Abstract: A new and more efficient digital microphone decimation filter architecture is described. A key to this architecture is the use of two parallel filter paths. Each path operates at the output sample rate, and comprises a shorter FIR filter followed by a series of allpass stages (e.g., implementing IIR filters). The FIR filter is designed to remove all but the last octave of out-of-band noise. The allpass stages are designed such that when the two paths are summed together, the out-of-band noise for the final octave cancels out, leaving only the desired signal.

Figure 1
A Novel Efficient Digital Microphone Decimation Filter
Architecture

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to processing signals. More particularly, the present invention relates to a system and method for processing signals pertaining to a filtering system or digital microphone decimation filter.

2. Description of the Related Art

Digital microphones accept a square wave clock at 64 times the ultimate sample rate of their audio signal, and return a stereo bitstream at that clock rate. The bitstream is the output of a 4th order sigma-delta modulator. The task of a digital microphone interface is to filter the out-of-band noise from this bitstream and decimate it to the audio rate.

In other words, a digital microphone interface accepts a bitstream at 64 times the output sample rate, and decimates it with filtering to the output sample rate to provide the output digital audio stream as a series of samples. As shown by Dattorro et al. (U.S. Patent No. 5,027,306, filed May 12, 1989, entitled "Decimation Filter As For A Sigma-Delta Analog-to-Digital Converter"), which contents are incorporated by reference in their entirety herein, this can be done by brute force using a single FIR filter. For 16 bit quality, they show this filter to be of approx order 2048 (symmetric: 4096).

What is desired is a more efficient and improved digital microphone decimation filter architecture system and method for processing signals thereof.

SUMMARY OF THE INVENTION

In accordance with the invention, there is provided a more efficient and improved digital microphone decimation filter architecture.

In one aspect, the invention provides a filtering system for processing an input signal that includes an input interface, a filtering module, and an output interface.

The input interface is operable to receive the input signal in a bitstream. The filtering module is operable to process the input signal through a parallel circuit of filters,
wherein the processing is performed using a single/common sample rate (e.g., 48kHz, 32kHz, etc.). The output interface is operable to generate an output signal based on the processed input signal.

In another aspect, the invention provides a method for processing an input signal with a filtering system. The method includes (a) receiving the input signal in a bitstream; (b) processing the input signal through a parallel circuit of filters, wherein the processing is performed using a single sample rate; and (c) generating from the filtering system an output signal based on the processed input signal.

The invention extends to a machine-readable medium embodying a sequence of instructions that, when executed by a machine (e.g., computer, processor, etc.), cause the machine to carry out any of the methods described herein.

These and other features and advantages of the present invention are described below with reference to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagrammatic representation of a filtering system (e.g., digital microphone decimation filter architecture system) according to various embodiments of the present invention.

Figure 2 is a diagrammatic representation of a filtering system (e.g., digital microphone decimation filter architecture system) according to various embodiments of the present invention.

Figure 3a is a diagrammatic representation of a component (e.g., an IIR allpass filter implemented in "one-multiply" form) of the filtering system according to various embodiments of the present invention.

Figure 3b is a diagrammatic representation of a component (e.g., an IIR allpass filter implemented in "two-multiply" form) of the filtering system according to various embodiments of the present invention.

Figure 4 is a diagrammatic representation of a component (e.g., FIR) of the filtering system (e.g., digital microphone decimation filter architecture) according to various embodiments of the present invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Reference will now be made in detail to preferred embodiments of the invention. Examples of the preferred embodiments are illustrated in the accompanying drawings. While the invention will be described in conjunction with these preferred embodiments, it will be understood that it is not intended to limit the invention to such preferred embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. In other instances, well known mechanisms have not been described in detail in order not to unnecessarily obscure the present invention.

The invention can be implemented in numerous ways, including as a process, an apparatus, a system, a composition of matter, a computer readable medium such as a computer readable storage medium. In this specification, theses implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processed may be altered within the scope of the invention.

It should be noted herein that throughout the various drawings like numerals refer to like parts. The various drawings illustrated and described herein are used to illustrate various features of the invention. To the extent that a particular feature is illustrated in one drawing and not another, except where otherwise indicated or where the structure inherently prohibits incorporation of the feature, it is to be understood that those features may be adapted to be included in the embodiments represented in the other figures, as if they were fully illustrated in those figures. Unless otherwise indicated, the drawings are not necessarily to scale. Any dimensions provided on the drawings are not intended to be limiting as to the scope of the invention but merely illustrative.

