Office de la Propriete Canadian CA 2310943 A1 2001/12/02

Intell | Intell | P
du Conada Office o opery en 2 310 943
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2000/06/02 (51) Cl.Int.//Int.Cl.” GOBF 17/30

(41) Mise a la disp. pub./Open to Public Insp.: 2001/12/02 (71) Demandeur/Applicant:
SERVIDIUM INC., CA

(72) Inventeurs/Inventors:
SIKORSKY, MICHAEL J., CA;
SHAW, ROBERT, CA;

ZHANG, HONGWEN, CA;
BULMAN, JOE, CA;
RASMUSSON, JONATHAN, CA

(74) Agent: SMART & BIGGAR

(54) Titre : METHODES, TECHNIQUES, LOGICIEL ET SYSTEMES PERMETTANT D'OBTENIR DES OUTILS
INDEPENDANTS DU CONTEXTE, PORTATIFS INDEPENDANTS DU PROTOCOLE OU REUTILISABLES DE
DEVELOPPEMENT

(54) Title: METHODS, TECHNIQUES, SOFTWARE AND SYSTEMS FOR PROVIDING CONTEXT INDEPENDENT,
PROTOCOL INDEPENDENT PORTABLE OR REUSABLE DEVELOPMENT TOOLS

Static Data Dynamic Data
Providers FProviders

b) —

Renderin
(3 E-ngine : 4_@(2) I Template

{9) (a)
Gene rated* (€)

Document _J /

—
~ Properties Map

(d)

(1)

Client
Request

an a d a http.:vopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//eipo.ge.ca OPIC A0 @ camew o o
5 VSN

OPIC - CIPO 191 R R

5

10

15

20

25

30

CA 02310943 2000-06-02

Methods, Techniques, Software And Systems For Providina Context

Independent, Protocol Independent, Portable Or Reusable

Development Tools

Field of the Invention

The invention relates to Methods, techniques, software
and systems for providing context independent, protocol
independent, portable or reusable development tools. Different
embodiments of the invention will each be described separately

below.

Polymorphic, Inheritance and Template Based Data Rendering

embodiment

This embodiment provides a technique, system, and
computer program for using a polymorphic, inheritance -based
approach to render mﬁltiple sources of input data into a single
output data source. This embodiment is hereby sometimes

referred to as the “Template mechanism”.

Background of this embodiment of the Invention

This embodiment relates to information presentation in
a computer system, and deals more particularly with a technique,
system, and computer program for applying a polymorphic,
inheritance based approach to render multiple sources of input
data into a single output data source. This mechanism provides
a clear methodology for the separation of presentation logic and

disparate data sources.

One of the principles of computer science is to
separate an application’s presentation logic, business logic and
data sources. Accordingly, a need exists for a technique by
which multiple loosely coupled input data sources can be

rendered into a single output data source.
1

10

15

20

25

CA 02310943 2000-06-02

With this separation, the complexity of the system is
reduced and its ability to adapt is increased, thereby reducing
the effort for development, maintenance and future enhancements

of the system.
Accordingly, it would be desirable to:

provide a technique whereby input data sources can be rendered

into a single output data source;

provide a technique whereby this rendering technique allows
efficient use of multiple and disparate data sources, such
as: plain text documents, HTML documents, and Software

objects;

provide the required rendering technique in a way that enables
different data retrieval or formatting implementations to
be quickly and easily substituted into the computing
environment, to quickly adapt to changes in data or

formatting requirements;

provide a technique that enables additional sources of data to
be quickly and easily added into the rendering technique,
providing greater flexibility in the manner in which the

data sources can be rendered;

provide a unique method of separation of presentation logic from

data sources;

allow the separation of dynamic content generation (Dynamic
Object Providers) from static content (Template and Static
Object Providers) providing a useful separation of

disciplines;

provide a polymorphic content replacement algorithm providing a

paradigm for selective replacement of Data Providers:

10

15

20

25

30

CA 02310943 2000-06-02

provide an inheritance based content replacement algorithm by
allowing Data Providers to hierarchically add regions

within regions; and

provide a value replacement algorithm for use across multiple

Templates.

