu Gln Ile Cys Ser Gln Ala Ser 500 505 c210> SEQ ID NO 25 clisser casagegaag gtactccctt cagcctgtcc cagaaaggag gattccaaac 60 cgatacttag gccagcccag ccctttaca cacccaacac tectcagace aggggaggta 120 acteccagg ggatage ctcaaggg gatageac actectecaga acaactaat gtectegate 180 cagaaggaag ctcaagggag dattcccat acttectcaca aagacaacaa tttectgtac 300 ctatgtggat teccaagge tgatageat attecetat actttecace aggedgag acteccagt gaactttag 420 gatggtee tettacaca cacacaca teggaggaag ctcaagge tattee tettacta acttecta aggedacaca 480 cagaaggaag attecaaca 480 cagaaggaag attecaaca 480 cagaaggaag attecaaca 480 cagaaggaag attecaaca 480 cagaaggaag ctcaaggegaa atagetetaa catgageaga attecaaca 480 cagaaggaag ctcaaggegaa atagetetaa catgagedaga atagetetaa ctggagegaa catggttgg 540	His	Asp	Thr		Asp	Met	Pro	Arq		Leu	Pro	Leu	Gln		Gly	Met						
450 455 460 Ala Pro Glu Lys Phe Arg Gly Leu Gly Val Arg Ile Glu Asp Asp Val 457 485 470 400 475 480 Val Val Thr Gln Asp Ser Pro Leu Ile Leu Ser Ala Asp Cys Pro Lys 485 490 495 Glu Met Asn Asp Ile Glu Gln Ile Cys Ser Gln Ala Ser 500 505 505 490 505 490 495 495 495 495 495 495 495 495		-	435					440					445		_							
465 470 475 480 Val Val Thr Gln Asp Ser Pro Leu Ile Leu Ser Ala Asp Cys Pro Lys 485 490 495 Glu Met Asn Asp Ile Glu Gln Ile Cys Ser Gln Ala Ser 500 500 500 500 500 500 500 500 500 50		450					455		_			460		_	_	-						
485 490 495 Glu Met Asn Asp Ile Glu Gln Ile Cys Ser Gln Ala Ser 500 505 <210> SEQ ID NO 25 <211> LENGTH: 1455 <212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 25 atgitgigit cacaagcgaag giactccctt cagccigtcc cagaaaggag gattccaaac 60 cgatacttag gccagcccag ccctttaca cacccacacc tecteagace aggggaggta 120 actecaggae tatecaggi ggaatatgea ettegeagae acaaactaat gteetegate 180 cagaaaggaag etcaaggea gagtgggaca gaecagacag tggttgtget etceaacect 240 acatactaca tgagcaacga tatteeeta acttteeace aagacaacaa tteetgtae 300 etatgtggat tecaaggee tgatageat ettegeagae atageteete gageeteete gaaactaa 360 ttaccateae acaaageet acttttgg ecteggegg ateceagete gaaacttag 420 gatggteege gatetggeae tgatggaca atagetetaa etggagtaga eagagetteg 480 actactaca acaaageet tgatggaca atagetetaa etggagtaga eagageetat 480 acgetagaag aattteaca tettetaeca aaaatgaaag etgagagaga catggtttgg 540	465			-		470	_				475			_	_	480						
