发明名称
协同抗微生物作用

摘要
本发明涉及生物保护领域，尤其涉及一种包含鼠李糖乳杆菌（Lactobacillus rhamnosus）菌株和/或副干酪乳杆菌（Lactobacillus paracasei）菌株的抗微生物组合物。此外，本发明涉及这种抗微生物组合物的用途，包含这种抗微生物组合物的食品、饲料和医药产品，一种制造所述食品、饲料和医药产品的方法，和一种降低所述食品、饲料和医药产品中的不需要的微生物的含量的方法。
1. 一种抗微生物组合物，其包含至少一种鼠李糖乳杆菌（Lactobacillus rhamnosus）菌株和至少一种副干酪乳杆菌（Lactobacillus paracasei）菌株。

2. 根据权利要求1所述的抗微生物组合物，其中所述至少一种鼠李糖乳杆菌菌株选自保藏号为DSM24616的鼠李糖乳杆菌CHCC12697，保藏号为DSM24652的鼠李糖乳杆菌CHCC14226和其突变株组成的组，其中所述突变株是通过使用所述保藏菌株作为起始材料来获得的。

3. 根据权利要求1和2中任一权利要求所述的抗微生物组合物，其中所述至少一种副干酪乳杆菌菌株选自保藏号为DSM24651的副干酪乳杆菌CHCC12777和其突变株组成的组，其中所述突变株是通过使用该保藏菌株作为起始材料来获得的。

4. 一种抗微生物组合物，其包含至少一种选自以下各项组成的组的菌株:
 以保藏号DSM24616保藏在德国微生物菌种保存中心（DSMZ）的鼠李糖乳杆菌CHCC12697，
 以保藏号DSM24652保藏在德国微生物菌种保存中心（DSMZ）的鼠李糖乳杆菌CHCC14226，
 以保藏号DSM24651保藏在德国微生物菌种保存中心（DSMZ）的副干酪乳杆菌CHCC12777，和
 其突变株，其中所述突变株是通过使用所述保藏菌株作为起始材料来获得的。

5. 一种根据前述权利要求中任一权利要求所述的抗微生物组合物在制备食品、饲料或医药产品中的用途。

6. 一种根据权利要求1至4中任一权利要求所述的抗微生物组合物用于抑制选自由真菌和细菌和其混合物组成的组的不需要的微生物的用途。

7. 根据权利要求6所述的用途，其中所述不需要的微生物是真菌，例如酵母和霉菌。

8. 一种根据权利要求1至4中任一权利要求所述的抗微生物组合物作为医药产品的用途。

9. 一种食品、饲料或医药产品，其包含根据权利要求1至4中任一权利要求所述的抗微生物组合物。

10. 根据权利要求9所述的食品，其中所述食品选自水果和水果衍生产品，菜和蔬菜衍生物，谷物和谷物衍生产品，乳制品，肉类，家禽类和海产品和其混合物组成的组。

11. 根据权利要求10所述的食品，其中所述食品是乳制品。

12. 根据权利要求11所述的食品，其中所述乳制品是中温或嗜热发酵的奶产品，例如新鲜乳酪或酸乳。

13. 根据权利要求10所述的食品，其中所述食品是肉类或家禽类。

14. 根据权利要求9所述的医药产品，其中所述医药产品是包含根据权利要求1至4中任一权利要求所述的组合物的单位剂型。

15. 根据权利要求10所述的医药产品，其中所述单位剂型是胶囊或片剂。

16. 一种制造食品、饲料或医药产品，其是根据权利要求9至15中任一权利要求所述的食品，饲料或医药产品的方法，所述方法包括向所述食品、饲料或医药产品添加根据权利要求1至4中任一权利要求所述的抗微生物组合物的步骤。

17. 根据权利要求16所述的方法，其包括
（a）在所述食品、饲料或医药产品的制造过程中添加根据权利要求 1 到 3 中任一权利要求所述的抗微生物组合物，使得所述至少一种鼠李糖乳杆菌菌株和所述至少一种副干酪乳杆菌菌株的浓度各自为至少 $1 \times 10^6 \text{ cfu/g}$ 或至少 $1 \times 10^6 \text{ cfu/ml}$ 所述食品、饲料或医药产品，或至少 $1 \times 10^6 \text{ cfu/cm}^2$ 所述食品、饲料或医药产品的表面，和

(b) 在制造过程中控制制造参数，使得所述至少一种鼠李糖乳杆菌菌株和所述至少一种副干酪乳杆菌菌株的浓度增加或保持恒定。

18. 根据权利要求 16 到 17 中任一权利要求所述的方法，其中所述方法包括一个或多个发酵步骤。

19. 根据权利要求 18 所述的方法，其中所述方法包括用发酵剂培养物发酵奶底物，所述发酵剂培养物包含至少一种选自乳杆菌（Lactobacillus）、链球菌（Streptococcus）、乳球菌（Lactococcus）和明串珠菌（Leuconostoc）的属的菌株。

20. 根据权利要求 16 到 19 中任一权利要求所述的方法，其中在步骤（a）中向所述食品、饲料或医药产品添加所述抗微生物组合物的步骤包括将所述抗微生物组合物撒合入所述食品、饲料或医药产品中。

21. 根据权利要求 16 到 19 中任一权利要求所述的方法，其中在步骤（a）中向所述食品、饲料或医药产品添加所述抗微生物组合物的步骤包括将所述抗微生物组合物施加于所述食品、饲料或医药产品的一个或多个表面上。

22. 一种以保藏号 DSM24616 保藏在德国微生物菌种保藏中心（DSMZ）的鼠李糖乳杆菌 CHCC12697 菌株或其突变株，其中所述突变株是通过使用所述保藏菌株作为起始材料来获得的。

23. 一种以保藏号 DSM24652 保藏在德国微生物菌种保藏中心（DSMZ）的鼠李糖乳杆菌 CHCC14226 菌株或其突变株，其中所述突变株是通过使用所述保藏菌株作为起始材料来获得的。

24. 一种以保藏号 DSM24651 保藏在德国微生物菌种保藏中心（DSMZ）的副干酪乳杆菌 CHCC12777 菌株或其突变株，其中所述突变株是通过使用所述保藏菌株作为起始材料来获得的。
协同抗微生物作用

技术领域
[0001] 本发明涉及生物保护领域，尤其涉及一种包含鼠李糖乳杆菌（Lactobacillus rhamnosus）菌株和/或副干酪乳杆菌（Lactobacillus paracasei）菌株的抗微生物组合物。此外，本发明涉及这种抗微生物组合物的用途，包含这种抗微生物组合物的食品、饲料和医药产品，一种制造所述食品、饲料和医药产品的方法，和一种降低所述食品、饲料和医药产品中的不需要的微生物的含量的方法。

背景技术
[0002] 生物保护性培养物在不同的食品应用中被用作化学防腐剂的替代物。在乳制品中，酵母和霉菌的污染会限制乳制品的存放期。经历显著的酵母和霉菌污染问题的一个产品领域包括新鲜乳酪。
[0003] 在乳品工业上已经开发出了用于解决这些问题的生物保护性方案。市场上最众所周知并且最可能广泛使用的抗真菌生物保护性方案中的一些是来自 Danisco 的 HOLDBAC™YM-b 和 HOLDBAC™YM-C 培养物，它们都含有丙酸杆菌（Propionibacteria）和乳杆菌（Lactobacillus）亚种的组合。
[0005] 丙酸细菌属（Propionibacteria ssp.）被认为主要通过生产丙酸，另外通过生产乙酸和其它代谢物来引起抗真菌活性。
[0006] 然而，这些物种的工业规模的生产成本相当高，并且丙酸的生产可能引起在最终乳制品中不需要的感官性质。
[0007] 市场上用于乳制品的其它抗真菌生物保护性方案包括来自 SACCO 的 Lyofast LPRA 以及来自 BIOPROX 的 Aroma-Prox®RP80。这两类产品都含有植物乳杆菌（Lactobacillus plantarum）与鼠李糖乳杆菌的组合。
[0008] Tharmaraj 和 Shah（2009）描述了用于基于乳酪的浸渍液（cheese-based dip）的生物保护性乳酸细菌候选物的筛选。作为单一菌株测试的所有鼠李糖乳杆菌和副干酪乳杆菌菌株针对酵母和霉菌都显示了最大抑制作用。然而，没有检查鼠李糖乳杆菌与副干酪乳杆菌的组合。
[0009] 因此，在工业上需要开发省去丙酸细菌属同时却不会损害抗真菌效率的改良型生物保护性方案。

发明内容
[0010] 本申请的发明人已经鉴别了新颖乳酸细菌菌株，其显著有效抑制已知在奶和乳制品中作为污染物出现的细菌和真菌微生物的生长。本申请的发明人已经进一步发现，某一组乳酸细菌当与另一组乳酸细菌组合时展现显著的协同抗微生物作用。所组合的这两组细菌的抗微生物作用意外地大于这两组细菌的单独作用的总和。
因此，本发明的第一方面涉及一种抗微生物组合物，其包含至少一种鼠李糖乳杆菌菌株和至少一种干酪乳杆菌菌株。在一个优选实施方案中，所述抗微生物组合物包含(a)至少一种选自鼠李糖乳杆菌 CHCC12697 和鼠李糖乳杆菌 CHCC14226 和其突变株组成的组的乳杆菌菌株，和(b)至少一种选自副干酪乳杆菌 CHCC12777 和其突变株组成的组的干酪乳杆菌菌株。在另一个优选实施方案中，本发明提供一种抗微生物组合物，其包含至少一种选自鼠李糖乳杆菌菌株 CHCC12697，鼠李糖乳杆菌菌株 CHCC14226，副干酪乳杆菌菌株 CHCC12777 和其突变株组成的组的菌株，其中所述突变株是通过使用保藏菌株作为起始材料来获得的。

