

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2012342114 B2

(54) Title
Methods and materials for enzymatic synthesis of mogroside compounds

(51) International Patent Classification(s)
C12P 19/18 (2006.01) **C12P 33/00** (2006.01)

(21) Application No: **2012342114** (22) Date of Filing: **2012.11.19**

(87) WIPO No: **WO13/076577**

(30) Priority Data

(31) Number **61/563,303** (32) Date **2011.11.23** (33) Country **US**

(43) Publication Date: **2013.05.30**

(44) Accepted Journal Date: **2017.12.21**

(71) Applicant(s)
Evolva SA

(72) Inventor(s)
Liu, Yaoquan;Lee, Jung Yeop;Khare, Monika

(74) Agent / Attorney
FPA Patent Attorneys Pty Ltd, Level 43 101 Collins Street, Melbourne, VIC, 3000, AU

(56) Related Art
WO 2008/062165

(43) International Publication Date

30 May 2013 (30.05.2013)

(51) International Patent Classification:

CI2P 19/18 (2006.01) *CI2P 33/00* (2006.01)

(21) International Application Number:

PCT/IB2012/002857

(22) International Filing Date:

19 November 2012 (19.11.2012)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/563,303 23 November 2011 (23.11.2011) US

(71) Applicant: EVOLVA SA [CH/CH]; Duggingerstrasse 23, CH-4153 Reinach (CH).

(72) Inventors: LIU, Yaoquan; 2440 Embarcadero Way, Palo Alto, CA 94303 (US). LEE, Jung, Yeop; 10243 Alpine Dr. #2, Cupertino, CA 95014 (US). KHARE, Monika; 19980 Pear Tree Lane, Cupertino, CA 95014 (US).

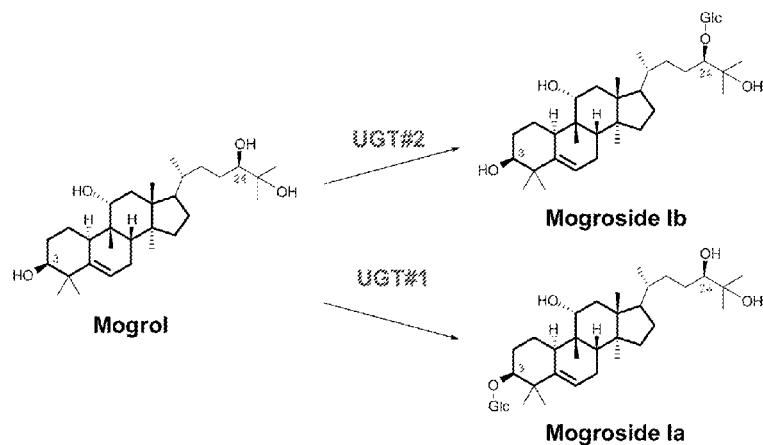
(74) Agent: HØIBERG A/S; St. Kongensgade 59 A, DK-1264 Copenhagen K (DK).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:


- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: METHODS AND MATERIALS FOR ENZYMATIC SYNTHESIS OF MOGROSIDE COMPOUNDS

FIGURE 2

(57) Abstract: Methods and materials for enzymatic synthesis of mogroside compounds described.

METHODS AND MATERIALS FOR ENZYMATIC SYNTHESIS OF MOGROSIDE COMPOUNDS

CROSS-REFERENCE TO RELATED APPLICATIONS

5 This application claims priority from U.S. Serial No. 61/563,303, filed November 23, 2011, the disclosure of which is incorporated by reference in its entirety.

TECHNICAL FIELD

This invention relates to methods and materials for enzymatic synthesis of mogroside compounds, and more particularly to glycosylating mogrol using Uridine-5'-diphospho (UDP) 10 dependent glucosyltransferases (UGTs) to produce various mogroside compounds.

BACKGROUND

Reference to any prior art in the specification is not an acknowledgment or suggestion that this prior art forms part of the common general knowledge in any jurisdiction or that this prior art could reasonably be expected to be understood, regarded as relevant, and/or combined 15 with other pieces of prior art by a skilled person in the art.

Mogrosides are a family of triterpene glycosides isolated from fruits of *Siraitia grosvenorii* (Swingle), also known as *Momordica grosvenori* (Swingle). Extracts of the fruits are commercially used as natural sweeteners. Four major compounds, Mogroside V, Mogroside IV, Siamenoside I, and 11-Oxomogroside V, have been identified from the fruits of *Siraitia grosvenorii* (Swingle) that are responsible for the sweetness of the fruits. See FIG. 1. Mogroside 20 V is the most abundant of these four compounds at approximately 0.57% (w/w) of the dry fruit, followed by Mogroside IV and Siamenoside I, each of which contain four glucose moieties. 11-Oxomogroside V has a ketone group instead of a hydroxyl at C-11. See, e.g., Takemoto, *et al.*, *Yakugaku Zasshi*, 103, 1151-1154; 1155-1166; 1167-1173, (1983); Kasai, *et al.*, *Agric. Biol. Chem.* 53, 3347-3349 (1989); Matsumoto, *Chem. Pharm. Bull.* 38, 2030-2032 (1990); and 25 Prakash, *et al.*, *J. Carbohydrate Chem.* 30, 16-26 (2011).

All mogrosides share the same triterpene core, named mogrol. The aglycone mogrol is glycosylated with different numbers of glucose moieties to form various mogroside compounds. Mogroside is thought to be synthesized in the following manner: synthesis of cucurbitadienol 30 from the common triterpene precursor squalene; P450 oxidations of cucurbitadienol to produce the aglycone mogrol; and glycosylation of

5 mogrol to add the five glucoses one after another to produce mogroside V. See, Tang, *et al.*, *BMC Genomics*, 12, 343 (2011). Both intermediates cucurbitadienol and mogrol exist in the fruit as they have been isolated as minor products. See Ukiya, *et al.*, *J. Agric. Food Chem.* 50, 6710-6715 (2002). Glycoside intermediates exist in both 11-hydroxy and 11-oxo series, and gradually change from mogroside I to mogroside V as fruits ripen, which indicates that the triterpene core is fully oxidized by P450 enzymes before the subsequent glycosylations. However, the enzymes responsible for producing mogrosides have not been identified.

SUMMARY

10 In one aspect, this document features a method of producing a mogroside compound. The method includes incubating mogrol with a Uridine-5'-diphospho (UDP) dependent glucosyltransferase (UGT) to produce a mogroside compound (e.g., mogroside Ia, mogroside Ib, or a mogroside compound glycosylated at C25-OH). The UGT can be selected from the group consisting of 73C3, 73C6, 85C2, 73C5, and 73E1. The UGTs can 15 be recombinantly produced or can be in a cell lysate of a recombinant host.

20 This document also features a method of producing a mogroside compound. The method includes contacting mogrol with a cell lysate prepared from a recombinant host expressing a UGT to produce a mogroside compound (e.g., mogroside Ia, mogroside Ib, or a mogroside compound glycosylated at C25-OH). The UGT can be selected from the group consisting of 73C3, 73C6, 85C2, 73C5, and 73E1.

25 Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention belongs. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting. Other features and advantages of the invention will be apparent from the following detailed

description. Applicants reserve the right to alternatively claim any disclosed invention using the transitional phrase “comprising,” “consisting essentially of,” or “consisting of,” according to standard practice in patent law.

DESCRIPTION OF DRAWINGS

5 FIG. 1 contains the chemical structure of Mogroside V, Mogroside IV, Siamenoside I, and 11-Oxomogroside V.

FIG. 2 is a depiction of the biosynthesis of mogroside Ia and mogroside Ib from mogrol using UGTs.

10 FIG. 3 contains the amino acid sequences of the followings UGTs: UGT73C3, UGT73C5, UGT73C6, UGT73E1, and UGT85C2 (SEQ ID NOs: 1-5, respectively).

FIG. 4 is a schematic of the products obtained from mogroside V after incubation with a pectinase and/or a cellulase.