500 505 <210> SEQ ID NO 25 <211> LENGTH: 1455 <212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 25 atgttgtgtt cacagogaag gtactccctt cagoctgtcc cagaaaggag gattccaaac 60 cgatacttag gccagoccag cocctttaca cacccacacc toctcagacc aggggaggta 120 actocaggac tatctcaggt ggaatatgca cttogcagac acaaactaat gtocttgatc 180 cagaaggagag otcaaggoga gagtgggaca gaccagacag tggttgtgct ctccaaccct 240 actactaca tgagoaacga tattccctat actttccacc aagaacaaa tttcctgtac 300 ctatgtggat tocaagagcc tgatagcatt ottgtoctto agagcctcc tggcaaacaa 360 ttaccataca cacaaagccat acttttgtg cctcggcgag atcccagtcg agaactttgg 420 gatggtccgc gatctggcac tgatggaca atagctctaa ctggagtaga cgaagcctat 480 acgctagaag aatttcaaca tottctacca aaaatgaaag ctgagagaa catggtttgg 540					485					490			-	Суз		Lys						
<pre><211> LENGTH: 1455 <212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 25 atgttgtgtt cacagcgaag gtactccctt cagcctgtcc cagaaaggag gattccaaac 60 cgatacttag gccagcccag cccctttaca cacccacacc tcctcagacc aggggaggta 120 actccaggac tatctcaggt ggaatatgca cttcgcagac acaaactaat gtctctgatc 180 cagaaggaag ctcaagggca gagtgggaca gaccagacag tggttgtgct ctccaaccct 240 acatactaca tgagcaacga tattccctat acttccacc aagaccaaca tttcctgtac 300 ctatgtggat tccaagagcc tgatagcatt cttgtccttc agagcctccc tggcaaacaa 360 ttaccatcac acaaagccat actttttgtg cctcggcgag atcccagtcg agaactttgg 420 gatggtccgc gatctggcac tgatggagca atagctctaa ctggagtaga cgaagcctat 480 acgctagaag aattcaaca tcttctacca aaaatgaaag ctgagacgaa catggtttgg 540</pre>	Jlu	Met	Asn		Ile	Glu	Gln	Ile	-	Ser	Gln	Ala	Ser									
atgttgtgtt cacagcgaag gtactcoctt cagoctgtoc cagaaaggag gattocaaac 60 cgataottag gooagoocag ocootttaca cacocacaco tootoagaco aggggaggta 120 actocaggac tatotoaggt ggaatatgoa ottogoagac acaaactaat gtototgato 180 cagaaggaag otoaagggoa gagtgggaca gaccagacag tggttgtgot otocaacoot 240 acataotaca tgagcaacga tattocotat acttocaco aagacaacaa tttootgtac 300 ctatgtggat tooaagagoo tgatagoatt ottgtootto agagootoo tggcaaacaa 360 ttaccatcac acaaagooat acttttgtg octoggogag atocoagtog agaactttgg 420 gatggtoog gatotggoac tgataggaca atagootaa ctggagtaga cgaagootat 480 acgotagaag aatttoaaca tottotacca aaaatgaaag otgagacgaa catggtttgg 540	<211> LENGTH: 1455 <212> TYPE: DNA																					
cgatacttag gocagoccag ococtttaca cacocacaco tootoagaco aggggaggta 120 actocaggac tatotoaggt ggaatatgoa ottogoagac acaaactaat gtototgato 180 cagaaaggaag otoaagggoa gagtgggaca gaccagacag tggttgtgot otocaacoot 240 acatactaca tgagcaacga tattocotat actttocaco aagacaacaa tttootgtac 300 otatgtggat tooaagagoo tgatagoatt ottgtootto agagootooc tggcaaacaa 360 ttaccatoca acaaagocoa actttttgtg octoggogag atocoagtog agaactttgg 420 gatggtoogo gatotggoac tgatggagca atagotoaa otggagtaga ogaagootat 480 acgotagaag aatttoaaca tottotacca aaaatgaaag otgagacgaa catggtttgg 540						aq q	tacto	cctt	c ca	qccto	qtcc	caqa	aaaq	jag (gatto	ccaaad	c 6(0				
