PROTEIN SCAFFOLDS FOR ANTIBODY MIMICS AND OTHER BINDING PROTEINS

Inventors: Dasa Lipovsek, Cambridge, MA (US); Richard W. Wagner, Concord, MA (US); Robert G. Kuimelis, Brighton, MA (US)

Correspondence Address:
FISH & NEAVE IP GROUP
ROPES & GRAY LLP
ONE INTERNATIONAL PLACE
BOSTON, MA 02110-2624 (US)

Assignees: Phyllos, Inc.; Compound Therapeutics, Inc.

Disclosed herein are proteins that include a fibronectin type III domain having at least one randomized loop. Also disclosed herein are nucleic acids encoding such proteins and the use of such proteins in diagnostic methods and in methods for evolving novel compound-binding species and their ligands.
var.  

cons.  

F

CAP  Collagen alpha precursor
C12  Collagen type 12
FND  Fibronectin type III domain
FN  Fibronectin
TP  Tenascin precursor
TC  Tenascin-C
UI  Undulin 1

Bt  Bovis taurus  cow
Cf  Canis familiaris  dog
Ec  Equus caballus  horse
Sa  Sus scrofa  pig
Ha  Homo sapiens  human
Oc  Oryctolagus cuniculus  rabbit
Xl  Xenopus laevis  African clawed frog

Fig. 4
**Fig. 8**

<table>
<thead>
<tr>
<th></th>
<th>Ligated</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>His₆¹⁰Fn₃</strong></td>
<td></td>
<td><strong>¹⁰Fn₃</strong></td>
</tr>
<tr>
<td>1.28 μM RNA</td>
<td></td>
<td>1.28 μM RNA</td>
</tr>
<tr>
<td>0.40 μM RNA, salt</td>
<td></td>
<td>0.40 μM RNA, salt</td>
</tr>
<tr>
<td>0.40 μM RNA</td>
<td></td>
<td>0.64 μM RNA</td>
</tr>
<tr>
<td>0.64 μM RNA</td>
<td></td>
<td>Unligated</td>
</tr>
</tbody>
</table>

Arrow indicating mRNA-His₆¹⁰Fn₃ and mRNA-¹⁰Fn₃.

**dH₂O**
Fig. 10
PROTEIN SCAFFOLDS FOR ANTIBODY MIMICS AND OTHER BINDING PROTEINS
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of the filing date of provisional application, U.S. Ser. No. 60/111,737, filed Dec. 10, 1998, and utility application, U.S. Ser. No. 09/456, 693, filed Dec. 9, 1999.

BACKGROUND OF THE INVENTION

This invention relates to protein scaffolds useful, for example, for the generation of products having novel binding characteristics.

Proteins having relatively defined three-dimensional structures, commonly referred to as protein scaffolds, may be used as reagents for the design of engineered products. These scaffolds typically contain one or more regions which are amenable to specific or random sequence variation, and such sequence randomization is often carried out to produce libraries of proteins from which desired products may be selected. One particular area in which such scaffolds are useful is the field of antibody design.

A number of previous approaches to the manipulation of the mammalian immune system to obtain reagents or drugs have been attempted. These have included injecting animals with antigens of interest to obtain mixtures of polyclonal antibodies reactive against specific antigens, production of monoclonal antibodies in hybridoma cell culture (Koehler and Milstein, Nature 256:495, 1975), modification of existing monoclonal antibodies to obtain new or optimized recognition properties, creation of novel antibody fragments with desirable binding characteristics, and randomization of single chain antibodies (created by connecting the variable regions of the heavy and light chains of antibody molecules with a flexible peptide linker) followed by selection for antigen binding by phage display (Clackson et al., Nature 352:624, 1991).

In addition, several non-immunoglobulin protein scaffolds have been proposed for obtaining proteins with novel binding properties. For example, a “minibody” scaffold, which is related to the immunoglobulin fold, has been designed by deleting three beta strands from a heavy chain variable domain of a monoclonal antibody (Tramontano et al., J. Mol. Recognit. 7:9, 1994). This protein includes 61 residues and can be used to present two hypervariable loops. These two loops have been randomized and products selected for antigen binding, but thus far the framework appears to have somewhat limited utility due to solubility problems. Another framework used to display loops has been tandemstat, a 74 residue, six-strand beta sheet sandwich held together by two disulfide bonds (McConnell and Hoess, J. Mol. Biol. 250:460, 1995). This scaffold includes three loops, but, to date, only two of these loops have been examined for randomization potential.

Other proteins have been tested as frameworks and have been used to display randomized residues on alpha helical surfaces (Nord et al., Nat. Biotechnol. 15:772, 1997; Nord et al., Protein Eng. 8:601, 1995), loops between alpha helices in alpha helix bundles (Ku and Schultz, Proc. Natl. Acad. Sci. USA 92:6552, 1995), and loops constrained by disulfide bridges, such as those of the small protease inhibitors (Markland et al., Biochemistry 35:8045, 1996; Markland et al., Biochemistry 35:8058, 1996; Rottgen and Collins, Gene 164:243, 1995; Wang et al., J. Biol. Chem. 270:12250, 1995).

SUMMARY OF THE INVENTION

The present invention provides a new family of proteins capable of evolving to bind any compound of interest. These proteins, which make use of a fibronectin or fibronectin-like scaffold, function in a manner characteristic of natural or engineered antibodies (that is, polyclonal, monoclonal, or single-chain antibodies) and, in addition, possess structural advantages. Specifically, the structure of these antibody mimics has been designed for optimal folding, stability, and solubility, even under conditions which normally lead to the loss of structure and function in antibodies.

These antibody mimics may be utilized for the purpose of designing proteins which are capable of binding to virtually any compound (for example, any protein) of interest. In particular, the fibronectin-based molecules described herein may be used as scaffolds which are subjected to directed evolution designed to randomize one or more of the three fibronectin loops which are analogous to the complementarity-determining regions (CDRs) of an antibody variable region. Such a directed evolution approach results in the production of antibody-like molecules with high affinities for antigens of interest. In addition, the scaffolds described herein may be used to display defined exposed loops (for example, loops previously randomized and selected on the basis of antigen binding) in order to direct the evolution of molecules that bind to such introduced loops. A selection of this type may be carried out to identify recognition molecules for any individual CDR-like loop or, alternatively, for the recognition of two or all three CDR-like loops combined into a non-linear epitope.

Accordingly, the present invention features a protein that includes a fibronectin type III domain having at least one randomized loop, the protein being characterized by its ability to bind to a compound that is not bound by the corresponding naturally-occurring fibronectin.

In preferred embodiments, the fibronectin type III domain is a mammalian (for example, a human) fibronectin type III domain; and the protein includes the tenth module of the fibronectin type III (10Fn3) domain. In such proteins, compound binding is preferably mediated by either one, two, or three 10Fn3 loops. In other preferred embodiments, the second loop of 10Fn3 may be extended in length relative to the naturally-occurring module, or the 10Fn3 may lack an integrin-binding motif. In these molecules, the integrin-binding motif may be replaced by an amino acid sequence in which a basic amino acid-neutral amino acid-acidic amino acid sequence (in the N-terminal to C-terminal direction) replaces the integrin-binding motif; one preferred sequence is serine-glycine-glutamate. In another preferred embodiment, the fibronectin type III domain-containing proteins of the invention lack disulfide bonds.

Any of the fibronectin type III domain-containing proteins described herein may be formulated as part of a fusion protein (for example, a fusion protein which further includes an immunoglobulin Fc domain, a complement pro-
tein, a toxin protein, or an albumin protein). In addition, any of the fibronectin type III domain proteins may be covalently bound to a nucleic acid (for example, an RNA), and the nucleic acid may encode the protein. Moreover, the protein may be a multimer, or particularly if it lacks an integrin-binding motif, it may be formulated in a physiologically-acceptable carrier.

[0012] The present invention also features proteins that include a fibronectin type III domain having at least one mutation in a β-sheet sequence which changes the scaffold structure. Again, these proteins are characterized by their ability to bind to compounds that are not bound by the corresponding naturally-occurring fibronectin.

[0013] In addition, any of the fibronectin scaffolds of the invention may be immobilized on a solid support (for example, a bead or chip), and these scaffolds may be arranged in any configuration on the solid support, including an array.

[0014] In a related aspect, the invention further features nucleic acids encoding any of the proteins of the invention. In preferred embodiments, the nucleic acid is DNA or RNA.

[0015] In another related aspect, the invention also features a method for generating a protein which includes a fibronectin type III domain and which is pharmaceutically acceptable to a mammal, involving removing the integrin-binding domain of said fibronectin type III domain. This method may be applied to any of the fibronectin type III domain-containing proteins described above and is particularly useful for generating proteins for human therapeutic applications. The invention also features such fibronectin type III domain-containing proteins which lack integrin-binding domains.

[0016] In yet other related aspects, the invention features screening methods which may be used to obtain or evolve randomized fibronectin type III proteins capable of binding to compounds of interest, or to obtain or evolve compounds (for example, proteins) capable of binding to a particular protein containing a randomized fibronectin type III motif. In addition, the invention features screening procedures which combine these two methods, in any order, to obtain either compounds or proteins of interest.

[0017] In particular, the first screening method, useful for the isolation or identification of randomized proteins of interest, involves: (a) contacting the compound with a candidate protein, the candidate protein including a fibronectin type III domain having at least one randomized loop, the contacting being carried out under conditions that allow compound-protein complex formation; and (b) obtaining, from the complex, the protein which binds to the compound.

[0018] The second screening method, for isolating or identifying a compound which binds to a protein having a randomized fibronectin type III domain, involves: (a) contacting the protein with a candidate compound, the contacting being carried out under conditions that allow compound-protein complex formation; and (b) obtaining, from the complex, the compound which binds to the protein.