DETAILED DESCRIPTION

This document provides methods and materials for glycosylating mogrol using 15 one or more Uridine-5'-diphospho (UDP) dependent glucosyltransferases (UGTs). As indicated below, at least five UGTs have been identified that glycosylate the aglycone mogrol. See FIG. 2. Each of the UGTs identified herein are in glycosyltransferase family I. UGTs 73C3, 73C6, 85C2 and 73E1 glycosylate at the C24-OH position (UGT#2 in FIG. 2), while UGT73C5 glycosylates at both the C3-OH (UGT#1 in FIG. 2) and C24- 20 OH position (UGT#2). UGTs 73C3, 73C5, and 73C6 are from *Arabidopsis thaliana*. UGT 73E1 and 85C2 are from *Stevia rebaudiana*. The amino acid sequences of UGTs 73C3, 73C5, 73C6, 73E1, and 85C2 (SEQ ID NOs:1-5) are set forth in FIG. 3.

UGT polypeptides described herein can be produced using any suitable method. For example, UGT polypeptides can be produced by chemical synthesis. Alternatively, a 25 UGT polypeptide described herein can be produced by standard recombinant technology using heterologous expression vectors encoding that UGT polypeptide. Expression vectors can be introduced into host cells (e.g., by transformation or transfection) for expression of the encoded polypeptide, which then can be purified. Expression systems

that can be used for small or large scale production of UGT polypeptides include, without limitation, microorganisms such as bacteria (e.g., *E. coli* and *B. subtilis*) transformed with recombinant bacteriophage DNA, plasmid DNA, or cosmid DNA expression vectors containing the nucleic acid molecules described herein. Useful expression systems also 5 include insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the nucleic acid molecules described herein, and plant cell systems infected with recombinant virus expression vectors (e.g., tobacco mosaic virus) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing the nucleic acid molecules described herein. UGT polypeptides also can be produced 10 using mammalian expression system harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., the metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter and the cytomegalovirus promoter), along with the nucleic acids described herein. UGT polypeptides can have an N-terminal or C-terminal tag as discussed below.

15 This document also provides isolated nucleic acids encoding the UGT polypeptides. An “isolated nucleic acid” refers to a nucleic acid that is separated from other nucleic acid molecules that are present in a genome, including nucleic acids that normally flank one or both sides of the nucleic acid in a genome. The term “isolated” as used herein with respect to nucleic acids also includes any non-naturally-occurring 20 nucleic acid sequence, since such non-naturally-occurring sequences are not found in nature and do not have immediately contiguous sequences in a naturally-occurring genome.

25 An isolated nucleic acid can be, for example, a DNA molecule, provided one of the nucleic acid sequences normally found immediately flanking that DNA molecule in a naturally-occurring genome is removed or absent. Thus, an isolated nucleic acid includes, without limitation, a DNA molecule that exists as a separate molecule (e.g., a chemically synthesized nucleic acid, or a cDNA or genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of other sequences as well as DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., any 30 paramyxovirus, retrovirus, lentivirus, adenovirus, or herpes virus), or into the genomic

DNA of a prokaryote or eukaryote. In addition, an isolated nucleic acid can include an engineered nucleic acid such as a DNA molecule that is part of a hybrid or fusion nucleic acid. A nucleic acid existing among hundreds to millions of other nucleic acids within, for example, cDNA libraries or genomic libraries, or gel slices containing a genomic 5 DNA restriction digest, is not considered an isolated nucleic acid.

In some embodiments, a nucleic acid sequence encoding a UGT polypeptide can include a tag sequence that encodes a “tag” designed to facilitate subsequent manipulation (e.g., to facilitate purification or detection), secretion, or localization of the encoded polypeptide. Tag sequences can be inserted in the nucleic acid sequence 10 encoding the UGT polypeptide such that the encoded tag is located at either the carboxyl or amino terminus of the UGT polypeptide. Non-limiting examples of encoded tags include green fluorescent protein (GFP), glutathione S transferase (GST), HIS tag, and Flag™ tag (Kodak, New Haven, CT). Other examples of tags include a chloroplast transit peptide, a mitochondrial transit peptide, an amyloplast peptide, signal peptide, or a 15 secretion tag.

Functional homologs

Functional homologs of the polypeptides described above are also suitable for use in the methods and recombinant hosts described herein. A functional homolog is a 20 polypeptide that has sequence similarity to a reference polypeptide, and that carries out one or more of the biochemical or physiological function(s) of the reference polypeptide. A functional homolog and the reference polypeptide may be natural occurring polypeptides, and the sequence similarity may be due to convergent or divergent 25 evolutionary events. As such, functional homologs are sometimes designated in the literature as homologs, or orthologs, or paralogs. Variants of a naturally occurring functional homolog, such as polypeptides encoded by mutants of a wild type coding sequence, may themselves be functional homologs. Functional homologs can also be created via site-directed mutagenesis of the coding sequence for a polypeptide, or by combining domains from the coding sequences for different naturally-occurring 30 polypeptides (“domain swapping”). Techniques for modifying genes encoding functional

UGT polypeptides described herein are known and include, *inter alia*, directed evolution techniques, site-directed mutagenesis techniques and random mutagenesis techniques, and can be useful to increase specific activity of a polypeptide, alter substrate specificity, alter expression levels, alter subcellular location, or modify polypeptide:polypeptide interactions in a desired manner. Such modified polypeptides are considered functional homologs. The term “functional homolog” is sometimes applied to the nucleic acid that encodes a functionally homologous polypeptide.

Functional homologs can be identified by analysis of nucleotide and polypeptide sequence alignments. For example, performing a query on a database of nucleotide or polypeptide sequences can identify homologs of UGT polypeptides. Sequence analysis can involve BLAST, Reciprocal BLAST, or PSI-BLAST analysis of nonredundant databases using an UGT amino acid sequence as the reference sequence. Amino acid sequence is, in some instances, deduced from the nucleotide sequence. Those polypeptides in the database that have greater than 40% sequence identity are candidates for further evaluation for suitability as a UGT polypeptide. Amino acid sequence similarity allows for conservative amino acid substitutions, such as substitution of one hydrophobic residue for another or substitution of one polar residue for another. If desired, manual inspection of such candidates can be carried out in order to narrow the number of candidates to be further evaluated. Manual inspection can be performed by selecting those candidates that appear to have domains present in UGT polypeptides, *e.g.*, conserved functional domains.

Conserved regions can be identified by locating a region within the primary amino acid sequence of a polypeptide that is a repeated sequence, forms some secondary structure (*e.g.*, helices and beta sheets), establishes positively or negatively charged domains, or represents a protein motif or domain. See, *e.g.*, the Pfam web site describing consensus sequences for a variety of protein motifs and domains on the World Wide Web at sanger.ac.uk/Software/Pfam/ and pfam.janelia.org/. The information included at the Pfam database is described in Sonnhammer *et al.*, *Nucl. Acids Res.*, 26:320-322 (1998); Sonnhammer *et al.*, *Proteins*, 28:405-420 (1997); and Bateman *et al.*, *Nucl. Acids Res.*, 27:260-262 (1999). Conserved regions also can be determined by aligning sequences of

the same or related polypeptides from closely related species. Closely related species preferably are from the same family. In some embodiments, alignment of sequences from two different species is adequate.

Typically, polypeptides that exhibit at least about 40% amino acid sequence identity are useful to identify conserved regions. Conserved regions of related polypeptides exhibit at least 45% amino acid sequence identity (e.g., at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% amino acid sequence identity). In some embodiments, a conserved region exhibits at least 92%, 94%, 96%, 98%, or 99% amino acid sequence identity. Sequence identity can be determined as set forth above.

10

Methods of Producing Mogroside Compounds

Mogroside compounds can be produced by incubating a mogrol substrate with one or more of the UGT polypeptides described herein, resulting in the production of a mogroside product. In some embodiments, the reaction mixture contains a plurality of UGT polypeptides such that a plurality of glycosylations occur in the reaction vessel. In other embodiments, the reaction mixture contains a single UGT polypeptide and one or more glycosylations catalyzed by that polypeptide take place. For example, a first reaction vessel can comprise a substrate and one or more UGT polypeptides for producing an intermediate, which can be introduced into a second reaction vessel containing one or more other UGT polypeptides to produce a subsequent intermediate or a mogroside product. The product produced in the second reaction vessel then can be recovered.