cagaaggaag ctcaagggca gagtgggaca gaccagacag tggttgtgct ctccaaccct 240 acatactaca tgagcaacga tattccctat actttccacc aagacaacaa tttcctgtac 300 ctatgtggat tccaagagcc tgatagcatt cttgtccttc agagcctccc tggcaaacaa 360 ttaccatcac acaaagccat acttttgtg cctcggcgag atcccagtcg agaactttgg 420 gatggtccgc gatctggcac tgatggagca atagctctaa ctggagtaga cgaagcctat 480 acgctagaag aatttcaaca tcttctacca aaaatgaaag ctgagacgaa catggtttgg 540																						
acatactaca tgagcaacga tattccctat actttccacc aagacaacaa tttcctgtac 300 ctatgtggat tccaagagcc tgatagcatt cttgtccttc agagcctccc tggcaaacaa 360 ttaccatcac acaaagccat acttttgtg cctcggcgag atcccagtcg agaactttgg 420 gatggtccgc gatctggcac tgatggagca atagctctaa ctggagtaga cgaagcctat 480 acgctagaag aatttcaaca tcttctacca aaaatgaaag ctgagacgaa catggtttgg 540	act	ccag	gac H	tatc	tcag	gt g	gaata	atgca	a cti	cgca	agac	acaa	aacta	aat (gtcto	etgato	c 180	0				
ctatgtggat tccaagagcc tgatagcatt cttgtccttc agagcctccc tggcaaacaa 360 ttaccatcac acaaagccat acttttgtg cctcggcgag atcccagtcg agaactttgg 420 gatggtccgc gatctggcac tgatggagca atagctctaa ctggagtaga cgaagcctat 480 acgctagaag aatttcaaca tcttctacca aaaatgaaag ctgagacgaa catggtttgg 540	cag	aagg	aag (ctca	agggo	ca ga	agtgo	ggaca	a gao	ccaga	acag	tggi	ttgt	gct (ctcca	aaccct	t 240	0				
ttaccatcac acaaagccat actttttgtg cctcggcgag atcccagtcg agaactttgg 420 gatggtccgc gatctggcac tgatggagca atagctctaa ctggagtaga cgaagcctat 480 acgctagaag aatttcaaca tcttctacca aaaatgaaag ctgagacgaa catggtttgg 540	aca	tact	aca H	tgag	caaco	ga ta	attco	cctat	act	ttco	cacc	aaga	acaa	caa ·	tttco	ctgtad	c 300	0				
gatggtccgc gatctggcac tgatggagca atagctctaa ctggagtaga cgaagcctat 480 acgctagaag aatttcaaca tcttctacca aaaatgaaag ctgagacgaa catggtttgg 540	cta	tgtg	gat +	tcca	agago	cc to	gata	gcatt	cti	gtco	ette	agag	gccto	ccc -	tggca	aacaa						
acgctagaag aatttcaaca tcttctacca aaaatgaaag ctgagacgaa catggtttgg 540																	5					
																	-					

-continued	
gaggccaaag ccaagagcaa gaacaaggtt cggggtgttc agcagctgat acagcgcctc	660
cggctgatca agtctcctgc agaaattgaa cgaatgcaga ttgctgggaa gctgacatca	720
caggetttea tagaaaceat gtteaceagt aaageeeetg tggaagaage etttetttat	780
gctaagtttg aatttgaatg ccgggctcgt ggcgcagaca ttttagccta tccacctgtg	840
gtggctggtg gtaatcggtc aaacactttg cactatgtga aaaataatca actcatcaag	900
gatggggaaa tggtgcttct ggatggaggt tgtgagtctt cctgctatgt gagtgacatc	960
acacgtacgt ggccagtcaa tggcaggttc accgcacctc aggcagaact ctatgaagcc	1020
