(54) 发明名称
一种奥氮平中间体的制备方法

(57) 摘要
本发明公开了一种奥氮平中间体 4-氨基-2-甲基-10H-喹吩[2,3-b][1,5]-苯二氮杂草盐酸盐的制备方法：在乙醇介质中，式(I)所示的2-(2-硝基苯胺基)-5-甲基喹啉-3-腈在盐酸、次亚磷酸钠和氯化亚锡作用下还原缩合制得式(II)所示的4-氨基-2-甲基-10H-喹吩[2,3-b][1,5]-苯二氮杂草盐酸盐；本发明采用清洁试剂次亚磷酸钠-水化合物来减少剧毒试剂氯化亚锡二水化合物的用量，使现有技术中2-(2-硝基苯胺基)-5-甲基喹啉-3-腈与氯化亚锡的投料摩尔比1：3.36降至1：0.2，且产物收率及纯度与现有技术相当，本发明方法极大地降低了环境污染，适合工业化生产。
1. 一种制备如式（Ⅱ）所示的氧氮平中间体的方法，其特征在于所述的方法为：在乙醇溶液介质中，将式（Ⅰ）所示的 2-(2-硝基苯胺基)-5-甲基噻吩-3-腈与盐酸、次亚磷酸钠一水合物和氯化亚锡二水合物混合，升温至 85℃-95℃，反应 5-10h，反应液旋蒸除去乙醇，将反应液自然降温至 25℃，继续降温至 10℃保温搅拌 2h，过滤，滤饼用冰水洗涤至 pH=2，干燥，制得式（Ⅱ）所示的 4-氨基-2-甲基-10H-噻吩[2,3-b][1,5]-苯二氮杂䓬盐酸盐；所述的乙醇溶液的体积用量以式（Ⅰ）2-(2-硝基苯胺基)-5-甲基噻吩-3-腈的质量计为 6~10mL/g；所述的式（Ⅰ）所示的化合物 2-(2-硝基苯胺基)-5-甲基噻吩-3-腈与盐酸投料物质的量之比为 1:10~15；式（Ⅰ）所示的化合物与次亚磷酸钠一水合物投料物质的量之比为 1:5~7；式（Ⅰ）所示的化合物与氯化亚锡二水合物的投料物质的量之比为 1:0.2~0.3；所述的乙醇溶液为无水乙醇或 95%乙醇水溶液；

![化学结构式](image)

(Ⅰ)
(Ⅱ)

2. 如权利要求 1 所述的氧氮平中间体的制备方法，其特征在于所述的盐酸当量浓度为 6~12mol/L。
一种奥氮平中间体的制备方法

（一）技术领域
[0001] 本发明涉及一种奥氮平中间体的制备方法，特别涉及一种4-氨基-2-甲基-10H-噻吩[2,3-b][1,5]-苯二氮杂䓬盐酸盐的制备新方法。

（二）背景技术
[0002] 奥氮平（Olanzapine）又名再乐普，是一种适用于精神分裂症和其它有严重阳性症状和/或阴性症状的精神病的急性期和维持治疗。化学名为2-甲基-4-(4-甲基-1-哌嗪基)-10H-噻吩并[2,3-b][1,5]苯二氮杂䓬，其结构式如下：

![结构式](image1)

[0003] 奥氮平中间体：4-氨基-2-甲基-10H-噻吩[2,3-b][1,5]-苯二氮杂䓬盐酸盐，其结构式如式（II）所示：

![结构式](image2)

[0004] CN1028429C中公开了一种制备奥氮平的方法，该方法如Scheme1所示：

[0005]
[0008] 该制备方法主要是通过式（I）所示化合物在无水氯化亚锡的盐酸溶液中经过还原缩合制得式（II）所示化合物，最后与N-甲基吡嗪在甲苯/二甲基亚砜溶剂中反应制得式（III）所示的奥氮平。其中无水氯化亚锡是剧毒试剂，在该步反应中，无水氯化亚锡的用量与式（I）所示化合物摩尔比为3.36：1，所产生的废液对环境影响很大。

（三）发明内容
[0009] 本发明目的是提供一种奥氮平中间体的制备方法，该方法提供一种高效环保的奥氮平中间体的制备工艺，极大地降低了氯化亚锡的使用量，且产物的收率及质量与现有技术相当。
[0010] 本发明采用的技术方案是：
[0011] 一种制备如式（II）所示的奥氮平中间体的方法，所述的方法为：在乙醇介质中，式（I）所示的2-(2-硝基苯胺基)-5-甲基噻吩-3-腈在盐酸/次亚磷酸钠和氯化亚锡作用下还原缩合制得式（II）所示的4-氨基-2-甲基-10H-噻吩[2,3-b][1,5]-苯二氮杂䓬盐酸盐，所述的式（I）所示的2-(2-硝基苯胺基)-5-甲基噻吩-3-腈与次亚磷酸钠反应物质的量比为1：10～20，所述的式（I）所示的化合物与次亚磷酸钠投料物质的量比为1：5～10，所述的式（I）所示的化合物与氯化亚锡投料物质的量比为1：0.2～0.5；所述的次亚磷酸钠为次亚磷酸钠一水合物；所述的氯化亚锡为氯化亚锡二水合物；
[0012]

