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1. 

DETECTING THE COMPLETON OF 
PROGRAMMING FOR NON-VOLATLE 

STORAGE 

Matter enclosed in heavy brackets appears in the 
original patent but forms no part of this reissue specifica 
tion; matter printed in italics indicates the additions 
made by reissue; a claim printed with strikethrough indi 
cates that the claim was canceled, disclaimed, or held 
invalid by a prior post-patent action or proceeding. 

This application is a divisional application of U.S. patent 
application Ser. No. 12/492.421, Detecting The Completion 
Of Programming For Non-Volatile Storage, filed Jun. 26, 
2009, which is incorporated herein by reference in its entirety. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to technology for non-vola 

tile storage. 
2. Description of the Related Art 
Semiconductor memory devices have become more popu 

lar for use in various electronic devices. For example, non 
Volatile semiconductor memory is used in cellular tele 
phones, digital cameras, personal digital assistants, mobile 
computing devices, non-mobile computing devices and other 
devices. Electrical Erasable Programmable Read Only 
Memory (EEPROM) and flash memory are among the most 
popular non-volatile semiconductor memories. 

Both EEPROM and flash memory utilize a floating gate 
that is positioned above and insulated from a channel region 
in a semiconductor Substrate. The floating gate is positioned 
between source and drain regions. A control gate is provided 
over and insulated from the floating gate. The threshold volt 
age of the transistoris controlled by the amount of charge that 
is retained on the floating gate. That is, the minimum amount 
of voltage that must be applied to the control gate before the 
transistor is turned on to permit conduction between its 
source and drain is controlled by the level of charge on the 
floating gate. 
When programming an EEPROM or flash memory device, 

typically a program Voltage is applied to the control gate and 
the bit line is grounded. Electrons from the channel are 
injected into the floating gate. When electrons accumulate in 
the floating gate, the floating gate becomes negatively 
charged and the threshold voltage of the memory cell is raised 
so that the memory cell is in the programmed State. More 
information about programming can be found in U.S. Pat. No. 
6,859,397, titled “Source Side Self Boosting Technique For 
Non-Volatile Memory;” and U.S. Pat. No. 6,917,542, titled 
“Detecting Over Programmed Memory.” both patents are 
incorporated herein by reference in their entirety. 
Some EEPROM and flash memory devices have a floating 

gate that is used to store two ranges of charges and, therefore, 
the memory cell can be programmed/erased between two 
states, an erased state and a programmed State that correspond 
to data “1” and data “0” Such a device is referred to as a 
binary or two-state device. 
A multi-state flash memory cell is implemented by identi 

fying multiple, distinct allowed threshold Voltage ranges. 
Each distinct threshold Voltage range corresponds to a prede 
termined value for the set of data bits. The specific relation 
ship between the data programmed into the memory cell and 
the threshold Voltage ranges of the cell depends upon the data 
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2 
encoding scheme adopted for the memory cells. For example, 
U.S. Pat. No. 6,222,762 and U.S. Patent Application Publi 
cation No. 2004/0255090, both of which are incorporated 
herein by reference in their entirety, describe various data 
encoding schemes for multi-state flash memory cells. 

In some embodiments, the program Voltage applied to the 
control gate includes a series of pulses that are increased in 
magnitude with each Successive pulse by a predetermined 
step size (e.g. 0.2v, 0.3V, 0.4v., or others). Between pulses, the 
memory system will verify whether the individual memory 
cells have reached their respective target threshold voltage 
ranges. Those memory cells that have reached their target 
threshold Voltage range will be locked out of future program 
ming (e.g., by raising the bit line voltage to Vdd). When all 
memory cells have reached their target threshold voltage 
range, programming is complete. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a top view of a NAND string. 
FIG. 2 is an equivalent circuit diagram of the NAND string. 
FIG.3 is a block diagram of a non-volatile memory system. 
FIG. 4 is a block diagram depicting one embodiment of a 

sense block. 
FIG. 5A is a block diagram depicting one embodiment of a 

memory array. 
FIG. 5B depicts a page of data. 
FIG. 6 depicts an example set of threshold voltage distri 

butions and describes a process for programming non-volatile 
memory. 

FIG. 7 depicts an example set of threshold voltage distri 
butions and describes a process for programming non-volatile 
memory. 

FIGS. 8A-C show various threshold voltage distributions 
and describe a process for programming non-volatile 
memory. 

FIG. 9 is a table depicting the order of programming non 
Volatile memory in one embodiment. 

FIG. 10 depicts an example set of threshold voltage distri 
butions and describes a process for programming non-volatile 
memory. 

FIGS. 11 A-I show various threshold voltage distributions 
and describe a process for programming non-volatile 
memory. 

FIG. 12 is a flow chart describing one embodiment of a 
process for operating non-volatile memory. 

FIG. 13 is a flow chart describing one embodiment of a 
process for programming non-volatile memory. 

FIGS. 14-17 depicts a control gate signal for one embodi 
ment of non-volatile memory. 

FIG. 18 depicts an example set of threshold voltage distri 
butions. 

FIG. 19 depicts one example threshold voltage distribu 
tion. 

FIGS. 20-23 depicts a control gate signal for one embodi 
ment of non-volatile memory. 

FIG. 24 is a flow chart describing one embodiment of a 
process for programming non-volatile memory. 

FIG. 25 is a flow chart describing one embodiment of a 
process for programming non-volatile memory. 

FIGS. 26A, B and C depict a one embodiment of a pro 
gramming process that is performed as part of coarse/fine 
programming. 

FIGS. 27A, B and C depict a one embodiment of a pro 
gramming process that is performed as part of coarse/fine 
programming. 
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DETAILED DESCRIPTION 

In a non-volatile storage system, a set non-volatile storage 
elements are subjected to a programming process in order to 
store a set of data. Programming can be stopped when all 
non-volatile storage elements have reached their target level 
or when the number of non-volatile storage elements that 
have not reached their target level is less than a number of 
memory cells that can be corrected using an error correction 
process during a read operation (or other operation). The 
number of non-volatile storage elements that have not 
reached their target level can be estimated by counting the 
number of non-volatile storage elements that have not 
reached a condition that is different than the target level. 
One example of a non-volatile storage system is a flash 

memory system that uses the NAND structure, which 
includes arranging multiple transistors in series, Sandwiched 
between two select gates. The transistors in series and the 
select gates are referred to as a NAND string. FIG. 1 is a top 
view showing one NAND string. FIG. 2 is an equivalent 
circuit thereof. The NAND string depicted in FIGS. 1 and 2 
includes four transistors 100, 102, 104 and 106 in series and 
sandwiched between (drain side) select gate 120 and (source 
side) select gate 122. Select gate 120 connects the NAND 
string to a bit line via bit line contact 126. Select gate 122 
connects the NAND string to source line 128. Select gate 120 
is controlled by applying the appropriate Voltages to select 
line SGD. Select gate 122 is controlled by applying the appro 
priate voltages to select line SGS. Each of the transistors 100, 
102, 104 and 106 has a control gate and a floating gate. For 
example, transistor 100 has control gate 100CG and floating 
gate 100FG. Transistor 102 includes control gate 102CG and 
a floating gate 102FG. Transistor 104 includes control gate 
104CG and floating gate 104FG. Transistor 106 includes a 
control gate 106CG and a floating gate 106FG. Control gate 
100CG is connected to word line WL3, control gate 102CG is 
connected to word line WL2, control gate 104CG is con 
nected to word line WL1, and control gate 106CG is con 
nected to word line WL0. 