Summary of this embodiment of the invention

An aspect of this embodiment provides a software
implemented process for use in a computing environment that may
or may not have a connection to a network comprising: one, a
client request; two, one or more data sources, each comprising:
a subprocess for receiving a client request; a subprocess for
parsing the data; a subprocess fof marking up named regions in
the data; a subprocess for transforming the data with named
regions into a format expected by the rendering subprocess; a
subprocess for determining named placeholders in the data: and
three, a data source determined by the client request that
drives the rendering subprocess; and a subprocess for returning
the newly rendered output data as a response to the client

request.

This embodiment will now be described with references
to Figure 1, in which like reference letters denote the same
component throughout, whereas like reference numbers denote the

same process step throughout.

Detailed Description of this embodiment

Component Description:
Figure 1. illustrates the high level components which
comprise the Template mechanism. The following is a description

of these components beside the indicated component letter:

3

CA 02310943 2000-06-02

a) Template - The Template provides the detail on how the
various input data sources are to be merged. The ordering
of the linking of Data Providers to the Template determines

the priority of which providers are invoked for a given

5 Region (f).

b) Static Data Provider - The Static Data Provider
provides a mechanism by which a data source can be
described statically, in the form of a document for
example. Static Data Providers may also introduce new

10 Regions producing_a hierarchical nesting of regions. These

inherited regions are also resolved by the Rendering Engine

(e) .

c) Dynamic Data Provider - The Dynamic Data Provider
provides a mechanism by which a data stream can be
15 constructed for each client request. This is often
accomplished, but not limited to, using a programmatic

language to retrieve the data.

d) Properties Map - The Properties Map provides a global
list of values for the Template mechanism, centralizing

20 commonly used and shared values between multiple Templates.
e) Rendering Engine - It is the duty of the Rendering

Engine to merge the various data sources into a single
document based on the rules indicated by the Template (a).
Depending on the ordering of the Data Providers added to a
25 given Template, the rendering engine will call on the
providers in last in, first out (LIFO) order. This allows
providers to be added which may override the regions
previously provided for, giving an inheritance behavior.

The polymorphic behavior is realized by the ability to have
30 regions that provide content dependant on the context of

the request.

CA 02310943 2000-06-02

f) Region - A Region represents a unit of content that
may be provided by a Data Provider. A Template may consist

of several regions, each of which may provide content.

5 Operational Description

Further to Figure 1. the following steps occur in the

operation of the Template mechanism:

1) The Client Request is received by the Rendering
Engine. |
10 2) The rendering engine locates the appropriate Template,

linked Data Providers and associated Properties Map.

3) The Rendering Engine traverses the regions contained
in the Template and queries the data Providers ig LIFO
ordering to determine which provides content for that

15 region. Any new regions introduced by Static Data Providers
(b) are then resolved in a recursive manner. Once all
regions have been satisfied, the content is then merged

into the template to render the completed document.

20 Configuration Description

The following is a description of the configuration of

the Template mechanism:

1. Construct a template document: Figure 2 illustrates
an outline of how the final document is to be structured,

25 including title, modified date, body and salutation.

2. Figure 3 illustrates a mark-up the template’s document
content to specify its regions and placeholders: The purpose of

this step (which could be implemented to be accomplished

5

CA 02310943 2000-06-02

manually or automatically) is to identify all of the content
regions of the template, allowing the Rendering Engine (e) to
merge the information from associated data providers into the
compléted document. Notice that all of the regions share the
5 same mark-up schema; there is no differentiation between which

regions will include static or dynamic content regions.

3. Construct and mark-up the template providers:

10 i. Static Data Provider, in this case a static
document: As shown in Figure 4 we see that two
regions are being provided by this static data
provider, the Title and the document’s contents.
Additionally, the Static Data Provider is in the form

15 of a document; hence, we’ll refer to it in this

example as a Document Data Provider.

ii. Dynamic Data Provider: 1In this example, the
data modified region is being provided by a software
program. For the sake of simplicity, as shown in

20 Figure 5 this program simply returns a date.

4. Construct a properties map to define placeholder
values: As shown in Figure 6, We’'ve decided to add the name
using a properties map. Properties maps are useful for

25 itemizing commonly used, but relatively static information used

across several Templates.

S. Figure 7 illustrates the linking of the providers and

the properties map to the template:

CA 02310943 2000-06-02

6. Invoke the rendering process on the template to

produce the output: As shown in Figure 8, the rendering engine
will call on each of the object providers and properties maps to
provide content for the template. Once the content is obtained,

the engine merges it into the indicated regions, producing the

final document.