因此，本发明的第二方面涉及第一方面的诸多抗微生物组合物中的一种在食品、饲料或医药产品制备中的用途。

第三方面涉及第一方面的诸多抗微生物组合物中的一种用于抑制不需要的微生物的生长的用途，所述不需要的微生物选自由真菌、细菌和其混合物组成的组。具体来说，本发明的组合物应当用于抑制和/或阻止在食品工业过程（例如奶发酵过程）中作为通常已知的污染物的真菌和细菌的生长。

第四方面涉及第一方面的诸多抗微生物组合物中的一种作为医药产品的用途。医药产品优选地用于治疗细菌或真菌、更优选地霉菌对受试对象的感染。

第五方面涉及一种食品、饲料或医药产品，其包含根据本发明的第二方面的诸多抗微生物组合物中的一种。

本发明的第六方面涉及一种用于制造根据本发明的第二方面的食品、饲料或医药产品的制备方法，所述方法包括在食品、饲料或医药产品的制造过程中添加根据本发明的第二方面的诸多抗微生物组合物中的一种。当所述方法包括添加包含鼠李糖乳杆菌菌株与副干酪乳杆菌菌株的抗微生物组合物时，添加所述组合物使得所述至少一种鼠李糖乳杆菌菌株和所述至少一种副干酪乳杆菌菌株的浓度各自为至少1×10^6 cfu/g所述食品、饲料或医药产品，优选5×10^6 cfu/g所述食品、饲料或医药产品，或各自为至少1×10^6 cfu/ml所述食品、饲料或医药产品，优选5×10^6 cfu/ml所述食品、饲料或医药产品，或各自为至少1×10^6 cfu/cm²所述食品、饲料或医药产品的表面，优选1×10^7 cfu/cm²所述食品、饲料或医药产品的表面，并且在制造过程中控制制造参数，使得所述至少一种鼠李糖乳杆菌菌株和所述至少一种副干酪乳杆菌菌株的浓度增加或保持恒定。

在第七方面中，本发明涉及一种以保藏号 DSM24616 保藏在德国微生物菌种保藏中心（DSMZ）的鼠李糖乳杆菌 CHCC12697 菌株或其突变株，其中所述突变株是通过使用该保藏菌株作为起始材料来获得的。

在第八方面中，本发明涉及一种以保藏号 DSM24652 保藏在德国微生物菌种保藏中心（DSMZ）的鼠李糖乳杆菌 CHCC14226 菌株或其突变株，其中所述突变株是通过使用该保藏菌株作为起始材料来获得的。

在第九方面中，本发明涉及一种以保藏号 DSM24651 保藏在德国微生物菌种保藏
中心（DSMZ）的副干酪乳杆菌 CHCC12777 酵母菌或其突变株，其中所述突变株是通过使用该保藏酵母菌作为起始材料来获得的。

附图说明

[0021] 图 1 显示了从以下各项制备的平板上的酵母和霉菌的生长：用单独发酵剂培养物发酵的奶（参考物，第一列），用发酵剂培养物连同鼠李糖乳杆菌 CHCC12697 发酵的奶（第二列），用发酵剂培养物连同副干酪乳杆菌（Lb. paracasei）CHCC12777 发酵的奶（第三列），或用发酵剂培养物连同鼠李糖乳杆菌 CHCC12697 与副干酪乳杆菌 CHCC12777 的组合发酵的奶（第四列）。以本文中提及的浓度在最上面一行平板中从左到右分别添加目标污染物：马克斯克鲁维酵母（K. marxianus），发酵毕赤酵母（P. fermentans），解脂耶氏酵母（Y. lipolytica）和清酒假丝酵母（C. sake）。在最下面一行平板中，在顶部添加地青霉（P. nalgiovene），在左下方添加枝孢菌属（Cladosporium spp.），并在右下方添加普通青霉（P. commune）。在最后一行平板中，只添加毛霉菌属（Mucor spp.）。平板已经在 7±1℃下培育 17 天。

[0022] 图 2 描绘了添加到用单独发酵剂培养物 CHN-19（实心菱形）或发酵剂培养物 CHN-19 连同以下菌株接种的全脂奶中的解脂耶氏酵母（Yarrowia lipolytica）分离物的细胞计数：HOLDBAC™YM-B（空心方形），HOLDBAC™YM-C（空心菱形），副干酪乳杆菌 CHCC12777（实心方形），鼠李糖乳杆菌 CHCC12697（实心三角形）或副干酪乳杆菌 CHCC12777 与鼠李糖乳杆菌 CHCC12697 的组合（实心圆形），所有的菌株加入后在 29±1℃下发酵直到 pH 达到 4.65±0.05。

[0023] 图 3 显示了从以下各项制备的平板上的酵母和霉菌的生长：用单独发酵剂培养物发酵的奶（参考物，第一列），用发酵剂培养物连同鼠李糖乳杆菌 CHCC14226 发酵的奶（第二列），用发酵剂培养物连同副干酪乳杆菌 CHCC12777 发酵的奶（第三列），或用发酵剂培养物连同鼠李糖乳杆菌 CHCC14226 与副干酪乳杆菌 CHCC12777 的组合发酵的奶（第四列）。以本文中提及的浓度在最上一行平板中从左到右分别添加目标污染物：马克斯克鲁维酵母、发酵毕赤酵母、解脂耶氏酵母和清酒假丝酵母。在底下平板中，在顶部添加地青霉，在左下方添加枝孢菌属，并在右下方添加普通青霉。平板已经在 7±1℃下培育 15 天。

[0024] 图 4 描绘了添加到用单独发酵剂培养物 CHN-19（实心菱形）或发酵剂培养物 CHN-19 连同以下菌株接种的全脂奶中的马克斯克鲁维酵母（Klyveromycesmarxianus）分离物的细胞计数：HOLDBAC™YM-B（空心方形），HOLDBAC™YM-C（空心菱形），副干酪乳杆菌 CHCC12777（实心方形），鼠李糖乳杆菌 CHCC14226（实心三角形）或副干酪乳杆菌 CHCC12777 与鼠李糖乳杆菌 CHCC14226 的组合（实心圆形），所有的菌株加入后在 29±1℃下发酵直到 pH 达到 4.65±0.05。

[0025] 图 5 显示了从以下各项制备的平板上的霉菌的生长：用单独发酵剂培养物发酵的奶（参考物，第一张图），用发酵剂培养物连同副干酪乳杆菌 CHCC14676 发酵的奶（第二张图），用发酵剂培养物连同鼠李糖乳杆菌 CHCC5366 发酵的奶（第三张图），或用发酵剂培养物连同副干酪乳杆菌 CHCC14676 与鼠李糖乳杆菌 CHCC5366 的组合发酵的奶（第四张图）。以本文中提及的浓度从左上到右下分别添加目标污染物：纳地青霉（Penicillum nalgiovene），普通青霉（Penicillum commune），杂色曲霉（Aspergillus versicolor）和
皮落青霉（Penicillium crustosum）。平板已经在7±1℃下培育12天。

【0026】图6显示了从以下各制备的平板上的霉菌的生长；用单独发酵剂培养物发酵的奶（参考物，第一张图），用发酵剂培养物连同副干酪乳杆菌CHCC14676发酵的奶（第二张图），用发酵剂培养物连同鼠李糖乳杆菌CHCC14226发酵的奶（第三张图），或用发酵剂培养物连同副干酪乳杆菌CHCC14676与鼠李糖乳杆菌CHCC14226的组合发酵的奶（第四张图）。以本文中提及的浓度从左上到右下分别添加目标污染物：钠盐青霉、普通青霉、杂色曲霉和皮落青霉。平板已经在7±1℃下培育12天。

【0027】图7显示了从以下各制备的平板上的霉菌的生长；用单独发酵剂培养物发酵的奶（参考物，第一张图），用发酵剂培养物连同副干酪乳杆菌CHCC12777发酵的奶（第二张图）。用发酵剂培养物连同鼠李糖乳杆菌CHCC14226发酵的奶（第三张图），或用发酵剂培养物连同副干酪乳杆菌CHCC12777与鼠李糖乳杆菌CHCC14226的组合发酵的奶（第四张图）。以本文中提及的浓度从左上到右下分别添加目标污染物：钠盐青霉、普通青霉、杂色曲霉和皮落青霉。平板已经在7±1℃下培育12天。

【0028】图8显示了使用副干酪乳杆菌CHCC12777对酸奶油进行的攻击研究（challenge study）的结果。证实了普通青霉（M6）、杂色曲霉（A. versicolor）（M7）、短密青霉（P. breviciputum）（M1）、皮落青霉（P. crustosum）（M10）和光孢青霉（P. glabrum）（M8）在从仅使用发酵剂培养物（低行）发酵的奶或用发酵剂培养物和HOLDBAC™ YMB 培养物（中行）发酵的奶制得的酸奶油上良好地生长。相比之下，当在奶发酵过程中存在副干酪乳杆菌CHCC12777时（底行），测试的所有霉菌的生长都受到抑制。

【0029】图9显示了使用鼠李糖乳杆菌CHCC12697对tvarog进行的攻击研究。证实了毛霉菌属在从仅使用发酵剂培养物CHN-19（参考物）发酵的奶制作的tvarog上良好地生长。霉菌也在从仅发酵剂培养物和HOLDBAC™ YMB 培养物发酵的奶制得的tvarog上良好地生长，并且在从用发酵剂培养物和HOLDBAC™ YMB 培养物发酵的奶制得的tvarog中以较小程度生长。然而，当在奶发酵过程中存在鼠李糖乳杆菌株CHCC12697时，观察到毛霉菌属的生长被显著地抑制。