Note that although FIGS. 1 and 2 show four memory cells 
in the NAND string, the use of four memory cells is only 
provided as an example. A NAND string can have less than 
four memory cells or more than four memory cells. For 
example, some NAND strings will include eight memory 
cells, 16 memory cells, 32 memory cells, 64 memory cells, 
128 memory cells, etc. The discussion herein is not limited to 
any particular number of memory cells in a NAND string. 
One embodiment uses NAND strings with 66 memory cells, 
where 64 memory cells are used to store data and two of the 
memory cells are referred to as dummy memory cells because 
they do not store data. 
A typical architecture for a flash memory system using a 

NAND structure will include several NAND strings. Each 
NAND string is connected to the common source line by its 
source select gate controlled by select line SGS and con 
nected to its associated bit line by its drain select gate con 
trolled by select line SGD. Each bit line and the respective 
NAND string(s) that are connected to that bit line via a bit line 
contact comprise the columns of the array of memory cells. 
Bitlines are shared with multiple NAND strings. Typically, 
the bit line runs on top of the NAND strings in a direction 
perpendicular to the word lines and is connected to a sense 
amplifier. 

Relevant examples of NAND type flash memories and their 
operation are provided in the following U.S. patents/patent 
applications, all of which are incorporated herein by refer 
ence in their entirety: U.S. Pat. No. 5,570,315; U.S. Pat. No. 
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4 
5,774,397: U.S. Pat. No. 6,046,935; U.S. Pat. No. 6,456,528: 
and U.S. Pat. Publication No. US2003/00O2348. 

Other types of non-volatile storage devices, in addition to 
NAND flash memory, can also be used. For example, a 
TANOS structure (consisting of a stacked layer of TaN— 
Al2O3-SiN. SiO2 on a silicon substrate), which is basically 
a memory cell using trapping of charge in a nitride layer 
(instead of a floating gate), can also be used with the technol 
ogy described herein. Another type of memory cell useful in 
flash EEPROM systems utilizes a non-conductive dielectric 
material in place of a conductive floating gate to store charge 
in a non-volatile manner. Such a cell is described in an article 
by Chan et al., “A True Single-Transistor Oxide-Nitride-OX 
ide EEPROM Device, IEEE Electron Device Letters, Vol. 
EDL-8, No.3, March 1987, pp. 93-95. Atriple layer dielectric 
formed of silicon oxide, silicon nitride and silicon oxide 
(“ONO”) is sandwiched between a conductive control gate 
and a surface of a semi-conductive substrate above the 
memory cell channel. The cell is programmed by injecting 
electrons from the cell channel into the nitride, where they are 
trapped and stored in a limited region. This stored charge then 
changes the threshold Voltage of a portion of the channel of 
the cell in a manner that is detectable. The cell is erased by 
injecting hot holes into the nitride. See also Nozaki et al., “A 
1-Mb EEPROM with MONOS Memory Cell for Semicon 
ductor Disk Application.” IEEE Journal of Solid-State Cir 
cuits, Vol. 26, No. 4, April 1991, pp. 497-501, which describes 
a similar cell in a split-gate configuration where a doped 
polysilicon gate extends over a portion of the memory cell 
channel to form a separate select transistor. 

Another example is described by Eitan et al., “NROM: A 
Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell. 
IEEE Electron Device Letters, vol. 21, no. 11, November 
2000, pp. 543-545. An ONO dielectric layer extends across 
the channel between source and drain diffusions. The charge 
for one data bit is localized in the dielectric layer adjacent to 
the drain, and the charge for the other data bit is localized in 
the dielectric layer adjacent to the source. U.S. Pat. Nos. 
5,768,192 and 6,011,725 disclose a non-volatile memory cell 
having a trapping dielectric sandwiched between two silicon 
dioxide layers. Multi-state data storage is implemented by 
separately reading the binary states of the spatially separated 
charge storage regions within the dielectric. Other types of 
memory devices can also be used. 

FIG. 3 illustrates a memory device 210 having read/write 
circuits for reading and programming a page of memory cells 
(e.g., NAND multi-state flash memory) in parallel. Memory 
device 210 may include one or more memory die orchips 212. 
Memory die 212 includes an array (two-dimensional or three 
dimensional) of memory cells 200, control circuitry 220, and 
read/write circuits 230A and 230B. In one embodiment, 
access to the memory array 200 by the various peripheral 
circuits is implemented in a symmetric fashion, on opposite 
sides of the array, so that the densities of access lines and 
circuitry on each side are reduced by half. The read/write 
circuits 230A and 230B include multiple sense blocks 300 
which allow a page of memory cells to be read or pro 
grammed in parallel. The memory array 200 is addressable by 
word lines via row decoders 240A and 240B and by bit lines 
via column decoders 242A and 242B. In a typical embodi 
ment, a controller 244 is included in the same memory device 
210 (e.g., a removable storage card or package) as the one or 
more memory die 212. Commands and data are transferred 
between the hostand controller 244 via lines 232 and between 
the controller and the one or more memory die 212 via lines 
234. 
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Control circuitry 220 cooperates with the read/write cir 
cuits 230A and 230B to perform memory operations on the 
memory array 200. The control circuitry 220 includes a state 
machine 222, an on-chip address decoder 224 and a power 
control module 226. The state machine 222 provides chip- 5 
level control of memory operations. The on-chip address 
decoder 224 provides an address interface between that used 
by the host or a memory controller to the hardware address 
used by the decoders 240A, 240B, 242A, and 242B. The 
power control module 226 controls the power and voltages 
Supplied to the word lines and bit lines during memory opera 
tions. In one embodiment, power control module 226 
includes one or more charge pumps that can create Voltages 
larger than the supply voltage. Control circuitry 220, the 
decoders 240 A/B & 242A/B, the read/write circuits 230A/B 
and the controller 244, collectively or separately, can be 
referred to as one or more managing circuits. 

FIG. 4 is a block diagram of an individual sense block 300 
partitioned into a core portion, referred to as a sense module 20 
480, and a common portion 490. In one embodiment, there 
will be a separate sense module 480 for each bit line and one 
common portion 490 for a set of multiple sense modules 480. 
In one example, a sense block will include one common 
portion 490 and eight sense modules 480. Each of the sense 25 
modules in a group will communicate with the associated 
common portion via a data bus 472. For further details, refer 
to U.S. Patent Application Publication 2006/014.0007, which 
is incorporated herein by reference in its entirety. 

Sense module 480 comprises sense circuitry 470 that deter 
mines whether a conduction current in a connected bit line is 
above or below a predetermined threshold level. In some 
embodiments, sense module 480 includes a circuit commonly 
referred to as a sense amplifier. Sense module 480 also 
includes a bit line latch 482 that is used to set a voltage 
condition on the connected bit line. For example, a predeter 
mined state latched in bit line latch 482 will result in the 
connected bit line being pulled to a state designating program 
inhibit (e.g., Vdd). 40 
Common portion 490 comprises a processor 492, a set of 

data latches 494 and an I/O Interface 496 coupled between the 
set of data latches 494 and data bus 420. Processor 492 per 
forms computations. For example, one of its functions is to 
determine the data stored in the sensed memory cell and store 45 
the determined data in the set of data latches. The set of data 
latches 494 is used to store data bits determined by processor 
492 during a read operation. It is also used to store data bits 
imported from the data bus 420 during a program operation. 
The imported data bits represent write data meant to be pro- 50 
grammed into the memory. I/O interface 496 provides an 
interface between data latches 494 and the data bus 420. 