[0013] 所述的盐酸当量浓度为6～12mol/L。
所述的式 (I) 所示的化合物 2-(2-硝基苯胺基)-5-甲基噻吩-3-腈与盐酸投料物质的量之比优选为 1:10-15,式 (I) 所示的化合物与次亚磷酸钠-水合物投料物质的量之比优选为 1:5-7,式 (I) 所示的化合物与氯化亚锡-二水合物的投料物质的量之比优选为 1:0.2-0.3。

所述的乙醇介质中，乙醇为质量浓度为 95%的乙醇水溶液或无水乙醇。

所述的乙醇溶液的体积用量以式 (I) 所示的 2-(2-硝基苯胺基)-5-甲基噻吩-3-腈的质量计为 6-10ml/g。

所述的还原缩合反应温度优选为 85-95°C, 反应时间优选为 5-10h。

进一步,本发明所述的奥氮平中间体的制备方法推荐按照以下步骤进行: 在乙醇溶液介质中, 将式 (I) 所示的 2-(2-硝基苯胺基)-5-甲基噻吩-3-腈与盐酸、次亚磷酸钠-水合物和氯化亚锡-二水合物混合, 升温至 85-95°C, 反应 5-10h, 反应液旋蒸除去乙醇, 将反应液自然降温至 25°C, 然后继续降温至 10°C 保温搅拌 2 小时, 过滤, 滗药用冰水洗涤至 pH1-2, 干燥, 制得式 (II) 所示的 4-氨基-2-甲基-10H-噻吩 [2,3-b][1,5]-苯二氮杂草盐酸盐。所述的乙醇溶液的体积用量以式 (I) 所示的 2-(2-硝基苯胺基)-5-甲基噻吩-3-腈的质量计为 6-10ml/g; 所述的式 (I) 所示的化合物 2-(2-硝基苯胺基)-5-甲基噻吩-3-腈与盐酸投料物质的量之比为 1:10-15;式 (I) 所示的化合物与次亚磷酸钠-水合物投料物质的量之比为 1:5-7; 式 (I) 所示的化合物与氯化亚锡-二水合物的投料物质的量之比为 1:0.2-0.3; 所述的乙醇溶液为无水乙醇或 95%乙醇水溶液。

本发明的工艺路线如 Scheme 2 所示:

![Scheme 2](attachment:image.png)

本发明所述的式 (I) 所示的 2-(2-硝基苯胺基)-5-甲基噻吩-3-腈的制备方法为: 该制备方法可参照中国专利 CN1028129C 中说明书第 6 页实施例 1 中的 2.2 方法制备。

与现有技术相比, 本发明的有益效果主要体现在:

本发明采用清洁试剂次亚磷酸钠-水合物来减少副试剂氯化亚锡-二水合物的用量, 使现有技术中 2-(2-硝基苯胺基)-5-甲基噻吩-3-腈与氯化亚锡的投料摩尔比 1:3.36 降至 1:0.2, 且产物收率及纯度与现有技术相当, 摩尔收率 96.5%, HPLC 为 99.95%; 本发明方法极大地降低了环境污染, 适合工业化生产。

（四）具体实施方式

下面结合具体实施例对本发明进行进一步描述, 但本发明的保护范围并不限于此:
说明书

【0025】实施例1：2-(2-硝基苯胺基)-5-甲基噻吩-3-腈（I）的合成

【0026】在500mL的四口瓶中加入氢氧化钠14.4g（在油中50%的分散液，0.3mol），50mL的无水四氢呋喃，氮气保护下，再加入含邻氯硝基苯28.2g（0.2mol）和2-氨基-5-甲基噻吩-3-腈27.6g（0.2mol）的无水四氢呋喃溶液250mL，然后将上述反应液在25℃搅拌24小时，然后倒在冰上，加入二氯甲烷萃取（3×500mL），将萃取液合并，再分别用当量浓度为2mol的盐酸（2×200mL）和水（2×200mL）洗涤萃取液，然后用硫酸镁干燥并在减压下除去溶剂，残留物用乙醇结晶得2-(2-硝基苯胺基)-5-甲基噻吩-3-腈35.2g。（参照中国专利CN10284292C）

【0027】实施例2：4-氨基-2-甲基-10H-噻吩[2,3-b][1,5]-苯二氮杂䓬盐酸盐（II）的合成

【0028】在500mL的三口瓶中加入200mL的95%乙醇水溶液，开启搅拌，依次加入32g（0.12mol）的2-(2-硝基苯胺基)-5-甲基噻吩-3-腈，120mL（1.44mol）的12mol/L盐酸溶液，80g（0.75mol）的次亚磷酸钠-水合物，8g（0.035mol）的氯化亚锡二水合物，升温至85℃反应10小时，然后常压蒸出乙醇140mL，将反应液自然降温至25℃（近60分钟），然后继续降温至10℃保温搅拌2小时，过滤，滤饼用50mL的冰水洗涤至pH为1，干燥，制得4-氨基-2-甲基-10H-噻吩[2,3-b][1,5]-苯二氮杂䓬盐酸盐31.8g（摩尔收率：95.0%，HPLC：99.95%）。