【0030】图10显示了使用鼠李糖乳杆菌CHCC14226对酸乳进行的攻击研究。短密青霉（M1）、普通青霉（M6）、杂色曲霉（M7）和皮落青霉（M10）在从仅使用发酵剂培养物YF-L901发酵的奶（顶行）或用发酵剂培养物和HOLDBAC™ YMB 培养物发酵的奶（中行）制得的酸乳上都良好地生长。相比之下，当在奶发酵过程中存在鼠李糖乳杆菌CHCC14226时（底行），测试的所有霉菌的生长都受到抑制。

【0031】图11显示了副干酪乳杆菌CHCC12777和鼠李糖乳杆菌CHCC12697针对tvarog中的乳酸克鲁维酵母（K. lactis）的抑制作用的定量测定。证实了当与发酵剂培养物CHN-19一起接种然后进行发酵时，在存在副干酪乳杆菌株CHCC12777的情况下和存在鼠李糖乳杆菌株CHCC12697的情况下，乳酸克鲁维酵母的生长受到抑制。到干酪乳杆菌株CHCC12777和鼠李糖乳杆菌株CHCC12697这两种菌株所引起的抑制作用显著高于市售培养物HOLDBAC™ YMB。

【0032】图12显示了鼠李糖乳杆菌CHCC14226针对酸乳中的汉逊德巴利酵母（Debaromyces hansenii）的抑制作用的定量测定。当与发酵剂培养物YF-L901一起接种然后进行发酵时，在存在鼠李糖乳杆菌株CHCC14226的情况下，汉逊德巴利酵母的生长受
到抑制。所述菌株所引起的抑制作用显著高于市售培养物 HOLDBAC™ YMB-8。

具体实施方式

[0033] 定义

[0034] 如本文所用，术语“乳酸细菌”是指革兰氏阳性的、微需氧的或厌氧的细菌，其发酵糖，同时产生酸，包括作为主要产生的酸的乳酸。工业上最有用的乳酸细菌属于“乳杆菌（Lactobacillales）”目，包括乳球菌属（Lactococcus spp.）、链球菌属（Streptococcus spp.）、乳杆菌属（Lactobacillus spp.）、明串珠菌属（Leuconostoc spp.）、伪明串珠菌属（Pseudoleuconostoc spp.）、片球菌属（Pediococcus spp.）、短杆菌属（Brevibacterium spp.）和肠球菌属（Enterococcus spp.）。这些乳酸细菌经常单独用作食品培养物，或与其它乳酸细菌组合用作食品培养物。

[0035] 包括乳杆菌种属和嗜热链球菌（Streptococcus thermophilus）种的细菌在乳酸细菌通常以冷冻或冷冻干燥培养物的形式供给食品工业，以用于大批量发酵剂繁殖，或以批量直接接种到发酵容器或桶中的所谓的“直投式”（Direct Vat Set ;DVS）培养物的形式供给食品工业，以用于制造乳制品，例如发酵奶产品或乳酪。所述乳酸细菌培养物一般称为“发酵剂培养物”或“发酵剂”。

[0036] 本文的术语“中温生物”是指在中等温度（15℃～40℃）下生长最旺盛的微生物。工业上最有用的中温细菌包括乳球菌属和明串珠菌属。本文的术语“中温发酵”是指在约22℃到约35℃的温度下的发酵。术语“中温发酵产品”是指通过中温发酵剂培养物的中温发酵而制造的发酵奶产品，并且包括例如酥乳、酸奶、发酵乳、斯美塔那酸奶油（sметана）、酸奶油和新鲜乳酪（例如夸克乳酪、tvarog 乳酪和奶油乳酪）等发酵奶产品。

[0037] 本文的术语“嗜热生物”是指在高于43℃的温度下生长最旺盛的微生物。工业上最有用的嗜热细菌包括链球菌属和乳杆菌属。本文的术语“嗜热发酵”是指在高于约35℃、例如在约35℃到约45℃的温度下的发酵。术语“嗜热发酵产品”是指通过嗜热发酵剂培养物的嗜热发酵而制造的发酵奶产品，并且包括例如凝固型酸乳、搅拌型酸乳和饮用型酸乳等发酵奶产品。

[0038] 术语“奶/乳”应理解为通过将任何哺乳动物（例如奶牛、绵羊、山羊、水牛或骆驼）挤奶而获得的乳分泌物。在一个优选实施方案中，奶是牛奶。术语“奶”还包括由植物材料制造的蛋白质/脂肪溶液，例如豆奶。

[0039] 术语“奶底物”可以是可根据本发明的方法经历发酵的任何生奶和/或经过加工的奶材料。因此，可用的奶底物包括但不限于包含蛋白质的任何奶或奶状产品的溶液/悬浮液，所述奶或奶状产品例如是全脂奶或低脂奶、脱脂奶、酪乳、复原奶、炼乳、奶粉、乳清、乳清浓缩物、乳糖、由乳糖结晶获得的母液、乳清蛋白浓缩物或奶油。显然，奶底物可来源于任何哺乳动物，例如作为基本上纯的哺乳动物奶或复原奶。

[0040] 在发酵之前，奶底物可根据所属领域中已知的方法进行均质化和巴氏灭菌。

[0041] 本文所用的“均质化”意思是彻底混合以获得可溶的悬浮液或乳液。如果均质化在发酵之前进行，那么其目的是将奶中的脂肪破碎成较小尺寸以便其不再与奶分离。这可以通过在高压下迫使奶通过小孔来实现。

[0042] 本文所用的“巴氏灭菌”意思是处理奶底物以减少或消除例如微生物等活有机体
说明书

的存在的。优选地，巴氏灭菌是通过将指定温度维持指定时段来实现。指定温度通常通过加热来实现。可选择温度和持续时间以便杀死或灭活特定细菌，例如有害细菌。随后可进行快速冷却步骤。

【0043】本发明的方法中的“发酵”意思是通过微生物作用将碳水化合物转化为醇类或酸类。优选地，本发明的方法中的发酵包含将乳糖转化为乳酸。

【0044】打算用于制造乳制品的发酵方法是众所周知的，并且所属领域技术人员将了解如何选择合适的工艺条件，例如温度、氧、微生物的量和特征以及加工时间。显然，对发酵条件进行选择以便实现本发明，即获得固态（例如乳酪）或液态（例如发酵奶产品）的乳制品。

【0045】本文的术语“不需要的微生物”是指病原性的和/或能够使食品、饲料或医药产品变质的微生物，例如细菌和真菌，例如酵母。

【0046】与不需要的微生物有关的术语“抑制”和“正在抑制”意思例如是，例如在包含抗微生物组合物的食品之中和/或所述食品的表面上的不需要的微生物生长或数量或浓度低于不包含该类抗微生物组合物的食品之中和/或所述食品的表面。

【0047】在本发明中，术语“突然株”应理解为通过例如基因工程、辐射和/或化学处理而从本发明的菌株衍生的菌株。突然株优选是功能相当的突然株，例如相比母株具有基本上相同或改进的性质（例如关于丁二酮产量、粘度、胶体硬度、口腔包覆感、风味、后酸化、酸化速度和/或噬菌体稳定性）的突然株。这类突然株是本发明的一部分。特别地，术语“突然株”是指使本发明的菌株经历任何常规使用的诱变处理（包括用例如甲烷磺酸乙酯（EMS）或N-甲基-N’-硝基-N-硝基胍（NTG）等化学诱变剂、UV光处理）而获得的菌株，或自产生突然株。突然株可能已经历数次诱变处理（单次处理应理解为一个诱变步骤和随后的选择步骤），但目前优选执行不超过20次或不超过10次或不超过5次处理（或筛选/选择步骤）。在一个目前优选的突然株中，相比母株，细菌基因组中小于5%或小于1%或甚至小于0.1%的核酸酸已被另一核酸酸取代，或被缺失。

【0048】除非本文另外指定或上下文明显矛盾，否则在描述本发明的上下文中（特别是在以下权利要求书的上下文中）使用的术语“a/an（一）”和“所述”和类似指示物应解释为涵盖单数和复数。除非另外注释，否则术语“包含”、“具有”、“包括”和“含有”应解释为开放式术语（即意思是“包括但不限于”）。除非本文另外指定，否则本文叙述的值的范围仅打算用作个别地提及落在所述范围内的每一单独值的简化方法，且每一单独值都被纳入说明书中，就如同其在本文中个别地叙述一样。除非本文中另外指定或上下文明显矛盾，否则本文所述的所有方法都可按任何合适次序进行。使用任何和所有实施例或本文提供的示例性修饰（例如“诸如”）仅打算更好地阐明本发明且除非另外要求保护，否则不会对本发明的范围构成限制。说明书中任何修辞都不应解释为表明任何未要求保护的要素对于本发明的实施是必不可少的。

【0049】本发明的实施和方面

【0050】本申请的发明人已经进行了广泛的筛选和研究以便提供一种抗微生物组合物，其包含有效对抗不需要的微生物（例如霉菌和酵母）的一种乳酸细菌菌株或两种不同的乳酸细菌菌株的混合物。