Each of the UGT polypeptides can be a purified polypeptide, e.g., can be added to a reaction mixture as a solution containing 80%, 90%, 95%, or greater than 99% by weight of the desired UGT. Alternatively, the UGT polypeptide(s) can be present in a cell lysate prepared from a recombinant host expressing the UGT(s), and can be added to a reaction mixture as a cell lysate for incubation with the mogrol substrate.

Levels of products, substrates and intermediates can be determined by extracting samples from the reaction vessel for analysis according to published methods.

Mogroside compounds can be recovered from the reaction vessel using various techniques known in the art.

The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.

5

EXAMPLES

Example 1 -Purification of mogroside V

Mogroside V was purified from commercially available monk fruit extracts (PureLo®, Swanson) as follows. Three bottles of PureLo® (240 grams) were dissolved in 10 water (900 mL), then loaded on a column of HP-20 resin (400 gram resin). The column was washed with water (2.5 liters); then further washed with 20% methanol-water. The product was eluted with methanol. After evaporation of solvents and drying under high vacuum, mogroside V (2.5 grams, ~80% purity, 11-oxomogroside V was the major impurity) was obtained.

15

Example 2 - Enzymatic synthesis of mogrol from mogroside V

Mogroside V (300 mg) was dissolved in 0.1M sodium acetate buffer (pH 4.5, 100mL), and crude pectinase from *Aspergillus niger* (25mL, Sigma P2736) was added. The mixture was stirred at 50°C for 48 hours. The reaction mixture was extracted with 20 ethyl acetate (2x100ml). The organic extract was dried under vacuum then purified with preparative HPLC. Pure mogrol (40 mg) was obtained and its structure confirmed by NMR and mass spectroscopy. See FIG. 4.

Example 3 - Enzymatic synthesis of mogrol 3-O-glucoside (mogroside Ia) and mogrol 24-O-glucoside (mogroside Ib) from mogroside V

Mogroside V (300 mg) was dissolved in 0.1M sodium acetate buffer (pH 4.5, 100ml), and crude pectinase from *Aspergillus niger* (25ml, Sigma P2736) was added. The mixture was stirred at 50°C for 6.5 hours. The reaction mixture was extracted with ethyl acetate (2x100ml). The organic extract was dried under vacuum then purified with

preparative HPLC. Pure mogroside Ia (11.0 mg) and mogroside Ib (8.0 mg) were obtained. Their structures were confirmed by NMR and mass spectroscopy. See FIG. 4.

Example 4 - In vitro UGT screening and reactions

5 *In vitro* reactions of mogrol with a panel of 230 UGT enzymes were performed and the products were analyzed with LC-MS. The *in vitro* UGT reaction mixtures included 4X Tris buffer, mogrol (250 μ M), UDP-glucose (750 μ M) and 1% alkaline phosphatase. Five μ L of each partially purified UGT enzyme or crude enzyme extract was added to the reaction, and the reaction volume brought to 50 μ L with water. The reactions were
10 incubated overnight at 30°C and performed in sterilized 96 well plates. After the incubation, 25 μ L of DMSO were added into each reaction and the reaction plates were centrifuged for 5 min. Forty μ L samples were taken from each well and filtered, and were used for LC-MS analysis.

UGTs 73C3, 73C6 and 85C2 were found to convert all the mogrol substrate to mogroside Ib. UGT 73C5 makes both mogroside Ia and Ib. In the reaction with UGT 73E1, although the reaction was not complete, mogroside Ib was found as the major product, together with a new glycosylated mogrol (neither mogroside Ia nor Ib; exact mass shown as a mogroside I, presumably caused by a glycosylation event on C25-OH).
15

20 OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the
25 following claims.

The claims defining the invention are as follows:

1. A method of producing a mogroside compound, comprising contacting and glycosylating mogrol with a Uridine-5'-diphospho (UDP) dependent glucosyltransferase (UGT) polypeptide that is:
 - (a) UGT73C3 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:1;
 - (b) UGT73C5 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:2;
 - (c) UGT73C6 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:3;
 - (d) UGT73E1 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:4; or
 - (e) UGT85C2 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:5.
2. A method of producing a mogroside compound, comprising contacting and glycosylating mogrol with a cell lysate prepared from a recombinant host expressing a UGT polypeptide that is:
 - (a) UGT73C3 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:1;
 - (b) UGT73C5 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:2;
 - (c) UGT73C6 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:3;
 - (d) UGT73E1 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:4; or
 - (e) UGT85C2 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:5.

3. A method of producing a mogroside compound, comprising:
 - (a) contacting and glycosylating a mogrol with a one or more Uridine-5'-diphospho (UDP) dependent glucosyltransferase (UGT) polypeptides;
 - (b) contacting and glycosylating a mogrol with a cell lysate prepared from a recombinant host expressing a one or more UGT polypeptides;
 - (c)
 - (i) contacting and glycosylating a mogrol in a first reaction vessel with a one or more Uridine-5'-diphospho (UDP) dependent glucosyltransferase (UGT) polypeptides;
 - (ii) contacting and glycosylating the intermediate compound in a second reaction vessel with the one or more UGT polypeptides; and
 - (iii) recovering the one or more mogroside compounds produced in step (ii); or
 - (d)
 - (i) contacting and glycosylating a mogrol in a first reaction vessel with a cell lysate prepared from a recombinant host expressing a one or more UGT polypeptides;
 - (ii) contacting and glycosylating the intermediate compound in a second reaction vessel with the one or more UGT polypeptides; and
 - (iii) recovering the one or more mogroside compounds produced in step (ii), wherein the UGT polypeptide is:
 - (a) UGT73C3 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:1;
 - (b) UGT73C5 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:2;
 - (c) UGT73C6 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:3;
 - (d) UGT73E1 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:4; and
 - (e) UGT85C2 polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:5.

4. The method of any one of claims 1 to 3, wherein:
 - (a) the glycosylation is effected by the activity of the polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:2 and the mogroside compound is mogroside Ia;
 - (b) the glycosylation is effected by the activity of one or more polypeptides having at least 90% sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs:1-5 and the mogroside compound is mogroside Ib; or
 - (c) the glycosylation is effected by the activity of the polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:4 and the mogroside compound is a mogroside compound glycosylated at C25-OH.
5. The method of any one of claims 1 to 3, wherein the UGT polypeptide is a recombinant UGT polypeptide.
6. The method of claim 1, wherein the UGT polypeptide is produced by chemical synthesis.
7. The method of claim 5, wherein the recombinant UGT polypeptide is produced in a cell lysate of a recombinant host.
8. The method of any one of claims 1 to 3, 5 or 7, wherein the UGT polypeptide contains a tag sequence located at either a carboxyl or an amino terminus of the UGT polypeptide.
9. The method of claim 8, wherein the tag sequence comprises a green fluorescent protein (GFP), a glutathione S transferase (GST), a HIS tag, a Flag tag, a chloroplast transit peptide, a mitochondrial transit peptide, an amyloplast peptide, a signal peptide, or a secretion tag.
10. The method of any one of claims 2, 3 or 7, wherein the recombinant host is a microorganism transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors.
11. The method of any one of claims 2, 3 or 7, wherein the recombinant host is an insect cell system infected with recombinant virus expression vectors.