During read or sensing, the operation of the system is under 
the control of state machine 222 that controls the supply of 
different control gate voltages to the addressed cell. As it steps 55 
through the various predefined control gate Voltages (the read 
reference voltages or the verify reference voltages) corre 
sponding to the various memory states Supported by the 
memory, the sense module 480 may trip at one of these 
Voltages and an output will be provided from sense module 60 
480 to processor 492 via bus 472. At that point, processor 492 
determines the resultant memory state by consideration of the 
tripping event(s) of the sense module and the information 
about the applied control gate Voltage from the State machine 
via input lines 493. It then computes a binary encoding for the 65 
memory state and stores the resultant data bits into data 
latches 494. In another embodiment of the core portion, bit 
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line latch 482 serves double duty, both as a latch for latching 
the output of the sense module 480 and also as a bit line latch 
as described above. 

It is anticipated that some implementations will include 
multiple processors 492. In one embodiment, each processor 
492 will include an output line (not depicted in FIG. 4) such 
that each of the output lines is wired-OR'd together. In some 
embodiments, the output lines are inverted prior to being 
connected to the wired-OR line. This configuration enables a 
quick determination during the program verification process 
of when the programming process has completed because the 
state machine receiving the wired-OR line can determine 
when all bits being programmed have reached the desired 
level. For example, when each bit has reached its desired 
level, a logic Zero for that bit will be sent to the wired-OR line 
(or a data one is inverted). When all bits output a data 0 (or a 
data one inverted), then the state machine knows to terminate 
the programming process. In embodiments where each pro 
cessor communicates with eight sense modules, the state 
machine may (in come embodiments) need to read the wired 
OR line eight times, or logic is added to processor 492 to 
accumulate the results of the associated bit lines such that the 
state machine need only read the wired-OR line one time. In 
Some embodiments that have many sense modules, the wired 
OR lines of the many sense modules can be grouped in sets of 
N sense modules, and the groups can then be grouped to form 
a binary tree. 

During program or verify, the data to be programmed is 
stored in the set of data latches 494 from the data bus 420. The 
program operation, under the control of the State machine, 
comprises a series of programming Voltage pulses (with 
increasing magnitudes) concurrently applied to the control 
gates of the addressed memory cells to that the memory cells 
are programmed at the same time. Each programming pulse is 
followed by a verify process to determine if the memory cell 
has been programmed to the desired state. Processor 492 
monitors the verified memory state relative to the desired 
memory state. When the two are in agreement, processor 492 
sets the bit line latch 482 so as to cause the bit line to be pulled 
to a state designating program inhibit. This inhibits the 
memory cell coupled to the bit line from further programming 
even if it is subjected to programming pulses on its control 
gate. In other embodiments the processor initially loads the 
bit line latch 482 and the sense circuitry sets it to an inhibit 
value during the verify process. 

Data latch stack 494 contains a stack of data latches corre 
sponding to the sense module. In one embodiment, there are 
three (or four or another number) data latches per sense mod 
ule 480. In some implementations (but not required), the data 
latches are implemented as a shift register so that the parallel 
data stored therein is converted to serial data for data bus 420, 
and vice versa. In one preferred embodiment, all the data 
latches corresponding to the read/write block of m memory 
cells can be linked together to form a block shift register so 
that a block of data can be input or output by serial transfer. In 
particular, the bank of read/write modules is adapted so that 
each of its set of data latches will shift data in to or out of the 
data bus in sequence as if they are part of a shift register for the 
entire read/write block. 

Additional information about the structure and/or opera 
tions of various embodiments of non-volatile storage devices 
can be found in (1) United States Patent Application Pub. No. 
2004/0057287. “Non-Volatile Memory And Method With 
Reduced Source Line Bias Errors.” published on Mar. 25, 
2004; (2) United States Patent Application Pub No. 2004/ 
0109357. “Non-Volatile Memory And Method with 
Improved Sensing.” published on Jun. 10, 2004; (3) U.S. 
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Patent Application Pub. No. 20050169082; (4) U.S. Patent 
Application Pub. 2006/0221692, titled “Compensating for 
Coupling During Read Operations of Non-Volatile Memory.” 
Inventor Jian Chen, filed on Apr. 5, 2005; and (5) U.S. Patent 
Application Pub. 2006/0158947, titled “Reference Sense 
Amplifier For Non-Volatile Memory, Inventors Siu Lung 
Chanand Raul-Adrian Cernea, filed on Dec.28, 2005. All five 
of the immediately above-listed patent documents are incor 
porated herein by reference in their entirety. 

FIG. 5A depicts an exemplary structure of memory cell 
array 200. In one embodiment, the array of memory cells is 
divided into a large number of blocks of memory cells. As is 
common for flash EEPROM systems, the block is the unit of 
erase. That is, each block contains the minimum number of 
memory cells that are erased together. 
As one example, a NAND flash EEPROM is depicted in 

FIG. 5A that is partitioned into 1,024 blocks. However, more 
or less than 1024 blocks can be used. In each block, in this 
example, there are 69,624 columns corresponding to bit lines 
BL0, BL1, ... BL69,623. In one embodiment, all the bit lines 
of a block can be simultaneously selected during read and 
program operations. Memory cells along a common word line 
and connected to any bit line can be programmed (or read) at 
the same time. In another embodiment, the bit lines are 
divided into even bit lines and odd bit lines. In an odd/even bit 
line architecture, memory cells along a common word line 
and connected to the odd bit lines are programmed at one 
time, while memory cells along a common word line and 
connected to even bit lines are programmed at another time. 

FIG. 5A shows four memory cells connected in series to 
form a NAND string. Although four cells are shown to be 
included in each NAND string, more or less than four can be 
used (e.g., 16, 32, 64, 128 or another number or memory cells 
can be on a NAND string). One terminal of the NAND string 
is connected to a corresponding bit line via a drain select gate 
(connected to select gate drain line SGD), and another termi 
nal is connected to the Source line via a source select gate 
(connected to select gate source line SGS). 

Each block is typically divided into a number of pages. A 
page is a unit of programming. One or more pages of data are 
typically stored in one row of memory cells. A page can store 
one or more sectors. A sector includes user data and overhead 
data. Overhead data typically includes an Error Correction 
Code (ECC) that has been calculated from the user data of the 
sector. The controller calculates the ECC when data is being 
programmed into the array, and also checks it when data is 
being read from the array. In some embodiments, the State 
machine or other component can calculate and check the 
ECC. In some alternatives, the ECCs and/or other overhead 
data are stored in different pages, or even different blocks, 
than the user data to which they pertain. A sector of user data 
is typically 512 bytes, corresponding to the size of a sector in 
magnetic disk drives. A large number of pages form a block, 
anywhere from 8 pages, for example, up to 32, 64. 128 or 
more pages. FIG. 5B depicts data for a page. Depending on 
the size of the page, the page contains many sectors. Each 
sector includes user data, error correction codes (ECC), and 
header information. 