gttctagaga tccaaagaga ttgtttggcc ctctgcttcc ctgggacaag cttggagaac	1080
atctacagca tgatgctgac cctgatagga cagaagctta aagacttggg gatcatgaag	1140
aacattaagg aaaataatgc cttcaaggct gctcgaaaat actgtcctca tcatgttggc	1200
cactaceteg ggatggatgt ceatgaeact ceagaeatge ecegtteeet ecetetgeag	1260
cctgggatgg taatcacaat tgagcccggc atttatattc cagaggatga caaagatgcc	1320
ccagagaagt ttcggggtct tggtgtacga attgaggatg atgtagtggt gactcaggac	1380
tcacctctca tcctttctgc agactgtccc aaagagatga atgacattga acagatatgc	1440
agccaggctt cttga	1455
<213> ORGANISM: homo sapiens <400> SEQUENCE: 26 Met Leu Cus Ser Clp Arg Arg Tur Ser Leu Clp Bro Val Bro Clu Arg	
Met Leu Cys Ser Gln Arg Arg Tyr Ser Leu Gln Pro Val Pro Glu Arg 1 5 10 15	
Arg Ile Pro Asn Arg Tyr Leu Gly Gln Pro Ser Pro Phe Thr His Pro202530	
His Leu Leu Arg Pro Gly Glu Val Thr Pro Gly Leu Ser Gln Val Glu 35 40 45	
Tyr Ala Leu Arg Arg His Lys Leu Met Ser Leu Ile Gln Lys Glu Ala 50 55 60	
Gln Gly Gln Ser Gly Thr Asp Gln Thr Val Val Val Leu Ser Asn Pro 65 70 75 80	
Thr Tyr Tyr Met Ser Asn Asp Ile Pro Tyr Thr Phe His Gln Asp Asn 85 90 95	
Asn Phe Leu Tyr Leu Cys Gly Phe Gln Glu Pro Asp Ser Ile Leu Val 100 105 110	
Leu Gln Ser Leu Pro Gly Lys Gln Leu Pro Ser His Lys Ala Ile Leu 115 120 125	
Phe Val Pro Arg Arg Asp Pro Ser Arg Glu Leu Trp Asp Gly Pro Arg 130 135 140	
Ser Gly Thr Asp Gly Ala Ile Ala Leu Thr Gly Val Asp Glu Ala Tyr 145 150 155 160	
Thr Leu Glu Glu Phe Gln His Leu Leu Pro Lys Met Lys Ala Glu Thr 165 170 175	
Asn Met Val Trp Tyr Asp Trp Met Arg Pro Ser His Ala Gln Leu His 180 185 190	
Ser Asp Tyr Met Gln Pro Leu Thr Glu Ala Lys Ala Lys Ser Lys Asn 195 200 205	

Lys	Val 210	Arg	Gly	Val	Gln	Gln 215	Leu	Ile	Gln	Arg	Leu 220	Arg	Leu	Ile	Lys		
Ser 225	Pro	Ala	Glu	Ile	Glu 230	Arg	Met	Gln	Ile	Ala 235	Gly	Lys	Leu	Thr	Ser 240		
Gln	Ala	Phe	Ile	Glu 245	Thr	Met	Phe	Thr	Ser 250	Lys	Ala	Pro	Val	Glu 255	Glu		
Ala	Phe	Leu	Ty r 260	Ala	Lys	Phe	Glu	Phe 265	Glu	Сув	Arg	Ala	Arg 270	Gly	Ala		
Asp	Ile	Leu 275	Ala	Tyr	Pro	Pro	Val 280	Val	Ala	Gly	Gly	Asn 285	Arg	Ser	Asn		
Thr	Leu 290	His	Tyr	Val	Lys	Asn 295	Asn	Gln	Leu	Ile	L y s 300	Asp	Gly	Glu	Met		
Val 305	Leu	Leu	Asp	Gly	Gly 310	Cys	Glu	Ser	Ser	Сув 315	Tyr	Val	Ser	Asp	Ile 320		
Thr	Arg	Thr	Trp	Pro 325	Val	Asn	Gly	Arg	Phe 330	Thr	Ala	Pro	Gln	Ala 335	Glu		
Leu	Tyr	Glu	Ala 340	Val	Leu	Glu	Ile	Gln 345	Arg	Asp	Cys	Leu	Ala 350	Leu	Cys		
Phe	Pro	Gly 355	Thr	Ser	Leu	Glu	Asn 360	Ile	Tyr	Ser	Met	Met 365	Leu	Thr	Leu		
Ile	Gly 370	Gln	Lys	Leu	Lys	Asp 375	Leu	Gly	Ile	Met	Lys 380	Asn	Ile	Lys	Glu		
Asn 385	Asn	Ala	Phe	Lys	Ala 390	Ala	Arg	Lys	Tyr	Cys 395	Pro	His	His	Val	Gl y 400		
