发明名称
何首乌二苯乙烯苷的制备工艺

摘要
本发明公开了一种何首乌二苯乙烯苷提取物的制备工艺及一种以二苯乙烯苷粗品为原料制备二苯乙烯苷精品的生产工艺。制备二苯乙烯苷提取物的工艺步骤为：采用稀乙醇加热回流法提取何首乌药材，提取液浓缩至一定体积，放冷静置，滤过，滤液加乙酸乙酯萃取，合并萃取液，浓缩至稠膏，稠膏减压干燥、粉碎后，以水或乙醇水溶液复溶，减压干燥、粉碎，得到二苯乙烯苷提取物。制备二苯乙烯苷精品的工艺步骤为：以二苯乙烯苷粗品为原料，采用硅胶柱层析法分离，再以Sephadex LH-20柱层析法纯化，得到二苯乙烯苷精品。本发明工艺具有操作简便、提取率高、稳定性好、适合工业生产等优点。
1. 一种何首乌二苯乙烯苷提取物的生产工艺，其主要步骤包括：
 (1) 向何首乌药材加入水或 40-80％的乙醇溶液，加热提取 1-5 次，每次 1-4 小时，合并提取液，滤过，滤液减压浓缩至总体积的 1/40-1/5，得浓缩液。
 (2) 浓缩液静置，滤过，滤液加 0.5-3 倍体积的乙酸乙酯萃取 1-4 次，合并萃取液，浓缩至稠膏，干燥，得到二苯乙烯苷粗品。
 (3) 将步骤 (2) 所得二苯乙烯苷提取物以水或乙醇溶液复溶，复溶液减压干燥，粉碎，得二苯乙烯苷提取物。

2. 按照权利要求 1 的生产制备方法，其特征是：步骤 (1) 中加入醇浓度为 60％，加热提取 3 次，每次 2 小时。

3. 按照权利要求 1 的生产制备方法，其特征是：步骤 (2) 中的稠膏和步骤 (3) 中的复溶液于 50-90℃下减压干燥，优选 70-80℃下减压干燥。

4. 按照权利要求 1 的生产制备方法，其特征是：步骤 (3) 中所得的二苯乙烯苷提取物，其二苯乙烯苷含量大于 50％，其他类物质的含量小于 8％。

5. 一种何首乌二苯乙烯苷粗品的生产工艺，其主要步骤包括：
 (1) 以权利要求 1 所得的二苯乙烯苷粗品为原料，经硅胶柱层析法分离，以甲醇、氯仿、水、乙酸乙酯中的一种或一种以上的溶剂洗脱，收集含二苯乙烯苷的流分，浓缩，减压干燥。
 (2) 采用葡聚糖凝胶 (sephadex LH-20) 柱层析法纯化二苯乙烯苷，将步骤 (1) 所得二苯乙烯苷样品溶于甲醇水 (0-100％) 溶液中，上样，以甲醇或甲醇水溶液作为洗脱剂，以薄层色谱法监测流分中的二苯乙烯苷纯度，收集相似组分，浓缩至稠膏、干燥，得到二苯乙烯苷精品。