The rendered document contains content obtained from

the Static and Dynamic Data Providers, as well as the Properties

10 Map.

15

20

25

Protocol Independent Service Handler Mechanism embodiment

The Service Handler (SH) mechanism embodiment provides
a technique, system and computer program which abstracts the
specific services of an application from the network

communication protocols used by using a unique event handling

mechanism.

Background of this embodiment:

Traditionally, systems have mapped services such as
email, web applications, and cell phone applications, for
example, to their unique protocol on a one-to-one basis. This
means that for N services using M protocols, there are on the
order of MxN components required. This creates a complex system
which is both difficult to build and costly to operate. Also,
when shared services such as security, logging and metrics

collection are required by the system, their integration becomes

equally as complex and difficult to manage.

10

15

20

25

CA 02310943 2000-06-02

Accordingly, it would be desirable to:

reduce the complexity of the design and implementation of

systems which provide multiple services for multiple

network protocols;

provide abstraction of protocol specific implementations away

from the services provided by an application in a

unique and powerful paradigm;

allow greater flexibility in system configuration and operation
due to an ability to treat all requests as events in

the Service Context;

reduce the number of components required to build a multi-
protocol, multi-service application, and reduce the

time required for new application development;

provide the ability to manage the system centrally at the broker
thereby allowing holistic security, metrics, and
auditing capabilities to be implemented in what are

traditionally thought of as heterogeneous systems;

allowing rapid integration of aging applications into new

systems using new protocols; and

allowing legacy protocols to utilize functionality of new

services with minimum effort.

Description of this embodiment

Figure 9 illustrates the software components and their
relationships in the architecture of an aspect of the Service
Handler mechanism embodiment. The main components of the system
are the Protocol Proxy, Broker, Service Handler and Service

Context. Arrows between components indicate a “uses”

relationship.

10

15

20

25

30

CA 02310943 2000-06-02

The Protocol Proxy provides the protocol abstraction
layer for the SH mechanism. When a request arrives at the
Proxy, the request is decomposed into its atomic elements
énd a Service Context (b) is created. When the response 1is
generated by the specific Service Handler (d), the Proxy is
responsible for transforming the response back to the
original protocol. Generally in a system, there is one

Protocol Proxy per protocol type.

The Service Context enables the loose coupling
required between the SH mechanism components, as well as
additional state information required by stateless
protocols. The Context encapsulates the atomic request as
events, and also the resulting response elements returned
by the Service Handler (d). The request elements are
initially added by the Protocol Proxy (a) and the response
elements are generated by the Service Handler. The
lifetime of a Context is protocol specific and is
determined by the specific Protocol Proxy for that

protocol.

The Broker is the central controller for the SH
mechanism. The Broker’s main responsibilities are to
provide a central registry for Service Handlers (d), to
query Service Handlers for a volunteer to handle the
current request, and to call on the Service Handler’s
authentication mechanism (not described) to ensure the

request is from an authenticated source.

The Service Handler is the worker of the SH mechanism.
The Service Handler manipulates the request parameters in
the Service Context (b) and, based on the type of Service,
performs an action and/or returns a set of response
elements 1in the Service Context. The response elements, if

required, may include stream based content.

10

15

20

25

CA 02310943 2000-06-02

Details, as depicted in Figure 10:

1. A request is received by the Protocol Proxy.
Protocols may include, but are not limited to: HTTP, Jini,

FTP, DCOM, MAPI etc.

2. The Proxy determines if this request belongs to an
existing Service Context, or if one does not exist, a new

Service Context i1is created.

3. The Proxy breaks the request down into its atomic

elements and stores them to the Service Context as an event.
4 . The Proxy passes the Service Context on to the Broker.

5. The Broker queries each of its registered Service
Handlers, 1in an ordered fashion, to find a volunteer to handle
this event type. The Service Handlers may determine whether
or not to accept a request based on a multitude of parameters
in the Service Context, which may include, but are not limited
Lo: protocol type, request parameter value(s), time of day,

user/role info, number of requests etc.

6. Once a Service Handler accepts the request, the Broker
requests the Service’s authentication mechanism (not

described) to authenticate the request.

7. Assuming the request is authenticated, the Broker

calls on the Service Handler to handle the request.