[0019] In preferred embodiments, the methods further involve either randomizing at least one loop of the fibronectin type III domain of the protein obtained in step (b) and repeating steps (a) and (b) using the further randomized protein, or modifying the compound obtained in step (b) and repeating steps (a) and (b) using the further modified compound. In addition, the compound is preferably a protein, and the fibronectin type III domain is preferably a mammalian (for example, a human) fibronectin type III domain. In other preferred embodiments, the protein includes the tenth module of the fibronectin type III domain (Fn3), and binding is mediated by one, two, or three Fn3 loops. In addition, the second loop of Fn3 may be extended in length relative to the naturally-occurring module, or Fn3 may lack an integrin-binding motif. Again, as described above, the integrin-binding motif may be replaced by an amino acid sequence in which a basic amino acid-neutral amino acid-acidic amino acid sequence (in the N-terminal to C-terminal direction) replaces the integrin-binding motif; one preferred sequence is serine-glycine-glutamate.

[0020] The selection methods described herein may be carried out using any fibronectin type III domain-containing protein. For example, the fibronectin type III domain-containing protein may lack disulfide bonds, or may be formulated as part of a fusion protein (for example, a fusion protein which further includes an immunoglobulin Fc domain, a complement protein, a toxin protein, or an albumin protein). In addition, selections may be carried out using the fibronectin type III domain proteins covalently bound to a nucleic acid (for example, RNAs or any nucleic acid which encodes the protein). Moreover, the selections may be carried out using fibronectin domain-containing protein multimers.

[0021] Preferably, the selections involve the immobilization of the binding target on a solid support. Preferred solid supports include columns (for example, affinity columns, such as agarose columns) or microchips.

[0022] In addition, the invention features diagnostic methods which employ the fibronectin scaffold proteins of the invention. Such diagnostic methods may be carried out on a sample (for example, a biological sample) to detect one analyte or to simultaneously detect many different analytes in the sample. The method may employ any of the scaffold molecules described herein. Preferably, the method involves (a) contacting the sample with a protein which binds to the compound analyte and which includes a fibronectin type III domain having at least one randomized loop, the contacting being carried out under conditions that allow compound-protein complex formation; and (b) detecting the complex, and therefore the compound in the sample.

[0023] In preferred embodiments, the protein is immobilized on a solid support (for example, a chip or bead) and may be immobilized as part of an array. The protein may be covalently bound to a nucleic acid, preferably, a nucleic acid, such as RNA, that encodes the protein. In addition, the compound is often a protein, but may also be any other analyte in a sample. Detection may be accomplished by any standard technique including, without limitation, radiography, fluorescence detection, mass spectroscopy, or surface plasmon resonance.

[0024] As used herein, by “fibronectin type III domain” is meant a domain having 7 or 8 beta strands which are distributed between two beta sheets, which themselves pack against each other to form the core of the protein, and further containing loops which connect the beta strands to each other and are solvent exposed. There are at least three such
loops at each edge of the beta sheet sandwich, where the edge is the boundary of the protein perpendicular to the direction of the beta strands. Preferably, a fibronectin type III domain includes a sequence which exhibits at least 30% amino acid identity, and preferably at least 50% amino acid identity, to the sequence encoding the structure of the 10^9Fn3 domain referred to as “1ttg” (ID=“1ttg” (one ttg)) available from the Protein Data Base. Sequence identity referred to in this definition is determined by the Homology program, available from Molecular Simulation (San Diego, Calif.). The invention further includes polymers of 10^9Fn3-related molecules, which are an extension of the use of the monomer structure, whether or not the subunits of the polyprotein are identical or different in sequence.

[0025] By “naturally occurring fibronectin” is meant any fibronectin protein that is encoded by a living organism.

[0026] By “randomized” is meant including one or more amino acid alterations relative to a template sequence.

[0027] By a “protein” is meant any sequence of two or more amino acids, regardless of length, post-translation modification, or function. “Protein” and “peptide” are used interchangeably herein.

[0028] By “RNA” is meant a sequence of two or more covalently bonded, naturally occurring or modified ribonucleotides. One example of a modified RNA included within this term is phosphorothioate RNA.

[0029] By “DNA” is meant a sequence of two or more covalently bonded, naturally occurring or modified deoxyribonucleotides.

[0030] By a “nucleic acid” is meant any two or more covalently bonded nucleotides or nucleotide analogs or derivatives. As used herein, this term includes, without limitation, DNA, RNA, and PNA.

[0031] By “pharmaceutically acceptable” is meant a compound or protein that may be administered to an animal (for example, a mammal) without significant adverse medical consequences.

[0032] By “physiologically acceptable carrier” is meant a carrier which does not have a significant detrimental impact on the treated host and which retains the therapeutic properties of the compound with which it is administered. One exemplary physiologically acceptable carrier is physiological saline. Other physiologically acceptable carriers and their formulations are known to one skilled in the art and are described, for example, in Remington's Pharmaceutical Sciences, (18th edition), ed. A. Gennaro, 1990, Mack Publishing Company, Easton, Pa., incorporated herein by reference.

[0033] By “selecting” is meant substantially partitioning a molecule from other molecules in a population. As used herein, a “selecting” step provides at least a 2-fold, preferably, a 30-fold, more preferably, a 100-fold, and, most preferably, a 1000-fold enrichment of a desired molecule relative to undesired molecules in a population following the selection step. A selection step may be repeated any number of times, and different types of selection steps may be combined in a given approach.

[0034] By “binding partner,” as used herein, is meant any molecule which has a specific, covalent or non-covalent affinity for a portion of a desired compound (for example, protein) of interest. Examples of binding partners include, without limitation, members of antigen/antibody pairs, protein/inhibitor pairs, receptor/ligand pairs (for example cell surface receptor/ligand pairs, such as hormone receptor/peptide hormone pairs), enzyme/substrate pairs (for example, kinase/substrate pairs), lectin/carbohydrate pairs, oligomeric or heterooligomeric protein aggregates, DNA binding protein/DNA binding site pairs, RNA/protein pairs, and nucleic acid duplexes, heteroduplexes, or ligated strands, as well as any molecule which is capable of forming one or more covalent or non-covalent bonds (for example, disulfide bonds) with any portion of another molecule (for example, a compound or protein).

[0035] By a “solid support” is meant, without limitation, any column (or column material), bead, test tube, microtiter dish, solid particle (for example, agarose or sepharose), microchip (for example, silicon, silicon-glass, or gold chip), or membrane (for example, the membrane of a liposome or vesicle) to which a fibronectin scaffold or an affinity complex may be bound, either directly or indirectly (for example, through other binding partner intermediates such as other antibodies or Protein A), or in which a fibronectin scaffold or an affinity complex may be embedded (for example, through a receptor or channel).

[0036] The present invention provides a number of advantages. For example, as described in more detail below, the present antibody mimics exhibit improved biophysical properties, such as stability under reducing conditions and solubility at high concentrations. In addition, these molecules may be readily expressed and folded in prokaryotic systems, such as E. coli, in eukaryotic systems, such as yeast, and in vitro translation systems, such as the rabbit reticulocyte lysate system. Moreover, these molecules are extremely amenable to affinity maturation techniques involving multiple cycles of selection, including in vitro selection using RNA-protein fusion technology (Roberts and Szostak, Proc. Natl. Acad. Sci. USA 94:12297, 1997; Szostak et al., U.S. Ser. No. 09/007,005 and U.S. Ser. No. 09/247,190; Szostak et al. WO98/31700), phage display (see, for example, Smith and Petrenko, Chem. Rev. 97:317, 1997), and yeast display systems (see, for example, Boder and Wittrup, Nature Biotech. 15:553, 1997).

[0037] Other features and advantages of the present invention will be apparent from the following detailed description thereof, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0038] FIG. 1 is a photograph showing a comparison between the structures of antibody heavy chain variable regions from camel (dark blue) and llama (light blue), in each of two orientations.

[0039] FIG. 2 is a photograph showing a comparison between the structures of the camel antibody heavy chain variable region (dark blue), the llama antibody heavy chain variable region (light blue), and a fibronectin type III module number 10 (10^9Fn3) (yellow).

[0040] FIG. 3 is a photograph showing a fibronectin type III module number 10 (10^9Fn3), with the loops corresponding to the antigen-binding loops in IgG heavy chains highlighted in red.
FIG. 4 is a graph illustrating a sequence alignment between a fibronectin type III protein domain and related protein domains.

FIG. 5 is a photograph showing the structural similarities between a $^{10}$Fn3 domain and 15 related proteins, including fibronectins, tenascins, collagens, and undulin. In this photograph, the regions are labeled as follows: constant, dark blue; conserved, light blue; neutral, white; variable, red; and RGB integrin-binding motif (variable), yellow.

FIG. 6 is a photograph showing space filling models of fibronectin III modules 9 and 10, in each of two different orientations. The two modules and the integrin binding loop (RGB) are labeled. In this figure, blue indicates positively charged residues, red indicates negatively charged residues, and white indicates uncharged residues.

FIG. 7 is a photograph showing space filling models of fibronectin III modules 7-10, in each of three different orientations. The four modules are labeled. In this figure, blue indicates positively charged residues, red indicates negatively charged residues, and white indicates uncharged residues.

FIG. 8 is a photograph illustrating the formation, under different salt conditions, of RNA-protein fusions which include fibronectin type III domains.

FIG. 9 is a series of photographs illustrating the selection of fibronectin type III domain-containing RNA-protein fusions, as measured by PCR signal analysis.

FIG. 10 is a graph illustrating an increase in the percent TFN-$\alpha$ binding during the selections described herein, as well as a comparison between RNA-protein fusion and free protein selections.

FIG. 11 is a series of schematic representations showing IgG, $^{10}$Fn3, Fn-CH$_2$—CH$_2$—CH$_3$, and Fn-CH$_2$—CH$_3$ (clockwise from top left).