【0051】本申请的发明人已经对植物乳杆菌、副干酪乳杆菌和鼠李糖乳杆菌中的200种候选物进行了筛选，以找出对抗多种微生物（例如酵母和霉菌）最有效的单一菌株或双菌株组
合。
[0052] 在基于奶的基质中在尽可能模拟中温发酵奶产品的模型分析中进行筛选，在存在或不存在生物保护性候选物的情况下，向所述基于奶的基质中添加相关的发酵剂培养物，并且在中温发酵奶产品相关的条件下发酵。从中温发酵奶产品分离目标有机体。来自
HOLDBAC™ 培养物（丹麦 Danisco A/S）的纯化乳酸细菌以及同时含有乳酸细菌和丙酸细菌的完全 HOLDBAC™ YM-B 和 HOLDBAC™ YM-C 培养物是用作基准。
[0053] 在 25℃下测试时，发现副干酪乳杆菌和鼠李糖乳球菌中的 17 种候选物通常会抑制 12 种指标真菌，抑制程度与基准乳酸细菌相当或更好。因此，在第一方面中，本发明涉及一种包含至少一种鼠李糖乳杆菌或副干酪乳杆菌菌株的抗微生物组合物。
[0054] 当在冷冻条件下测试时，所鉴别的候选菌株中的 9 种也显示与基准乳酸细菌在相同范围内的活性，并且有 3 种菌株尤其被证实非常有效：保藏号为 DSM24651 的副干酪乳杆菌
CHCC12777、保藏号为 DSM24616 的鼠李糖乳杆菌 CHCC12697 和保藏号为 DSM24652 的鼠李糖乳杆菌 CHCC14226。这三种菌株是保藏在德国微生物菌种保藏中心（DSMZ）。
[0055] 当在所谓的瓶式分析（bottle-assay）中测试时，与 HOLDBAC™ 培养物相比，这些单
一菌株针对不同酵母的作用似乎是更好的或相当的。因此，这些单一菌株非常适合用于作
抗微生物剂。在一个优选方面中，本发明因此提供一种抗微生物组合物，其包含至少一种选
自由以下各项组成的组的菌株：
[0056] 以保藏号 DSM24616 保藏在德国微生物菌种保藏中心（DSMZ）的鼠李糖乳杆菌
CHCC12697，
[0057] 以保藏号 DSM24652 保藏在德国微生物菌种保藏中心（DSMZ）的鼠李糖乳杆菌
CHCC14226，
[0058] 以保藏号 DSM24651 保藏在德国微生物菌种保藏中心（DSMZ）的副干酪乳杆菌
CHCC12777，和
[0059] 其突变株，其中所述突变株是通过使用所述保藏菌株作为起始材料来获得的。
[0060] 在一个尤其优选的实施方案中，本发明的抗微生物组合物包含上述菌株中的一种
或其突变株作为发挥抗微生物活性的唯一药剂。
[0061] 除了以上提及的三种菌株以外，本发明还涉及已经从这些菌株衍生的突变株，即
其已经通过使用保藏菌株 CHCC12777、CHCC12697 或 CHCC14226 中的一种作为起始材料来
获得。突变株可以从这些菌株中的一种衍生而来，例如通过基因工程、辐射、UV 光、化学
处理和 / 或诱导基因组变化的方法。根据本发明的突变株将抑制和 / 或阻止某些细菌或真
菌、优选霉菌的生长。优选的是，当例如在使用酵母马斯克鲁维酵母、发酵毕赤酵母
(P. ferments)、解脂假丝酵母或清酒假丝酵母中的一种作为污染物的如实施例 2 中所描述的
分析中测定时，与母株相比，突变株具有基本上至少 80% 或更多、至少 90% 或更多、至少
95% 或更多、或甚至高达 100% 或更多的抗微生物作用（例如抗真菌）作用。
[0062] 这些菌株对抗不需要的微生物的抑制作用可以通过如以下实施例中所描述将瓶
子储存在合适温度下合适的储存时间期间来测定。
[0063] 一般来说，应当执行这种方法的合适温度取决于具体食品、饲料或医药产品通常
储存和 / 或制造的温度。瓶子通常储存的温度为 5℃到 26℃，优选地温度为约 8℃。
[0064] 所述温度下的储存时间取决于食品、饲料或医药产品通常储存的时间（存放期）。

10
储存时间通常为7~28天，优选地储存时间为21天。

当以2菌株组合测试时，意外地发现，即使在单一菌株和2菌株组合的测试中所添加的细胞总浓度相等时，最有效的单一菌株的组合甚至优于任一种单独菌株。副干酪乳杆菌CHCC12777和鼠李糖乳杆菌CHCC12697的组合或副干酪乳杆菌CHCC12777和鼠李糖乳杆菌CHCC14226的组合似乎比来自丹麦Danisco的基准培养物HOLDBAC™YM-B和HOLDBAC™YM-C更有效。

因此，在一个优选实施方案中，本发明涉及一种包含至少一种鼠李糖乳杆菌菌株和至少一种副干酪乳杆菌菌株的抗微生物组合物，其中所述至少一种鼠李糖乳杆菌菌株选自保藏号为DSM24616的鼠李糖乳杆菌CHCC12697、保藏号为DSM24652的鼠李糖乳杆菌CHCC14226和其突变株组成的组，其中所述突变株是通过使用所述保藏菌株作为起始材料来获得的。

在另一个优选实施方案中，所述至少一种副干酪乳杆菌菌株选自保藏号为DSM24651的副干酪乳杆菌CHCC12777和其突变株组成的组，其中所述突变株是通过使用所述保藏菌株为起始材料来获得的。

在其它实施方案中，本发明涉及抗微生物的，并且优选地抗真菌的组合物，其包含至少一种鼠李糖乳杆菌菌株和至少一种副干酪乳杆菌菌株，其中

所述至少一种鼠李糖乳杆菌菌株选自保藏号为DSM24616的鼠李糖乳杆菌CHCC12697、保藏号为DSM24652的鼠李糖乳杆菌CHCC14226和其突变株组成的组，其中所述突变株是通过使用所述保藏菌株为起始材料来获得的，并且

所述至少一种副干酪乳杆菌菌株选自保藏号为DSM24651的副干酪乳杆菌CHCC12777和其突变株组成的组，其中所述突变株是通过使用所述保藏菌株为起始材料来获得的。

包含至少鼠李糖乳杆菌CHCC12697和副干酪乳杆菌CHCC12777的抗微生物组合物是尤其优选的。同样地，根据本发明，包含至少鼠李糖乳杆菌CHCC14226和副干酪乳杆菌CHCC12777的抗微生物组合物是尤其优选的。

微生物组合物典型地包含浓缩形式的细菌，包括冷冻、干燥或冷冻干燥浓缩物，所述浓缩形式的细菌的活细胞浓度典型地在每克组合物10^5至10^10cfu（菌落形成单位）的范围内，包括每克组合物至少10^5cfu，例如至少10^6cfu/g，例如至少10^7cfu/g，例如至少10^8cfu/g，例如至少10^9cfu/g，例如至少10^10cfu/g，例如至少10^11cfu/g。因此，本发明的微生物组合物优选以冷冻、干燥或冷冻干燥形式存在，例如作为直投式（DVS）培养物。然而，如本文所说，微生物组合物也可以是液体，其是在将冷冻、干燥或冷冻干燥细胞浓缩物悬浮于例如水或PBS缓冲液等液体基质中之后而获得的。在本发明的微生物组合物是悬浮液的情况下，活细胞的浓度在每毫升组合物10^4至10^10cfu（菌落形成单位）的范围内，包括每毫升组合物至少10^4cfu，例如至少10^5cfu/ml，例如至少10^6cfu/ml，例如至少10^7cfu/ml，例如至少10^8cfu/ml，例如至少10^9cfu/ml，例如至少10^10cfu/ml。

组合物可以另外含有防冻剂和/或常规添加剂作为其它组分，所述常规添加剂包括例如酵母提取物、糖和维生素（例如维生素A、C、D、K，或维生素B族的维生素）等营养物。可以添加到本发明的组合物中的合适防冻剂是提高微生物的耐寒性的组分，例如甘露
醇、山梨糖醇、三聚磷酸钠、木糖醇、甘油、棉子糖、麦芽糊精、赤藓糖醇、苏糖醇、海藻糖、葡萄糖和果糖。其它添加剂可以包括例如碳水化合物、调味剂、矿物质、酶（例如粗制凝乳酶（rennet）、乳糖酶和/或磷脂酶）。

在包含鼠李糖乳杆菌菌株和副干酪乳杆菌菌株的本发明的抗微生物组合物中，鼠李糖乳杆菌菌株与副干酪乳杆菌菌株之间的比率，例如鼠李糖乳杆菌的浓度或数量与副干酪乳杆菌的浓度或数量之间的比率优选为1:100到100:1，优选为1:10到10:1。

本发明的抗微生物组合物可以与容易被微生物降解和/或被酵母和霉菌污染的任何食品、饲料和医药产品联合使用。这些食品、饲料和医药产品包括但不限于水果和蔬菜（包括衍生产品）、谷物和谷物衍生产品、乳制品、肉类、家禽类和海产品。在尤其优选的实施方案中，组合物与乳制品和/或肉类和家禽类联合使用。在一个优选实施方案中，本发明的组合物在例如酸乳、tvarog、酸奶油、奶油乳酪等乳制品的制备中用作添加剂。

根据本发明的抗微生物组合物也可以用于抑制选自由真菌和细菌和其混合物组成的组的不需要的微生物。本发明的组合物尤其可用于抑制和/或阻止在乳品工业过程中（例如奶发酵过程）中作为通常已知的污染源的真菌和细菌的生长。

在一个优选实施方案中，本发明的抗微生物组合物是用于对抗真菌，例如酵母和霉菌。这意味着所述组合物是用于抑制和/或阻止在乳品工业过程中、尤其在发酵过程中造成污染的真菌的生长。本发明的抗微生物组合物例如可以用于抑制和/或阻止以下酵母或霉菌的生长：酵母，例如克鲁维酵母属（Klyveromyces）（例如马克斯克鲁维酵母、乳酸克鲁维酵母）、毕赤酵母属（Pichia）（例如发酵毕赤酵母）、耶氏酵母属（Yarrowia）（例如解脂耶氏酵母）、假丝酵母属（Candida）（例如酿酒假丝酵母）等的酵母，或霉菌，例如来自青霉属（Penicillium）（例如纳地青霉、普通青霉、皮落青霉、短密青霉、光孢青霉）、毛霉菌属（Mucor spp.）、枝孢菌属（Cladosporium spp.）、曲霉属（Aspergillus）（例如杂色曲霉）、德巴利酵母属（Debaromyces）（例如德巴利酵母）等的霉菌。特别优选的是使用本发明的抗微生物组合物抑制和/或阻止马克斯克鲁维酵母、解脂耶氏酵母、纳地青霉（Penicillium nalgiovense）、枝孢菌属、普通青霉、毛霉菌属、短密青霉（Penicillium brevicompactum）、杂色曲霉、皮落青霉、乳酸克鲁维酵母（Klyveromyces lactis）和/或德巴利酵母种的生长。