Digital microphones are often used in professional audio applications. Some of the advantages and shortcomings of working with digital microphones are described in a White Paper: "Digital Microphones and AES42" v2.1, May 11, 2010, which contents are incorporated by reference in their entirety herein.
According to various embodiments of the present invention, a new and more efficient digital microphone decimation filter architecture is presented. A key to this architecture is the use of two parallel filter paths. Each path operates at the output sample rate, and comprises a shorter FIR filter followed by a series of allpass stages. The FIR filter is designed to remove all but the last octave of out-of-band noise. The allpass stages (e.g., implemented with IIR filters such as power symmetric elliptic filters) are designed such that when the two paths are summed together, the out-of-band noise for the final octave cancels out, leaving only the desired signal. This architecture has several advantages over previous approaches. Like the approach of Dattorro et al., U.S. Patent No. 5,027,306, which is incorporated by reference herein, the FIR input is a bitstream; thus, the FIR step comprises only addition operations, and no multiplier is required. In contrast to Dattorro et al., the FIR filter in this architecture is considerably shorter (e.g., order 256), thus the shift register for storing the incoming bitstream is reduced by a factor of at least 8. Unlike the traditional Cascaded Integrator Comb (CIC) approach, this architecture does not use an intermediate sample rate. The allpass filters each operate at the output sample rate, and accept data from the FIR at the output sample rate. Thus the math can be done using a single accumulator. Finally, the allpass filters are of low complexity, requiring only a few multiplies per output sample. This means that an actual parallel multiplier is not required.

Figure 1 is a diagrammatic representation of a filtering system 100 (e.g., digital microphone decimation filter architecture system) according to various embodiments of the present invention. Filtering system 100 includes an input interface 101, a filtering module 102, and an output interface 103. From the digital microphone (DMIC), a bitstream at 64x sample rate (e.g., 64x48kHz = 3.072 MHz) at 1 bit wide is received at input interface 101, which is then processed by two parallel FIR filters. Each FIR filter operate at the sample rate. Each FIR filter generates an output word (e.g., 22 bit at 48kHz). The bitstream is then processed by two IIR Allpass filters. Each IIR Allpass filter operate at the sample rate and can change the phase but not the amplitude of the received signal. Each IIR Allpass filter generates an output word (e.g., 24 bit at 48kHz), which are sum together to generate a digital audio output at the sample rate. It is appreciated that according to various embodiments, filtering module 102 does not implement a multi-sample rate design,
but rather a single rate design. The design criteria can be based on 16 bit quality-noise below -96db or -100db. A delay module is presented so that one of the FIR filter is operating at half the 64x sample rate (therefore, 32 sample @ 48kHz) out of step from the other FIR filter. Since IIR Allpass filters can change the phases, the output of the Allpass filters can be in phase for summation resulting in reinforcement of the sample point and cancellation of half the sample point away. Therefore, a more efficient filtering system can be realized.

Detailed Mathematical Basis

Figure 2 is a diagrammatic representation of a filtering system 200 (e.g., digital microphone decimation filter architecture system) according to various embodiments of the present invention. Filtering system 200, which is similar to filtering system 100, includes an input interface 201, a filtering module 202, and an output interface 203. The input bitstream, represented as X_i, is a series of single bit values representing either a +1 or -1 signal, having a sample rate 64 times the output sample rate. The output signal is represented as Y_n, a stream of 24 bit words in 1.23 two's complement format at output sample rate. The time relation between n and i is that i runs at a rate 64 times that of n, and that a minimum of 288 values of X_i must be received for the calculation of Y_n. It is convenient to define X_0 as the input sample received just prior to begin to compute Y_0. Note that the actual delay between receipt of X_i and the output of Y_n is arbitrary. However, the delay should be consistent among all channels, and as small as practical.

The output sample Y_n is the sum of two substreams, Y_{0n} and Y_{1n}, also operating at the output sample rate. In other words:

$$Y_n = Y_{0n} + Y_{1n}$$

Each of these substreams is the output of a series of three allpass filters operating at the output sample rate. Each of the six allpass filters has its own filter coefficient k, which is a positive number less than one. Allpass filters can be implemented in a number of ways. For example, Figure 3a is a diagrammatic representation of a component 300 (e.g., an IIR allpass filter implemented in "one-multiply" form) of the filtering system according to various embodiments of the present invention. The "one-multiply" form requires a single multiplication and three addition operations. For another example, Figure 3b is a diagrammatic representation
of a component 320 (e.g., an IIR allpass filter implemented in "two-multiply" form) of the filtering system according to various embodiments of the present invention.