In some memory systems utilizing multi-state memory 
cells, each bit of data in a memory cell is in a different page. 
For example, if an array of memory cells store three bits of 
data (eight states or levels of data) per memory cell, each 
memory cell Stores data in three pages with each of the three 
bits being on a different page. Thus, within a block in this 
example, each word line is associated with three pages or an 
integer multiple of three pages. Other arrangements are also 
possible. 
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The use of error correction coding (ECC) in mass data 

storage devices and storage systems, as well as in data com 
munications systems, is well known. As fundamental in this 
art, error correction coding involves the storage or commu 
nication of additional bits (commonly referred to as parity 
bits, code bits, checksum digits, ECC bits, etc.) that are deter 
mined or calculated from the “payload' (or original data) data 
bits being encoded. For example, the storage of error correc 
tion coded data in a memory resource involves the encoding 
of one or more code words to include the actual data and the 
additional code bits, using a selected code. Retrieval of the 
stored data involves the decoding of the stored code words 
according to the same code as used to encode the stored code 
words. Because the code bits “over-specify” the actual data 
portion of the code words, some number of error bits can be 
tolerated, without any loss of actual data evident after decod 
ing. 
Many ECC coding schemes are well known in the art. 

These conventional error correction codes are especially use 
ful in large scale memories, including flash (and other non 
Volatile) memories, because of the Substantial impact on 
manufacturing yield and device reliability that Such coding 
schemes can provide, allowing devices that have a few non 
programmable or defective cells to be useable. Of course, a 
tradeoff exists between the yield savings and the cost of 
providing additional memory cells to store the code bits (i.e., 
the code “rate”). Some ECC codes for flash memory devices 
tend to have higher code rates (i.e., a lower ratio of code bits 
to data bits) than the codes used in data communications 
applications (which may have code rates as low as /2). 
Some memory cells are slower to program or erase than 

others because of manufacturing variations among those 
cells, because those cells were previously erased to a lower 
threshold Voltage than others, because of uneven wear among 
the cells within a page, or other reasons. And, of course, some 
cells cannot be programmed or erased whatsoever, because of 
a defector other reason. As mentioned above, error correction 
coding provides the capability of tolerating some number of 
slow or failed cells, while still maintaining the memory as 
usable. In some applications, a page of data is programmed by 
repeatedly applying programming pulses until all memory 
cells on that page verify to the desired programmed State. In 
these applications, programming terminates if a maximum 
number of programming pulses is reached prior to Successful 
Verifying of the programmed page, following which the num 
ber of cells that have not yet been verified to the desired state 
is compared with a threshold value, which depends on the 
capability of the error correction coding that will be used in 
the reading of data from that page. In other applications in 
which the error correction is sufficiently robust, program 
ming and erasing time is saved by terminating the sequence of 
programming or erasing pulses when the number of slow (or 
error) cells that are not yet fully programmed or erased is 
fewer than the number of bits that are correctable. 

Error correction is typically performed on a sector-by 
sector basis. Thus, each sector will have its own set of ECC 
codes. This error correction is convenient and useful because, 
in one embodiment, the sector is the desired unit of data 
transfer to and from the host system. 
At the end of a Successful programming process (with 

verification), the threshold voltages of the memory cells 
should be within one or more distributions of threshold volt 
ages for programmed memory cells or within a distribution of 
threshold Voltages for erased memory cells, as appropriate. 
FIG. 6 illustrates example threshold voltage distributions for 
the memory cell array when each memory cell stores two bits 
of data. Other embodiments, however, may use more or less 
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than two bits of data per memory cell (e.g., Such as three bits 
of data per memory cell). FIG. 6 shows a first threshold 
voltage distribution E for erased memory cells. Three thresh 
old Voltage distributions, A, B and C for programmed 
memory cells are also depicted. In one embodiment, the 
threshold voltages in the distribution E are negative and the 
threshold voltages in the A, B and C distributions are positive. 
As can be seen, threshold voltage distribution A is the lowest 
of A, B and C. Threshold voltage distribution C is the highest 
of A, B and C. 

Each distinct threshold voltage range of FIG. 6 corre 
sponds to predetermined values for the set of data bits. The 
specific relationship between the data programmed into the 
memory cell and the threshold voltage levels of the cell 
depends upon the data encoding scheme adopted for the cells. 
For example, U.S. Pat. No. 6,222,762 and U.S. Patent Appli 
cation Publication No. 2004/0255090, “Tracking Cells For A 
Memory System.” filed on Jun. 13, 2003, both of which are 
incorporated herein by reference in their entirety, describe 
various data encoding schemes for multi-state flash memory 
cells. In one embodiment, data values are assigned to the 
threshold Voltage ranges using a Gray code assignment so that 
if the threshold voltage of a floating gate erroneously shifts to 
its neighboring threshold Voltage distribution, only one bit 
will be affected. One example assigns “11” to threshold volt 
age range E (state E), “10 to threshold Voltage range A (State 
A), “00 to threshold voltage range B (state B) and “01 to 
threshold voltage range C (state C). However, in other 
embodiments, Gray code is not used. Although FIG. 6 shows 
four states, the present invention can also be used with other 
multi-state structures including those that include more or 
less than four states. 

FIG. 6 shows three read reference voltages, Vra, Vrb and 
Vrc, for reading data from memory cells. By testing whether 
the threshold voltage of a given memory cell is above or 
below Vra, Vrb and Vrc, the system can determine what state 
the memory cell is in. That is, by knowing whether a memory 
cell turns on in response to Vra, Vrb and Vrc, the processor 
can figure out which state the memory cell is in. For example, 
when reading a memory cell, if the memory cell turns on in 
response to receiving Vrc but does not turn on in response to 
Vrb, then the memory cell is in state B. 

FIG. 6 also shows three verify reference voltages V va, Vvb 
and VVc. When programming memory cells to state A, the 
system will test whether those memory cells have a threshold 
Voltage greater than or equal to Vva. When programming 
memory cells to state B, the system will test whether the 
memory cells have threshold Voltages greater than or equal to 
Vvb. When programming memory cells to state C, the system 
will determine whether memory cells have their threshold 
Voltage greater than or equal to VVc. 

In general, during verify operations and read operations, 
the selected word line is connected to a voltage, a level of 
which is specified for each read operation (e.g., see read 
compare levels Vra, Vrb, and Vrc, of FIG. 6) or verify opera 
tion (e.g. see verify levels V va, Vvb, and V vc of FIG. 6) in 
order to determine whether a threshold voltage of the con 
cerned memory cell has reached such level. After applying the 
word line Voltage, the conduction current of the memory cell 
is measured to determine whether the memory cell turned on 
in response to the voltage applied to the word line. If the 
conduction current is measured to be greater than a certain 
value, then it is assumed that the memory cell turned on and 
the voltage applied to the word line is greater than the thresh 
old voltage of the memory cell. If the conduction current is 
not measured to be greater than the certain value, then it is 
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10 
assumed that the memory cell did not turn on and the Voltage 
applied to the word line is not greater than the threshold 
Voltage of the memory cell. 