根据本发明的第一方面的抗微生物组合物也可以用作治疗真菌性感染的医药产品。

如上所述，本发明在一个方面中涉及一种包含本发明的第一方面的抗微生物组合物的食品、饲料或医药产品。

在一个优选实施方案中，这类食品包括自由水果和水果衍生产品、蔬菜和蔬菜衍生产品、谷物和谷物衍生产品、乳制品、肉类、家禽类和海产品和其混合物组成的组。

在一个更优选的实施方案中，食品是乳制品，优选地中海或嗜热发酵奶产品，例如新鲜乳酪、酸乳、酸奶油或tvarog。

在另一个优选实施方案中，食品是肉类或家禽类。

在一个优选实施方案中，医药产品是可用于对人或动物施用根据本发明的第一方面的抗微生物组合物的抗病原性微生物和减轻与病原性微生物有关的症状的产品。所述症状的实例包括真菌感染相关的症状。在这些实施方案中，医药产品可以是包含抗微
生物组合物的单位剂型。优选地，单位剂型是胶囊或片剂。然而，单位剂型也可以适合于使用给粘膜或皮肤，并且因此采取糊剂、乳膏、油膏等形式。

[0085] 在一个优选实施方案中，所述至少一种鼠李糖乳杆菌或副干酪乳杆菌菌株的浓度为至少 1×10^8 cfu/g，优选地至少 5×10^6 cfu/g，最优选地至少 1×10^7 cfu/g 所述食品、饲料或医药产品，或为至少 1×10^6 cfu/ml，优选地至少 5×10^5 cfu/ml，最优选地至少 1×10^5 cfu/ml 所述食品、饲料或医药产品，或为至少 1×10^5 cfu/cm^2，优选地至少 1×10^4 cfu/cm^2 所述食品、饲料或医药产品的表面。

[0086] 在所述食品、饲料或医药产品是通过添加包含至少一种鼠李糖乳杆菌菌株和至少一种副干酪乳杆菌菌株的组合物来制造的情况下，所述至少一种鼠李糖乳杆菌菌株和所述至少一种副干酪乳杆菌菌株的浓度各自为至少 1×10^8 cfu/g 所述食品、饲料或医药产品或各自为至少 1×10^6 cfu/ml 所述食品、饲料或医药产品，或各自为至少 1×10^5 cfu/cm^2 所述食品、饲料或医药产品的表面。优选地，所述至少一种鼠李糖乳杆菌菌株和所述至少一种副干酪乳杆菌菌株的浓度各自为至少 5×10^6 cfu/g 所述食品、饲料或医药产品或各自为至少 5×10^5 cfu/ml 所述食品、饲料或医药产品，或各自为至少 5×10^5 cfu/cm^2 所述食品、饲料或医药产品的表面。在另一个实施方案中，所述至少一种鼠李糖乳杆菌菌株和所述至少一种副干酪乳杆菌菌株的浓度各自为至少 1×10^7 cfu/g 所述食品、饲料或医药产品或各自为至少 1×10^6 cfu/ml 所述食品、饲料或医药产品，或各自为至少 1×10^5 cfu/cm^2 所述食品、饲料或医药产品表面。

[0087] 在一个优选实施方案中，在制造过程中控制制造参数，使得所述至少一种鼠李糖乳杆菌菌株和所述至少一种副干酪乳杆菌菌株的浓度增加或保持恒定。

[0088] 根据本发明的抗微生物组合物最容易通过与可掺合的食品、饲料或医药产品混合和/或施加到可掺合的食品、饲料或医药产品上使用，但处理固体食品的表面或所述产品的内部，例如通过注射方法也是有效的。在其它实施方案中，组合物可以作为腌泡汁（marinate）、面包包装（breading）、调味料（seasoning rub）、涂层（glaze）、着色剂混合物等施加，关键标准是易受细菌降解和酶变和真菌污染表面的易可接触到抗微生物组合物。在其它实施方案中，通过将组合物施加于食品包装并且随后将包装施加于食品表面，可以将组合物间接地与食品表面接触放置。所要选择的最佳量将取决于将要处理的具体食品的组成和用于将组合物施加于食品表面的方法，但通过简单实验确定。

[0089] 在一个更优选的实施方案中，所述方法包括一个或多个发酵步骤，并且抗微生物组合物可以在所述一个或多个发酵步骤之前、期间或之后被添加到食品、饲料或医药产品中。

[0090] 在一个甚至更优选的实施方案中，所述方法包括用发酵剂培养物发酵的蜜乳底物，所述发酵剂培养物包含至少一种选自乳杆菌、链球菌、乳球菌和明串珠菌的属的菌株，例如至少一种保加利亚乳杆菌（Lactobacillus bulgaricus）菌株和至少一种嗜热链球菌菌株，或例如至少一种乳酸乳球菌乳酸亚种（Lactococcus lactis subsp. lactis）菌株、至少一种肠膜明串珠菌乳脂亚种（Leuconostoc mesenteroides subsp. cremoris）菌株和至少一种
乳酸乳球菌二乙酰乳酸亚种（Lactococcus lactis subsp. diacetylactis）菌株。

[0001] 本发明设计的方面涉及以保藏号 DSM24616 保藏在德国微生物菌种保藏中心（DSMZ）的鼠李糖乳杆菌 CHCC12697 株或其突变株，以保藏号 DSM24652 保藏在德国微生物菌种保藏中心（DSMZ）的鼠李糖乳杆菌 CHCC12626 株或其突变株。和以保藏号 DSM24651 保藏在德国微生物菌种保藏中心（DSMZ）的副干酪乳杆菌 CHCC12777 株或其突变株。其中所述突变株是通过使用所述保藏菌株作为起始材料来获得的。

[0002] 所属领域的技术人员清楚明白，使用保藏菌株作为起始材料，有经验的读者可以依照常规诱变或再分离技术常规地获得保存本文所述的变种特征和优点的其它突变株或衍生物。因此，第一方面的术语“其突变株”涉及使用所述保藏菌株作为起始材料而获得的突变株。

[0003] 下文通过对非限定性实施例描述本发明的实施方案。

[0004] 实施例

[0005] 实施例 1: 单独的副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC12697 和其组合针对不同酵母和霉菌污染物的抑制作用的半定量测定

[0006] 为了对单独的副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC12697 和其组合的抑制作用进行半定量检测，使用琼脂分析，模拟新鲜乳酪的制造过程和产物。

[0007] 在 79±1℃下热处理全脂（3.5%w/v）均质奶 20 秒，并立即冷却。以 0.1u/L 接种市售发酵剂培养物，可从丹麦 Chr. Hansen A/S 获得的 F-DVS CHN-19，并将接种过的奶分配到 220ml 瓶子中。以 5×10^6 CFU/ml 的总浓度在不同瓶子中接种干酪乳杆菌 CHCC12777 和/或鼠李糖乳杆菌 CHCC12697，并且一个瓶子用作参考物并且只用发酵剂培养物接种。此外，添加 5% 的氯甲酚和氯甲酚粉指示剂用于对酸化速度进行指示，和用于使介质获得蓝色/绿色，这将使得目标酵母和霉菌的后续生长更容易检测。所有的瓶子都在水浴中在 29±1℃下培养，并在这些条件下发酵直到 pH 达到 4.0±0.2。发酵之后，瓶于立即在冰上冷却并剧烈振荡以破碎凝结物。然后将发酵奶升温到 40℃的温度并添加到 40ml 的 5% 无菌琼脂溶液中，所述无菌琼脂溶液已经熔化并冷却到 60℃。然后将发酵奶和琼脂的这个溶液倾倒入无菌培养皿中，并在 LAF 平板中干燥平板 30 分钟。

[0008] 对选定的酵母和霉菌进行点样，酵母马克斯克鲁维酵母、发酵毕赤酵母、解脂耶氏酵母和清酒假丝酵母各自的浓度分别是 10^5、10^6 和 10^7 CFU/菌落。对于霉菌纳地青霉、毛霉菌属、普通青霉和枝孢菌属，将完全长大的孢子的悬浮液分别稀释 1000 倍、100 倍、10 倍或未经稀释地使用，将平板在 7±1℃下培养并定期检查酵母和霉菌的生长。

[0009] 图 1 呈现琼脂分析的结果，显示测试的所有酵母和霉菌在从仅使用发酵剂培养物发酵的乳（参考物）制得的琼脂平板上都非常好地生长。然而，当奶发酵过程中存在干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC12697 时，得到的平板阻止以所有浓度添加的马克斯克鲁维酵母和解脂耶氏酵母的生长。此外，当在奶发酵过程中已经存在干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC12697 时，对于样点到平板上的所有霉菌都观察到显著抑制作用。当干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC12697 作为单一菌株添加时，它们似乎对于发酵毕赤酵母或清酒假丝酵母菌株都不引起任何抑制作用。然而，当在奶发酵过程中同时存在干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC12697 时，发酵毕赤酵母当以 10^5 和 10^6 CFU/菌落的低浓度点样时被观察到生长受到抑制，并且与当单独添加干酪
乳杆菌 CHCC12777 或鼠李糖乳杆菌 CHCC12697 菌株中的任一种时相比，枯糖乳酸菌以及毛霉菌属的霉菌受到更高程度地抑制。这些结果说明两种菌株副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC12697 的某种协同抗真菌作用。