The "two-multiply" form requires two multiplications and two addition operations.

For exemplary purposes, both Figures 3a and 3b are based on the 0c IIR Allpass filter in Figure 2, which can be adapted for any of the other IIR Allpass filters (e.g., 0a, Ob, 1a, 1b, 1c) in Figure 2 as well. The results are mathematically equivalent. Both will be described here; the "two-multiply" form seems more appropriate for an optimal implementation.

Each of the filter sections will be denoted by its subsection number (0 or 1) and its section letter (a, b or c). Each filter has a coefficient k, and a delay memory Z_n. In the one multiply form, subsection 0 can be described:

\[
Y_0 = Z_0c_{n,i} + k_oc(Z_0b_n - Z_0c_{n,i})
\]

\[
Z_0c_n = Y_0b_n + k_oc(Y_0b_n - Z_0c_{n,i})
\]

\[
Y_0b_n = Z_0b_{n-1} + k_{ob}(Y_0a_n - Z_0b_{n,i})
\]

\[
Z_0b_n = Y_0a_n + k_{ob}(Y_0a_n - Z_0b_{n,i})
\]

\[
Y_0a_n = Z_0a_{n,j} + k_{oa}(W_0 - Z_0a_{n,i})
\]

\[
Z_0a_n = W_0n + k_{oa}(W_0 - Z_0a_{n,i})
\]

Or in the two multiply form:

\[
Y_0 = Z_0c_{n,i} + k_ocZ_0c_n
\]

\[
Z_0c_n = Y_0b_n - k_oZ_0c_{n,i}
\]

\[
Y_0b_n = Z_0b_{n,j} + k_{ob}Z_0b_n
\]

\[
Z_0b_n = Y_0a_n - k_{ob}Z_0b_{n,i}
\]

\[
Y_0a_n = Z_0a_{n,i} + k_{oa}Z_0a_n
\]

\[
Z_0a_n = W_0n - k_{oa}Z_0a_{n,i}
\]

In both cases W_0n is the output of the FIR filter for subsection 0. Subsection 1 is similar:

\[
Y_1 = ZlCn-l + k_1c(Y_0b_n - Zlc_{n-1})
\]

\[
ZlCn = Ylb_{n,j} + k_1c(Y_0b_n - Zlc_{n,j})
\]

\[
Ylb_{n,j} = Zlb_{n,i} + k_{jb}(Y_0a_n - Zlb_{n,i})
\]

\[
Zlb_{n,j} = Yla_{n,i} + k_{jb}(Y_0a_n - Zlb_{n,i})
\]

\[
Yla_{n,i} = Zla_{n,i} + k_{ja}(W_0n - Zla_{n,i})
\]

\[
Zla_{n,i} = Wl_{n,j} + k_{ja}(W_0n - Zla_{n,i})
\]
Or in the two multiply form:

\[Y_{\text{I}_\text{n}} = Z_{\text{lc}} n \cdot i + k_1 Z_{\text{lc}} n \]

\[Z_{\text{lc}} n = Y_{\text{lb}} n - k_1 Z_{\text{lc}} n \cdot i \]

\[Y_{\text{lb}} n = Z_{\text{lb}} n - 1 + k_1 Z_{\text{lb}} n \]

\[Z_{\text{lb}} n = Y_{\text{la}} n - k_1 Z_{\text{lb}} n - 1 \]

\[Y_{\text{la}} n = Z_{\text{la}} n - 1 + k_1 Z_{\text{la}} n \]

\[Z_{\text{la}} n = W_{\text{I}_n} n - k_1 Z_{\text{la}} n \cdot i \]

The FIR filter outputs are the sums of products of the FIR filter coefficients \(C_j \) times the corresponding input values \(X_i \). The 256 coefficients are even (symmetric with or without a central value), so that \(C_0 = C_{255}, C_i = C_{254}, \text{etc.} \) The two substreams use the same coefficients, but operate on data spaced one half output sample (or 32 input samples) apart. Thus:

\[W_{0_n} = C_0 X(64n \text{-} 255) + C_1 X(64n \text{-} 254) + \cdots + C_{255} X(64n) \]

\[W_{1_n} = C_0 X(64n \text{-} 287) + C_1 X(64n \text{-} 286) + \cdots + C_{255} X(64n + 32) \]

Implementation

A digital microphone decimation filter module/system implementing a preferred embodiment of the present invention processes \(N \) stereo streams of digital microphone data, at a clock rate \(R \) which can be either 3.072MHz or 2.048MHz. The module/system produces \(2 \times N \) audio output streams, at a sample rate of 48 or 32 kHz respectively, compatible with the audio router.