6. 按照权利要求 5 的生产制备方法，其特征是：步骤 (1) 中以氯仿：甲醇 (10 ： 1 ～ 1 ： 10) 为洗脱剂。

7. 按照权利要求 5 的生产制备方法，其特征是：步骤 (2) 所得二苯乙烯苷精品的纯度为 85-100％。
何首乌二苯乙烯苷的制备工艺

技术领域:
[0001] 本发明属于中药领域，涉及从何首乌中提取有效成分二苯乙烯苷的生产工艺，以及二苯乙烯苷的药物制剂。

背景技术:
[0002] 何首乌为蓼科植物何首乌Polygonum Multiflorum Thumb.的干燥根块。根据其炮制方法分为生首乌和制首乌。生首乌味苦、涩、性平，具有润肠、解毒、截疟功效，用于肠肝便秘、痈疽瘰疬等症。制首乌味苦、甘、涩、性温，具有补肝肾、益精血、壮筋骨乌须发之效，主要用于肝肾精血亏虚、头昏目眩、须发早白、腰膝酸软及遗精等症。成分主要为羟基蒽酮类化合物和糖苷类化合物，还有一些酰胺类化合物、色原酮类化合物以及生物碱等，糖苷类化合物含量最多的是二苯乙烯苷类化合物。何首乌的副作用表现为胃肠刺激和肝损害，现代药理研究表明，大黄素(emodin)，大黄酸(rhein)，大黄酚(chrys ophanol)等蒽醌类物质是其副作用的主要成分，服用量过大时对胃肠产生刺激作用，出现腹胀、腹痛、肠鸣、恶心、呕吐等症状，重者可出现阵发性直立性低血压、抽搐、腹泻不安，甚至发生呼吸麻痹。大黄素在高浓度下长时间作用下有一定细胞毒性作用，对BEL细胞的毒作用随着浓度的增加而增大，并随着时间的延长而增加，也可导致肝细胞变质或死亡。

[0003] 二苯乙烯苷 (2,3,5,4′-四羟基二苯乙烯-2-O-β-D-葡萄糖苷，以下均简写为二苯乙烯苷)是何首乌的主要有效成分。被鉴定为一种植物抗毒素，植物在真菌感染、紫外线照射、机械损伤等不利条件下可产生。二苯乙烯苷具有多种生理活性，其中药用价值，已在降血脂、抗衰老、抑制肿瘤方面显示出显著性，这在当今中国老龄化的社会中凸显了重要的研究和开发价值，引起人们的广泛关注。随着二苯乙烯苷的药用功效不断被发现，工业上希望获得大量的适宜原料的二苯乙烯苷，而现有方法由药用的二苯乙烯苷原料，所述适宜药用的二苯乙烯苷原料至少应当具有较高的纯度和制药制剂所要求的物理性质，但由于生产工艺的限制，其纯度二苯乙烯苷的分离纯化仍然处于实验室极少量制备的阶段，不适合工业化生产。