0100 实施例 2: 单独的副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC12697 和它们的组合针对解脂酵母酵母的抑制作用的定量测定

0101 为了对单独的副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC12697 和它们的组合的抑制作用进行定量检查，使用模拟新鲜乳酸的制造过程和产物的分析：

0102 在 79±1℃下热处理全脂 (3.5%/w/v) 均质奶 20 秒，并立即冷却。以 0.1u/L 接种市售发酵剂培养物（可从丹麦 Chr. Hansen A/S 获得的 F-DVS CHN-19），并将接种过的奶分配到 1L 瓶子中。以 5×10^6CFU/ml 的总浓度在不同瓶子中接种副干酪乳杆菌 CHCC12777 和 / 或鼠李糖乳杆菌 CHCC12697，并且一个瓶子作参考物并且只用发酵剂培养物接种。此外，在 2 个瓶子中与 CHN-19 发酵剂培养物一起接种 HOLDBAC™ YM-B (50DCU/100L；丹麦 Danisco A/S) 或 HOLDBAC™ YM-CC (20DCU/100L；丹麦 Danisco A/S)。所有的瓶子都在水浴中在 29±1℃下培养，并在这些条件下发酵直到 pH 达到 4.65±0.05。发酵之后，瓶子立即在冰上冷却并剧烈振荡以破碎凝结物。

0103 将每个瓶子的各物分配到更小的塑料杯中，以用于接种先前从新鲜乳酸产品作为污染物的分离的解脂酵母酵母菌株。以 1% (v/v) 的体积接种到两个单独的杯子中，使发酵剂中的解脂酵母酵母的最终污染含量达到大约 1×10^2CFU/g。密封塑料杯并在 8±1℃下储存。通过在酵母葡萄糖基质（YGC）琼脂平板接种在培养水（saline peptone）中制备的适当 10 倍稀释液来定期取样发酵剂产品，以评估解脂酵母酵母污染程度，随后再在 25℃下孵育 5 天。此外，在整个储存过程中定期测量各种发酵剂样品的 pH。

0104 如图 2 所说明，当副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC12697 的菌株作为单一菌株与发酵剂培养物 CHN-19 一起使用后进行发酵时，在这两种菌株的存在下解脂酵母酵母的生长受到抑制。这两种菌株所引起的抑制作用显著高于 HOLDBAC™ YM-B 和 HOLDBAC™ YM-C。此外，当副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC12697 组合使用时，与每种菌株单独使用时的抑制作用相比，发现协同抑制作用。当组合使用时，菌株副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC12697 显著影响发酵剂产品中的解脂酵母酵母的停滞期以及获得的最大细胞计数，并且这种协同作用可能会引起这些类型的产品的存放期得到延长。

0105 实施例 3: 单独的副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC14226 和它们的组合对不同酵母和霉菌污染物的抑制作用的半定量测定

0106 为了对单独的副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC14226 和它们的组合的抑制作用进行半定量检查，使用琼脂平板，模拟新鲜乳酸的制造过程和产物：

0107 在 79±1℃下热处理全脂 (3.5%/w/v) 均质奶 20 秒，并立即冷却。以 0.1u/L 接种市售发酵剂培养物（F-DVS CHN-19），并将接种过的奶分配到 220ml 瓶子中。在不同瓶子中接种 5×10^6CFU/ml 的总浓度的副干酪乳杆菌 CHCC12777 和 / 或鼠李糖乳杆菌 CHCC14226，并且一个瓶子作参考物并且只用发酵剂培养物接种。此外，添加 5% 的溴甲酚紫和溴甲酚绿 pH 指示剂用于对酸化速度进行指示，和用于使介质获得蓝色 / 绿色，这将使得目标酵母和霉菌的后续生长更容易检测。所有的瓶子都在水浴中在 29±1℃下培养，并在这些条件下发
酶直到 pH 达到 4.60±0.1。发酵之后，瓶子立即在冰上冷却并剧烈振荡以破碎凝结物。然后将发酵液升温到 40℃的温度并添加到 40ml 的 5% 乳糖酵母和脂肪酵母溶液中。然后将发酵液和脂肪的这个溶液灌入无菌培养皿中，并在 LAF 平台中干燥平板 30 分钟。

对选定的酵母和菌株进行点样，酵母马克斯克鲁维酵母、发酵毕赤酵母、解脂耶氏酵母和酵母假丝酵母的浓度分别为 10^5、10^6 和 10^6CFU/菌。对于霉菌黄曲霉，毛霉菌属、普通青霉和枝孢菌属，将完全长大的孢子的悬浮液分别稀释 1000 倍、100 倍、10 倍或未经稀释地使用。将平板在 7±1℃下培养并定期检查酵母和霉菌的生长。

图 3 呈现琼脂平板的结果，显示测试的所有酵母和霉菌在从试验用发酵剂培养物中发酵的奶（参考物）制得的琼脂平板上都非常好地生长。然而，当奶发酵过程中存在副干酪乳杆菌 CHCC12777 时，得到的平板阻止以所有浓度添加的马克斯克鲁维酵母和解脂耶氏酵母的生长。对于鼠李糖乳杆菌 CHIC14226，得到的平板也阻止添加的所有浓度的马克斯克鲁维酵母以及添加的两个最低浓度的解脂耶氏酵母的生长。当副干酪乳杆菌 CHCC12777 或鼠李糖乳杆菌 CHIC14226 作为单一菌株添加时，它们也似乎对添加的较低浓度的发酵毕赤酵母产生轻微抑制作用。然而，当在发酵过程中同时存在副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHIC14226 时，发酵毕赤酵母当以 10^6CFU/菌为最低浓度时生长受到阻碍。对于霉菌，当在奶发酵过程中存在副干酪乳杆菌 CHCC12777 时，观察到显著的抑制作用。当使用副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHIC14226 的组合时，枝孢菌属的生长被抑制的程度高于单副干酪乳杆菌 CHCC12777 或鼠李糖乳杆菌 CHIC14226 的株单独添加的情况。这些结果说明当两种株副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHIC14226 的株组合抑制作用。实施例 4: 单独的副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHIC14226 和它们的组合针对马克斯克鲁维酵母的抑制作用的定量测定

为了对单独的副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHIC14226 和它们的组合的抑制作用进行检测，使用模拟新鲜乳酸的制造过程和产物的分析；

在 79±1℃下热处理全脂（3.5%/w）均质奶 20 秒，并立即冷却。以 0.1u/L 接种市售发酵剂培养物（F-DVS CHN-19），并将接种过的奶分配到 1L 瓶子中。在不同瓶子中接种 5×10^6CFU/ml 的总浓度的副干酪乳杆菌 CHCC12777 和/或鼠李糖乳杆菌 CHIC14226，并且一个瓶子用作参考物并且只用发酵剂培养物接种。此外，在 2 个瓶子中与 CHN-19 发酵剂培养物一起接种 HOLDBAC^TM YM-B（50DCU/100L）或 HOLDBAC^TM YM-C（20DCU/100L）。所有的瓶子都在水浴中在 29±1℃下培养，并在这些条件下发酵达到 pH 达到 4.65±0.05。发酵之后，瓶子立即在冰上冷却并剧烈振荡以破碎凝结物。

将每个瓶子的内容物分配到更小的塑料杯中，以用于接种的前三个新鲜乳酸产品作为污染物分离的马克斯克鲁维酵母菌株。以 1% (v/w) 的体积接种到两个单独的杯子中，使发酵液产品中马克斯克鲁维酵母的最终污染含量达到大约 1×10^6CFU/g。密封塑料杯并在 8±1℃下储藏。通过在酵母葡萄糖液培养（YGC）琼脂平板接种在盐酸水中制备的适当 10 倍稀释液，随后在 25℃下供氧培养 3-5 天，定期取样发酵液产品以评估马克斯克鲁维酵母污染程度。此外，在整个储存过程中定期测量各种发酵液样品的 pH。

如图 4 所说明，当副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHIC14226 的菌株作
为单一菌株与发酵剂培养物 CHN-19 一起使用然后进行发酵时，在存在这两种菌株的情况下，马克斯克鲁维酵母的生长受到抑制。如实施例 2 中所见，副干酪乳杆菌 CHIC12777 所引起的对马克斯克鲁维酵母的抑制作用也显著高于 HOLDBAC™ YM-B 和 HOLDBAC™ YM-C 培养物，而发现鼠李糖乳杆菌 CHIC14226 所引起的抑制作用与 HOLDBAC™ 培养物程度相同。当使用副干酪乳杆菌 CHIC12777 和鼠李糖乳杆菌 CHIC14226 的组合时，与每种菌株单独使用时的抑制作用相比，发现协同抑制作用。当使用组合时，菌株副干酪乳杆菌 CHIC12777 和鼠李糖乳杆菌 CHIC14226 导致发酵奶产品中的马克斯克鲁维酵母的生长放慢，并且因此可能引起这种类型的产品的存放期得到延长。

【0115】 实施例 5：单独的副干酪乳杆菌 CHIC14676 和鼠李糖乳杆菌 CHIC5366 和它们的组合针对不同霉菌污染物的抑制作用的半定量测定

【0116】 为了对单独的副干酪乳杆菌 CHIC14676 和鼠李糖乳杆菌 CHIC5366 和它们的组合进行半定量检查，使用琼脂分析，模拟酸乳的制造过程和产物。在 95℃下热处理均质奶（1.5% 脂肪 w/v）5 分钟，并立即冷却。以 0.02% 接种市售发酵剂培养物（可从丹麦 Chr. Hansen A/S 获得的 F-DVS YC-350），并将奶分配到 220ml 瓶子中。分别在瓶子中进一步接种 1×10^8 CFU/ml 的总浓度的副干酪乳杆菌 CHIC14676、鼠李糖乳杆菌 CHIC5366 和这两种菌株的组合。除发酵剂培养物以外未作进一步接种的一个瓶子被用作参考物。此外，向所有瓶子中添加 5% 的溴甲酚紫和溴甲酚绿 pH 指示剂用于对酸化速度进行指示，和用于使介质获得蓝色／绿色，这将使得目标酵母和霉菌的后续生长更容易检测。所有的瓶子都在水浴中在 43±1℃下培养，并在这些条件下发酵直到 pH 达到 4.60±0.1。发酵之后，瓶子立即在冰上冷却并剧烈振荡以破碎凝结物。然后将发酵奶升温到 40℃的温度下并添加到 40ml 的 5% 无菌琼脂溶液中，所述无菌琼脂溶液已经熔化并冷却到 60℃。然后将这个溶液倾倒入无菌培养皿中，并在 LAF 平台中干燥平板 30 分钟。