The digital microphone interface comprises a single clock output pin \(\text{DMIC}_MCLK \) producing a square wave at the selected clock rate \(R \), and \(N \) input pins \(\text{DMIC}_SDIn \) accepting a bit stream from a stereo pair of digital microphones. The format of this data is described in Appendix 1 below.

The control interface for the module/system comprises a rate select input \(\text{DMIC}_RATE \) which selects the value of \(R \), and an enable bit for each of the \(N \) streams. When the enable bit is negated, the associated \(\text{DMIC}_SDI \) input is ignored, the audio data output is not computed, and the associated delay registers are cleared to zero. When all enable bits are negated, the \(\text{DMIC}_MCLK \) becomes quiescent at a zero value.

The module/system contains a single coefficient ROM (presumably a synthesized logic ROM) containing the \(C_i \) coefficients. The coefficients are 18 bits,
and because they are symmetric, only 128 coefficients are stored. The \(C_i \) coefficients have maximum decimal significance of around 0.025. They are stored at 32 times their actual value, that is with a value slightly less than 1 for the largest coefficient \(C_m \), in 1.17 format. The factor of 32 comprises a factor of 2 because of the pairing of operations (see below), and a scale factor of 16.

Because the input data stream \(X_1 \) is a stream of single bits, no multiplication is required in the computation of \(W_a \); the sums can be produced by conditional additions or subtractions. Because the coefficients are symmetric, only 128 conditional add/subtracts are required per sum. If the two input samples associated with a given coefficient are different, the accumulator remains unchanged; if both are 1, two times the coefficient is added, and if both are 0, two times the coefficient is subtracted. Because of this pairing, the ROM value represents twice the value of the coefficient.

The resulting \(W_a \) signal is guaranteed to have a value within \([-1,1]\) when the coefficients have their proper value; with scaling the value is now \([-16,16]\), implying that there are 4 bits of word growth in the sum of products operation.

Were the accumulator to merely accommodate the FIR operation, it must have 22 bits, in 5.17 format with scaling, or equivalently 1.21 format when the result is scaled back to unity gain.

Based on the above, each of the two substreams will have its own accumulator. At the beginning of each 48 kHz sample period, both accumulators for each channel are cleared. Then the 128 values of the coefficient ROM are sequentially accessed. For each substream for each channel, the two shift register bits associated with that ROM are examined. For example, for substream 1 and \(C_1, X(64n-254) \) and \(X(64n-i) \) are examined. If they are of different values, nothing is added into the accumulator. If they are both 1, then the coefficient is added to the accumulator; if they are both zero, the coefficient is subtracted from the accumulator. After all 128 coefficients are processed, the accumulators contain the \(W_0 a \) and \(W_1 a \) values. Next the allpass filters can be implemented.

Figure 4 is a diagrammatic representation of a component 400 (e.g., FIR) of the filtering system (e.g., digital microphone decimation filter architecture) according to various embodiments of the present invention. A simple architecture of component 400 to implement the shift registers uses a 64 long, 1 bit wide input shift register to acquire 64 single bit values for each channel during each 48 kHz sample period. At
the end of sample period prior to when Y_n is being computed, this will contain values $X(64n-63)$ through $X(64n)$. These 64 bits are then shifted as a 64 bit word into a 64 bit wide x 5 word long compute shift register. During the sample period when Y_n is being computed, this contains $X(64n-39)$ through $X(64n)$. Note that 32 bits of the final word of this shift register (containing $X(64n-39)$ through $X(64n-288)$) are never used and need not exist.

The allpass filter nodes can have word growth, so that even though the $W0_n$ and $W1_n$ values are limited to [-1,1], the accumulator should have some headroom. Furthermore, since the multiplications in the allpass filters can produce fractional bits, some footroom is also beneficial. Two bits of footroom are sufficient. The two multiply allpass internal node is a highpass pole, so its gain is $l/(1-k)$. Since the largest k we have is about 0.9, the gain is about 10, so 4 bits of headroom are necessary. The actual format of the accumulators is thus 5.23. The delay memories Zij_n are in the same format.