There are many ways to measure the conduction current of 
a memory cell during a read or verify operation. In one 
example, the conduction current of a memory cell is mea 
Sured by the rate it discharges or charges a dedicated capacitor 
in the sense amplifier. In another example, the conduction 
current of the selected memory cell allows (or fails to allow) 
the NAND string that includes the memory cell to discharge 
a corresponding bit line. The Voltage on the bit line is mea 
sured after a period of time to see whether it has been dis 
charged or not. Note that the technology described hereincan 
be used with different methods known in the art for verifying/ 
reading. More information about verifying/reading can be 
found in the following patent documents that are incorporated 
herein by reference in their entirety: (1) United States Patent 
Application Pub. No. 2004/0057287; (2) United States Patent 
Application Pub No. 2004/0109357; (3) U.S. Patent Applica 
tion Pub. No. 2005/0169082; and (4) U.S. Patent Application 
Pub. No. 2006/0221692. The read and verify operations 
described above are performed according to techniques 
known in the art. Thus, many of the details explained can be 
varied by one skilled in the art. Other read and verify tech 
niques known in the art can also be used. 

In one embodiment, known as full sequence programming, 
memory cells can be programmed from the erased State E 
directly to any of the programmed states A, B or C. For 
example, a population of memory cells to be programmed 
may first be erased so that all memory cells in the population 
are in erased state E. While a first set of memory cells is being 
programmed from state E to state A, a second set of memory 
cells is being programmed from state E to state B and a third 
set of memory cells is being programmed from state E to state 
C. Full sequence programming is graphically depicted by the 
three curved arrows of FIG. 6. 

FIG. 7 illustrates an example of a two-pass technique of 
programming a multi-state memory cell that stores data for 
two different pages: a lower page and an upper page. Four 
states (threshold voltage distributions) are depicted: state E 
(11), state A (10), state B (00) and state C (01). For state E, 
both pages store a “1” For state A, the lower page stores a “0” 
and the upper page stores a “1. For state B, both pages store 
“0” For state C, the lower page stores “1” and the upper page 
stores “0” Note that although specific bit patterns have been 
assigned to each of the states, different bit patterns may also 
be assigned. 

In a first programming pass, the memory cells threshold 
Voltage level is set according to the data bit to be programmed 
into the lower logical page. If that data bit is a logic “1” the 
threshold Voltage is not changed since it is in the appropriate 
state as a result of having been earlier erased. However, if the 
data bit to be programmed is a logic “0” the threshold level of 
the cell is increased to be state A, as shown by arrow 530. 

In a second programming pass, the memory cells thresh 
old Voltage level is set according to the data bit being pro 
grammed into the upper logical page. If the upper logical page 
bit is to store a logic “1” then no programming occurs since 
the cell is in one of the states E or A, depending upon the 
programming of the lower page bit, both of which carry an 
upper page bit of “1” If the upper page data bit is to be a logic 
“0” then the threshold voltage is shifted. If the first pass 
resulted in the memory cell remaining in the erased State E, 
then in the second phase the memory cell is programmed so 
that the threshold voltage is increased to be within state C, as 
depicted by arrow 534. If the memory cell had been pro 
grammed into state A as a result of the first programming 
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pass, then the memory cell is further programmed in the 
second pass so that the threshold Voltage is increased to be 
within state B, as depicted by arrow 532. The result of the 
second pass is to program the cell into the state designated to 
store a logic “0” for the upper page without changing the data 
for the lower page. 

In one embodiment, a system can be set up to perform full 
sequence writing if enough data is written to fill up a word 
line. If not enough data is being written, then the program 
ming process can program the lower page with the data 
received. When subsequent data is received, the system will 
then program the upper page. In yet another embodiment, the 
system can start writing in the mode that programs the lower 
page and convert to full sequence programming mode if 
enough data is Subsequently received to fill up an entire (or 
most of a) word line's memory cells. More details of such an 
embodiment are disclosed in U.S. patent application titled 
“Pipelined Programming of Non-Volatile Memories Using 
Early Data.” Pub. No. 2006/0126390, Ser. No. 11/013,125, 
filed on Dec. 14, 2004, inventors Sergy Anatolievich Goro 
bets and Yan Li, incorporated herein by reference in its 
entirety. 

FIGS. 8A-C disclose another process for programming 
non-volatile memory that reduces the effect offloating gate to 
floating gate coupling. In one example of an implementation 
of the process taught by FIGS. 8A-C, the non-volatile 
memory cells store two bits of data per memory cell, using 
four data states. For example, assume that State E is the erased 
state and states A, B and C are the programmed States. State E 
stores data 1 1. State Astores data 01. State B stores data 10. 
State C stores data 00. This is an example of non-Gray coding 
because both bits change between adjacent states A & B. 
Other encodings of data to physical data states can also be 
used. Each memory cell Stores two data in two pages. For 
reference purposes these pages of data will be called upper 
page and lower page; however, they can be given other labels. 
With reference to state A for the process of FIGS. 8A-C, the 
upper page stores bit 0 and the lower page stores bit 1. With 
reference to state B, the upper page stores bit 1 and the lower 
page stores bit 0. With reference to state C, both pages store 
bit data 0. 

The programming process of FIGS. 8A-C is a two-step 
process. In the first step, the lower page is programmed. If the 
lower page is to remain data 1, then the memory cell state 
remains at state E. If the data is to be programmed to 0, then 
the threshold of voltage of the memory cell is raised such that 
the memory cell is programmed to state B'. FIG. 8A therefore 
shows the programming of memory cells from state E to state 
B'. State B' depicted in FIG. 8A is an interim state B; there 
fore, the verify point is depicted as Vvb, which is lower than 
VVb. 

In one embodiment, after a memory cell (on word line WLn 
is programmed from state E to state B', its neighbor memory 
cell (on word line WLn+1) on the NAND string will then be 
programmed with respect to its lower page. For example, 
after the lower page for a memory cell connected to WL0 is 
programmed, the lower page for a memory cell (the neighbor 
memory cell) on the same NAND string but connected to 
WL1 can be programmed. After programming the neighbor 
memory cell, the floating gate to floating gate coupling effect 
will raise the apparent threshold voltage of earlier memory 
cell to be programmed if that earlier memory cell had a 
threshold voltage raised from state E to state B'. This will have 
the effect of widening the threshold voltage distribution for 
state B", as depicted by threshold voltage distribution 550 in 
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12 
FIG. 8B. This apparent widening of the threshold voltage 
distribution will be remedied when programming the upper 
page. 

FIG. 8C depicts the process of programming the upper 
page. If the memory cell is in erased State E and the upper 
page is to remain at 1, then the memory cell will remain in 
state E. If the memory cell is in state E and its upper page data 
is to be programmed to 0, then the threshold voltage of the 
memory cell will be raised so that the memory cell is in state 
A. If the memory cell was in intermediate threshold voltage 
distribution 550 and the upper page data is to remain at 1, then 
the memory cell will be programmed to final state B. If the 
memory cell is in intermediate threshold voltage distribution 
550 and the upper page data is to become data 0, then the 
threshold voltage of the memory cell will be raised so that the 
memory cell is in state C. The process depicted by FIGS. 
8A-C reduces the effect of coupling between floating gates 
because only the upper page programming of neighbor 
memory cells will have an effect on the apparent threshold 
Voltage of a given memory cell. 

Although FIGS. 8A-C provide an example with respect to 
four data states and two pages of data, the concepts taught by 
FIGS. 8A-C can be applied to other implementations with 
more or less than four states, different than two pages, and/or 
other data encodings. 