FIG. 12 is a photograph showing a molecular model of Fn-CH$_2$—CH$_2$—CH$_3$ based on known three-dimensional structures of IgG (X-ray crystallography) and $^{10}$Fn3 (NMR and X-ray crystallography).

FIG. 13 is a graph showing the time course of an exemplary $^{10}$Fn3-based nucleic acid-protein fusion selection of TFN-$\alpha$ binders. The proportion of nucleic acid-protein fusion pool (open diamonds) and free protein pool (open circles) that bound to TFN-$\alpha$-Sepharose, and the proportion of free protein pool (full circles) that bound to underivatized Sepharose, are shown.

FIGS. 14 and 15 are graphs illustrating TFN-$\alpha$ binding by TFN-$\alpha$ Fn-binders. In particular, these figures show mass spectra data obtained from a $^{10}$Fn3 fusion chip and non-fusion chip, respectively.

FIGS. 16 and 17 are the phosphorimage and fluorescence scans, respectively, of a $^{10}$Fn3 array, illustrating TFN-$\alpha$ binding.

**DETAILED DESCRIPTION**

The novel antibody mimics described herein have been designed to be superior both to antibody-derived fragments and to non-antibody frameworks, for example, those frameworks described above.

The major advantage of these antibody mimics over antibody fragments is structural. These scaffolds are derived from whole, stable, and soluble structural modules found in human body fluid proteins. Consequently, they exhibit better folding and thermostability properties than antibody fragments, whose creation involves the removal of parts of the antibody native fold, often exposing amino acid residues that, in an intact antibody, would be buried in a hydrophobic environment, such as an interface between variable and constant domains. Exposure of such hydrophobic residues to solvent increases the likelihood of aggregation.

In addition, the antibody mimics described herein have no disulfide bonds, which have been reported to retard or prevent proper folding of antibody fragments under certain conditions. Since the present scaffolds do not rely on disulfides for native fold stability, they are stable under reducing conditions, unlike antibodies and their fragments which unravel upon disulfide bond breakdown.

Moreover, these fibronectin-based scaffolds provide the functional advantages of antibody molecules. In particular, despite the fact that the $^{10}$Fn3 module is not an immunoglobulin, its overall fold is close to that of the variable region of the IgG heavy chain (FIG. 2), making it possible to display the three fibronectin loops analogous to CDRs in relative orientations similar to those of native antibodies. Because of this structure, the present antibody mimics possess antigen binding properties that are similar in nature and affinity to those of antibodies, and a loop randomization and shuffling strategy may be employed in vitro that is similar to the process of affinity maturation of antibodies in vivo.

There are now described below exemplary fibronectin-based scaffolds and their use for identifying, selecting, and evolving novel binding proteins as well as their target ligands. These examples are provided for the purpose of illustrating, and not limiting, the invention.

$^{10}$Fn3 Structural Motif

The antibody mimics of the present invention are based on the structure of a fibronectin module of type III (Fn3), a common domain found in mammalian blood and structural proteins. This domain occurs more than 400 times in the protein sequence database and has been estimated to occur in 2% of the proteins sequenced to date, including fibronectins, tenascin, intracellular cytoskeletal proteins, and prokaryotic enzymes (Bork and Doolittle, Proc. Natl. Acad. Sci. USA 89:8990, 1992; Bork et al., Nature Biotech. 15:553, 1997; Meinke et al., J. Bacteriol. 175:1910, 1993; Watanabe et al., J. Biol. Chem. 265:15659, 1990). In particular, these scaffolds include, as templates, the tenth module of human Fn3 ($^{12}$Fn3), which comprises 94 amino acid residues. The overall fold of this domain is closely related to that of the smallest functional antibody fragment, the variable region of the heavy chain, which comprises the entire antigen recognition unit in camel and llama IgG (FIGS. 1, 2). The major differences between camel and llama domains and the $^{10}$Fn3 domain are that (i) $^{10}$Fn3 has fewer beta strands (seven vs. nine) and (ii) the two beta sheets packed against each other are connected by a disulfide bridge in the camel and llama domains, but not in $^{10}$Fn3.

The three loops of $^{10}$Fn3 corresponding to the antigen-binding loops of the IgG heavy chain run between
amino acid residues 21-31, 51-56, and 76-88 (FIG. 3). The length of the first and the third loop, 11 and 12 residues, respectively, fall within the range of the corresponding antigen-recognition loops found in antibody heavy chains, that is, 10-12 and 3-25 residues, respectively. Accordingly, once randomized and selected for high antigen affinity, these two loops make contacts with antigens equivalent to the contacts of the corresponding loops in antibodies.

[0061] In contrast, the second loop of 10Fn3 is only 6 residues long, whereas the corresponding loop in antibody heavy chains ranges from 16-19 residues. To optimize antigen binding, therefore, the second loop of 10Fn3 is preferably extended by 10-13 residues (in addition to being randomized) to obtain the greatest possible flexibility and affinity in antigen binding. Indeed, in general, the lengths as well as the sequences of the CDR-like loops of the antibody mimics may be randomized during in vitro or in vivo affinity maturation (as described in more detail below).

[0062] The tenth human fibronectin type III domain, 10Fn3, refolds rapidly even at low temperature; its backbone conformation has been recovered within 1 second at 5°C. Thermodynamic stability of 10Fn3 is high ($\Delta G^\circ = 24$ kJ/mol = 5.7 kcal/mol), correlating with its high melting temperature of 110°C.

[0063] One of the physiological roles of 10Fn3 is as a subunit of fibronectin, a glycoprotein that exists in a soluble form in body fluids and in an insoluble form in the extracellular matrix (Dickinson et al., J. Mol. Biol. 236:1079, 1994). A fibronectin monomer of 220-250 kD contains 12 type I modules, two type II modules, and 17 type III fibronectin type III modules (Potts and Campbell, Curr. Opin. Cell Biol. 6:648, 1994). Different type III modules are involved in the binding of fibronectin to integrins, heparin, and chondroitin sulfate. 10Fn3 was found to mediate cell adhesion through an integrin-binding Arg-Gly-Asp (RGD) motif on one of its exposed loops. Similar RGD motifs have been shown to be involved in integrin binding by other proteins, such as fibrinogen, von Willebrand factor, and vitronectin (Hynes et al., Cell 69:11, 1992). No other matrix- or cell-binding roles have been described for 10Fn3.

[0064] The observation that 10Fn3 has only slightly more adhesive activity than a short peptide containing RGD is consistent with the conclusion that the cell-binding activity of 10Fn3 is localized in the RGD peptide rather than distributed throughout the 10Fn3 structure (Baron et al., Biochemistry 31:2068, 1992). The fact that 10Fn3 without the RGD motif is unlikely to bind to other plasma proteins or extracellular matrix makes 10Fn3 a useful scaffold to replace antibodies. In addition, the presence of 10Fn3 in natural fibrinogen in the bloodstream suggests that 10Fn3 itself is unlikely to be immunogenic in the organism of origin.

[0065] In addition, we have determined that the 10Fn3 framework possesses exposed loop sequences tolerant of randomization, facilitating the generation of diverse pools of antibody mimics. This determination was made by examining the flexibility of the 10Fn3 sequence. In particular, the human 10Fn3 sequence was aligned with the sequences of fibronectins from other sources as well as sequences of related proteins (FIG. 4), and the results of this alignment were mapped onto the three-dimensional structure of the human 10Fn3 domain (FIG. 5). This alignment revealed that the majority of conserved residues are found in the core of the beta sheet sandwich, whereas the highly variable residues are located along the edges of the beta sheets, including the N- and C-termini, on the solvent-accessible faces of both beta sheets, and on three solvent-accessible loops that serve as the hypervariable loops for affinity maturation of the antibody mimics. In view of these results, the randomization of these three loops is unlikely to have an adverse effect on the overall fold or stability of the 10Fn3 framework itself.

[0066] For the human 10Fn3 sequence, this analysis indicates that, at a minimum, amino acids 1-9, 44-50, 61-54, 82-94 (edges of beta sheets); 19, 21, 30-46 (even), 79-85 (odd) (solvent-accessible faces of both beta sheets); 21-31, 51-56, 76-88 (CDR-like solvent-accessible loops); and 14-16 and 36-45 (other solvent-accessible loops and beta turns) may be randomized to evolve new or improved compound-binding proteins. In addition, as discussed above, alterations in the lengths of one or more solvent exposed loops may also be included in such directed evolution methods. Alternatively, changes in the beta-sheets may also be used to evolve new proteins. These mutations change the scaffold and thereby indirectly alter loop structure(s). If this approach is taken, mutations should not saturate the sequence, but rather few mutations should be introduced. Preferably, no more than 10 amino acid changes, and, more preferably, no more than 3 amino acid changes should be introduced to the beta-sheets by this approach.

[0067] Fibronectin Fusions

[0068] The antibody mimics described herein may be fused to other protein domains. For example, these mimics may be integrated with the human immune response by fusing the constant region of an IgG (Fc) with a 10Fn3 module, preferably through the C-terminus of 10Fn3. The Fc in such a 10Fn3-Fc fusion molecule activates the complement component of the immune response and increases the therapeutic value of the antibody mimic. Similarly, a fusion between 10Fn3 and a complement protein, such as C1q, may be used to target cells, and a fusion between 10Fn3 and a toxin may be used to specifically destroy cells that carry a particular antigen. In addition, 10Fn3 in any form may be fused with albumin to increase its half-life in the bloodstream and its tissue penetration. Any of these fusions may be generated by standard techniques, for example, by expression of the fusion protein from a recombinant fusion gene constructed using publically available gene sequences.