The $6K_{ij}$ coefficients are positive numbers, 16 bits in 0.16 format (see Appendix 2). The multiplications can be implemented as hard-coded shift and add operations, thus these coefficients are not stored in any ROM.

Use of the two multiply form of the allpass allows storage to be minimized. The multiplications are implemented as adds and subtracts of the shifted multiplicand to the accumulator. The sequence of operations is as follows (the example is for substream 0):

Begin with $W0_n$ in the accumulator, and $Za0_{n-1}$ in the 'a' delay memory, $Zb0_{n-1}$ in the 'b' delay memory, and $Zc0_{n-1}$ in the 'c' delay memory.

Multiply the contents of the 'a' delay memory by kao and accumulate the result. The accumulator now contains $W0_n + kaoZ0an$. Divide by 2 and accumulate the result. The accumulator now contains $Za0_{n-1} + kaoZ0a_n = Y0a_n$.

Multiply the contents of the 'b' delay memory by kbo and accumulate the result. The accumulator now contains $Y0a_n - kboZ0b_{n-1} = Z0b_n$.

Multiply the contents of the 'c' delay memory by kco and accumulate the result. The accumulator now contains $Z0b_n + kcoZ0c_n = Y0c_n$.

Multiply the contents of the 'c' delay memory by kco and accumulate the result. The accumulator now contains $Y0c_n - kcoZ0c_n = Z0c_n$.

Multiply the contents of the 'a' delay memory by kao and accumulate the result. The accumulator now contains $Z0c_n + kaoZ0c_n = Y0c_n$.

Multiply the contents of the 'a' delay memory by kao and accumulate the result. The accumulator now contains $Y0c_n + kaoZ0c_n = Y0c_n$.

Multiply the contents of the 'b' delay memory by kbo and accumulate the result. The accumulator now contains $Z0c_n + kboZ0c_n = Y0c_n$.
Multiply the contents of the 'b' delay memory by \(k_{0b} \) and accumulate the result. The accumulator now contains \(Z_{b0n-1} + k_{0b}Z_{0bn} = Y_{0b} \).

Multiply the contents of the 'c' delay memory by \(-k_{0c} \) and accumulate the result. The accumulator now contains \(Y_{0bn} - k_{0c}Z_{0cn} = Z_{0c} \).

Swap the accumulator and the 'c' delay memory. The accumulator now contains \(Z_{c0n-1} \) and the delay memory contains \(Z_{0c} \).

Multiply the contents of the 'c' delay memory by \(k_{0c} \) and accumulate the result. The accumulator now contains \(Z_{c0n-1} + k_{0c}Z_{0cn} = Y_{0c} \).

In parallel, the analogous process is done to substream 1.

Finally, the two substreams are added together, the result is saturated from its 5.23 format to [-1,1] as 1.23 format, and then output to the audio router.

The above process can be repeated for additional channels using the same accumulators but different delay memories. 256 clocks should be allocated for each channel.

The total facilities required:

Shared resources for all channels:

- 18 bit by 128 word ROM
- Control logic including coding of the 'k' coefficients

Per Channel resources:

- 352 bits of shift register and associated muxes
- 24 bits of output register
- 168 bits of delay memory and associated muxes

Time shared among channels for each accumulator pair:

- 56 bits of accumulator
- 228 bit adder/subtractors

Quality

This implementation has been designed to meet "16 bit" quality standards. It is possible to use a shorter FIR and shorter coefficient words to decrease the resources further at the cost of audio quality. Such tradeoffs could be more thoroughly investigated in MATLAB.
Appendix 1: Digital Microphone Interface Format

The digital microphones all operate using an interface comprising a DMIC_MCLK signal, which is a square wave clock input into one or two digital microphone circuits, and a DMIC_SDI signal, which is the data output from the digital microphone circuits. When two mics are used, they are configured so that the DMIC_SDI from both mics is multiplexed into one signal line for the stereo configuration.

a. Signal Voltages and Levels

Digital Microphone pads must be designed to accommodate the particular digital microphones used.

b. Signal Timing

The DMIC_MCLK signal is a 50% duty cycle square wave at 64 times the sample frequency. At 48kHz sample rate, this means a clock of 3.072MHz. Some microphones (e.g., a National product) have a maximum clock frequency of 2.4MHz; this does not allow for full audio bandwidth operation. Some microphones also operate at a clock frequency of 2.048MHz, and thus a sample rate of 32kHz.