FIG.9 is a table that describes one embodiment of the order 
for programming memory cells utilizing the programming 
method of FIGS. 8A-C. For memory cells connected to word 
line WL0, the lower page forms page 0 and the upper page 
forms page 2. For memory cells connected to word line WL1, 
the lower page forms page 1 and the upper page forms page 4. 
For memory cells connected to word line WL2, the lower 
page forms page 3 and the upper page forms page 6. For 
memory cells connected to word line WL3, the lower page 
forms page 5 and the upper page forms page 7. Memory cells 
are programmed according to page number, from page 0 to 
page 7. In other embodiments, other orders of programming 
can also be used. 

FIG. 10 illustrates example threshold voltage distributions 
(also called data states) for the memory cell array when each 
memory cell stores three bits of multi-state data. Other 
embodiment, however, may use more or less than three bits of 
data per memory cell (e.g., Such as four or more bits of data 
per memory cell). 

In the example of FIG. 10, each memory cell stores three 
bits of data; therefore, there are eight valid data states S0-S7. 
In one embodiment, data state S0 is below 0 volts and data 
states S1-S7 are above 0 volts. In other embodiments, all eight 
data States are above 0 Volts, or other arrangements can be 
implemented. In one embodiment, the threshold Voltage dis 
tribution S0 is wider than distributions S1-S7. 

In one embodiment, S0 is for erased memory cells. Data is 
programmed from S0 to S1-S7. As can be seen from FIG. 10, 
of S1-S7, S1 is the lowest in magnitude and S7 is the highest 
in magnitude (e.g. most extreme). 

Each data state corresponds to a unique value for the three 
data bits stored in the memory cell. In one embodiment, 
SO=111, S1=110, S2=101, S3=100, S4–011, S5=010, 
S6-001 and S7=000. Other mapping of data to states S0-S7 
can also be used. In one embodiment, all of the bits of data 
stored in a memory cell are stored in the same logical page. In 
other embodiments, each bit of data stored in a memory cell 
corresponds to different logical pages. Thus, a memory cell 
storing three bits of data would include data in a first page, 
data in a second page and data in a third page. In some 
embodiments, all of the memory cells connected to the same 
word line would store data in the same three pages of data. In 
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Some embodiments, the memory cells connected to a word 
line can be grouped into different sets of pages (e.g., by odd 
and even bit lines, or by other arrangements). 

In some prior art devices, the memory cells will be erased 
to state S0. From state S0, the memory cells can be pro 
grammed to any of states S1-S7. In one embodiment, known 
as full sequence programming, memory cells can be pro 
grammed from the erased state S0 directly to any of the 
programmed States S1-S7. For example, a population of 
memory cells to be programmed may first be erased so that all 
memory cells in the population are in erased state S0. While 
Some memory cells are being programmed from state S0 to 
state S1, other memory cells are being programmed from 
state S0 to state S2, state S0 to state S3, state S0 to state S4, 
state S0 to state S5, state S0 to state S6, and state S0 to state 
S7. Full sequence programming is graphically depicted by the 
seven curved arrows of FIG. 10 

FIG. 10 shows a set of target verify levels Vv1, Vv2, Vv3, 
Vv4, Vv5, Vv6, and Vv7. These target verify levels are used 
as comparison levels during the programming process. For 
example, when programming memory cells to state 1, the 
system will check to see if the threshold voltages of the 
memory cells has reached V v1. If the threshold voltage of a 
memory cell has not reached VV1, then programming will 
continue for that memory cell until its threshold voltage is 
greater than or equal to Vv1. If the threshold voltage of a 
memory cell has reached VV1, then programming will stop 
for that memory cell. Target verify level VV2 is used for 
memory cells being programmed to state 2. Target verify level 
Vv3 is used for memory cells being programmed to state 3. 
Target verify level Vv4 is used for memory cells being pro 
grammed to state 4. Target verify level V v5 is used for 
memory cells being programmed to state 5. Target verify level 
Vv6 is used for memory cells being programmed to state 6. 
Target verify level Vv7 is used for memory cells being pro 
grammed to state 7. 

FIG. 10 also shows a set of read compare levels Vr1, Vr2. 
Vr3, Vrá, Vr5, Vró, and Vr7. These read compare levels are 
used as comparison levels during the read process. By testing 
whether the memory cells turn on or remain offin response to 
the read compare levels Vr1, Vr2, Vr3, Vrá, Vr5, Vró, and Vr7 
being separately applied to the control gates of the memory 
cells, the system can determine which states that memory 
cells are storing data for. 

FIGS. 11A-11 I disclose another process for programming 
multi-state data. Prior to the first step, the memory cells will 
be erased so that they are in the erase threshold distribution of 
state S0. The process of FIGS. 11A-11 I assumes that each 
memory cell stores three bits of data, with each bit for a given 
memory cell being in a different page. The first bit of data (the 
leftmost bit) is associated with the first page. The middle bit 
is associated with the second page. The rightmost bit is asso 
ciated with the third page. In one embodiment, the correlation 
of data states to data is as follows: S0=111, S1=110, S2=101, 
S3=100, S4–011, S5=010, S6=001 and S7=000. However, 
other embodiments can use other data encoding schemes. 
When programming the first page (as described in FIG. 

11A), if the bit is to be data “1” then the memory cell will stay 
in state S0 (threshold voltage distribution 602). If the bit is to 
be data “0” then the memory cell is programmed to state S4 
(threshold voltage distribution 604). After adjacent memory 
cells are programmed, capacitive coupling between adjacent 
floating gates may cause the state S4 to widen as depicted in 
FIG. 11B. State S0 may also widen, but there is sufficient 
margin between S0 and S1 to ignore the effect. More infor 
mation about capacitive coupling between adjacent floating 
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14 
gates can be found in U.S. Pat. No. 5,867.429 and U.S. Pat. 
No. 6,657,891, both of which are incorporated herein by 
reference in their entirety. 
When programming the second page (see FIG. 11C), if the 

memory cell is in state S0 and the second page bit is data “1” 
then the memory cell stays in state S0. In some embodiments, 
the programming process for the second page will tighten 
threshold voltage distribution 602 to a new S0. If the memory 
cell was in state S0 and the data to be written to the second 
page is “0” then the memory cell is moved to state S2 (thresh 
old voltage distribution 606). State S2 has a verify point of 
C*. If the memory cell was in state S4 and the data to be 
written to the memory cell is “1” then the memory cell 
remains in S4. However, state S4 is tightened by moving the 
memory cells from threshold voltage distribution 604 to 
threshold voltage distribution 608 for state S4, as depicted in 
FIG. 11C. Threshold voltage distribution 608 has a verify 
point of E* (as compared to E** of threshold voltage distri 
bution 604). If the memory cell is in state S4 and the data to be 
written to the second page is a “0” then the memory cell has 
its threshold voltage moved to state S6 (threshold voltage 
distribution 610), with a verify point of G*. 

After the adjacent memory cells are programmed, states 
S0, S2, S4 and S6 are widened due to the floating gate to 
floating gate coupling, as depicted by threshold Voltages dis 
tributions 602, 606, 608 and 610 of FIG. 11D. 

FIGS. 11E, 11F, 11G and 11H depict the programming of 
the third page. While one graph can be used, the programming 
process is depicted in four graphs for visibility reasons. After 
the second page has been programmed, the memory cells are 
either in states S0, S2, S4 or S6. FIG. 11E shows the memory 
cells that are in state S0 being programmed for the third page. 
FIG. 11F shows the memory cells that are in state S2 being 
programmed for the third page. FIG. 11G shows the memory 
cells that are in state S4 being programmed for the third page. 
FIG. 11H shows the memory cells that are in state S6 being 
programmed for the third page. FIG. 11 I shows the threshold 
voltage distributions after the processes of FIGS. 11E, 11F, 
11G and 11H have been performed on the population of 
memory cells (concurrently or serially). 