[0069] Fibronectin Scaffold Multimers

[0070] In addition to fibronectin monomers, any of the fibronectin constructs described herein may be generated as dimers or multimers of 10Fn3-based antibody mimics as a means to increase the valency and thus the avidity of antigen binding. Such multimers may be generated through covalent binding between individual 10Fn3 modules, for example, by imitating the natural 3Fn3-Tn3-10Fn3 C-to-N-terminus binding or by imitating antibody dimers that are held together through their constant regions. A 10Fn3-Fc construct may be exploited to design dimers of the general scheme of 10Fn3-Fc::Fc::10Fn3. The bonds engineered into the Fc::Fc interface may be covalent or non-covalent. In addition, dimerizing or multimerizing partners other than Fc can be used in 10Fn3 hybrids to create such higher order structures.

[0071] In particular examples, covalently bonded multimers may be generated by constructing fusion genes that
encode the multimer or, alternatively, by engineering codons for cysteine residues into monomer sequences and allowing disulfide bond formation to occur between the expression products. Non-covalently bonded multimers may also be generated by a variety of techniques. These include the introduction, into monomer sequences, of codons corresponding to positively and/or negatively charged residues and allowing interactions between these residues in the expression products (and therefore between the monomers) to occur. This approach may be simplified by taking advantage of charged residues naturally present in a monomer subunit, for example, the negatively charged residues of fibronectin. Another means for generating non-covalently bonded antibody mimics is to introduce, into the monomer gene (for example, at the amino- or carboxy-termini), the coding sequences for proteins or protein domains known to interact. Such proteins or protein domains include coil-coil motifs, leucine zipper motifs, and any of the numerous protein subunits (or fragments thereof) known to direct formation of dimers or higher order multimers.

In one particular example, the \(^{10}\text{Fn3}\) scaffold may be used as the selection target. For example, if a protein is required that binds a specific peptide sequence displayed in a \(^{10}\text{Fn3}\) loop. The \(^{10}\text{Fn3}\) protein is immobilized as described above, and an RNA-protein fusion library is screened for binders to the displayed loop. The binders are enriched through multiple rounds of selection and identified by DNA sequencing.

In addition, in the above approaches, although RNA-protein libraries represent exemplary libraries for directed evolution, any type of scaffold-based library may be used in the selection methods of the invention.

Use

The antibody mimics described herein may be evolved to bind any antigen of interest. These proteins have thermodynamic properties superior to those of natural antibodies and can be evolved rapidly in vitro. Accordingly, these antibody mimics may be employed in place of antibodies in all areas in which antibodies are used, including in the research, therapeutic, and diagnostic fields. In addition, because these scaffolds possess solubility and stability properties superior to antibodies, the antibody mimics described herein may also be used under conditions which would destroy or inactivate antibody molecules. Finally, because the scaffolds of the present invention may be evolved to bind virtually any compound, these molecules provide completely novel binding proteins which also find use in the research, diagnostic, and therapeutic areas.

Experimental Results

Exemplary scaffold molecules described above were generated and tested, for example, in selection protocols, as follows.

Library construction

A complex library was constructed from three fragments, each of which contained one randomized area corresponding to a CDR-like loop. The fragments were named BC, DE, and FG, based on the names of the CDR-H-like loops contained within them. In addition to \(^{10}\text{Fn3}\) and a randomized sequence, each of the fragments contained stretches encoding an N-terminal His\(_6\) domain or a C-terminal FLAG peptide tag. At each junction between two fragments (i.e., between the BC and DE fragments or between the DE and FG fragments), each DNA fragment contained recognition sequences for the Earl Type II restriction endonuclease. This restriction enzyme allowed the splicing together of adjacent fragments while removing all foreign, non-\(^{10}\text{Fn3}\), sequences. It also allows for a recombination-like mixing of the three \(^{10}\text{Fn3}\) fragments between cycles of mutagenesis and selection.
[0085] Each fragment was assembled from two overlapping oligonucleotides, which were first annealed, then extended to form the double-stranded DNA form of the fragment. The oligonucleotides that were used to construct and process the three fragments are listed below; the “Top” and “Bottom” species for each fragment are the oligonucleotides that contained the entire \( \text{Fn}3 \) encoding sequence. In these oligonucleotides designations, “N” indicates A, T, C, or G; and “S” indicates C or G.

\[
\begin{align*}
\text{HFnLcoTop (HIs):} & \quad 5'-\text{GG} \text{AAT TCC TAA TAC GAC TCA CTA} (\text{SEQ ID NO: 1}) \\
& \quad \text{TAG GGA CAA TTA CTA TTT ACA ATT} \\
& \quad \text{ACA ATG CAT CAC CAT CAC CAT CAC} \\
& \quad \text{GTT TCT GAT GAT CGG AGC GAC CTG} \\
& \quad \text{GAA GTC GCT GGC ACC CCC ACC} \\
& \quad \text{ACC ACC-3'} \\
\text{HFnLcoTop} & \quad (\text{an alternative N-terminus):} \\
& \quad 5'-\text{GG} \text{AAT TCC TAA TAC GAC TCA CTA} (\text{SEQ ID NO: 2}) \\
& \quad \text{TAG GGA CAA TTA CTA TTT ACA ATT} \\
& \quad \text{ACA ATG GTC TCT CAT GAT CTA AGG CAC} \\
& \quad \text{TCC GTC TCT GCT CTC CTT GCC ACC} \\
& \quad \text{TTC GAT GAT CTA (SNN) 4} \\
\text{HFnBc3'-flag8:} & \quad 5'-\text{AG} \text{GGA TGC CTT GTC GTC GTC GTC} (\text{SEQ ID NO: 3}) \\
& \quad \text{CTT GTA GTC GCT CTC CCC TCT TGC} \\
& \quad \text{TCC GTA AGT GAT CTA AGA TCT} (\text{SNN}) 5' \\
& \quad \text{GTC CTC ACA GGA GAA ATT AGC CCT GTC C-3'} \\
\text{HFnLcoBot-flag8:} & \quad 5'-\text{GG} \text{AAT TCC TAA TAC GAC TCA CTA} (\text{SEQ ID NO: 5}) \\
& \quad \text{TAG GGA CAA TTA CTA TTT ACA ATT} \\
& \quad \text{ACA ATG CAT CAC CAT CAC CAT CAC} \\
& \quad \text{CTC TCT ACA GCA GCA AGT ACC CCT GTC G-3'} \\
\text{HFnLcoBot-flag8:} & \quad 5'-\text{GG} \text{AAT TCC TAA TAC GAC TCA CTA} (\text{SEQ ID NO: 6}) \\
& \quad \text{TAG GGA CAA TTA CTA TTT ACA ATT} \\
& \quad \text{ACA ATG CAT CAC CAT CAC CAT CAC} \\
& \quad \text{GTT CTC TAT ACC ACC ACT TCT TGT} \\
& \quad \text{GCT CTC GTC GAC AGC GCT ATT TCC} (\text{SNN}) 7' \\
\text{HFn3'-flag8:} & \quad 5'-\text{GG} \text{AAT TCC TAA TAC GAC TCA CTA} (\text{SEQ ID NO: 7}) \\
& \quad \text{TAG GGA CAA TTA CTA TTT ACA ATT} \\
& \quad \text{ACA ATG CAT CAC CAT CAC CAT CAC} \\
& \quad \text{GTT CTC TAT ACC ACC ACT TCT TGT} (\text{SNN}) 9' \\
\text{HFnLcoBot-flag8:} & \quad 5'-\text{GG} \text{AAT TCC TAA TAC GAC TCA CTA} (\text{SEQ ID NO: 8}) \\
& \quad \text{TAG GGA CAA TTA CTA TTT ACA ATT} \\
& \quad \text{ACA ATG CAT CAC CAT CAC CAT CAC} \\
& \quad \text{GTT CTC TAT ACC ACC ACT TCT TGT} (\text{SNN}) 10' \\
\text{HFnLcoBot-flag8:} & \quad 5'-\text{GG} \text{AAT TCC TAA TAC GAC TCA CTA} (\text{SEQ ID NO: 9}) \\
& \quad \text{TAG GGA CAA TTA CTA TTT ACA ATT} \\
& \quad \text{ACA ATG CAT CAC CAT CAC CAT CAC} \\
& \quad \text{GTT CTC TAT ACC ACC ACT TCT TGT} (\text{SNN}) 11' \\
\text{HFn3'-flag8:} & \quad 5'-\text{GG} \text{AAT TCC TAA TAC GAC TCA CTA} (\text{SEQ ID NO: 10}) \\
& \quad \text{TAG GGA CAA TTA CTA TTT ACA ATT} \\
& \quad \text{ACA ATG CAT CAC CAT CAC CAT CAC} \\
& \quad \text{GTT CTC TAT ACC ACC ACT TCT TGT} (\text{SNN}) 12' \\
\text{HFnLcoBot-flag8:} & \quad 5'-\text{GG} \text{AAT TCC TAA TAC GAC TCA CTA} (\text{SEQ ID NO: 11}) \\
& \quad \text{TAG GGA CAA TTA CTA TTT ACA ATT} \\
& \quad \text{ACA ATG CAT CAC CAT CAC CAT CAC} \\
& \quad \text{GTT CTC TAT ACC ACC ACT TCT TGT} (\text{SNN}) 13' \\
\text{HFnLcoBot-flag8:} & \quad 5'-\text{GG} \text{AAT TCC TAA TAC GAC TCA CTA} (\text{SEQ ID NO: 12}) \\
& \quad \text{TAG GGA CAA TTA CTA TTT ACA ATT} \\
& \quad \text{ACA ATG CAT CAC CAT CAC CAT CAC} \\
& \quad \text{GTT CTC TAT ACC ACC ACT TCT TGT} (\text{SNN}) 14'
\end{align*}
\]

[0086] The pairs of oligonucleotides (500 pmol of each) were annealed in 100 μL of 10 mM Tris 7.5, 50 mM NaCl for 10 minutes at 85° C, followed by a slow (0.5-1 hour) cooling to room temperature. The annealed fragments with single-stranded overhangs were then extended using 100 U Klenow (New England Biolabs, Beverly, Mass.) for each 100 μL aliquot of annealed oligos, and the buffer made of 838.5 μL H2O, 9 μL 1 M Tris 7.5, 5 μL 1 M MgCl2, 20 μL 10 mM dNTPs, and 7.5 μL 1 M DTT. The extension reactions proceeded for 1 hour at 25° C.