The DMIC_SDI data input signal provides Pulse Density Modulation (PDM) information as "left" data in response to the falling edge of DMIC_MCLK, and "right" data in response to the rising edge. The data delay time from the active edge of DMIC_MCLK to valid data on DMIC_SDI varies among the manufacturers, as does the hold time of valid data on DMIC_SDI following the subsequent DMIC_JV1CLK transition. An optimum interface should latch the DMIC_SDI data on the MCLK falling edge immediately prior to the next DMIC_MCLK transition. This will allow the maximum timing margin on the DMIC_SDI data delay, without placing any restriction on a positive value for its hold time. Assuming no signal skew, this design allows for data delay timing margins of 89 nsec and 113.25 nsec, and data hold margins of 48 nsec and 106 nsec respectively for Akustica and National parts. See the timing diagrams below for details.

Note that while some microphones specify that there is a finite (typically 200msec) "data invalid" time during power-up, there is no need to deal with this in the hardware.

48 kHz Sample Rate, 3.072 MHz DMIC_MCLK

MCLK xssazzxssazzzssazzxzzxssazzxzzxs
DMIC_MCLK azzzzzzzzzzxs sssssssss azzzzzzzzzzxs
DataStrobe azzzzzzzzzzxsazzzzzzzzsssazzzzzzzzsaz
DMIC_SDI `r43`left``r43`right``r43`left``r
 33 nsec 0 = 7 nsec
Data delay of 33 nsec, data hold of 7 nsec typical of Akustica parts.
DMIC_SDI is sampled on the rising edge of DataStrobe.

32 kHz Sample Rate, 2.048 MHz DMIC_MCLK
MCLK xsazxsazzxsazzxsazzxsazzxsazzxsazzxsaz
DMIC_MCLK azzzzzzzzzzxs sssssssss azzzzzzzzzzxs
DataStrobe azzzzzzzzzzxsazzzzzzzzsazzzzzzzzsaz
DMIC_SDI `r43`leftr43`rightr43 `lefr`
 90 nsec 0 = 65 nsec
Data delay of 90 nsec, data hold of 65 nsec typical of National parts.
DMIC_SDI is sampled on the rising edge of DataStrobe.

Appendix 2: Allpass Filter Coefficients
These coefficients correspond to requirements of 96dB attenuation at 28kHz:
k_{0a} = 2894/65536 = 0.0442
k_{ob} = 21667/65536 = 0.3306
k_{0c} = 46002/65536 = 0.7019
k_{1a} = 10755/65536 = 0.1641
k_{10} = 33747/65536 = 0.5149
k_{ic} = 58644/65536 = 0.8948

Appendix 3: FIR Filter Coefficients
These coefficients correspond to requirements of +/- 0.1dB ripple 0-20kHz,
100dB attenuation 76kHz to 116kHz, and 130dB above 124kHz. All are expressed as
integer values. The actual coefficients are stored effectively as 1.17 format (divided
by 131072), and the original FIR values are 1/32 of the these (divided by 4194304):
C_0 = 1; C_1 = 2; C_2 = 3; C_3 = 4; C_4 = 6; C_5 = 8; C_6 = 11; C_7 = 15; C_8 = 20; C_9 = 26; C_{10} = 33; C_{11} = 41; C_{12} = 51; C_{13} = 63; C_{14} = 76; C_{15} = 91; C_{16} = 109; C_{17} = 128; C_{18} = 149; C_{19} = 173; C_{20} = 198; C_{21} = 225; C_{22} = 254; C_{23} = 285; C_{24} = 317; C_{25} = 350; C_{26} = 383; C_{27} = 416; C_{28} = 448; C_{29} = 479; C_{30} = 507; C_{31} = 533; C_{32} = 554; C_{33} = 569;
Advantages of the present invention allow for an efficient combination of FIR and IIR filters that take advantage of a single bit input signal. The IIR filters allow the FIR to be more efficient by having lesser coefficients (e.g., order 256 vs order 4096). Further, due to the lesser coefficients, a single accumulator (e.g., register) can be used.

Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims.

Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.
What is claimed is:

1. A filtering system for processing an input signal, comprising:
 an input interface operable to receive the input signal in a bitstream;
 a filtering module operable to process the input signal through a parallel
circuit of filters, wherein the processing is performed using a single sample rate; and
 an output interface operable to generate an output signal based on the
processed input signal.