If a memory cell is in state S0 and the third page data is “1” 
then the memory cell remains at state S0. If the data for the 
third page is “0” then the threshold voltage for the memory 
cell is raised to be in state S1, with a verify point of B (see 
FIG. 11E). 

If a memory cell is in state S2 and the data to be written in 
the third page is “1,” then the memory cell will remain in state 
S2 (see FIG. 11F). However, some programming will be 
performed to tighten the threshold distribution 606 to a new 
state S2 with a verify point of C. If the data to be written to the 
third page is “0” then the memory cell will be programmed to 
state S3, with a verify point of D. 

If a memory cell is in state S4 and the data to be written to 
the third page is “1” then the memory cell will remain in state 
S4 (see FIG. 11G). However, some programming will be 
performed so that threshold voltage distribution 608 will be 
tightened to new state S4 with a verify point of E. If a memory 
cell is in state S4 and the data to be written to the third page is 
“0” then the memory cell will have its threshold voltage raised 
to be in state S5, with a verify point of F (see FIG. 11G). 

If the memory cell is in state S6 and the data to be written 
to the third page is “1” then the memory cell will remain in 
state S6 (see FIG. 11H). However, there will be some pro 
gramming so that the threshold voltage distribution 510 is 
tightened to be in new state S6, with a verify point at G. If the 
third page data is “0” then the memory cell will have its 
threshold voltage programmed to state S7, with a verify point 
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at H (see FIG. 11H). At the conclusion of the programming of 
the third page, the memory cell will be in one of the eight 
states depicted in FIG. 11I. 

FIG. 12 is a flow chart describing a process for operating 
memory cells connected to a selected word line. In one 
embodiment, the process of FIG. 12 is used to program a 
block of memory cells. In one implementation of the process 
of FIG. 12, memory cells are pre-programmed in order to 
maintain even wear on the memory cells (step 650). In one 
embodiment, the memory cells are preprogrammed to the 
highest state, a random pattern, or any other pattern. In some 
implementations, pre-programming need not be performed. 

In step 652, memory cells are erased (in blocks or other 
units) prior to programming. Memory cells are erased in one 
embodiment by raising the p-well to an erase Voltage (e.g., 20 
Volts) for a sufficient period of time and grounding the word 
lines of a selected block while the source and bit lines are 
floating. In blocks that are not selected to be erased, word 
lines are floated. Due to capacitive coupling, the unselected 
word lines, bit lines, select lines, and the common source line 
are also raised to a significant fraction of the erase Voltage 
thereby impeding erase on blocks that are not selected to be 
erased. In blocks that are selected to be erased, a strong 
electric field is applied to the tunnel oxide layers of selected 
memory cells and the selected memory cells are erased as 
electrons of the floating gates are emitted to the Substrate side, 
typically by Fowler-Nordheim tunneling mechanism. As 
electrons are transferred from the floating gate to the p-well 
region, the threshold voltage of a selected cell is lowered. 
Erasing can be performed on the entire memory array, on 
individual blocks, or another unit of cells. In one embodi 
ment, after erasing the memory cells, all of the erased 
memory cells will be in state E or S0. One implementation of 
an erase process includes applying several erase pulses to the 
p-well and verifying between erase pulses whether the 
NAND strings are properly erased. 

At step 654, Soft programming is (optionally) performed to 
narrow the distribution of erased threshold voltages for the 
erased memory cells. Some memory cells may be in a deeper 
erased state than necessary as a result of the erase process. 
Soft programming can apply programming pulses to move 
the threshold voltage of the deeper erased memory cells to the 
erase threshold distribution (e.g., state E or S0). 

In step 656, the memory cells of the block are programmed 
After programming, the memory cells of the block can be 
read (step 658). Many different read processes known in the 
art can be used to read data. In some embodiments, the read 
process includes using ECC to correct errors. The data read, is 
output to the hosts that requested the read operation. The ECC 
process can be performed by the state machine, the controller 
or another device. 

FIG. 12 shows that the erase-program cycle can happen 
many times without or independent of reading, the read pro 
cess can occur many times without or independent of pro 
gramming, and the read process can happen any time after 
programming. The process of FIG. 12 can be performed at the 
direction of the state machine using the various circuits 
described above. In other embodiments, the process of FIG. 
12 can be performed at the direction of the controller using the 
various circuits described above. 

FIG. 13 is a flow chart describing one embodiment of a 
process for performing programming on memory cells con 
nected to a common word line to one or more target condi 
tions (e.g., data states or threshold Voltage ranges). The pro 
cess of FIG. 13 can be performed one or multiple times during 
step 656 of FIG. 12. For example, the process of FIG. 13 can 
be used to program memory cells (e.g., full sequence pro 
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gramming) from state E or S0 directly to any of states A-C 
(see FIG. 6) or S1-S7 (see FIG.10). Alternatively, the process 
of FIG. 13 can be used to perform one or each of the phases of 
the process of FIG. 7, one or each of the steps of the process 
of FIGS. 8A-C, or one or each of the steps of the process of 
FIGS. 11 A-I. For example, when performing the process of 
FIG. 7, the process of FIG. 13 is used to implement the first 
phase that includes programming some of the memory cells 
from state E to state A. The process of FIG. 13 can then be 
used again to implement the second phase that includes pro 
gramming some of the memory cells from state E to state C 
while programming other memory cells from State A to state 
B. 

Typically, the program Voltage applied to the control gate 
during a program operation is applied as a series of program 
pulses. Between programming pulses are a set of verify 
pulses to perform verification. In many implementations, the 
magnitude of the program pulses is increased with each Suc 
cessive pulse by a predetermined step size. In step 670 of FIG. 
13, the programming Voltage (Vpgm) is initialized to the 
starting magnitude (e.g., ~12-16V or another Suitable level) 
and a program counterPC maintained by State machine 222 is 
initialized at 1. In step 672, a program pulse of the program 
signal Vpgm is applied to the selected word line (the word line 
selected for programming). In one embodiment, the group of 
memory cells being programmed are all connected to the 
same word line (the selected word line). The unselected word 
lines receive one or more boosting Voltages (e.g., ~9 Volts) to 
perform boosting schemes known in the art. If a memory cell 
should be programmed, then the corresponding bit line is 
grounded. On the other hand, if the memory cell should 
remain at its current threshold voltage, then the correspond 
ing bit line is connected to Vdd to inhibit programming. In 
step 672, the program pulse is concurrently applied to all 
memory cells connected to the selected word line so that all of 
the memory cells connected to the selected word line are 
programmed concurrently. That is, they are programmed at 
the same time (or during overlapping times). In this manner 
all of the memory cells connected to the selected word line 
will concurrently have their threshold Voltage change, unless 
they have been locked out from programming. 

In step 674, the states of the selected memory cells are 
verified using the appropriate set of target levels. Step 674 
includes performing one or more verify operations. If it is 
detected that the threshold voltage of a memory cell has 
reached the appropriate target level, then that memory cell is 
locked out of further programming by, for example, raising its 
bit line Voltage to Vdd during Subsequent programming 
pulses. 