His	Tyr	Leu	Gly	Met 405	Asp	Val	His	Asp	Thr 410	Pro	Asp	Met	Pro	Arg 415	Ser		
Leu	Pro	Leu	Gln 420	Pro	Gly	Met	Val	Ile 425	Thr	Ile	Glu	Pro	Gly 430	Ile	Tyr		
Ile	Pro	Glu 435	Asp	Asp	Lys	Asp	Ala 440	Pro	Glu	Lys	Phe	Arg 445	Gly	Leu	Gly		
Val	Arg 450	Ile	Glu	Asp	Asp	Val 455	Val	Val	Thr	Gln	Asp 460	Ser	Pro	Leu	Ile		
Leu 465	Ser	Ala	Asp	Cys	Pro 470	Lys	Glu	Met	Asn	Asp 475	Ile	Glu	Gln	Ile	Cys 480		
Ser	Gln	Ala	Ser														
.210). CT			27													
<211	l> LE	NGTH) NO 1: 32														
	2> TY 3> OF			homo	sap	oiens	5										
			ICE :														
					זכ מי	ttcc	ccata	e ati	acco	etct	ttci	ctto	ccc d	aco	cgtgag		60
		-					-	-					-		aacgt		20
															gaagct		80
															cttgc		40
															- tggtt	3	00
taga	aaaa	atg a	aagta	actga	ac ti	tacgo	ygtga	a aga	aagt	tatt	caaa	acagi	tg a	acata	atttat	3	60
ttca	agtca	aag a	aaaca	agtto	ca ga	aggga	agata	a caa	acaa	agta	acti	agti	tac a	aatat	aatag	4	20

-	continued
ttatgatgag aggaagtact ggatgctaaa caattatatg agag	gacaget caggetgggg 480
gtgtcaatga aagcetettg gaggaagtag eetgatatgt taac	ctttctg catgccagtg 540
aagacactat gtgtgcatga gtacgtgtgc acgagcgtgc atgt	tggagaa ggtgcaggag 600
gagagaaaga gaaatcacca atgcaacagc agcctactcc acca	agtgggt tagtgctgct 660
ggagggagat gaaaagatta ggaaggatgt atgttgtgtt caca	agcgaag gtactccctt 720
cagcctgtcc cagaaaggag gattccaaac cgatacttag gcca	agcccag cccctttaca 780
cacccacacc testeagace agastegaat testgetggg aagt	tcggctg aaactaagga 840
aatgcagctc accactgaaa cccacaagaa atcagagttt ttca	aaagctg taaggggagg 900
taactccagg actatctcag gtggaatatg cacttcgcag acac	caaacta atgtctctga 960
tccagaagga agctcaaggg cagagtggga cagaccagac	ggttgtg ctctccaacc 1020
ctacatacta catgagcaac gatattccct atactttcca ccaa	agacaac aattteetgt 1080
acctatgtgg attccaagag cctgatagca ttcttgtcct tcag	gageete eetggeaaac 1140
aattaccatc acacaaagcc atactttttg tgcctcggcg agat	tcccagt cgagaacttt 1200
gggatggtcc gcgatctggc actgatggag caatagctct aact	tggagta gacgaagcct 1260
atacgctaga agaatttcaa catcttctac caaaaatgaa agto	getettg ceagetette 1320
aaaaggaggt actgttctcc aagaacgatc catgcatcac agca	atcagaa tcacctgctg 1380
agacgaacat ggtttggtat gactggatga ggccctcaca tgca	acagett caetetgaet 1440
atatgcagcc cctgactgag gccaaagcca agagcaagaa caac	ggttcgg ggtgttcagc 1500
agetgataca gegeeteegg etgateaagt eteetgeaga aatt	tgaacga atgcagattg 1560
ctgggaagct gacatcacag gtatgattcc tattgaaaag tttt	tttccag ccgggcgcgg 1620
tggctcacgc ctgtaatcca agcactttgg gaggccgagg cago	gtggatc atgaggtcag 1680