[0004] 现有二苯乙烯苷的提取制备方法比较常用的是水提同流和乙醇回流提取配合大孔吸附树脂吸附纯化。史亚军采用加1.5倍水，加热回流提取3次，每次1.5小时提取制备二苯乙烯苷提取物(史亚军，张丽。何首乌降脂有效成分提取工艺研究。安徽医药，2009，13(2)，131-133)。其得到的二苯乙烯苷提取物中二苯乙烯苷含量较高，但由于水提取液较多和水的沸点较高会导致提取液浓缩比较耗时，二苯乙烯苷的热不稳定导致在浓缩过程中会损失较多二苯乙烯苷。刘新桥采用渗漉法进行二苯乙烯苷的提取，提取液经大孔吸附树脂纯化(刘新桥，高文远等。何首乌中二苯乙烯苷提取物的制备工艺及含量测定。中国中药杂志，2007，32(14)，1474-1476)。减少了二苯乙烯苷的损失，但客观上延长了二苯乙烯苷生产制备的过程，增加了工业生产成本。管淑玉采用高速逆流色谱法分离得到二苯乙烯苷(管淑玉，等。高速逆流色谱法一步分离何首乌中的二苯乙烯苷。中药研，2008，31(7)，1079-1080)。终产品中二苯乙烯苷含量达到96%，纯度较高。但由于其制备方法的限制，生产量较小，目前只适合实验室规模制备，不适合于工业化大生
发明内容:
[0005] 本发明的目的在于提供适合工业生产的二苯乙烯苷制备工艺，及将二苯乙烯苷做成药物制剂。
[0006] 本发明采用乙醇加热回流法提取何首乌药材，再以乙酸乙酯萃取的方法制备二苯乙烯苷提取物，重点是对何首乌提取液的浓缩程度进行考察，进而对副作用成分酸醚类物质的含量进行控制。在实验研究中发现提取液浓缩的体积对酸醚类成分的含量有显著影响，当浓缩液体积大于总提取液体积的1/5时，所得提取物中酸醚类物质含量较高，发现浓缩液的体积对提取物中二苯乙烯苷的含量和酸醚的含量有较大影响，为控制二苯乙烯苷提取物的质量，本发明者对浓缩体积倍数进行考察，通过将提取液浓缩至一定的比例范围内，再充分放冷静置一段时间后过滤，即可除去大部分酸醚类物质，对滤液采用乙酸乙酯萃取的方法进行纯化，萃取液浓缩、干燥。将提取物中酸醚类物质的含量控制在8%以内，与其他工艺相比，本发明工艺步骤更简化，成本更低。此外，本发明人对萃取液浓缩干燥得到的产品进行检测分析，发现其乙酸乙酯残留量较高，不适合药用，进而对乙酸乙酯残留量进行了控制，将粗品以水乙醇溶液复溶，干燥，经此步骤得到的二苯乙烯苷提取物充分除去粗品中残留的乙酸乙酯且二苯乙烯苷的含量未降低，更符合临床用药原则。因此本发明工艺更适合工业化生产，应用本发明工艺生产的二苯乙烯苷产品制成的制剂更适合临床应用。
[0007] 本发明包括一种制备何首乌二苯乙烯苷提取物的生产工艺及一种以何首乌二苯乙烯苷粗品为原料制备二苯乙烯苷精品的生产工艺。
[0008] 制备何首乌二苯乙烯苷粗品的生产工艺步骤如下：
[0009] (1) 取何首乌药材饮片，加入5-12倍的水或乙醇水溶液，加热回流提取1-5次，每次1-4小时，合并提取液，滤过。其中提取溶剂优选40%~80%的乙醇溶液，最优选60%乙醇，加热提取优选提取3次，每次1.5小时。
[0010] (2) 合并提取液，减压浓缩至总体积的1/40~1/5，优选1/20~1/10，得浓缩液。浓缩液放冷，静置4~30小时，优选6~10小时，滤过，滤液加0.5~3倍量乙酸乙酯萃取，优选1.5倍。
[0011] (3) 合并萃取液，回收乙酸乙酯至微量，减压干燥，粉碎，得二苯乙烯苷粗品。粗品以水或乙醇水溶液复溶，减压干燥，粉碎，得二苯乙烯苷提取物，其二苯乙烯苷含量大于50%，酸醚类成分小于8%。
[0012] 制备何首乌二苯乙烯苷精品的生产工艺步骤如下：
[0013] (1) 以二苯乙烯苷粗品为原料，经硅胶柱层析法分离，以甲醇、氯仿、水、乙酸乙酯中的一种或一种以上的溶剂洗脱，收集含二苯乙烯苷的流分，浓缩，减压干燥。
[0014] 采用葡聚糖凝胶 (sephadex LH-20) 柱层析法纯化二苯乙烯苷，将步骤 (1) 所得二苯乙烯苷样品溶于甲醇或甲醇水溶液中，样上，以甲醇或甲醇水溶液作为洗脱剂，以薄层色谱法监测流程中的二苯乙烯苷纯度，收集相应的组分，浓至稠膏，干燥，得到二苯乙烯苷精品，纯度大于 85%。

[0015] 根据上述步骤制得的二苯乙烯苷提取物，二苯乙烯苷精品均可与适当的药用辅料混合，制成适于临床的不同剂型的药物组合物。例如制成供口服的片剂、滴丸、胶囊剂、颗粒剂、丸剂和口服液，或者使用二苯乙烯苷精品制备可供静脉内、肌肉内、腹腔内、皮下等注射的注射剂。为了制备适于口服给药的剂型，可以使用蔗糖、乳糖、半乳糖、淀粉、明胶等作为载体或赋形剂。在这些药物组合中还可增加适当的添加剂，如增溶剂、崩解剂、润湿剂、分散剂、表面润滑剂、矫味剂、着色剂等。