8 . The Service Handler may perform a specific action and
optionally return request parameters or streamed data via the
Service Context response mechanism. Examples of Service
Handler types may include, but are not limited to: mail
services, directory services, legacy services via SH wrappers,

content rendering services etc.

10

CA 02310943 2000-06-02

9. The response parameters are passed back to the Proxy

for translation into their native protocol.

10. The response 1s returned to the requestor.

The Page Routine mechanism embodiment

5 In a web based application, a sequence of pages may be
used to accomplish a task, e.g. a sequence of pages that allow a
user to register for an online service. In many situations, the
same task may be invoked from several different places. An
advantage of an aspect of the Page Routine mechanism embodiment

10 is to make the sequence of pages, including the server side

software code, for a certain task reusable.

In order to accurately describe an aspect of this

embodiment, we give the following definitions:
e Page: A web page that can be viewed in a browser.
15 e Page instance: The actual viewing of a page in a browser.

* Page state: the complete state information of a page

instance.

e Task: a Task 1is defined as a set of pages, including the

back end server code, that fulfill a certain function.

20 ¢ Task instance: The actual execution of a task.

¢ parent page: the page that has a button to a reusable task.

Figure 11 illustrates the particular advantages of the
Page Routine approach. The same task, Task X, is invoked by both
Page A and Page B. If the task is invoked from Page A, then the
25 termination of the task will cause the browser to display Page
A. All the input fields of Page A will be populated with the

values that are prior to the invocation, i.e. if a field has a

11

CA 02310943 2000-06-02

value ABC, upon returning from the task, the same value ABC

should still be there. The task can also be invoked by Page B in

the same way.

Figure 12 shows how the Page Routine mechanism can be
5 implemented in a Java Servlet environment, such as Jaydoh. Each
page instance is assigned a unique id. The id is displayed as a
hidden field on the page instance. A task is invoked by the
invocation of the server module Task Invoke which stores the
parent page’s state in a HTTP session with the parent page
10 instance’s unique id as the key. Each page instance of the task
instance will carry, as a hidden field, the parent page’s id.
Hence, when the task instance is cancelled or returned on a page
instance, the parent id is used by the server module Cancel-To-
Parent or Return-to-Parent to retrieve the page name of the
15 parent page instance. The control is then redirected to a new
instance of the parent page. If the redirection is caused by the
returning from the task, then the result of the task will be
stored in the session with the parent id as the key. The new

instance of the parent page will be displayed with the following

20 steps:
1. Retrieve the page state from the session.
2. For each field on the page, if page state and field

state 1s not null, if there is no task result associated

with the field, then display the field state else display
25 the task result.

3. Clean out the page state from the session.

Examples:

1. An aspect of this embodiment provides for the reusing
30 of a sequence of web pages along with the server side code

from many different pages and returns the browser to the
12

10

15

20

25

30

CA 02310943 2000-06-02

invoking page when the task is done. The software remembers
the name and the state of the invoking page and will send
the invoking page to the browser with the state of the page

prior to the invocation upon finishing the invocation.

2. Another aspect of this embodiment provides a servlet
based system that implements the previous example. The
system, as depicted in Figure 2, assigns a unique
identifier to each page and saves the state of the invoking
page into a HTTP session with the unique identifier as the
key. Each page ;n the invoked task holds the parent page’s
unique identifier as a hidden field. Hence, when the task
terminates, the parent page’'s state can be retrieved from
the session by the system. The system then sends the

browser the content of the parent page with the retrieved

state.

EJB abstraction embodiment

An aspect of this embodiment describes how developers
may be shielded from the nuances of various Enterprise Java Bean

(EJB) contalners.

Background of this embodiment of the invention

The widespread adoption of Java as an enterprise
application development language has lead to a large offering of
commercial products from vendors. The market place is filled
with various tools and products all vying for market share.
Because of the immaturity of the Java technology and Enterprise
Java Bean specification, many vendors offer proprietary
solutions when offering tools to developers. These proprietary
services aid the developer at the expense of locking the
developer's application to that vendor's tool. This is counter

to the open spirit of Java where vendor lockin is undesirable.

13

CA 02310943 2000-06-02

An EJB container is the runtime environment that holds
a developer's EJB. With the proliferation of commercial EJB
containers in the market place, the chances of developers at

some point migrating from one vendor container to another is

S5 very high.