【0118】 将适当稀释度的选定霉菌（10×），普通霉菌（100×），杂色曲霉（1000×）和皮落青霉（100×）的完全长大的孢子的悬浮液样到平板上。将平板在 7℃下培育并以适合的时间间隔检查霉菌生长。

【0119】 图 5 呈现琼脂分析的结果，显示测试的所有霉菌在从仅使用发酵剂培养物发酵的奶（参考物）制得的琼脂平板上都非常好地生长。然而，当奶发酵过程中存在副干酪乳杆菌 CHIC14676 或鼠李糖乳杆菌 CHIC5366 时，得到的平板阻止所有霉菌的生长。此外，当奶发酵过程中存在副干酪乳杆菌 CHIC14676 和鼠李糖乳杆菌 CHIC5366 组合时，对于点样到平板上的普通青霉、杂色曲霉和皮落青霉观察到显著的抑制作用。

【0120】 实施例 6：单独的副干酪乳杆菌 CHIC14676 和鼠李糖乳杆菌 CHIC14226 和它们的组合针对不同霉菌污染物的抑制作用的半定量测定

【0121】 为了对单独的副干酪乳杆菌 CHIC14676 和鼠李糖乳杆菌 CHIC14226 和它们的组合进行半定量检测，进行琼脂分析，模拟酸乳的制造过程和产物。在 95℃下热处理均质奶（1.5% 脂肪 w/v）5 分钟，并立即冷却。以 0.02% 接种市售发酵剂培养物（可从丹麦 Chr. Hansen A/S 获得的 F-DVS Yoflex® Mi 1d），并将奶分配到 220ml 瓶子中。分别在瓶子中进一步接种 1×10^8 CFU/ml 的总浓度的副干酪乳杆菌 CHIC14676、鼠李糖乳杆菌 CHIC14226 和这两种菌株的组合。除发酵剂培养物以外未作进一步接种的一个瓶子被用作参考物。此外，向所有瓶子中添加 5% 的溴甲酚紫和溴甲酚绿 pH 指示剂用于对
酸化速度进行指示，和用于使介质获得蓝色/绿色，这将使得目标酶和霉菌的后续生长更容易检测。所有的瓶子都在水浴中在 43±1°C 下培养，并在这些条件下发酵直到 pH 达到 4.60±0.1。发酵之后，瓶子立即在冰上冷却并剧烈振荡以破碎凝结物。然后将发酵奶升温到 40°C 的温度并添加到 40ml 的 5% 无菌琼脂溶液中，所述无菌琼脂溶液已经熔化并冷却到 60°C。然后将这个溶液倾倒入无菌培养皿中，并在 LAF 平台中干燥平板 30 分钟。

【0123】将适当稀释度的选定霉菌经地青霉（10×）、普通青霉（100×）、卷曲曲霉（100×）和皮落青霉（100×）的完全长大的孢子的悬浮液点样到平板上。将平板在 7°C 下培养并以合适且规律的时间间隔检查霉菌生长。

【0124】图 6 呈现琼脂分析的结果，显示测试的所有霉菌在从仅使用发酵剂培养物发酵的奶（参考物）制得的琼脂平板上都非常地生长。然而，当在奶发酵过程中存在副干酪乳杆菌 CHCC14676 或鼠李糖乳杆菌 CHCC14226 时，得到的平板阻止所有霉菌的生长。此外，当在奶发酵过程中副干酪乳杆菌 CHCC14676 和鼠李糖乳杆菌 CHCC14226 以组合存在时，对于点样到平板上的普通青霉、卷曲曲霉和皮落青霉观察到显著的抑制作用。

【0125】实施例 7：单独的副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC14226 和它们的组合针对不同霉菌污染的抑制作用的半定量测定

【0126】为了对单独的副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC14226 和它们的组合进行半定量检测，使用琼脂分析，模拟酸奶的制造过程和产物；

【0127】在 95°C 下热处理均质奶（1.5% 脂肪 w/v）5 分钟，并立即冷却。以 0.02% 接种市售发酵剂培养物（可从丹麦 Chr. Hansen A/S 获得的 F-DVS YC-350），并将奶分配到 220ml 每瓶中。以 1×10^9CFU/ml 的总浓度分别在瓶子中进一步接种副干酪乳杆菌 CHCC12777、鼠李糖乳杆菌 CHCC14226 和在这两种菌株的组合。除发酵剂培养物以外未作进一步接种的一个瓶子被用作参考物。此外，向所有瓶子中添加 5% 的溴甲酚紫和溴甲酚绿 pH 指示剂用于对酸化度进行指示，和用于使介质获得蓝色/绿色，这将使得目标酶和霉菌的后续生长更容易检测。所有的瓶子都在水浴中在 43±1°C 下培养，并在这些条件下发酵直到 pH 达到 4.60±0.1。发酵之后，瓶子立即在冰上冷却并剧烈振荡以破碎凝结物。然后将发酵奶升温到 40°C 的温度并添加到 40ml 的 5% 无菌琼脂溶液中，所述无菌琼脂溶液已经熔化并冷却到 60°C。然后将这个溶液倾倒入无菌培养皿中，并在 LAF 平台中干燥平板 30 分钟。

【0128】将适当稀释度的选定霉菌经地青霉（10×）、普通青霉（100×）、卷曲曲霉（100×）和皮落青霉（100×）的完全长大的孢子的悬浮液点样到平板上。将平板在 7°C 下培养并以合适且规律的时间间隔检查霉菌生长。

【0129】图 7 呈现琼脂分析的结果，显示测试的所有霉菌在从仅使用发酵剂培养物发酵的奶（参考物）制得的琼脂平板上都非常地生长。然而，当在奶发酵过程中存在副干酪乳杆菌 CHCC12777 或鼠李糖乳杆菌 CHCC14226 时，得到的平板阻止所有霉菌的生长。此外，当在奶发酵过程中副干酪乳杆菌 CHCC12777 和鼠李糖乳杆菌 CHCC14226 以组合存在时，对于点样到平板上的所有霉菌都观察到显著的抑制作用。

【0130】实施例 8：使用副干酪乳杆菌 CHCC12777 对酸奶进行的攻击研究

【0131】为了目测试作为单一菌株的副干酪乳杆菌菌株 CHCC12777 对于不同霉菌普通青霉、卷曲曲霉、短链青霉、皮落青霉和光孢青霉的抑制作用，制备酸奶；

【0132】在巴氏灭菌的高脂奶中以 0.01% 接种市售的异型发酵剂培养物 (可从丹麦
Chr. Hansen A/S 获得的 F-DVS DSG-2000）。在奶中进一步接种 HOLDBAC™ YM-B (10DCU/100L) 或鼠李糖乳杆菌菌株 CHCC12777 (5×10^6 CFU/g),并且一个批次用作参考物并且只用发酵剂培养物接种。

【0133】 将奶在 28℃ ±1℃下发酵直到 pH 达到 4.60 ±0.05, 并对酸奶粉进行后处理。搅拌酸奶粉并冷却到 20℃ ±1℃并在 7℃ ±1℃下储存。

【0134】 在酸奶粉制备后一天,将不同霉菌作为表面污染物一式两份地接种到酸乳杯中,在酸乳表面上形成一个目标为 100 个孢子 / 菌斑的菌斑。在 7℃ ±1℃下储存 45 天后目测评估霉菌的生长。

【0135】 图 8 呈现酸奶粉测试的结果, 显示普通真菌 (M6), 杂色曲霉 (M7), 短帚青霉 (M1), 皮落青霉 (M10) 和光孢青霉 (M8) 在从仅使用发酵剂培养物 (顶行) 发酵的奶或用发酵剂培养物和 HOLDBAC™ YM-B 培养物 (中间行) 发酵的奶制得的酸奶粉上都良好的生长。相比之下, 当在奶发酵过程中存在副干酪乳杆菌 CHCC12777 时 (底行), 测试的所有霉菌的生长都受到抑制。

【0136】 实施例 9: 使用鼠李糖乳杆菌 CHCC12697 对 tvarog 进行的攻击研究

【0137】 为了目测作为单一菌株的鼠李糖乳杆菌菌株 CHCC12697 对于毛霉菌属的抑制作用, 制备 tvarog:

【0138】 在巴氏灭菌的低脂奶粉中以 0.01% 接种市售发酵剂培养物 (可从丹麦 Chr. Hansen A/S 获得的 F-DVS CHN-19)。在奶中进一步接种 HOLDBAC™ YM-B (5DCU/100L) 或鼠李糖乳杆菌菌株 CHCC12697 (5×10^6 CFU/g), 并且一个批次用作参考物并且只用发酵剂培养物接种。

【0139】 将奶在 28℃ ±1℃下发酵直到 pH 达到 4.60 ±0.05。热烫温度 (scalding temperature) 为大约 38-40℃。在排干之后, 将凝乳在 1 巴下挤压 30 分钟。