12. The method of any one of claims 2, 3 or 7, wherein the recombinant host is a plant cell system infected with recombinant virus expression vectors or transformed with recombinant virus expression vectors.
13. The method of any one of claims 2, 3 or 7, wherein the recombinant host is a mammalian expression system harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells or from mammalian viruses.
14. A method for producing a mogroside compound, comprising:
 - (a) adding one or more recombinant polypeptides capable of catalyzing glycosylation of mogrol to produce a mogroside compound and having at least 90% sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs:1-5 and a plant-derived or synthetic mogrol to a reaction mixture; and synthesizing the mogroside compound thereby; and
 - (b) recovering the mogroside compound produced in step (a) from the reaction mixture.
15. A method for producing a mogroside compound, comprising:
 - (a) adding a cell lysate prepared from a recombinant host expressing one or more recombinant polypeptides capable of catalyzing glycosylation of mogrol to produce a mogroside compound and having at least 90% sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs:1-5 and a plant-derived or synthetic mogrol to a reaction mixture; and synthesizing the mogroside compound thereby; and
 - (b) recovering the mogroside compound produced in step (a) from the reaction mixture.
16. A method of producing a mogroside compound, comprising:
 - (a) (i) adding one or more recombinant or synthetic polypeptides capable of catalyzing glycosylation of mogrol to produce a mogroside compound and having at least 90% sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs:1-5 and a plant-derived or synthetic mogrol to a reaction mixture; and producing the mogroside compound; wherein the one or more recombinant or synthetic polypeptides is produced in a recombinant host or by chemical synthesis; and

- (ii) recovering the mogroside compound produced in step (a)(i) from the reaction mixture; or
- (b) (i) adding a cell lysate prepared from a recombinant host expressing one or more recombinant polypeptides capable of catalyzing glycosylation of mogrol to produce a mogroside compound and having at least 90% sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs:1-5 and a plant-derived or synthetic mogrol to a reaction mixture; and synthesizing the mogroside compound; and
- (ii) recovering the mogroside compound produced in step (b)(i) from the reaction mixture;
- (c) (i) contacting and glycosylating mogrol in a first reaction vessel with a one or more recombinant polypeptides capable of catalyzing glycosylation of mogrol to produce a mogroside compound and having at least 90% sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs:1-5;
- (ii) contacting and glycosylating the intermediate compound in a second reaction vessel with the one or more recombinant polypeptides capable of catalyzing glycosylation of mogrol to produce a mogroside compound and having at least 90% sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs:1-5; and
- (iii) recovering the one or more mogroside compound produced in step (ii); or
- (d) (i) contacting and glycosylating mogrol in a first reaction vessel with a cell lysate prepared from a recombinant host expressing a one or more recombinant polypeptides capable of catalyzing glycosylation of mogrol to produce a mogroside compound and having at least 90% sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs:1-5;
- (ii) contacting and glycosylating the intermediate compound in a second reaction vessel with the one or more UGT polypeptides; and
- (iii) recovering the one or more mogroside compound produced in step (ii).

17. A method for transferring a sugar moiety to a C24' position, C3' position, both C24' and C3' positions, or C25' position of mogrol, comprising contacting the mogrol with a recombinant polypeptide having at least 90% sequence identity to the amino acid sequence set forth in any one of SEQ ID NOS: 1-5, and a UDP-sugar under suitable reaction conditions for the transfer of the sugar moiety to the mogrol,
wherein a mogroside Ia, mogroside Ib, a mogroside compound glycosylated at C25-OH, an isomer thereof, and/or a mogroside composition thereof is produced upon transfer of the sugar moiety.
18. The method of claim 17, wherein:
 - (a) the sugar moiety is glucose, the glycosylation is effected by the activity of the polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:2, and mogroside Ia is produced upon transfer of the glucose moiety to mogrol;
 - (b) the sugar moiety is glucose, the glycosylation is effected by the activity of one or more the polypeptides having at least 90% sequence identity to the amino acid sequence set forth in any one of SEQ ID NOS:1-5, and mogroside Ib is produced upon transfer of the glucose moiety to mogrol; or
 - (c) the sugar moiety is glucose, the glycosylation is effected by the activity of the polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:4, and mogroside I is produced upon transfer of the glucose moiety to mogrol.
19. The method of claim 17, wherein the mogroside compound is mogroside Ia;
wherein the glycosylation is effected by the activity of the polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:2.
20. The method of claim 17, wherein the mogroside compound is mogroside Ib;
wherein the glycosylation is effected by the activity of one or more the polypeptides having at least 90% sequence identity to the amino acid sequence set forth in any one of SEQ ID NOS:1-5.

2012342114 08 Sep 2017

21. The method of claim 17, wherein the mogroside compound is a mogroside compound glycosylated at C25-OH;

wherein glycosylation is effected by the activity of the polypeptide having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:4.

FIGURE 1

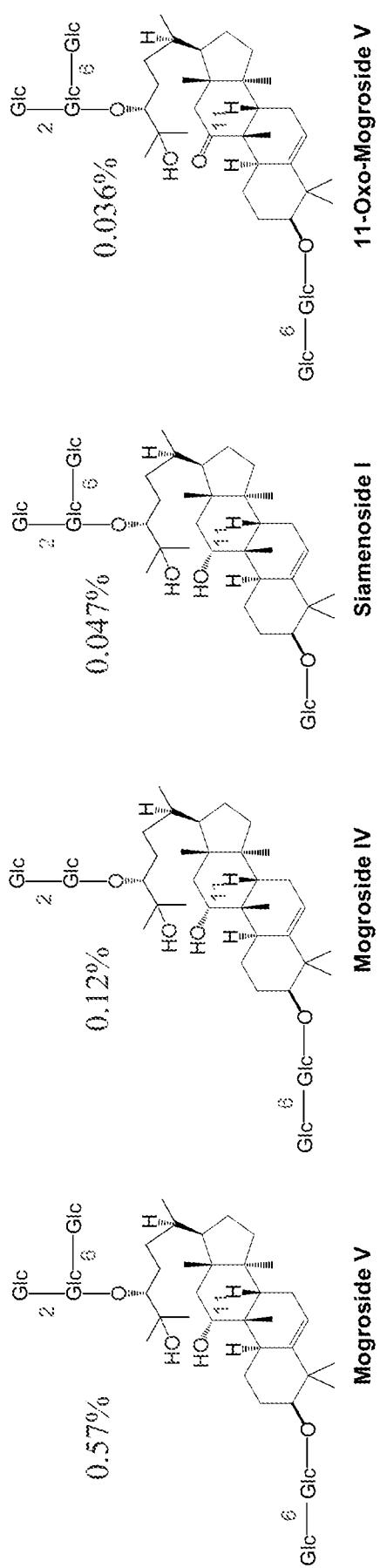
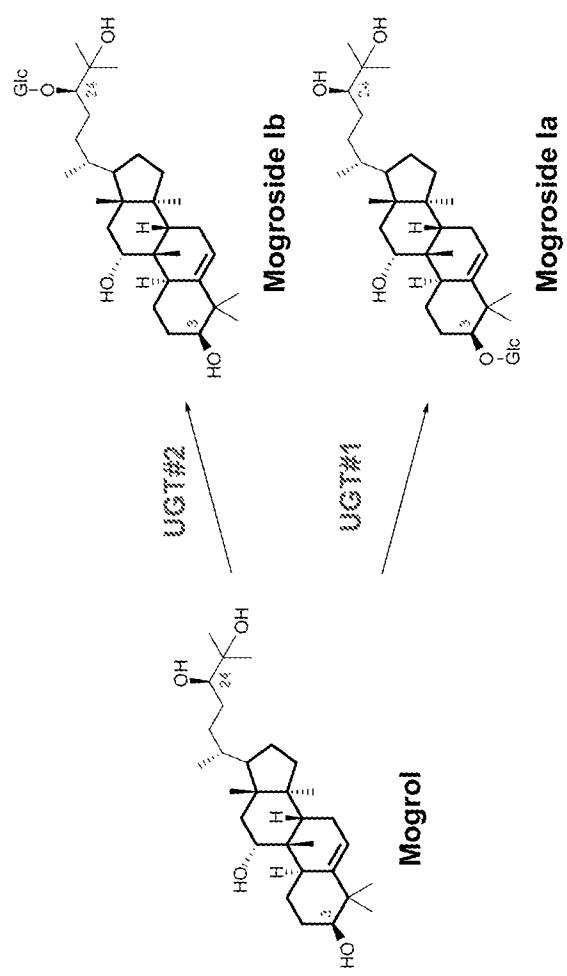



FIGURE 2

FIGURE 3

UGT73C3 (SEQ ID NO: 01)

MATEKTHQFHPSLHFPFMAQGHMIPMIDIARLLAQRGVTITIVTPHNAARFKNVLNRAIESGLAINILHVKFPPYQEFGLPEGKENIDS
 LDSTELMVPFFKAVNLLLEDPMKLMEMEMKPRPSCLISDWCLPYTSIIAKNFINPKIVFHGMGCFNLLCMHVRRNLEILENVKSDEEYFL
 VPSFPDRVEFTKLQLLPVKANASGDWKEIMDEMIVKAETYTSYGVIVNTFQELEPPYVKDYKEAMDGKVWSIGPVSLCNKAGADKAERGS
 KAAIDQDDECLQWLDSKKEEGSVLYVCLGSICNLPLSQLKELGLGLEESRRSFIVIRGSEKYKELFEWMLESGFERIKERGLLIKGW/AP
 QVLILSHPSVGGFLTHCGWNNSTLEGITSGIPLITWPLFGDQFCNQKLWVQVLKAGVSAGVEEVMKWGEEDKIGVLDKEGVKKAVEEL
 MGSDDAKERRRRVKELGELAHKAVEKGSSHSNITLLQDIMQLAQFKN