10

15

20

25

30

As the EJB contalner market matures, we can expect
more consolidation in this market as large vendors take over

larger portions of the market.

Migrating EJBs from one container to another can be
difficult. There are often subtle differences in implementation.
In the best of circumstances, considerable code rewriting will
be required to modify the EJB and its respective application in
such a way that it is able to make use of another EJB

container's feature set.

Further, many applications developed today give little
thought regarding how to best implement and architect their
design 1in anticipation of moving the application from one EJE
container to another. Hence EJB applications are developed

without much thought on how to avoid vendor lockin.

Vendor lockin manifests itself in software by having
EJBs developed that only run within one vendor's runtime
environment. Hence the application is totally dependent on that
vendor's EJB implementation. This practice is not advocated and
should be avoided. Vendor lockin ties an application with a
particular vendor making the application extremely vulnerable to
the state of the vendor. For instance, if the vendor decided to
no longer support certain features with their EJB container, the
developers would be forced to use older unsupported versions of
the tool. If the application needs new features offered by a
newer version of the container, then considerable effort is
required to rewrite the application in such away that it is no

longer dependent on the proprietary older features.

14

10

15

20

25

CA 02310943 2000-06-02

In view of, among other things, the considerable
effort currently involved with moving an application from one
EJB container to another, if it is possible at all, abstracting
away ﬁhe difference between various EJB containers is desirable

for the longevity of EJB applications.

Accordingly, it would be desirable to abstract away
the various differences between EJB container implementations,
to enable developers to more easily port their EJBs from one
container to another, and for the longevity of EJB applications.
It would also be desirable, from the point of view of developers
that their applications not be locked into one vendor's EJB

container.

In other words, it would also be desirable, from the
point of view of developers, to be able to migrate their legacy

EJBs from one EJB container to another.

Summary of this embodiment of Invention

As noted above, from the point of view of a developer,
it is desirable to ease the migration of applications from one
application server to another by abstracting away their
differences. By isolating the nuances and differences between
various EJB containers, applications can be deployed and run on
a variety of EJB containers with no impact on developer code.

Figure 13 illustrates this concept.

By inserting a layer of indirection between the
application and the EJB container, developers protect their

applications from the different EJB container implementation. If
an application needs to be migrated from one EJB container to

another, none of the application business logic would have to

30 change - only the property that defines which EJB container the

15

5

10

15

20

25

30

CA 02310943 2000-06-02

application 1s running against would have to change. Figure 14

illustrates this concept at the component level.

Applying preferred software design practices, the
invention is implemented by using the Stage/Strategy design
pattern. An application requiring the services of an EJB
container may instantiate the specific vendor container required
as an EJB Implementation interface. This interface can now be
used throughout the application without any regard from which
EJB contalner the concrete class actually represents. By using
Java polymorphism, one object, EJB Implementation, can take many

forms.

If at some time in the future the developer needs to
utilize the runtime environment of another EJB container, then
the application simply instantiates that EJB container's

concrete class and as the EJB Implementation interface.

At the implementation level, developers would
implement this abstraction as shown in the following sequence

diagram figure 15.

Each concrete EJB container implementation would hide
the details of how that EJB container implements its runtime
environment. For instance, the JNDI package name, how the EJBs
reference database resources, security details, and the
references to others EJBs can all be implemented by the various
EJB container vendors in many ways. The layer of indirection
(EJB Implementation) could be realized as either an interface or
abstract class. An abstract class would be desirable if there
were some features that were common amongst all EJB containers.
Those implementations could then be implemented in the EJB
Implementation abstract class. If there is no commonality
between the EJB Implementations, then an interface would offer
more flexibility for polymorphism. The recommended

implementation would be for an abstract call as the 'is a°

16

10

CA 02310943 2000-06-02

relationship between an EJB Implementation and the Concrete
implementation is quite strong. This suggests inheritance via an

abstract class.

Once the EJB Implementation has been decided upon, the
concrete classes can be realized for each respective EJB
container. Each container would hide the details of how that
container realizes its service or operation. By hiding the
details of each concrete implementation behind the EJB
Implementation, developers may realize another EJB vendor
container when needed and deploy their EJBs to the new container

once 1its concrete implementation has been realized.