【0140】 tvarog 制备后一天, 通过将 3 个菌斑吸取到 tvarog (100g) 表面上并达到 100 个孢子 / 菌斑的目标来一式两份地接种毛霉菌属作为表面污染物。在 7℃ ±1℃下储存 18 天后目测评估霉菌的生长。

【0141】 图 9 呈现 tvarog 测试的结果, 显示毛霉菌属在从仅用发酵剂培养物 CHN-19 发酵的奶 (参考物) 制得的 tvarog 上良好地生长。霉菌也在用发酵剂培养物和 HOLDBAC™ YM-B 培养物发酵的奶制得的 tvarog 上良好地生长, 并且在用发酵剂培养物和 HOLDBAC™ YM-C 培养物发酵的奶制得的 tvarog 中以较小程度生长。然而, 当在奶发酵过程中存在鼠李糖乳杆菌菌株 CHCC12697 时, 观察到毛霉菌属的生长被显著地抑制。

【0142】 实施例 10 : 使用鼠李糖乳杆菌 CHCC14226 对酸乳进行的攻击研究

【0143】 为了目测作为单一菌株的鼠李糖乳杆菌菌株 CHCC14226 对于不同霉菌短帚青霉、普通青霉、杂色曲霉和皮落青霉的抑制作用, 制备含 1.5% 脂肪的酸乳:

【0144】 在 95℃ ±1℃下在 1L 瓶子中在水浴中热处理均质奶 (1.5% 脂肪)5 分钟, 并立即冷却。以 0.02% 接种市售发酵剂培养物 (可从丹麦 Chr. Hansen A/S 获得的 F-DVS YF-L901)。在奶中进一步接种 HOLDBAC™ YM-B (20DCU/100L) 或鼠李糖乳杆菌 CHCC14226 (1×10^6 CFU/ml), 并且一个瓶子用作参考物并且只用发酵剂培养物接种。

【0145】 将奶在 43℃ ±1℃下发酵直到 pH 达到 4.60 ±0.05。将得到的酸乳倾倒入杯子 (100g) 中并在 7℃ ±1℃下储存。

【0146】 在酸乳制备后一天, 将不同霉菌作为表面污染物一式两份地接种到酸乳杯中, 在
酸乳表面上形成一个菌斑，目标为 100 个孢子 / 菌斑。在 7℃ ± 1℃下储存 45 天后目测评估霉菌的生长。

[0147] 图 10 呈现酸乳测试的结果，显示短链青霉（M1）、普通青霉（M6）、杂色曲霉（M7）和皮青霉（M10）在仅使用发酵剂培养物 YF-L901（顶行）发酵的奶或预用发酵剂培养物和 HOLDBAC™ YM-B 培养物（中间行）发酵的奶制得的酸乳上都良好地生长。相比之下，当在奶发酵过程中存在鼠李糖乳杆菌 CHCC14226 时（底行），测试的所有霉菌的生长都受到抑制。

[0148] 实施例 11：副干酪乳杆菌 CHCC12777 针对 tvarog 中的乳酸克鲁维酵母的抑制作用的定量测定

[0149] 为了定量检查作为单一菌株的副干酪乳杆菌菌株 CHCC12777 对于乳酸克鲁维酵母的抑制作用，制备 tvarog:

[0150] 在巴氏灭菌的低脂奶中以 0.01% 接种市售发酵剂培养物（可从丹麦 Chr. Hansen A/S 获得的 F-DVS CHN-19），在奶中进一步接种 HOLDBAC™ YM-B（20DCU/100L）或鼠李糖乳杆菌菌株 CHCC12777（5×10^6CFU/g），并且一个批次用作参考物并且只用发酵剂培养物接种。

[0151] 将奶在 28℃ ± 1℃下发酵直到 pH 达到 4.60 ± 0.05。热烫温度为大约 38–40℃。在排干之后，将凝乳在 1 巴下挤压 30 分钟。

[0152] 在 tvarog 制备后一天，切割出大约 10g 的 tvarog 样品块，并放到 stomacher 袋中。随后通过用注射器将酵母注射到 tvarog 内部，在块体中一式两份地接种 0.1ml 的 10.000CFU/ml 酵母接种体。用袋子包裹 tvarog 并用胶带封好。

[0153] 将样品储存在 7℃ ± 1℃下，并通过将 1g 的 tvarog 和另外的在盐水溶液中制备的适当 1 倍稀释液平板接种到酵母葡萄糖甲醇霉素（YGC）琼脂上随后在 25℃下供氧培养 5 天，以合适的时间间隔分析乳酸克鲁维酵母的染色程度。

[0154] 如图 11 中所说明，当与发酵剂培养物 CHN-19 一起接种然后进行发酵时，在副干酪乳杆菌菌株 CHCC12777 的存在下，乳酸克鲁维酵母的生长受到抑制。副干酪乳杆菌菌株 CHCC12777 所引起的抑制作用显著高于市售培养物 HOLDBAC™ YM-B。

[0155] 实施例 12：鼠李糖乳杆菌 CHCC12697 针对 tvarog 中的乳酸克鲁维酵母的抑制作用的定量测定

[0156] 为了定量检查作为单一菌株的鼠李糖乳杆菌 CHCC12697 对于乳酸克鲁维酵母的抑制作用，制备 tvarog:

[0157] 在巴氏灭菌的低脂奶中以 0.01% 接种市售发酵剂培养物（可从丹麦 Chr. Hansen A/S 获得的 F-DVS CHN-19），在奶中进一步接种 HOLDBAC™ YM-B（20DCU/100L）或鼠李糖乳杆菌菌株 CHCC12697（5×10^6CFU/g），并且一个批次用作参考物并且只用发酵剂培养物接种。

[0158] 将奶在 28℃ ± 1℃下发酵直到 pH 达到 4.60 ± 0.05。热烫温度为大约 38–40℃。在排干之后，将凝乳在 1 巴下挤压 30 分钟。

[0159] 在 tvarog 制备后一天，切割出大约 10g 的 tvarog 样品块，并放到 stomacher 袋中。随后通过用注射器将 0.1ml 的 10.000cfu/ml 酵母接种体酵母注射到 tvarog 内部，一式两份地用所述酵母来接种所述块体。用袋子包裹 tvarog 并用胶带封好。

[0160] 将样品储存在 7℃ ± 1℃下，并通过将 1g 的 tvarog 和另外的在盐水溶液中制备的适当 1 倍稀释液平板接种到酵母葡萄糖甲醇霉素（YGC）琼脂上随后在 25℃下供氧培养 5 天，以
合适的时间间隔分析乳酸克鲁维酵母的污染程度。

【0161】如图11中所说明，当与发酵剂培养物CN-19一起接种然后进行发酵时，在酸乳糖杆菌菌株CHCC12697的存在下，乳酸克鲁维酵母的生长受到抑制。所述菌株所引起的抑制作用显著高于市售培养物HOLDBAC™YM-B。

【0162】实施例13：鼠李糖乳杆菌CHCC14226针对酸乳中的汉逊德巴利酵母的抑制作用的定量测定

【0163】为了定量检查作为单一菌株的鼠李糖乳杆菌CHCC14226对于汉逊德巴利酵母的抑制作用，如下制备酸乳：

【0164】在35°C±1°C下在1L瓶子中在水浴中热处理均质奶(1.5%脂肪)5分钟，并立即冷却。以0.02%接种市售发酵剂培养物(可从丹麦Chr.Hansen A/S获得的F-DVS YF-L901)。在奶中进一步接种HOLDBAC™YM-B (20DCU/100L)或鼠李糖乳杆菌CHCC14226 (1×10^6 CFU/g)，并且一个瓶子用作参考物并且只用发酵剂培养物接种。

【0165】将奶在43°C±1°C下发酵直到pH达到4.60±0.1。将得到的酸乳倾倒入杯子(100g)中并在7°C±1°C下储存。

【0166】在酸乳制备后一天，在杯子中一式两份地接种1.00ml/杯的酵母，目标为20CFU/g。将酵母等量地分散到酸乳中。将杯子在盖好的情况下储存在7°C±1°C下，并通过将1ml酸乳和另外的在盐酸中制备的适切1倍稀释液平板接种到酵母葡萄糖氯霉素(YGC)琼脂上，随后在25°C下供氧培育5天，以合适的间隔分析汉逊德巴利酵母的污染程度。

【0167】如图12中所说明，当与发酵剂培养物YF-L901一起接种然后进行发酵时，在鼠李糖乳杆菌菌株CHCC14226的存在下，汉逊德巴利酵母的生长受到抑制。所述菌株所引起的抑制作用显著高于市售培养物HOLDBAC™YM-B。

【0168】保藏物和专家解决方案

【0169】申请人要求在本专利的授权日之前，以下声明的保藏微生物的样品仅供专业人员使用。

【0170】鼠李糖乳杆菌菌株CHCC12697于2011-03-01保藏在德国微生物菌种保藏中心(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH;DSMZ) (Inhoffensstr.7B,D-38124Braunschweig)并且被指定保藏号DSM24616。

【0171】鼠李糖乳杆菌菌株CHCC14226于2011-03-15保藏在德国微生物菌种保藏中心(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH;DSMZ) (Inhoffensstr.7B,D-38124Braunschweig)并且被指定保藏号DSM24652。

【0172】副干酪乳杆菌菌株CHCC12777于2011-03-15保藏在德国微生物菌种保藏中心(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH;DSMZ) (Inhoffensstr.7B,D-38124Braunschweig)并且被指定保藏号DSM24651。

【0173】保藏物是根据"国际承认用于专利程序的微生物保藏布达佩斯条约"制备的。

【0174】参考文献

【0175】US2005/0095318(Schwenninger等人)

【0176】WO2004/041305 (Valio Ltd)

【0177】Tharmaraj, N. & Shah, N.P. (2009) Antimicrobial effects of probiotic bacteria against selected species of yeasts and molds in cheese-based dips (益
图 9