【0029】实施例3：4-氨基-2-甲基-10H-噻吩[2,3-b][1,5]-苯二氮杂䓬盐酸盐（II）的合成

【0030】在1000mL的三口瓶中加入250mL的无水乙醇，开启搅拌，依次加入32g（0.12mol）的2-(2-硝基苯胺基)-5-甲基噻吩-3-腈，180mL（2.16mol）的12mol/L盐酸溶液，65g（0.61mol）的次亚磷酸钠-水合物，13.5g（0.06mol）的氯化亚锡二水合物，升温至90℃反应7小时，然后常压蒸出乙醇140mL，将反应液自然降温至25℃（近60分钟），然后继续降温至10℃保温搅拌2小时，过滤，滤饼用50mL的冰水洗涤至pH为2，干燥，制得4-氨基-2-甲基-10H-噻吩[2,3-b][1,5]-苯二氮杂䓬盐酸盐31.5g（摩尔收率：93.7%，HPLC：99.85%）。

【0031】实施例4：4-氨基-2-甲基-10H-噻吩[2,3-b][1,5]-苯二氮杂䓬盐酸盐（II）的合成

【0032】在1000mL的三口瓶中加入300mL的无水乙醇，开启搅拌，依次加入32g（0.12mol）的2-(2-硝基苯胺基)-5-甲基噻吩-3-腈，6mol/L的盐酸300mL（1.8mol），80g（0.75mol）的次亚磷酸钠-水合物，8g（0.035mol）的氯化亚锡二水合物，升温至95℃反应5小时，然后常压蒸出乙醇140mL，将反应液自然降温至25℃（近60分钟），然后继续降温至10℃保温搅拌2小时，过滤，滤饼用50mL的冰水洗涤至pH为2，干燥，制得4-氨基-2-甲基-10H-噻吩[2,3-b][1,5]-苯二氮杂䓬盐酸盐30.4g（摩尔收率：90.3%，HPLC：99.90%）。

【0033】实施例5：4-氨基-2-甲基-10H-噻吩[2,3-b][1,5]-苯二氮杂䓬盐酸盐（II）的合成

【0034】在1000mL的三口瓶中加入300mL的无水乙醇，开启搅拌，依次加入32g（0.12mol）的2-(2-硝基苯胺基)-5-甲基噻吩-3-腈，6mol/L的盐酸400mL（2.4mol），128g（1.2mol）的次亚磷酸钠-水合物，5.48g（0.024mol）的氯化亚锡二水合物，升温至95℃反应5小时，
然后常压蒸发乙醇 140mL, 在近 60 分钟将反应液降温至 25℃, 然后继续降温至 10℃保温搅拌 2 小时, 过滤, 滤饼用 50mL 的冰水洗涤至 PH 为 2, 干燥, 制得 4- 氨基 -2- 甲基 -10H- 吡啶 [2,3-b][1,5]- 苯二氮杂䓬盐酸盐 32.5g（摩尔收率：96.5%, HPLC: 99.95%）。

[0035] 对比例 1: 4- 氨基 -2- 甲基 -10H- 吡啶 [2,3-b][1,5]- 苯二氮杂䓬盐酸盐（II）的合成（不加次亚磷酸钠一水合物）

[0036] 在 1000mL 的三口瓶中加入 300mL 的无水乙醇, 开启搅拌, 依次加入 32g (0.12mol) 的 2- (2- 硝基 苯 胺 基)-5- 甲基 喹 啶 -3- 胍, 180mL (2.16mol) 的 12mol/L 浓盐酸, 90g (0.4mol) 的次亚磷酸钠水合物, 升温至 80℃反应 5 小时, 然后常压蒸发乙醇 140mL, 将反应液自然降温至 25℃ (近 60 分钟), 然后继续降温至 10℃搅拌保温 2 小时, 过滤, 滤饼用 50mL 的冰水洗涤至 PH 为 1-2, 干燥, 制得 4- 氨基 -2- 甲基 -10H- 吡啶 [2,3-b][1,5]- 苯二氮杂䓬盐酸盐 31.2g（摩尔收率：93.0%, HPLC: 99.90%）。

[0037] 从对比例中可以看出, 4- 氨基 -2- 甲基 -10H- 吡啶 [2,3-b][1,5]- 苯二氮杂䓬盐酸盐 (II) 的制备方法中, 次亚磷酸钠的加入极大的减少了副毒化合物氯化亚锡的用量, 且产物的收率及纯度与现有技术相当。