17

10

CA 02310943 2000-06-02

What we claim as our invention is-:

1. A technique, system, and computer program for using a
polymorphic, inheritance based approach to render multiple

sources of input data into a single output data source.

2. A software implemented process for use in a computing
environment that may or may not have a connection to a network
comprising: one, a client request; two, one or more data
sources, each comprising: a subprocess for receiving a client
request; a subprocess for parsing the data; a subprocess for
marking up named regions in the data; a subprocess for
transforming the data with named regions into a format expected

by the rendering subprocess; a subprocess for determining named

15 placeholders in the data; and three, a data source determined by

20

25

the client request that drives the rendering subprocess; and a
subprocess for returning the newly rendered output data as a

response to the client request.

3. A technique by which multiple loosely coupled input

data sources can be rendered into a single output data source.

4. A technique where input data sources can be rendered

into a single output data source.

5. A technique allowing efficient use of multiple and
disparate data sources, such as: plain text documents, HTML

documents, and Software objects.

18

CA 02310943 2000-06-02

6. A rendering technique to enable different data
retrieval or formatting implementations to be quickly and easily

substituted into a computing environment, to quickly adapt to

> changes 1n data or formatting requirements.

10

15

20

7. A technique to enable additional sources of data to be
quickly and easily added into a rendering technique, providing

greater flexibility in the manner in which the data sources can

be rendered.

8. A method of separation of presentation logic from data
sources.
9. A technique to allow the separation of dynamic content

generation (Dynamic Object Providers) from static content
(Template and Static Object Providers) providing a useful

separation of disciplines.

10. A polymorphic content replacement technique for

selective replacement of Data Providers.

11. An inheritance based content replacement technique

allowing Data Providers to hierarchically add regions within

25 regions.

19

10

15

20

25

CA 02310943 2000-06-02

12, A value replacement technique for use across multiple
Templates.
13. A technique for reducing the complexity of the design

and lmplementation of systems which provide multiple services

for multiple network protocols.

14. A technique for providing abstraction of protocol

specific implementations away from the services.

15. A technique for providing abstraction of protocol
specific implementations away from the services and allowing
greater flexibility in system configuration and operation
comprising an ability to treat all requests as events in a

Service Context.

16. A technique for reducing the number of components
required to build a multi-protocol, multi-service application,
and drastically reduce the time required for new application
development comprising a technique for providing abstraction of
protocol specific implementations away from the services and
allowing greater flexibility in system configuration and
operation comprising an ability to treat all requests as events

in a Service Context.

17. A technique for reducing the number of components
required to build a multi-protocol, multi-service application,
and drastically reduce the time required for new application

development comprising a technique for providing an ability to
20

CA 02310943 2000-06-02

manage the system centrally at the broker thereby allowing
holistic security, metrics, and auditing capabilities to be
implemented in what are traditionally thought of as

heterogeneous systems.

18. A technique for allowing rapid integration of aging

applications into new systems using new protocols.

19. A technique for allowing legacy protocols to utilize

10 functionality of new services with minimum effort.

15

20

25

20. A technique for reusing of a sequence of web pages
along with the server side code from many different pages and
returning the browser to the invoking page when the task is done
comprising a method for remembering the name and the state of
the invoking page and sending the invoking page to the browser

with the state of the page prior to the invocation upon

finishing the invocation.

21. A servlet based system comprising: assigning a unique
identifier to each page and saving the state of the invoking
page into a HTTP session with the unique identifier as the key;
each page in the invoked task holding the parent page’s unigue
identifier as a hidden field; wherein when the task terminates,
the parent page’s state can be retrieved from the session by the

system; the system then sending the browser the content of the

parent page with the retrieved state.

21

CA 02310943 2000-06-02

22 . A technique for abstracting away the various
differences between EJB container implementations, to enable
developers to more easily port their EJBs from one container to

another.

23. A technique to facilitate migration of legacy EJBs
from one EJB container to another comprising isolating nuances
and differences between various EJB containers, thereby allowing
applications can be deployed and run on a variety of EJB

10 containers with no impact on developer code.