[0087] Next, each of the double-stranded fragments was transformed into a DNA-protein fusion (PROFusion™) using the technique developed by Szostak et al., U. S. Ser. No. 09/007,005 and U. S. Ser. No. 09/247,190; Szostak et al., WO98/31700; and Roberts & Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 12297-12302. Briefly, the fragments were transcribed using an Ambion in vitro transcription kit, MEGASHortscript (Ambion, Austin, Tex.), and the resulting mRNA was gel-purified and ligated to a DNA-purumycin linkier using DNA ligase. The mRNA-DNA-purumycin molecule was then translated using the Ambion rabbit reticulocyte lysate-based translation kit. The resulting mRNA-DNA-purumycin-protein PROFusion™ was purified using Oligo(DT) cellulose, and a complementary DNA strand was synthesized using reverse transcriptase and the RT primers described above (Unisplint-S or flagASA), following the manufacturer's instructions.

[0088] The PROFusion™ obtained for each fragment was next purified on the resin appropriate to its peptide purification tag, i.e., on Ni-NTA agarose for the His₆-tag and M2 agarose for the FLAG-tag, following the procedure recommended by the manufacturer. The DNA component of the tag-binding PROFusions™ was amplified by PCR using Pharmacia Ready-to-Go PCR Beads, 10 pmol of 5' and 3' PCR primers, and the following PCR program (Pharmacia, Piscataway, N.J.): Step 1: 95° C for 3 minutes; Step 2: 95° C for 30 seconds, 58/62° C for 30 seconds, 72° C for 1 minute, 20/25/30 cycles, as required; Step 3: 72° C for 5 minutes; Step 4: 4° C until end.

[0089] The resulting DNA was cleaved by 5 U Earl (New England Biolabs) per 1 ug DNA; the reaction took place in T4 DNA Ligase Buffer (New England Biolabs) at 37° C, for 1 hour, and was followed by an incubation at 70° C. for 15 minutes to inactivate Earl I. Equal amounts of the BC, DE,
and FG fragments were combined and ligated to form a full-length 35Fn3 gene with randomized loops. The ligation required 10 U of fresh Earl (New England Biolabs) and 20 U of T4 DNA Ligase (Promega, Madison, Wis.), and took 1 hour at 37°C.

Three different libraries were made in the manner described above. Each contained the form of the FG loop with 10 randomized residues. The BC and the DE loops of the first library bore the wild type 35Fn3 sequence; a BC loop with 7 randomized residues and a wild type DE loop made up the second library; and a BC loop with 7 randomized residues and a DE loop with 4 randomized residues made up the third library. The complexity of the FG loop in each of these three libraries was 10^13; the further two randomized loops provided the potential for a complexity too large to be sampled in a laboratory.

Three libraries constructed were combined into one master library in order to simplify the selection process; target binding itself was expected to select the most suitable library for a particular challenge. PROFusions™ were obtained from the master library following the general procedure described in Szostak et al., U.S. Ser. Nos. 09/007, 005 and 09/247,190; Szostak et al., WO98/31700; and Roberts & Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 12297-12302 (FIG. 8).

Fusion Selections

The master library in the PROFusion™ form was subjected to selection for binding to TNF-α. Two protocols were employed: one in which the target was immobilized on an agarose column and one in which the target was immobilized on a BIACORE chip. First, an extensive optimization of conditions to minimize background binders to the agarose column yielded the favorable buffer conditions of 50 mM HEPES pH 7.4, 0.02% Triton, 100 μg/ml Sheared Sperm DNA. In this buffer, the non-specific binding of the 35Fn3 RNA fusion to TNF-α Sepharose was 0.3%. The non-specific binding background of the 35Fn3 RNA-DNA to TNF-α Sepharose was found to be 0.1%.

During each round of selection on TNF-α Sepharose, the Profusion™ library was first preincubated for an hour with undervatization Sepharose to remove any remaining non-specific binders; the flow-through from this pre-cleaning was incubated for another hour with TNF-α Sepharose. The TNF-α Sepharose was washed for 3-30 minutes.

After each selection, the PROFusion™ DNA that had been eluted from the solid support with 0.3 M NaOH or 0.1 M KOH was amplified by PCR; a DNA band of the expected size persisted through multiple rounds of selection (FIG. 9), similar results were observed in the two alternative selection protocols, and only the data from the agarose column selection is shown in FIG. 9.

In the first seven rounds, the binding of library PROFusions™ to the target remained low; in contrast, when free protein was translated from DNA pools at different stages of the selection, the proportion of the column binding species increased significantly between rounds (FIG. 10). Similar selections may be carried out with any other binding species target (for example, IL-1α and IL-13).

Animal Studies

Wild-type 35Fn3 contains an integrin-binding tripeptide motif, Arginine-78-Glycine-79-Aspartate 80 (the “RGD motif”) at the tip of the FG loop. In order to avoid integrin binding and a potential inflammatory response based on this tripeptide in vivo, a mutant form of 35Fn3 was generated that contained an inert sequence, Serine-78-Glycine-79-Aspartate 80 (the “SGE mutant”), a sequence which is found in the closely related, wild-type 31Fn5 domain. This SGE mutant was expressed as an N-terminally His6-tagged, free protein in E. coli, and purified to homogeneity on a metal chelate column followed by a size exclusion column.

In particular, the DNA sequence encoding His6-
35Fn3(SGE) was cloned into the pET9a expression vector and transformed into BL21 DE3 pLysS cells. The culture was then grown in LB broth containing 50 μg/mL kanamycin at 37°C, with shaking, to OD600=1.0, and was then induced with 0.4 mM IPTG. The induced culture was further incubated, under the same conditions, overnight (14-18 hours); the bacteria were recovered by standard, low speed centrifugation. The cell pellet was resuspended in 1/10 of the original culture volume of lysis buffer (50 mM Tris 8.0, 0.5 M NaCl, 5% glycerol, 0.05% Triton X-100, and 1 mM PMSF), and the cells were lysed by passing the resulting paste through a Microfluidics Corporation Microfluidizer M 110-EH, three times. The lysate was clarified by centrifugation, and the supernatant was filtered through a 0.45 μm filter followed by filtration through a 0.2 μm filter. 100 mL of the clarified lysate was loaded onto a 5 mL Talon cobalt column (Clontech, Palo Alto, Calif.), washed with 70 mL of lysis buffer, and eluted with a linear gradient of 0-30 mM imidazole in lysis buffer. The flow rate through the column through all the steps was 1 mL/min. The eluted protein was concentrated 10-fold by dialysis (MW cutoff=3,500) against 15,000-20,000 PEG. The resulting sample was dialysed into buffer 1 (lysis buffer without the glycerol), then loaded, 5 mL at a time, onto a 16x60 mm Sephacryl 100 size exclusion column equilibrated in buffer 1. The column was run at 0.8 mL/min, in buffer 1; all fractions that contained a protein of the expected MW were pooled, concentrated 10x as described above, then dialyzed into PBS. Toxikón (MA) was engaged to perform endotoxin screens and animal studies on the resulting sample.

In these animal studies, the endotoxin levels in the samples examined to date have been below the detection level of the assay. In a preliminary toxicology study, this protein was injected into two mice at the estimated 100x therapeutic dose of 2.6 mg/mouse. The animals survived the two weeks of the study with no apparent ill effects. These results suggest that 35Fn3 may be incorporated safely into an IV drug.

Alternative Constructs for In Vivo Use

To extend the half life of the 8 kD 35Fn3 domain, a larger molecule has also been constructed that mimics natural antibodies. This 35Fn3-Fc molecule contains the —CH3—CH2—CH2 (FIG. 11) or —CH3—CH2 domains of the IgG constant region of the host; in these constructs, the 35Fn3 domain is grafted onto the N-terminus in place of the IgG V, domain (FIGS. 11 and 12). Such antibody-like constructs are expected to improve the pharmacokinetics of the protein as well as its ability to harness the natural immune response.
In order to construct the murine form of the Fn3-CH1-CH2-CH3 clone, the -CH2-CH3 region was first amplified from a mouse liver spleen cDNA library (Clontech), then ligated into the pET25b vector. The primers used in the cloning were 5'Fc Nest and 3' Fc Nest, and the primers used to graft the appropriate restriction sites onto the ends of the recovered insert were 5'Fc HIII and 3'Fc Nhe:

5' Fc Nest
5' GGG CCA GGG TTT GCT TAG GGC (SEQ ID NO: 15)
CCA GGG 3';

3' Fc Nest
5' GGG AGG GGT GGA GGT AGG TCA CAG (SEQ ID NO: 16)
TCC 3';

3' Fc Nhe
5' TTT GCT AGC TTT ACC AGG AGA GTC (SEQ ID NO: 17)
GGA GCC 3';

and
5' Fc HIII
5' AAA AAG CTT GCC AAA ACG ACA CCC (SEQ ID NO: 18)
CCA TCT GTC 3'.

Further PCR is used to remove the CH1 region from this clone and create the Fc part of the shorter, Fn3-CH2-CH3 clone. The sequence encoding 3'Fn3 is spliced onto the 5' end of each clone; either the wild type 3'Fn3 cloned from the same mouse spleen cDNA library or a modified 3'Fn3 obtained by mutagenesis or randomization of the molecules can be used. The oligonucleotides used in the cloning of murine wild-type 3'Fn3 were:

Mo5PCR-NdeI:
5' CATATGGTTTCTGATATTCCGAGA GATCTGGAG 3'; (SEQ ID NO: 19)
Mo5PCR-His-NdeI (for an alternative N-terminus
with the His purification tag):
5' CAT ATG CAT CAC CAT CAC CAT CAC (SEQ ID NO: 20)
GTT TCT GAT ATT CCG AGA 3';

and
Mo3PCR-EcoRI:
5' GAATTCCTATGTTTTATAATG ATGGAAAC 3'. (SEQ ID NO: 21)

The human equivalents of the clones are constructed using the same strategy with human oligonucleotide sequences.