UGT73C5 (SEQ ID NO: 02)

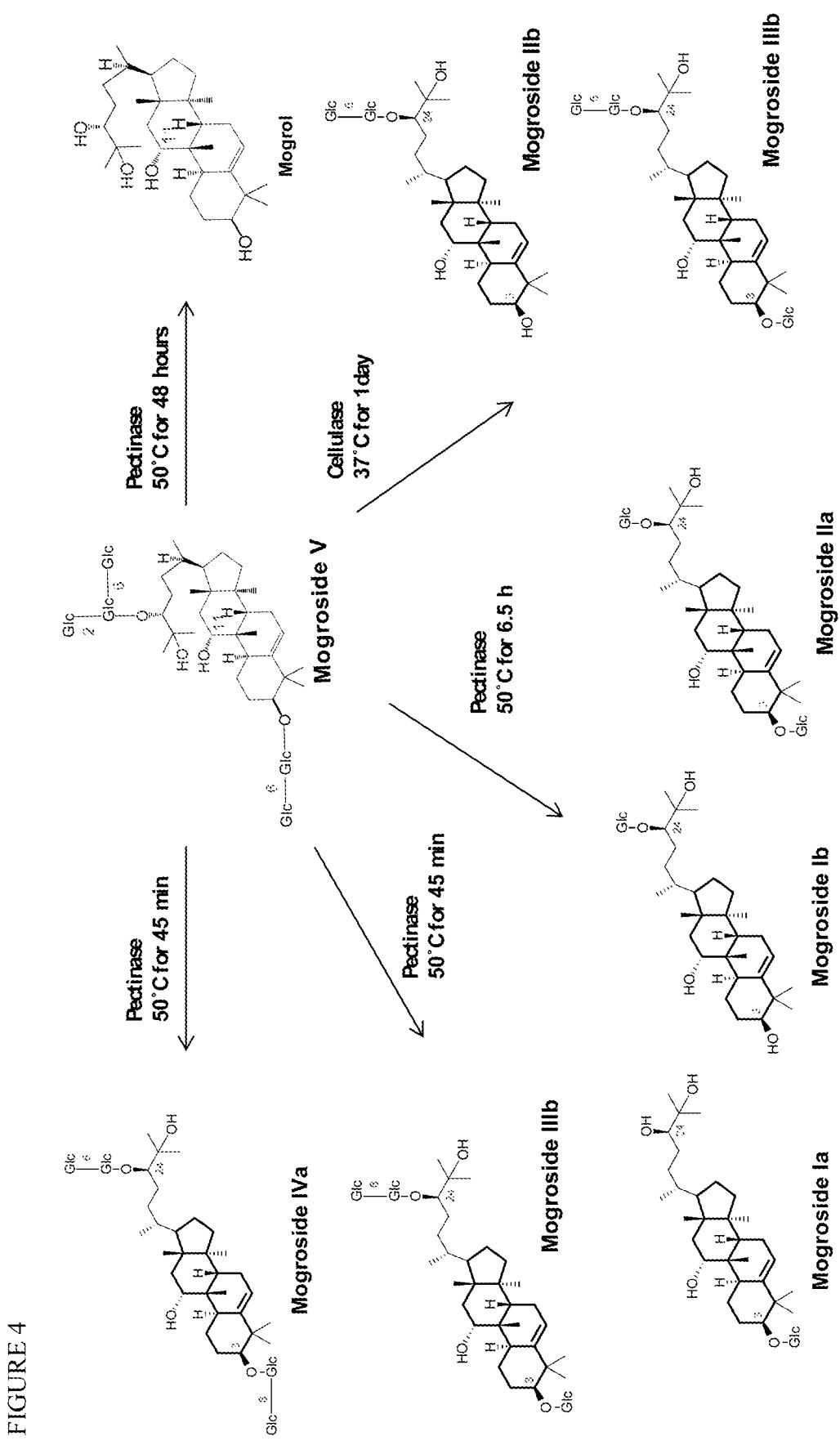
MVSETTKSSPLHFVLFPMQAQGHMIPMVDIARLLAQRGVIITVTPHNAARFKNVLNRAIESGLPINLVQVKFPYLEAGLQEGQENIDSL
 DTMERMIPFFKAVNFLEEPVQKLIEMINPRPSCLISDFCLPYTSKIAKKFNIPKILFHGMGCFCLLCMHVLRKNREILDNLKSDKELFTVP
 DFPDRVEFTRTQVPVETYVPAGDWKDFDGMVEANETSYGIVIVNSFQELEPAYAKDYKEVRSGKAWTIGPVSLCNKVGADKAERGNK
 SDIDQDDECLWKWLDSKKHGSVLYVCLGSICNLPLSQLKELGLGLEESQRPFIVIRGWEKYKELVEWFSESGFEDRIQDRGLLIKGWSP
 QMULSHPSVGGFLTHCGWNNSTLEGITAGLPLLTWPLFADQFCNKEVLVVEVLKAGVRSGVEQPMKWGEEEKIGVLVDKEGVKKAVEEL
 MGESDDAKERRRRAKELGDSAHKAVVEGGSSHSNISFLLQDIMELAEPNN

UGT73C6 (SEQ ID NO: 03)

MAFEKNNEPFPLHFVLFPMQAQGHMIPMVDIARLLAQRGVLITIVTPHNAARFKNVLNRAIESGLPINLVQVKFPYQEAGLQEGQENM
 DLLTTMEQITSFFKAVNLLKEPVQNLIEEMSPRPSCLISDMCLSYTSEIAKKFKIPKILFHGMGCFCLLCVNVLRKNR

2012342114 17 Jun 2015

FIGURE 3 – CONTINUED


EILDNLKSDKEYFIVPYFPDRVEFTRPQVPVETYVPAGWKEILEDMDMVEADKTSYGVIVNSFQELEPAYAKDFKEARSGKAWTIGPVS
NKVGVDKAERGNKSDIDQDECLEWLDSKEPGSVLYVCLGSICNLPLSQLLELGLGLEESQRPFIVIRGWEKYKELVIEWFSESGFEDR
IQDRGLLIKGWSPQMLLILSHPSVGGFLTHCGWNSNSTLEGITAGLPMLTWPLFADQFCNEKLVWQILKVGVAEVKEVMWKWGE
VDKEGVKKAVEELEMGESDDAKERRRAKELGESAHKAVEEGGSSHNSNITFLQDIMQLAQSN

UGT73E1 (SEQ ID NO: 04)

MSPKMWAPPTNLLHFVLFPLMAQGHLVPMVDIARILAQRGATVIIITTPYHANRVRPVISRAIATNLKIQLLIELQLRSTEAGLPEGCESFDQ
LPSFEYWKNISTAIDLLQQPAEDLLRELSSPPPDCIISDFLFPWTTDVARRLNIPRLVFNNGPGCFYLLCHVATSNILGENEPVSSNTERVV
LPGLPDRIEVTKLQIVGSSRPANVDEMGSWLRAVEAEKASFGIVWNTFEEELPEYYVEEYKTVKDKKMMWCIGPVSLCNKTGPDLAERGN
KAAITEHNCLKWLDERKLGSVLYVCLGSLARISSAAQAEIQLGLGLESINRPFIVCVRNETDELKTWFLDGFEERVRDRGLIVHGWAPQVL
LSHPTIGGFLTHCGWNSNSTIESITAGVPMITWPFFADQFLNEAIVEVLKIGVRIGVERACLFGEEDDKVGVLVKKEDVKA
GDQRKRKVIELAKMAKIAMAEGGSSYENVSSLIRDVTETVRAPH

UGT85C2 (SEQ ID NO: 05)