Smart & Biggar "
Ottz.. - Zanada

Patent Agents

22

CA 02310943 2000-06-02

Static Data ' Dynaﬁ’lic Data
Providers

Providers
(b)] __(©)
e \ | e ,/,_
Client (1)” | l - |
Request | Rendering Template

(3) Engine |« (2) J

(a)
Gene rated*] (€)

Document I / *\

- _
Properties Map { Regions
(d) (f)

-

Figure 1: The Template Components

CA 02310943 2000-06-02

Document Title

This document was last modifiec on: some date

add contents of document here

Thank you, some name, for viewing this document

Figure 2

CA 02310943 2000-06-02

Figure 3

~iuduted i whiv nl

g, R

<region name="DocumentTitle">Document Title </region>

This document was last modified on: <region name=“Date Modified">some
date</region>

<region name="DocumentContents™>some contents</region>

Thank you, $user.name$, for viewing this document

CA 02310943 2000-06-02

Figure 4

Ayl ubddriPreu

<region name="DocumerntTitle”™> RKO 281: Deconstructing Citizen
Kane</region>

<region name="DocumentContents">

This document deconstructs Well's Citizen Kane...

This is just another sentence frorn the document provider...
</region>

CA 02310943 2000-06-02

Figure 5

———

_—"" public String ModifiedDate(Context c)

{
< return “Cctober 9, 1974™:
\\}\

CA 02310943 2000-06-02

Figure 6 of this embodiment:

I - l
Properties Map

user.name=John Smith

CA

Figure 7 of this embodiment:

02310943 2000-06-02

r ~ineh, ~e—

Document Data

Template

(a)

L/] Provider
(b)

\ Software Data

t

Properties Map
(d)

|

FProvider

(C)

CA 02310943 2000-06-02

Figure 8 of this embodiment:

Template
Rendering Engine

Al

RKO 281: Deconstructing Citizen Kane

! This document was last modified on: Qctober 9, 1974

This document deconstructs Wel 's Citizen Kane...
This s just another sentence from the document provider...

Thank you, John Smith, for viewing this document

CA 02310943 2000-06-02

Figure 9. Basic Architecture

S—

| Protocol Proxy

(Broker (¢) i Service Handler
(a)

(d)

\l v/

Service
(Context (b)

|

CA

Figure 10: Example Scenario

02310943 2000-06-02

Application
Jini Proxy | Service
Handler
(9) |
2 R
Malil Service
Http Proxy (2) Broker (5,6) | (7) b Handler
(8)
| |
I Document
DCOM Proxy | Senice Service
| | Handler

CA 02310943 2000-06-02

Ths 15 Page A.

p * |

Varie |
Value 2
{V/nlue 3

hat
E Hmr_}:ghy Comeutes = P

; o g l y . ' ’ Ylha W ,- EEE A Y L R ot]

[] - F SR g PR > @
Laks Qutornre Linke ~ - .. 7~ w
R ' N B
e Ay 4 s dmus

ot r S e\ a— .

Ve r Pl e 0 A Bl e ca i ms s e ol A

2L AP e A e VH

Thus 13 Page B.
vy
. l'-%ommgl

| |
S RBEEEL [T T

A

Figure 11

CA 02310943 2000-06-02

1 Ty ':, .. “!

T S P ot s oy - e A A T L A AT et S A j

4

|Links @] Customize Lirks ™

1Y SIS o BT Tt

¢Hidden Unique ID

Thes 15 Page A.

w

xL‘,M,"T* I sﬁt i.: e\",“"i §
..71 ‘f “" Y

L *q% it G G N

}‘gsaé x!'ﬁ:j*“‘i
S e *‘*mm s,

Figure 12

v
-
—— A -

CA 02310943 2000-06-02

UNSCANNABLELE ITEM
RECEIVED WITH THIS APPLICATION

(ITEM ON THE 10TH FLOOR ZONE 5 IN THL FILE PREPARATION SECTION)

,--f*” f o 7 { t“")
I A i
- ;o

DOCUMENT RECU AVEC CETTE DEMANDL

NE POUVANT ETRE BALAYE

(DOCUMENT AU 10 IEME ETAGE AIRE 3 DANS LA SECTION DE LA

~

PREPARATION DES DOSSIERS)

Providers Froviders

{mta ' Dynamic Data
(b) (@)

—=

Client e
Request Rendering
Engine 4_.%(2) I Te T;))Iate
Generated : (e)
Document : J / 3
!_Properties Map r Regions
(d) ()

	Page 1 - abstract
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - abstract drawing