3'Fn3 Scaffolds in Protein Chip Applications

The suitability of the 3'Fn3 scaffold for protein chip applications is the consequence of (1) its ability to support many binding functions which can be selected rapidly on the bench or in an automated setup, and (2) its superior biophysical properties.

The versatile binding properties of 3'Fn3 are a function of the loops displayed by the Fn3 immunoglobulin-like, beta sandwich fold. As discussed above, these loops are similar to the complementarity determining regions of antibody variable domains and can cooperate in a way similar to those antibody loops in order to bind antigens. In our system, 3'Fn3 loops BC (residues 21-30), DE (residues 51-56), and FG (residues 76-87) are randomized either in sequence, in length, or in both sequence and length in order to generate diverse libraries of mRNA-3'Fn3 fusions. The binders in such libraries are then enriched based on their affinity for an immobilized or tagged target, until a small population of high affinity binders are generated. Also, error-prone PCR and recombination can be employed to facilitate affinity maturation of selected binders. Due to the rapid and efficient selection and affinity maturation protocols, binders to a large number of targets can be selected in a short time.

As a scaffold for binders to be immobilized on protein chips, the 3'Fn3 domain has the advantage over antibody fragments and single-chain antibodies of being smaller and easier to handle. For example, unlike single-chain scaffolds or isolated variable domains of antibodies, which vary widely in their stability and solubility, and which require an oxidizing environment to preserve their structurally essential disulfide bonds, 3'Fn3 is extremely stable, with a melting temperature of 110°C, and solubility at a concentration >16 mg/mL. The 3'Fn3 scaffold also contains no disulfides or free cysteines; consequently, it is insensitive to the redox potential of its environment. A further advantage of 3'Fn3 is that its antigen-binding loops and N-terminus are on the edge of the beta-sandwich opposite to the C-terminus; thus the attachment of a 3'Fn3 scaffold to a chip by its C-terminus aligns the antigen-binding loops, allowing for their greatest accessibility to the solution being assayed. Since 3'Fn3 is a single domain of only 94 amino acid residues, it is also possible to immobilize it onto a chip surface at a higher density than is used for single-chain antibodies, with their approximately 250 residues. In addition, the hydrophilicity of the 3'Fn3 scaffold, which is reflected in the high solubility of this domain, leads to a lower than average background binding of 3'Fn3 to a chip surface.

The stability of the 3'Fn3 scaffold as well as its suitability for library formation and selection of binders are likely to be shared by the large, Fn3-like class of protein domains with an immunoglobulin-like fold, such as the domains of tenascin, N-cadherin, E-cadherin, ICAM, titin, GCSF—R, cytokine receptor, glycosidase inhibitor, and antibiotic chromoprotein. The key features shared by all such domains are a stable framework provided by two beta-sheets, which are packed against each other and which are connected by at least three solvent-accessible loops per edge of the sheet, such loops can be randomized to generate a library of potential binders without disrupting the structure of the framework (as described above).

Immobilization of Fibronectin Scaffold Binders (Fn-binders)

To immobilize Fn-binders to a chip surface, a number of exemplary techniques may be utilized. For example, Fn-binders may be immobilized as RNA-protein fusions by Watson-Crick hybridization of the RNA moiety of the fusion to a base complementary DNA immobilized on the chip surface (as described, for example, in Addressable Protein Arrays, U.S. Ser. No. 60/080,686; U.S. Ser. No. 09/282,734; and WO 99/51773). Alternatively, Fn-binders can be immobilized as free proteins directly on a chip surface. Manual as well as robotic devices may be used for deposition of the Fn-binders onto the chip surface. Spotting robots can be used for deposition of Fn-binders with high density in an array format (for example, by the method of
Lueking et al., Anal Biochem. 1999 May 15;270(1):103-11. Different methods may also be utilized for anchoring the Fn-binder on the chip surface. A number of standard immobilization procedures may be used including those described in Methods in Enzymology (K. Mosbach and B. Danielsson, eds.), vols. 135 and 136, Academic Press, Orlando, Fla., 1987; Nilsson et al., Protein Expr. Purif. 1997 October; 11(1): 1-16; and references therein. Oriented immobilization of Fn-binders can help to increase the binding capacity of chip-bound Fn-binders. Exemplary approaches for achieving oriented coupling are described in Lu et al., The Analyst (1996), vol. 121, p. 29R-32R; and Turkova, J Chromatogr/ B Biomed Sci App. 1999 Feb. 5; 722(1-2):11-31. In addition, any of the methods described herein for anchoring Fn-binders to chip surfaces can also be applied to the immobilization of Fn-binders on beads, or other supports.

[0113] Target Protein Capture and Detection

[0114] Selected populations of Fn-binders may be used for detection and/or quantitation of analyte targets, for example, in samples such as biological samples. To carry out this type of diagnostic assay, selected Fn-binders to targets of interest are immobilized on an appropriate support to form multi-featured protein chips. Next, a sample is applied to the chip, and the components of the sample that associate with the Fn-binders are identified based on the target-specificity of the immobilized binders. Using this technique, one or more components may be simultaneously identified or quantitated in a sample (for example, as a means to carry out sample profiling).

[0115] Methods for target detection allow measuring the levels of bound protein targets and include, without limitation, radiography, fluorescence scanning, mass spectroscopy (MS), and surface plasmon resonance (SPR). Autoradiography using a phosphorimagener system (Molecular Dynamics, Sunnyvale, Calif.) can be used for detection and quantification of target protein which has been radioactively labeled, e.g., using 35S methionine. Fluorescence scanning using a laser scanner (see below) may be used for detection and quantification of fluorescently labeled targets. Alternatively, fluorescence scanning may be used for detection of fluorescently labeled ligands which themselves bind to the target protein (e.g., fluorescently labeled target-specific antibodies or fluorescently labeled streptavidin binding to target-biotin, as described below).

[0116] Mass spectroscopy can be used to detect and identify bound targets based on their molecular mass. Desorption of bound target protein can be achieved with laser assistance directly from the chip surface as described below. Mass detection also allows determinations, based on molecular mass of target modifications including post-translational modifications such as phosphorylation or glycosylation. Surface plasmon resonance can be used for quantification of bound protein targets where the Fn-binder(s) are immobilized on a suitable gold-surface (for example, as obtained from Biacore, Sweden).

[0117] Described below are exemplary schemes for selecting Fn binders (in this case, Fn-binders specific for the protein, TNF-α) and the use of those selected populations for detection on chips. This example is provided for the purpose of illustrating the invention, and should not be construed as limiting.

[0118] Selection of TNF-α Binders Based on 103Fn3 Scaffold

[0119] In one exemplary use for fibronectin scaffold selection on chips, an 103Fn3-based selection was performed against TNF-α, using a library of human 103Fn3 variants with randomized loops BC, DE, and FG. The library was constructed from three DNA fragments, each of which contained-nucleotide sequences that encoded approximately one third of human 103Fn3, including one of the randomized loops. The DNA sequences that encoded the loop residues listed above were rebuilt on oligonucleotide synthesis, so that the codons for the residues of interest were replaced by (NNS)n, where N represents any of the four deoxyribonucleotides (A, C, G, or T), and S represents either C or G. The C-terminus of each fragment contained the sequence for the FLAG purification tag.

[0120] Once extended by Klenow, each DNA fragment was transcribed, ligated to a puromycin-containing DNA linker, and translated in vitro, as described by Szostak et al. (Roberts and Szostak, Proc. Natl. Acad. Sci USA. 94:12297, 1997; Szostak et al., U.S. Ser. No. 09/077,005 and U.S. Ser. No. 09/247,190; Szostak et al., WO98/31700), to generate an mRNA-peptide fusion, which was then reverse-transcribed into a DNA-mRNA-peptide fusion. The binding of the FLAG-tagged peptide to M2 agarose separated full-length fusion molecules from those containing frameshifts or superfluous stop codons; the DNA associated with the purified full-length fusion was amplified by PCR, then the three DNA fragments were cut by Ear I restriction endonuclease and ligated to form the full-length template. The template was transcribed, ligated to puromycin-containing DNA linkers, and translated to generate a 103Fn3-PROfusion™ library, which was then reverse-transcribed to yield the DNA-mRNA-peptide fusion library which was subsequently used in the selection.

[0121] Selection for TNF-α binders took place in 50 mM HEPES, pH 7.4, 0.02% Triton-X, 0.1 mg/mL salmon sperm DNA. The PROfusion™ library was incubated with Sepharose-immobilized TNF-α; after washing, the DNA associated with the tightest binders was eluted with 0.1 M KOH, amplified by PCR, and transcribed, ligated, translated, and reverse-transcribed into the starting material for the next round of selection.

[0122] Ten rounds of such selection were performed (as shown in FIG. 13); they resulted in a PROfusion™ pool that bound to TNF-α-Sepharose with the apparent average Kd of 120 nM. Specific clonal components of the pool that were characterized showed TNF-α binding in the range of 50-500 nM.