MDAMATTEKKPHVIFIPFFPAQSHIKAMIKLAQQLLHHKGLOQITFVNNTDFIHNFQLESSGPPHCLDGAPGFRFETIPDGVS
LRSIETNFLDRFIDLVTKLPLDPPTCIIISDGFLSVFTIDAACKKLGIPVMMYWTLAACGFMGFYHHSIEKGFAPLKDASYL
VPGMEGIRLKDFPLDWSTDLNDKVLMFTEAPQRSHKVSHHIFHTFDELEPSIIKTLSLRYNHYITIGPLQLLDQIPEEK
SLVKEEPECFCQWLQSKEPNSSVVNFGSTTMSLEDMTEFGWGLANSNHYFLWIIRSNLVIGENAVLPPELEEHKKRGFIASWCSQE
KVLKHPSVGGFLTHCGWGSTIESLSAGVPMICWPYSWDQLTCKV
DWKEKARIAIAPNGSSSLNIDKMWKETVLRN

SEQUENCE LISTING

<110> Evol va SA

<120> METHODS AND MATERIALS FOR BIOSYNTHESIS
OF MOGROSIDIC COMPOUNDS

<130> 30998-0013W01

<150> 61/563, 303

<151> 2011-11-23

<160> 5

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 496

<212> PRT

<213> Arabidopsis thaliana

<400> 1

Met	Ala	Thr	Glu	Lys	Thr	His	Gln	Phe	His	Pro	Ser	Leu	His	Phe	Val
1			5					10					15		
Leu	Phe	Pro	Phe	Met	Ala	Gln	Gly	His	Met	Ile	Pro	Met	Ile	Asp	Ile
				20			25						30		
Ala	Arg	Leu	Leu	Ala	Gln	Arg	Gly	Val	Thr	Ile	Thr	Ile	Val	Thr	Thr
				35			40						45		
Pro	His	Asn	Ala	Ala	Arg	Phe	Lys	Asn	Val	Leu	Asn	Arg	Ala	Ile	Gl u
	50				55								60		
Ser	Gly	Leu	Ala	Ile	Asn	Ile	Leu	His	Val	Lys	Phe	Pro	Tyr	Gln	Gl u
65				70				75						80	
Phe	Gly	Leu	Pro	Glu	Gly	Lys	Gl u	Asn	Ile	Asp	Ser	Leu	Asp	Ser	Thr
				85				90						95	
Gl u	Leu	Met	Val	Pro	Phe	Phe	Lys	Ala	Val	Asn	Leu	Leu	Gl u	Asp	Pro
				100			105						110		
Val	Met	Lys	Leu	Met	Gl u	Gl u	Met	Lys	Pro	Arg	Pro	Ser	Cys	Leu	Ile
		115				120							125		
Ser	Asp	Trp	Cys	Leu	Pro	Tyr	Thr	Ser	Ile	Ile	Ala	Lys	Asn	Phe	Asn
	130				135							140			
Ile	Pro	Lys	Ile	Val	Phe	His	Gly	Met	Gly	Cys	Phe	Asn	Leu	Leu	Cys
145				150				155						160	
Met	His	Val	Leu	Arg	Arg	Asn	Leu	Gl u	Ile	Leu	Gl u	Asn	Val	Lys	Ser
				165				170						175	
Asp	Gl u	Gl u	Tyr	Phe	Leu	Val	Pro	Ser	Phe	Pro	Asp	Arg	Val	Gl u	Phe
	180				185				190					190	
Thr	Lys	Leu	Gln	Leu	Pro	Val	Lys	Ala	Asn	Ala	Ser	Gly	Asp	Trp	Lys
	195				200							205			
Gl u	Ile	Met	Asp	Gl u	Met	Val	Lys	Ala	Gl u	Tyr	Thr	Ser	Tyr	Gly	Val
	210				215					220					
Ile	Val	Asn	Thr	Phe	Gln	Gl u	Leu	Gl u	Pro	Pro	Tyr	Val	Lys	Asp	Tyr
225				230				235						240	
Lys	Gl u	Ala	Met	Asp	Gly	Lys	Val	Trp	Ser	Ile	Gly	Pro	Val	Ser	Leu
				245				250						255	
Cys	Asn	Lys	Ala	Gly	Ala	Asp	Lys	Ala	Gl u	Arg	Gly	Ser	Lys	Ala	Ala
				260			265						270		
Ile	Asp	Gln	Asp	Gl u	Cys	Leu	Gl n	Trp	Leu	Asp	Ser	Lys	Gl u	Gl u	Gly
	275				280							285			
Ser	Val	Leu	Tyr	Val	Cys	Leu	Gly	Ser	Ile	Cys	Asn	Leu	Pro	Leu	Ser
	290				295						300				
Gln	Leu	Lys	Gl u	Leu	Gly	Leu	Gly	Leu	Gl u	Gl u	Ser	Arg	Arg	Ser	Phe
305					310					315					320
Ile	Trp	Val	Ile	Arg	Gly	Ser	Gl u	Lys	Tyr	Lys	Gl u	Leu	Phe	Gl u	Trp
				325				330						335	
Met	Leu	Gl u	Ser	Gly	Phe	Gl u	Gl u	Arg	Ile	Lys	Gl u	Arg	Gly	Leu	Leu
				340				345					350		

60806923.TXT

Ile	Lys	Gly	Trp	Ala	Pro	Gln	Val	Leu	Ile	Leu	Ser	His	Pro	Ser	Val
355							360					365			
Gly	Gly	Phe	Leu	Thr	His	Cys	Gly	Trp	Asn	Ser	Thr	Leu	Glut	Gly	Ile
370						375					380				
Thr	Ser	Gly	Ile	Pro	Leu	Ile	Thr	Trp	Pro	Leu	Phe	Gly	Asp	Gln	Phe
385					390				395					400	
Cys	Asn	Gln	Lys	Leu	Val	Val	Gln	Val	Leu	Lys	Ala	Gly	Val	Ser	Ala
							405			410			415		
Gly	Val	Glut	Glut	Val	Met	Lys	Trp	Gly	Glut	Glut	Asp	Lys	Ile	Gly	Val
							420		425			430			
Leu	Val	Asp	Lys	Glut	Gly	Val	Lys	Lys	Ala	Val	Glut	Glut	Leu	Met	Gly
							435		440			445			
Asp	Ser	Asp	Asp	Ala	Lys	Glut	Arg	Arg	Arg	Arg	Val	Lys	Glut	Leu	Gly
							450		455			460			
Glut	Leu	Ala	His	Lys	Ala	Val	Glut	Lys	Gly	Gly	Ser	Ser	His	Ser	Asn
							465		470			475			480
Ile	Thr	Leu	Leu	Leu	Gln	Asp	Ile	Met	Gln	Leu	Ala	Gln	Phe	Lys	Asn
							485		490					495	