2. The filtering system of claim 1, wherein the input signal is a multi-channel
 audio signal.

3. The filtering system of claim 1, wherein the input signal is a single bit
digital signal.

4. The filtering system of claim 3, wherein the input signal is at multiple
times the sample rate of the output signal.

5. The filtering system of claim 1, wherein the filtering system is a
decimation filter system for a digital microphone.

6. The filtering system of claim 1, wherein the parallel circuit of filters
 comprises of a FIR filter in series with an IIR filter in each of the two paths of the
parallel circuit of filters.

7. The filtering system of claim 6, wherein the FIR filter comprises of
 addition operations and no multiplier operations, and wherein the parallel circuit of
 filters utilizes a single accumulator.

8. The filtering system of claim 6, wherein one of the paths of the parallel
 circuit of filters is in series with a delay module in the input interface.

9. The filtering system of claim 1, wherein the parallel circuit of filters
 processes the input signal such that a last octave of out-of band noise remains in the
processed input signal.

10. The filtering system of claim 9, wherein the output interface generates the
 output signal such that the last octave of out-of band noise is removed from the
 processed input signal.
11. The filtering system of claim 10, wherein the output interface is operable to perform an addition operation on the processed input signal from each of the two paths of the parallel circuit.

12. A method for processing an input signal with a filtering system, comprising:
 - receiving the input signal in a bitstream;
 - processing the input signal through a parallel circuit of filters, wherein the processing is performed using a single sample rate; and
 - generating from the filtering system an output signal based on the processed input signal.

13. The method of claim 12, wherein the input signal is a multi-channel audio signal.

14. The method of claim 12, wherein the input signal is a single bit digital signal.

15. The method of claim 12, wherein the parallel circuit of filters comprises of a FIR filter in series with an IIR filter in each of the two paths of the parallel circuit of filters.

16. The method of claim 15, wherein the FIR filter comprises of addition operations and no multiplier operations.

17. The method of claim 15, wherein one of the paths of the parallel circuit of filters is in series with a delay module in the input interface.

18. The method of claim 12, wherein processing the input signal through the parallel circuit of filters comprises leaving a last octave of out-of-band noise in the processed input signal.

19. The method of claim 18, wherein generating the output signal comprises removing the last octave of out-of-band noise from the processed input signal.

20. The method of claim 19, wherein generating the output signal comprises performing an addition operation on the processed input signal from each of the two paths of the parallel circuit.
Figure 1
Figure 2
Figure 4
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H03H 17/06(2006.01), G06F 17/10(2006.01), H04R 3/00(2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H03H 17/06; H04L 27/22; G06F 17/10; G06F 15/31

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & Keywords: decimation, filter, FIR, parallel

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5258939 A (WILLIAM R. JOHNSTONE et al.) 02 November 1993</td>
<td>1-7,12-16</td>
</tr>
<tr>
<td>Y</td>
<td>See column 7, lines 19-42; column 8, lines 3-17; figures 6, 7; and claim 21.</td>
<td>8,17</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>9-11,18-20</td>
</tr>
<tr>
<td>Y</td>
<td>US 5787125 A (JAMES GREGORY MITTEL) 28 July 1998</td>
<td>5,17</td>
</tr>
<tr>
<td>A</td>
<td>See column 4, line 62 - column 5, line 28; and figure 3.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>See column 13, line 21 - column 14, line 27; and figures 15, 16.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>See paragraph [0038]; and figure 5.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 7415542 B2 (HENNEDY MICHAEL et al.) 19 August 2008</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>See column 8, lines 34-53; and figures 5, 6.</td>
<td></td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☑ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

27 FEBRUARY 2013 (27.02.2013)

Date of mailing of the international search report

04 MARCH 2013 (04.03.2013)

Name and mailing address of the ISA/KR

Authorized officer

KIM, Do Woon
Telephone No. 82-42-481-5560

Facsimile No. 82-42-472-7140

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 93-07678 A1</td>
<td>15.04.1993</td>
</tr>
<tr>
<td>US 5787125 A</td>
<td>28.07.1998</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 15 16923 A</td>
<td>28.07.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60323716 D1</td>
<td>06.11.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 03899966 B2</td>
<td>28.03.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7254598 B2</td>
<td>07.08.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03-077419 A1</td>
<td>18.09.2003</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)