[0123] Fn-binder Immobilization, Target Protein Capture, and MALDI-TOF Detection

[0124] As a first step toward immobilizing the Fn-binders to a chip surface, an oligonucleotide capture probe was prepared with an automated DNA synthesizer (PE BioSystems Expedite 8909) using the solid-support phosphoramidite approach. All reagents were obtained from Glen Research. Synthesis was initiated with a solid support containing a disulfide bond to eventually provide a 3-terminal thiol functionality. The first four monomers to be added were hexaethylene oxide units, followed by 20 T monomers. The 5-terminal DMT group was not removed. The capture probe
was cleaved from the solid support and deprotected with ammonium hydroxide, concentrated to dryness in a vacuum centrifuge, and purified by reverse-phase HPLC using an acetonitrile gradient in triethylammonium acetate buffer. Appropriate fractions from the HPLC were collected, evaporated to dryness in a vacuum centrifuge, and the 5′-terminal DMT group was removed by treatment with 80% AcOH for 30 minutes. The acid was removed by evaporation, and the oligonucleotide was then treated with 100 mM DTT for 30 minutes to cleave the disulfide bond. DTT was removed by repeated extraction with EtOAc. The oligonucleotide was ethanol precipitated from the remaining aqueous layer and checked for purity by reverse-phase HPLC.

The 3′-thiol capture probe was adjusted to 250 μM in degassed 1xPBS buffer and applied as a single droplet (75 μL) to a 9×9 mm gold-coated chip (Biacore) in an argon-flushed chamber containing a small amount of water. After 18 hours at room temperature, the capture probe solution was removed, and the functionalized chip was washed with 50 mL 1xPBS buffer (2× for 15 minutes each) with gentle agitation, and then rinsed with 50 μL water (2× for 15 minutes each) in the same fashion. Remaining liquid was carefully removed and the functionalized chips were either used immediately or stored at 4°C under argon.

About 1 pmol of 135F3 fusion pool from the Round 10 TNF-α selection (above) was treated with RNase A for several hours, adjusted to 5xSSC in 70 μL, and applied to a functionalized gold chip from above as a single droplet. A 50 μL volume gasket device was used to seal the fusion mixture with the functionalized chip, and the apparatus was continuously rotated at 4°C. After 18 hours the apparatus was disassembled, and the gold chip was washed with 50 mL 5xSSC for 10 minutes with gentle agitation. Excess liquid was carefully removed from the chip surface, and the chip was passivated with a blocking solution (1xTBS+0.02% Tween-20+0.25% BSA) for 10 minutes at 4°C. Excess liquid was carefully removed, and a solution containing 500 μg/mL TNF-α in the same composition blocking solution was applied to the chip as a single droplet and incubated at 4°C for two hours with occasional mixing of the droplet via Pipetman. After removal of the binding solution, the chip was washed for 5 minutes at 4°C with gentle agitation (50 mL 1xTBS+0.02% Tween-20) and then dried at room temperature. A second chip was prepared exactly as described above, except fusion was not added to the hybridization mix.

Next, MALDI-TOF matrix (15 mg/mL 3,5-dimethoxy-4-hydroxycinnamic acid in 1:1 ethanol/1% formic acid in water) was uniformly applied to the gold chips with a high-precision 3-axis robot (Microgrid, BioRobotics). A 16-pin tool was used to transfer the matrix from the 384-well microtiter plate to the chips, producing 200 micron diameter features with a 600 micron pitch. The MALDI-TOF mass spectrometer (Voyager DE, PerSeptive Biosystems) instrument settings were as follows: Accelerating Voltage=25 k, Grid Voltage=92%, Guide Wire Voltage=0.05%, Delay=200, Laser Power=2400, Low Mass Gate=1500, Negative Ions=off. The gold chips were individually placed on a MALDI sample stage modified to keep the level of the chip the same as the level of the stage, thus allowing proper flight distance. The instrument’s video monitor and motion control system were used to direct the laser beam to individual matrix features.

Pre-cleaned 1x3 inch glass microscope slides (Goldseal, #3010) were treated with Nanostrip (CyanTek) for 15 minutes, 10% aqueous NaOH at 70°C for 3 minutes, and 1% aqueous HCl for 1 minute, thoroughly rinsing with deionized water after each reagent. The slides were then dried in a vacuum desiccator over anhydrous calcium sulfate for several hours. A 1% solution of aminopropyltrimethoxy silane in 95% acetone/5% water was prepared and allowed to hydrolyze for 20 minutes. The glass slides were immersed in the hydrolyzed silane solution for 5 minutes with gentle agitation. Excess silane was removed by subjecting the slides to ten 5-minute washes, using fresh portions of 95% acetone/5% water for each wash, with gentle agitation. The slides were then cured by heating at 110°C for 20 minutes. The silane treated slides were immersed in a freshly prepared 0.2% solution of phenylene 1,4-disiloxynitrane in 90% DMF/10% pyridine for two hours, with gentle agitation. The slides were washed sequentially with 90% DMF/10% pyridine, methanol, and acetone. After air drying, the functionalized slides were stored at 0°C in a vacuum desiccator over anhydrous calcium sulfate. Similar results were obtained with commercial amine-reactive slides (3-D Link, Surmodics).

Oligonucleotide capture probes were prepared with an automated DNA synthesizer (PE Biosystems Expedite 8909) using conventional phosphoramidite chemistry. All reagents were from Glen Research. Synthesis was initiated with a solid support bearing an orthogonally protected amino functionality, whereby the 3′-terminal amine is not unmasked until final deprotection step. The first four monomers to be added were hexaethylene oxide units, followed by the standard A, G, C and T monomers. All capture oligo sequences were cleaved from the solid support and deprotected with ammonium hydroxide, concentrated to dryness, precipitated in ethanol, and purified by reverse-phase HPLC using an acetonitrile gradient in triethylammonium acetate buffer. Appropriate fractions from the HPLC were collected, evaporated to dryness in a vacuum centrifuge, and coevaporated with a portion of water.

The purified, amine-labeled capture oligos were adjusted to a concentration of 250 μM in 50 mM sodium carbonate buffer (pH 9.0) containing 10% glycerol. The probes were spotted onto the amine-reactive glass surface at defined positions in a 5x5x6 array pattern with a 3-axis robot (Microgrid, BioRobotics). A 16-pin tool was used to transfer the liquid from 384-well microtiter plates, producing 200 micron features with a 600 micron pitch. Each sub-grid of 24 features represents a single capture probe (i.e., 24 duplicate spots). The arrays were incubated at room temperature in a moisture-saturated environment for 12-18 hours. The attachment reaction was terminated by immersing the chips in 2% aqueous ammonium hydroxide for five minutes with gentle agitation, followed by rinsing with distilled water (3x for 5 minutes each). The array was finally soaked in 10x PBS.
solution for 30 minutes at room temperature, and then rinsed again for 5 minutes in distilled water.

[0133] Specific and thermodynamically isenergetic sequences along the 30Fn3 mRNA were identified to serve as capture points to self-assemble and anchor the 30Fn3 protein. The software program HybSimulator v4.0 (Advanced Gene Computing Technology, Inc.) facilitated the identification and analysis of potential capture probes. Six unique capture probes were chosen and printed onto the chip, three of which are complementary to common regions of the 30Fn3 fusion pool’s mRNA (CP3, CP5, and CPflag). The remaining three sequences (CPneg1, CPneg2, and CPneg3) are not complementary and function in part as negative controls. Each of the capture probes possesses a 3-amino terminus and four hexaethylen oxide spacer units, as described above. The following is a list of the capture probe sequences that were employed (S-3):

<table>
<thead>
<tr>
<th>Capture Probe</th>
<th>Sequence</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP3’</td>
<td>TTAAATTTTTTTTTTTTTTTTTTTT</td>
<td>22</td>
</tr>
<tr>
<td>CP5’</td>
<td>TTTTTTTTTTTTTTTTTTTTTTTTT</td>
<td>23</td>
</tr>
<tr>
<td>CPneg1</td>
<td>CATCGTCCTGAGGCTG</td>
<td>24</td>
</tr>
<tr>
<td>CPneg2</td>
<td>CATCGTCCTGAGGCTG</td>
<td>25</td>
</tr>
<tr>
<td>CPneg3</td>
<td>CATCGTCCTGAGGCTG</td>
<td>26</td>
</tr>
</tbody>
</table>

[0134] About 1 pmol of 30Fn3 fusion pool from the Round 10 TNF-α selection was adjusted to 5× SSC containing 0.02% Tween-20 and 2 mM vanadyl ribonuclease complex in a total volume of 350 µL. The entire volume was applied to the microarray under a 400 µL gasket device and the assembly was continuously rotated for 18 hours at room temperature. After hybridization the slide was washed sequentially with stirred 500 mL portions of 5× SSC, 2.5× SSC, and 1× SSC for 5 minutes each. Traces of liquid were removed by centrifugation and the slide was allowed to air-dry.

[0135] Recombinant human TNF-α (500 µg, lyophilized, from PreproTech) was taken up in 230 µL 1× PBS and dialyzed against 700 mL stirred 1× PBS at 4°C for 18 hours in a Microdialyzer unit (3,500 MWCO, Pierce). The dialyzed TNF-α was treated with EZ-Link NHS-LC-LC biotinylation reagent (20 µg, Pierce) for 2 hours at 0°C, and again dialyzed against 700 mL stirred 1× PBS at 4°C for 18 hours in a Microdialyzer unit (3,500 MWCO, Pierce). The resulting conjugate was analyzed by MALDI-TOF mass spectrometry and was found to be almost completely functionalized with a single biotin moiety.

[0136] Each of the following processes was conducted at 4°C with continuous rotation or mixing. The protein microarray surface was passivated by treatment with 1× TBS containing 0.02% Tween-20 and 0.2% BSA (200 µL) for 60 minutes. Biotinylated TNF-α (100 nM concentration made up in the passivation buffer) was contacted with the microarray for 120 minutes. The microarray was washed with 1× TBS containing 0.02% Tween-20 (3×50 mL, 5 minutes each wash). Fluorescently labeled streptavidin (2.5 µg/mL Alexa 546-streptavidin conjugate from Molecular Probes, made up in the passivation buffer) was contacted with the microarray for 60 minutes. The microarray was washed with 1×TBS containing 0.02% Tween-20 (2×50 mL, 5 minutes each wash) followed by a 3 minute rinse with 1× TBS. Traces of liquid were removed by centrifugation, and the slide was allowed to air-dry at room temperature.