[0016] 本发明中的二苯乙烯苷提取物最好制适于口服的片剂、胶囊剂、滴丸剂等，二苯乙烯苷精品制备适于静脉内、肌肉内、皮下等注射和给药的注射剂。

[0017] 本发明的二苯乙烯苷的含量测定采用高效液相色谱 (HPLC) 法进行。其中使用的 2,3,5,4’-四羟基二苯乙烯-2-0-β-D-葡萄糖苷对照品购于中国药品生物制品检定所；所使用的流动相为乙腈：水 = 75:25；高效液相色谱仪为岛津 LC-2010A HPLC 色谱柱为 Agilent Eclipse XDB-C18 (4.6mm×250mm, 5um)；流速为 1.0ml/min, 柱温为 30℃。

具体实施方式：

[0018] 下面通过实施例对本发明作进一步说明。应当指出，这些实施例仅仅是对本发明的例证，不应理解为对本发明的限制。

[0019] 实施例 1 (二苯乙烯苷提取物的制备)

[0020] 取何首乌药材 100kg，加 8 倍量 50%乙醇，加热回流提取 3 次，每次 2 小时，合并提取液，浓缩至总体积的 1/20，浓缩液冷却静置 8 小时，滤过，滤液加 1.5 倍量乙酸乙酯萃取 3 次，合并萃取液，回收乙酸乙酯并浓缩至稠膏，减压干燥（75℃），粉碎成细粉，得二苯乙烯苷粗品。粗品以水复溶，减压干燥（75℃），粉碎成细粉，即得二苯乙烯苷提取物。提取物中二苯乙烯苷含量为 58.4%，鞣酸类含量为 4.1%。

[0021] 实施例 2 (二苯乙烯苷提取物的制备)

[0022] 取何首乌药材 100kg，加 8 倍量 60%乙醇，加热提取 3 次，每次 2 小时，合并提取液，提取液浓缩至提取液的 1/10，放冷静置 8 小时，滤过，滤液加 1.5 倍量乙酸乙酯萃取 3 次，合并萃取液，回收乙酸乙酯并浓缩至稠膏，减压干燥（75℃），粉碎成细粉，得二苯乙烯苷粗品。粗品以水复溶，减压干燥（75℃），粉碎成细粉，即得二苯乙烯苷提取物。提取物中二苯乙烯苷含量为 60.6%，鞣酸类含量为 3.8%。

[0023] 实施例 3 (二苯乙烯苷精品的制备)

[0024] 取二苯乙烯苷粗品 25g，干法上样至硅胶柱 (500g 硅胶，湿法装柱，径高比为 1:10) 以氯仿：甲醇 = 5:1 洗脱，收集洗脱液，根据薄层检测结果合并相似组分，浓缩、减压干燥，干燥样品以适量 20%甲醇水溶液溶解，上样至已处理好的 sephadex LH-20 柱，以 20%甲醇水溶液洗脱，以薄层色谱法监测流程中的二苯乙烯苷纯度，收集相似组分，浓缩至稠膏、干燥，得到二苯乙烯苷精品，纯度为 97.3%。

[0025] 实施例 4 (胶囊剂的制备)
取二苯乙烯苷提取物 175g, 乳糖 175g, 混匀, 干压法制成 1000 粒胶囊, 其他项应符合中华人民共和国药典 2010 版片剂项下有关规定。

实施例 5（注射剂的制备）
取二苯乙烯苷精晶 100g, 加注射用水制成 1% 的溶液, 用微孔滤膜（Φ0.22um）滤过, 灭菌, 无菌分装, 每瓶 10ml, 即得。检查项应符合中华人民共和国药典 2010 版注射剂项下有关规定。