<210> 2

<211> 495

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met	Val	Ser	Glut	Thr	Thr	Lys	Ser	Ser	Pro	Leu	His	Phe	Val	Leu	Phe
1				5					10				15		
Pro	Phe	Met	Ala	Gln	Gly	His	Met	Ile	Pro	Met	Val	Asp	Ile	Ala	Arg
								20		25			30		
Leu	Leu	Ala	Gln	Arg	Gly	Val	Ile	Ile	Thr	Ile	Val	Thr	Thr	Pro	His
							35		40			45			
Asn	Ala	Ala	Arg	Phe	Lys	Asn	Val	Leu	Asn	Arg	Ala	Ile	Glut	Ser	Gly
							50		55			60			
Leu	Pro	Ile	Asn	Leu	Val	Gln	Val	Lys	Phe	Pro	Tyr	Leu	Glut	Ala	Gly
							65		70			75			80
Leu	Glut	Glut	Gly	Gln	Glut	Asn	Ile	Asp	Ser	Leu	Asp	Thr	Met	Glut	Arg
							85		90			95			
Met	Ile	Pro	Phe	Lys	Ala	Val	Asn	Phe	Leu	Glut	Glut	Pro	Val	Gln	
							100		105			110			
Lys	Leu	Ile	Glut	Glut	Met	Asn	Pro	Arg	Pro	Ser	Cys	Leu	Ile	Ser	Asp
							115		120			125			
Phe	Cys	Leu	Pro	Tyr	Thr	Ser	Lys	Ile	Ala	Lys	Lys	Phe	Asn	Ile	Pro
							130		135			140			
Lys	Ile	Leu	Phe	His	Gly	Met	Glut	Cys	Phe	Cys	Leu	Leu	Cys	Met	His
							145		150			155			160
Val	Leu	Arg	Lys	Asn	Arg	Glut	Ile	Leu	Asp	Asn	Leu	Lys	Ser	Asp	Lys
							165		170			175			
Glut	Leu	Phe	Thr	Val	Pro	Asp	Phe	Pro	Asp	Arg	Val	Glut	Phe	Thr	Arg
							180		185			190			
Thr	Gln	Val	Pro	Val	Glut	Thr	Tyr	Val	Pro	Ala	Gly	Asp	Trp	Lys	Asp
							195		200			205			
Ile	Phe	Asp	Gly	Met	Val	Glut	Ala	Asn	Glut	Thr	Ser	Tyr	Gly	Val	Ile
							210		215			220			
Val	Asn	Ser	Phe	Gln	Glut	Leu	Glut	Pro	Ala	Tyr	Ala	Lys	Asp	Tyr	Lys
							225		230			235			240
Glut	Val	Arg	Ser	Gly	Lys	Ala	Trp	Thr	Ile	Gly	Pro	Val	Ser	Leu	Cys
							245		250			255			
Asn	Lys	Val	Gly	Ala	Asp	Lys	Ala	Glut	Arg	Gly	Asn	Lys	Ser	Asp	Ile
							260		265			270			
Asp	Gln	Asp	Glut	Cys	Leu	Lys	Trp	Leu	Asp	Ser	Lys	Lys	His	Gly	Ser
							275		280			285			
Val	Leu	Tyr	Val	Cys	Leu	Gly	Ser	Ile	Cys	Asn	Leu	Pro	Leu	Ser	Gln
							290		295			300			
Leu	Lys	Glut	Leu	Gly	Leu	Gly	Leu	Glut	Glut	Ser	Gln	Arg	Pro	Phe	Ile
							305		310			315			320
Trp	Val	Ile	Arg	Gly	Trp	Glut	Lys	Tyr	Lys	Glut	Leu	Val	Glut	Trp	Phe
							325		330			335			

60806923.TXT

Ser Glu Ser Gly Phe Glu Asp Arg Ile Gln Asp Arg Gly Leu Leu Ile
 340 345 350
 Lys Glu Trp Ser Pro Gln Met Leu Ile Leu Ser His Pro Ser Val Glu
 355 360 365
 Gly Phe Leu Thr His Cys Gly Trp Asn Ser Thr Leu Glu Gly Ile Thr
 370 375 380
 Ala Glu Leu Pro Leu Leu Thr Trp Pro Leu Phe Ala Asp Gln Phe Cys
 385 390 395 400
 Asn Glu Lys Leu Val Val Glu Val Leu Lys Ala Gly Val Arg Ser Glu
 405 410 415
 Val Glu Gln Pro Met Lys Trp Gly Glu Glu Lys Ile Gly Val Leu
 420 425 430
 Val Asp Lys Glu Gly Val Lys Ala Val Glu Glu Leu Met Gly Glu
 435 440 445
 Ser Asp Asp Ala Lys Glu Arg Arg Arg Arg Ala Lys Glu Leu Gly Asp
 450 455 460
 Ser Ala His Lys Ala Val Glu Glu Gly Ser Ser His Ser Asn Ile
 465 470 475 480
 Ser Phe Leu Leu Gln Asp Ile Met Glu Leu Ala Glu Pro Asn Asn
 485 490 495

<210> 3

<211> 495

<212> PRT

<213> Arabidopsis thaliana

<400> 3

Met Ala Phe Glu Lys Asn Asn Glu Pro Phe Pro Leu His Phe Val Leu
 1 5 10 15
 Phe Pro Phe Met Ala Gln Gly His Met Ile Pro Met Val Asp Ile Ala
 20 25 30
 Arg Leu Leu Ala Gln Arg Gly Val Leu Ile Thr Ile Val Thr Thr Pro
 35 40 45
 His Asn Ala Ala Arg Phe Lys Asn Val Leu Asn Arg Ala Ile Glu Ser
 50 55 60
 Gly Leu Pro Ile Asn Leu Val Glu Val Lys Phe Pro Tyr Gln Glu Ala
 65 70 75 80
 Gly Leu Gln Glu Gly Gln Glu Asn Met Asp Leu Leu Thr Thr Met Glu
 85 90 95
 Gln Ile Thr Ser Phe Phe Lys Ala Val Asn Leu Leu Lys Glu Pro Val
 100 105 110
 Gln Asn Leu Ile Glu Glu Met Ser Pro Arg Pro Ser Cys Leu Ile Ser
 115 120 125
 Asp Met Cys Leu Ser Tyr Thr Ser Glu Ile Ala Lys Lys Phe Lys Ile
 130 135 140
 Pro Lys Ile Leu Phe His Glu Met Glu Cys Phe Cys Leu Leu Cys Val
 145 150 155 160
 Asn Val Leu Arg Lys Asn Arg Glu Ile Leu Asp Asn Leu Lys Ser Asp
 165 170 175
 Lys Glu Tyr Phe Ile Val Pro Tyr Phe Pro Asp Arg Val Glu Phe Thr
 180 185 190
 Arg Pro Gln Val Pro Val Glu Thr Tyr Val Pro Ala Glu Trp Lys Glu
 195 200 205
 Ile Leu Glu Asp Met Val Glu Ala Asp Lys Thr Ser Tyr Glu Val Ile
 210 215 220
 Val Asn Ser Phe Gln Glu Leu Glu Pro Ala Tyr Ala Lys Asp Phe Lys
 225 230 235 240
 Glu Ala Arg Ser Gly Lys Ala Trp Thr Ile Glu Pro Val Ser Leu Cys
 245 250 255
 Asn Lys Val Glu Val Asp Lys Ala Glu Arg Glu Asn Lys Ser Asp Ile
 260 265 270
 Asp Gln Asp Glu Cys Leu Glu Trp Leu Asp Ser Lys Glu Pro Glu Ser
 275 280 285
 Val Leu Tyr Val Cys Leu Glu Ser Ile Cys Asn Leu Pro Leu Ser Gln
 290 295 300
 Leu Leu Glu Leu Glu Leu Glu Leu Glu Ser Gln Arg Pro Phe Ile
 305 310 315 320

60806923.TXT

Trp Val Ile Arg Gly Trp Glu Lys Tyr Lys Glu Leu Val Glu Trp Phe
 325 330 335
 Ser Glu Ser Glu Phe Glu Asp Arg Ile Glu Asp Arg Gly Leu Leu Ile
 340 345 350
 Lys Glu Trp Ser Pro Glu Met Leu Ile Leu Ser His Pro Ser Val Glu
 355 360 365
 Glu Phe Leu Thr His Cys Glu Trp Asn Ser Thr Leu Glu Glu Ile Thr
 370 375 380
 Ala Glu Leu Pro Met Leu Thr Trp Pro Leu Phe Ala Asp Glu Phe Cys
 385 390 395 400
 Asn Glu Lys Leu Val Val Glu Ile Leu Lys Val Glu Val Ser Ala Glu
 405 410 415
 Val Lys Glu Val Met Lys Trp Glu Glu Glu Lys Ile Glu Val Leu
 420 425 430
 Val Asp Lys Glu Glu Val Lys Lys Ala Val Glu Glu Leu Met Glu Glu
 435 440 445
 Ser Asp Asp Ala Lys Glu Arg Arg Arg Arg Ala Lys Glu Leu Glu Glu
 450 455 460
 Ser Ala His Lys Ala Val Glu Glu Glu Ser Ser His Ser Asn Ile
 465 470 475 480
 Thr Phe Leu Leu Glu Asp Ile Met Glu Leu Ala Glu Ser Asn Asn
 485 490 495