[0137] Fluorescence laser scanning was performed with a GSI Lumonics ScanArray 5000 system using 10 µm pixel resolution and preset excitation and emission wavelengths for Alexa 546 dye. Phosphorimaging analysis was performed with a Molecular Dynamics Storm system. Exposure time was 48 hours with direct contact between the microarray and the phosphor storage screen. Phosphorimaging scanning was performed at the 50 µM resolution setting, and data was extracted with ImageQuant v.4.3 software.

[0138] FIGS. 16 and 17 are the phosphorimaging and fluorescence scan, respectively, of the same array. The phosphorimaging shows where the 30Fn3 fusion hybridized based on the 35S methionine signal. The fluorescence scan shows where the labeled TNF-α bound.

Other Embodiments

[0139] Other embodiments are within the claims.

[0140] All publications, patents, and patent applications mentioned herein are hereby incorporated by reference.
<210> SEQ ID NO 2
<211> LENGTH: 104
<212> TYPE: DNA
<213> ORGAMISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer
<400> SEQUENCE: 2

ggaattctca atagcactca ctatagggac attactatt taccaattaca atgggttctg
atggtccgag gcacgccgag gttgtgcgtg cgcacctcaac cagc

<210> SEQ ID NO 3
<211> LENGTH: 108
<212> TYPE: DNA
<213> ORGAMISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer
<221> NAME/KEY: misc_feature
<222> LOCATION: 74, 75
<223> OTHER INFORMATION: n = A, T, C or G
<400> SEQUENCE: 3

gagggatgac tctgctgctg ctgctctgta cgtgcttctc cgtgctttctc cgaagtgatc
cctgtatact ctcnccgcac tggacttaggc gctggggtgg gcggcgcg

<210> SEQ ID NO 4
<211> LENGTH: 62
<212> TYPE: DNA
<213> ORGAMISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer
<400> SEQUENCE: 4

gagggatgac tctgctgctg ctgctctgta cgtgcttctc cgtgctttctc cgaagtgatc
cc

<210> SEQ ID NO 5
<211> LENGTH: 99
<212> TYPE: DNA
<213> ORGAMISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer
<400> SEQUENCE: 5

ggaattctca atagcactca ctatagggac attactatt taccaattaca atgcaatcacc
atcactctca ctatcttca gcaggaatag ccgcgtgacc

<210> SEQ ID NO 6
<211> LENGTH: 123
<212> TYPE: DNA
<213> ORGAMISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer
<221> NAME/KEY: misc_feature
<222> LOCATION: 83, 84
<223> OTHER INFORMATION: n = A, T, C or G
<400> SEQUENCE: 6

gagggatgac tctgctgctg ctgctctgta cgtgcttctc cgtaattcacc ctcaggttt
<210> SEQ ID NO 7
<211> LENGTH: 64
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer

<400> SEQUENCE: 7
agcggatgcc ttgtcgtcgt c gtcottgta gtc.gctottc gtataatcaa citcCaggittt alagg

<210> SEQ ID NO 8
<211> LENGTH: 101
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer

<400> SEQUENCE: 8
ggaattctca atacagactc atagggac aataactatt taacatttaa atgcatacoo atcoacatca cctctttcat acctacatg tctatgctgt c

<210> SEQ ID NO 9
<211> LENGTH: 87
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 59, 60
<223> OTHER INFORMATION: n = A,T,C or G

<400> SEQUENCE: 9
agcggatgccc ttgctctgta cgctccgtta gctcttgtag taatastgg aaatgggsn   60
agtcacagca tscacagta tsgtata  87

<210> SEQ ID NO 10
<211> LENGTH: 57
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer

<400> SEQUENCE: 10
agcggatgccc ttgctctgta cgctccgtta gctcttgtag taatastgg aaattgg   57

<210> SEQ ID NO 11
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer

<400> SEQUENCE: 11
gcgttaacta gctacacta gggacaatta cttatttaa ttaca  45

<210> SEQ ID NO 12
<210> SEQ ID NO 13
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 10
<223> OTHER INFORMATION: n = A,T,C or G
<400> SEQUENCE: 13

agcgcagttgcttgtctgt ctgctttgta gtc

<210> SEQ ID NO 14
<211> LENGTH: 6
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer
<400> SEQUENCE: 14

agccur

<210> SEQ ID NO 15
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer
<400> SEQUENCE: 15

gggcaggt tgtctgtactg ggcgcaaggg

<210> SEQ ID NO 16
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer
<400> SEQUENCE: 16

gggagggatt gagtaggtagc ccagttcc

<210> SEQ ID NO 17
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer
<400> SEQUENCE: 17

tttgtagc tgtaccaggag agtggaggag

<210> SEQ ID NO 18
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer

<400> SEQUENCE: 18

aaaaagcttg ccaaaacgac acocccaatct gtc 33

<210> SEQ ID NO 19
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer

<400> SEQUENCE: 19
catatgttt ctgatatcc gagaatctg gag 33

<210> SEQ ID NO 20
<211> LENGTH: 42
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer

<400> SEQUENCE: 20
catatgcatc accatacaca tcaagtttctg gatacggaga ga 42

<210> SEQ ID NO 21
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer

<400> SEQUENCE: 21
gaaattctat gtttataaat tgtggaac 30

<210> SEQ ID NO 22
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer

<400> SEQUENCE: 22
tgaatatgct acctgtcccc 19

<210> SEQ ID NO 23
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide primer

<400> SEQUENCE: 23
	ttttttttttttttttttttttttttttttt 20

<210> SEQ ID NO 24
<211> LENGTH: 15
<212> TYPE: DNA
What is claimed is:

1. (canceled)

68. A protein comprising:

(a) a first fibronectin type III (Fn3) domain wherein said first Fn3 domain has an amino acid sequence that has been altered relative to the amino acid sequence of a first naturally occurring Fn3 domain such that the first Fn3 domain binds to a first compound that is not bound by the first naturally occurring Fn3 domain; and

(b) a second Fn3 domain, wherein said second Fn3 domain has an amino acid sequence that has been altered relative to the amino acid sequence of a second naturally occurring Fn3 domain such that the second Fn3 domain binds to a compound that is not bound by the second naturally occurring Fn3 domain.

69. The protein of claim 68, wherein said protein further comprises one or more additional Fn3 domains.

70. The protein of claim 69, wherein each of said additional Fn3 domains has an amino acid sequence that has been altered relative to the amino acid sequence of a naturally occurring Fn3 domain such that each said additional Fn3 domain binds to a compound that is not bound by the corresponding naturally occurring Fn3 domain.

71. The protein of claim 68, wherein said first Fn3 domain has an amino acid sequence that is altered relative to the amino acid sequence of a first human Fn3 domain, such that the first Fn3 domain binds to a first compound that is not bound by the first human Fn3 domain.

72. The protein of claim 71, wherein said first Fn3 domain has an amino acid sequence that is at least 50% identical to the amino acid sequence of said first human Fn3 domain.

73. The protein of claim 71, wherein said first human Fn3 domain is an Fn3 domain of fibronectin.

74. The protein of claim 73, wherein said first human Fn3 domain is the tenth Fn3 module of human fibronectin (10Fn3).

75. The protein of claim 68, wherein the first and second Fn3 domains are altered in one or more loops relative to the first or second naturally occurring Fn3 domains, respectively.

76. The protein of claim 75, wherein the first and second Fn3 domains are altered in two or more loops relative to the first or second naturally occurring Fn3 domains, respectively.

77. The protein of claim 74, wherein the amino acid sequence of the first Fn3 domain is altered relative to the amino acid sequence of human 10Fn3 in one or more loops defined by amino acids 21-31, 51-6 and 76-88 in human Fn3.
78. The protein of claim 77, wherein the amino acid sequence of the first Fn3 domain is altered relative to the amino acid sequence of human $^{10}$Fn3 in one or more beta strands.

79. The protein of claim 73, wherein said second Fn3 domain has an amino acid sequence that is altered relative to the amino acid sequence of a second human Fn3 domain, such that the second human Fn3 domain binds to a second compound that is not bound by the second human Fn3 domain.

80. The protein of claim 79, wherein said second Fn3 domain has an amino acid sequence that is at least 50% identical to the amino acid sequence of said second human Fn3 domain.

81. The protein of claim 80, wherein said second human Fn3 domain is an Fn3 domain of fibronectin.

82. The protein of claim 81, wherein said second human Fn3 domain is the tenth Fn3 module of human fibronectin ($^{10}$Fn3).

83. The protein of claim 68, wherein said first and second naturally occurring Fn3 domains are the same.

84. The protein of claim 68, wherein said first and second compounds are the same.

85. The protein of claim 68, wherein said first and second compounds are different.

86. The protein of claim 68, wherein said first compound is a first protein.

87. The protein of claim 86, wherein said second compound is a second protein.

88. The protein of claim 69, wherein said protein comprises:

(a) a first Fn3 domain wherein said first Fn3 domain has an amino acid sequence that has been altered relative to the amino acid sequence of the eighth Fn3 module of human fibronectin (9Fn3) such that the first Fn3 domain binds to a first compound that is not bound by human 9Fn3;

(b) a second Fn3 domain wherein said first Fn3 domain has an amino acid sequence that has been altered relative to the amino acid sequence of the ninth Fn3 module of human fibronectin (9Fn3) such that the second Fn3 domain binds to a second compound that is not bound by human 9Fn3; and

(c) a third Fn3 domain wherein said third Fn3 domain has an amino acid sequence that has been altered relative to the amino acid sequence of the tenth Fn3 module of human fibronectin ($^{10}$Fn3) such that the third Fn3 domain binds to a first compound that is not bound by human 10Fn3.

* * * * *