gagatcgaga ccatcctggc taacatggtg aaaccccgtc tcta	actaaaa aaacataaaa 1740
aattagccgg gcatggtggc gggctcctgt agtcccagct acto	cggtagg ctgaggcagg 1800
agaatggtgt gaaccoggga ggoagagott goagtgagoo gaga	atcgggc cactgcactc 1860
cagcctggcg acagacgaga ttcatcttaa aaaaaaaaaa	aaaaact ttcatagaaa 1920
ccatgttcac cagtaaagcc cctgtggaag aagcctttct ttat	tgctaag tttgaatttg 1980
aatgeeggge tegtggegea gaeattttag eetateeaee tgte	ggtggct ggtggtaatc 2040
ggtcaaacac tttgcactat gtgaaaaata atcaactcat caac	ggatggg gaaatggtgc 2100
ttctggatgg aggttgtgag tcttcctgct atgtgagtga cato	cacacgt acgtggccag 2160
tcaatggcag gttcaccgca cctcaggcag aactctatga agco	cgttcta gagatccaaa 2220
gagattgttt ggccctctgc ttccctggga caagcttgga gaac	catctac agcatgatgc 2280
tgaccctgat aggacagaag cttaaagact tggggatcat gaag	gaacatt aaggaaaata 2340
atgeetteaa ggetgetega aaataetgte eteateatgt tgge	ccactac ctcgggatgg 2400
atgtccatga cactccagac atgccccgtt ccctcctct gcag	
caattgagcc cggcatttat attccagagg atgacaaaga tgcc	cccagag aagtttcggg 2520
gtcttggtgt acgaattgag gatgatgtag tggtgactca ggac	ctcacct ctcatccttt 2580
ctgcagactg tcccaaagag atgaatgaca ttgaacagat atgo	cagccag gcttcttgac 2640
cttcactgcg gcccacatgc acctcaggtt caaaatgggt gtct	ttctggc agccctgcac 2700

gtgtgctttc	tgagtgtctc	tgtgtgtgca	ttaatatatg	cattccattt	gggagcataa	2760
aaaaaaaaa	aaaaatggaa	tgcagtagcc	ctctgggcct	gggatattgt	ggttgataac	2820
tgtgccatct	gcaggaacca	cattatggat	ctttgcatag	aatgtcaagc	taaccaggcg	2880
tccgctactt	cagaagagtg	tactgtcgca	tggggagtct	gtaaccatgc	ttttcacttc	2940
cactgcatct	ctcgctggct	caaaacacga	caggtgtgtc	cattggacaa	cagagagtgg	3000
gaattccaaa	agtatgggca	ctaggaaaag	acttcttcca	tcaagcttaa	ttgttttgtt	3060
attcatttaa	tgactttccc	tgctgttacc	taattacaaa	ttggatggaa	ctgtgttttt	3120
ttctgctttg	tttttcagt	ttgctgtttc	tgtagccata	ttggattctg	tgtcaaataa	3180
agtccagttg	gattctggaa	aaaaaaa				3208

- 1. (canceled)
- 2. (canceled)

3. An isolated nucleic acid molecule encoding the amino acid sequence described in SEQ ID NO:20.

4. An isolated nucleic acid molecule encoding the amino acid sequence described in SEQ ID NO:24.

5. An isolated nucleic acid molecule encoding the amino acid sequence described in SEQ ID NO:26.

6. An isolated nucleic acid molecular that encodes an amino acid sequence having the protease activity of SEQ ID NO:2, wherein said nucleic acid molecule hybridizes to the nucleotide sequence of SEQ ID NO:1 or the complement thereof under highly stringent conditions of 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS) and 1 mM EDTA at 65° C. and washing in $0.1\times$ SSC/0.1% SDS at 68° C.

* * * * *