<210> 4

<211> 495

<212> PRT

<213> Stevia rebaudi ana

<400> 4

Met Ser Pro Lys Met Val Ala Pro Pro Thr Asn Leu His Phe Val Leu
 1 5 10 15
 Phe Pro Leu Met Ala Glu Gly His Leu Val Pro Met Val Asp Ile Ala
 20 25 30
 Arg Ile Leu Ala Glu Arg Gly Ala Thr Val Thr Ile Ile Thr Thr Pro
 35 40 45
 Tyr His Ala Asn Arg Val Arg Pro Val Ile Ser Arg Ala Ile Ala Thr
 50 55 60
 Asn Leu Lys Ile Glu Leu Leu Glu Leu Glu Leu Arg Ser Thr Glu Ala
 65 70 75 80
 Glu Leu Pro Glu Gly Cys Glu Ser Phe Asp Glu Leu Pro Ser Phe Glu
 85 90 95
 Tyr Trp Lys Asn Ile Ser Thr Ala Ile Asp Leu Leu Glu Glu Pro Ala
 100 105 110
 Glu Asp Leu Leu Arg Glu Leu Ser Pro Pro Pro Asp Cys Ile Ile Ser
 115 120 125
 Asp Phe Leu Phe Pro Trp Thr Thr Asp Val Ala Arg Arg Leu Asn Ile
 130 135 140
 Pro Arg Leu Val Phe Asn Glu Pro Glu Cys Phe Tyr Leu Leu Cys Ile
 145 150 155 160
 His Val Ala Ile Thr Ser Asn Ile Leu Glu Glu Asn Glu Pro Val Ser
 165 170 175
 Ser Asn Thr Glu Arg Val Val Leu Pro Glu Leu Pro Asp Arg Ile Glu
 180 185 190
 Val Thr Lys Leu Glu Ile Val Glu Ser Ser Arg Pro Ala Asn Val Asp
 195 200 205
 Glu Met Glu Ser Trp Leu Arg Ala Val Glu Ala Glu Lys Ala Ser Phe
 210 215 220
 Glu Ile Val Val Asn Thr Phe Glu Glu Leu Glu Pro Glu Tyr Val Glu
 225 230 235 240
 Glu Tyr Lys Thr Val Lys Asp Lys Lys Met Trp Cys Ile Glu Pro Val
 245 250 255
 Ser Leu Cys Asn Lys Thr Glu Pro Asp Leu Ala Glu Arg Glu Asn Lys
 260 265 270
 Ala Ala Ile Thr Glu His Asn Cys Leu Lys Trp Leu Asp Glu Arg Lys
 275 280 285
 Leu Glu Ser Val Leu Tyr Val Cys Leu Glu Ser Leu Ala Arg Ile Ser
 290 295 300

60806923.TXT

Ala Ala Glu Ala Ile Glu Leu Gly Leu Gly Leu Glu Ser Ile Asn Arg
 305 310 315 320
 Pro Phe Ile Trp Cys Val Arg Asn Glu Thr Asp Glu Leu Lys Thr Trp
 325 330 335
 Phe Leu Asp Gly Phe Glu Glu Arg Val Arg Asp Arg Gly Leu Ile Val
 340 345 350
 His Glu Trp Ala Pro Glu Val Leu Ile Leu Ser His Pro Thr Ile Glu
 355 360 365
 Gly Phe Leu Thr His Cys Gly Trp Asn Ser Thr Ile Glu Ser Ile Thr
 370 375 380
 Ala Glu Val Pro Met Ile Thr Trp Pro Phe Phe Ala Asp Glu Phe Leu
 385 390 395 400
 Asn Glu Ala Phe Ile Val Glu Val Leu Lys Ile Glu Val Arg Ile Glu
 405 410 415
 Val Glu Arg Ala Cys Leu Phe Gly Glu Glu Asp Lys Val Glu Val Leu
 420 425 430
 Val Lys Lys Glu Asp Val Lys Ala Val Glu Cys Leu Met Asp Glu
 435 440 445
 Asp Glu Asp Gly Asp Glu Arg Arg Lys Arg Val Ile Glu Leu Ala Lys
 450 455 460
 Met Ala Lys Ile Ala Met Ala Glu Gly Ser Ser Tyr Glu Asn Val
 465 470 475 480
 Ser Ser Leu Ile Arg Asp Val Thr Glu Thr Val Arg Ala Pro His
 485 490 495

<210> 5

<211> 481

<212> PRT

<213> Stevia rebaudi ana

<400> 5

Met Asp Ala Met Ala Thr Thr Glu Lys Lys Pro His Val Ile Phe Ile
 1 5 10 15
 Pro Phe Pro Ala Glu Ser His Ile Lys Ala Met Leu Lys Leu Ala Glu
 20 25 30
 Leu Leu His His Lys Gly Leu Glu Ile Thr Phe Val Asn Thr Asp Phe
 35 40 45
 Ile His Asn Glu Phe Leu Glu Ser Ser Gly Pro His Cys Leu Asp Glu
 50 55 60
 Ala Pro Glu Phe Arg Phe Glu Thr Ile Pro Asp Glu Val Ser His Ser
 65 70 75 80
 Pro Glu Ala Ser Ile Pro Ile Arg Glu Ser Leu Leu Arg Ser Ile Glu
 85 90 95
 Thr Asn Phe Leu Asp Arg Phe Ile Asp Leu Val Thr Lys Leu Pro Asp
 100 105 110
 Pro Pro Thr Cys Ile Ile Ser Asp Glu Phe Leu Ser Val Phe Thr Ile
 115 120 125
 Asp Ala Ala Lys Lys Leu Glu Ile Pro Val Met Met Tyr Trp Thr Leu
 130 135 140
 Ala Ala Cys Glu Phe Met Glu Phe Tyr His Ile His Ser Leu Ile Glu
 145 150 155 160
 Lys Glu Phe Ala Pro Leu Lys Asp Ala Ser Tyr Leu Thr Asn Glu Tyr
 165 170 175
 Leu Asp Thr Val Ile Asp Trp Val Pro Glu Met Glu Glu Ile Arg Leu
 180 185 190
 Lys Asp Phe Pro Leu Asp Trp Ser Thr Asp Leu Asn Asp Lys Val Leu
 195 200 205
 Met Phe Thr Thr Glu Ala Pro Glu Arg Ser His Lys Val Ser His His
 210 215 220
 Ile Phe His Thr Phe Asp Glu Leu Glu Pro Ser Ile Ile Lys Thr Leu
 225 230 235 240
 Ser Leu Arg Tyr Asn His Ile Tyr Thr Ile Glu Pro Leu Glu Leu Leu
 245 250 255
 Leu Asp Glu Ile Pro Glu Glu Lys Lys Glu Thr Glu Ile Thr Ser Leu
 260 265 270
 His Glu Tyr Ser Leu Val Lys Glu Glu Pro Glu Cys Phe Glu Trp Leu
 275 280 285

60806923.TXT

Gl n Ser Lys Gl u Pro Asn Ser Val Val Tyr Val Asn Phe Gl y Ser Thr
290 295 300
Thr Val Met Ser Leu Gl u Asp Met Thr Gl u Phe Gl y Trp Gl y Leu Al a
305 310 315 320
Asn Ser Asn His Tyr Phe Leu Trp Ile Ile Arg Ser Asn Leu Val Ile
325 330 335
Gl y Gl u Asn Al a Val Leu Pro Pro Gl u Leu Gl u Gl u His Ile Lys Lys
340 345 350
Arg Gl y Phe Ile Al a Ser Trp Cys Ser Gl n Gl u Lys Val Leu Lys His
355 360 365
Pro Ser Val Gl y Gl y Phe Leu Thr His Cys Gl y Trp Gl y Ser Thr Ile
370 375 380
Gl u Ser Leu Ser Al a Gl y Val Pro Met Ile Cys Trp Pro Tyr Ser Trp
385 390 395 400
Asp Gl n Leu Thr Asn Cys Arg Tyr Ile Cys Lys Gl u Trp Gl u Val Gl y
405 410 415
Leu Gl u Met Gl y Thr Lys Val Lys Arg Asp Gl u Val Lys Arg Leu Val
420 425 430
Gl n Gl u Leu Met Gl y Gl u Gl y Gl y His Lys Met Arg Asn Lys Al a Lys
435 440 445
Asp Trp Lys Gl u Lys Al a Arg Ile Al a Ile Al a Pro Asn Gl y Ser Ser
450 455 460
Ser Leu Asn Ile Asp Lys Met Val Lys Gl u Ile Thr Val Leu Al a Arg
465 470 475 480
Asn