In step 676, it is checked whether all the memory cells have 
reached their target threshold Voltages. If so, the program 
ming process is complete and Successful because all selected 
memory cells were programmed and Verified to their target 
states. A status of “PASS” is reported in step 678. If, in 676, 
it is determined that not all of the memory cells have reached 
their target threshold Voltages, then the programming process 
continues to step 680. 

In step 680, the system counts the number of memory cells 
that have not yet reached their respective target threshold 
voltage distribution. That is, the system counts the number of 
cells that have failed the verify process. This counting can be 
done by the state machine, the controller, or other logic. In 
one implementation, each of the sense block 300 (see FIG. 3) 
will store the status (pass/fail) of their respective cells. These 
values can be counted using a digital counter. As described 
above, many of the sense blocks have an output signal that is 
wire-Ord together. Thus, checking one line can indicate that 
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no cells of a large group of cells have failed Verify. By appro 
priately organizing the lines being wired-Or together (e.g., a 
binary tree-like structure), a binary search method can be 
used to determine the number of cells that have failed. In such 
a manner, if a small number of cells failed, the counting is 
completed rapidly. If a large number of cells failed, the count 
ing takes a longer time. More information can be found in 
United States Patent Publication 2008/0126676, incorporated 
herein by reference. In another alternative, each of the sense 
amplifiers can output an analog Voltage or current if its cor 
responding cell has failed and an analog Voltage or current 
Summing circuit can be used to count the number of cells that 
have failed. 

In one embodiment, there is one total counted, which 
reflects the total number of memory cells currently being 
programmed that have failed the last verify step. In another 
embodiment, separate counts are kept for each data state. 

In step 682, it is determined whether the count from step 
680 is less than or equal to a predetermined limit. In one 
embodiment, the predetermined limit is the number of bits 
that can be corrected by ECC during a read process for the 
page of memory cells. If the number of failed cells is less than 
or equal to the predetermined limit, than the programming 
process can stop and a status of "PASS is reported in step 
678. In this situation, enough memory cells programmed 
correctly Such that the few remaining memory cells that have 
not been completely programmed can be corrected using 
ECC during the read process (see step 658 of FIG. 12). 

In another embodiment, the predetermined limit can be less 
than the number of bits that can be corrected by ECC during 
a read process to allow for future errors. When programming 
less than all of the memory cells for a page, or comparing a 
count for only one data state (or less than all states), than the 
predetermined limit can be a portion (pro-rata or not pro-rata) 
of the number of bits that can be corrected by ECC during a 
read process for the page of memory cells. In some embodi 
ments, the limit is not predetermined. Instead, it changes 
based on the number of errors already counted for the page, 
the number of program-erase cycles performed, temperature 
or other criteria. 

If the number of failed cells is not less than the predeter 
mined limit, than the programming process continues at Step 
684 and the program counter PC is checked against the pro 
gram limit value (PL). One example of a program limit value 
is 20; however, other values can be used. If the program 
counter PC is not less than the program limit value PL, then 
the program process is considered to have failed and a status 
of FAIL is reported in step 688. If the program counter PC is 
less than the program limit value PL, then the process con 
tinues at step 686 during which time the Program Counter PC 
is incremented by 1 and the program Voltage Vpgm is stepped 
up to the next magnitude. For example, the next pulse will 
have a magnitude greater than the previous pulse by a step 
size (e.g., a step size of 0.1-0.4 volts). After step 686, the 
process loops back to step 672 and another program pulse is 
applied to the selected word line. 

FIG. 14 shows a portion of the voltage waveform applied to 
the selected word line and, therefore, to the control gates of 
the memory cells connected to the selected word line during 
the programming for the process of FIG. 13. The waveform 
shows the programming pulse (Program) applied during step 
672, the verify pulses (Verify) applied during step 674 and the 
time period (count failed cells) for counting the failed cells 
during step 680 for parts of three iterations of the loops 
comprising steps 672–686 of FIG. 13. The example of FIG. 14 
corresponds to the embodiments with two bits per memory 
cell and four data states. Therefore, the verify process 
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includes a verify pulse at Vva, a verify pulse at Vvb and a 
verify pulse a Vvc. In embodiments with three bits per 
memory cell and eight data States, there may be up to eight 
verify pulses. Note that some embodiments will use less than 
all three or eight verify pulses in some iterations when it is 
clear that no memory cell needs to be tested for certain data 
states. Additionally, embodiments with different numbers of 
data states will use different numbers of verify pulses. In the 
embodiment of FIG. 14, the verify operations (step 674) and 
the counting the failed cells (step 680) are performed between 
programming pulses. Therefore, as soon as it is determined 
that all memory cells have verified or that the number of 
memory cells that failed verification is less than the predeter 
mined limit (or a limit that is not predetermined), than the 
programming process can stop without applying the next 
programming pulse. 

FIG. 15 shows a portion of another embodiment of the 
voltage waveform applied to the selected word line and, 
therefore, to the control gates of the memory cells connected 
to the selected word line during the programming process of 
FIG. 13. This waveform shows the programming pulse (Pro 
gram) applied during step 672, the verify pulses (Verify) 
applied during step 674 and the time period (count failed 
cells) for counting the failed cells during step 680 for parts of 
three iterations of the loops comprising steps 672–686 of FIG. 
13. In the embodiment of FIG. 15, the verify operations (step 
674) are performed between programming pulses. However, 
the counting of the failed cells is performed during the next 
program pulse, which can save time. When it is determined 
that all memory cells have verified or that the number of 
memory cells that failed verification is less than the predeter 
mined limit (or a limit that is not predetermined), than the 
programming process can stop; however, the next program 
ming pulse has already been applied. As discussed above, the 
results of the verification process can be stored in latches 494. 
These latches can be read during the next program pulse. 

FIG. 16 shows a portion of another embodiment of the 
voltage waveform applied to the selected word line and, 
therefore, to the control gates of the memory cells connected 
to the selected word line. This waveform shows the program 
ming pulse (Program) applied during step 672, the verify 
pulses (Verify) applied during step 674 and the time period 
(count failed cells) for counting the failed cells during step 
680 for parts of three iterations of the loops comprising steps 
672–686 of FIG. 13. The embodiment of FIG. 16 pertains to a 
programming process that is only verifying for one state. For 
example, when programming data to four, eight or more 
states, the process may reach a condition where the memory 
cells have all reached their target states except for the memory 
cells being programmed to the highest state (e.g., state C or 
state S7). At that point, the verify process will only perform a 
verify at Vvc (see FIG. 6) or Vv7 (see FIG. 7). Thus, FIG. 16 
only shows on verify pulse for testing whether the memory 
cells the highest data state (or another state that is not the 
highest). In another example, the waveform of FIG.16 can be 
used with a programming operation that is only programming 
to one state; for example, the first phase of the process of FIG. 
7, the process of FIG. 8A, the process of FIG. 11A or other 
processes. For programming operations that program to more 
than one state, the additional verify pulses can be added to the 
waveform, as appropriate. In the embodiment of FIG. 16, the 
verify operations (step 674) and the counting the failed cells 
(step 680) are performed between programming pulses. 

FIG. 17 shows a portion of another embodiment of the 
voltage waveform applied to the selected word line and, 
therefore, to the control gates of the memory cells connected 
to the selected word line. This waveform shows the program 
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ming pulse (Program) applied during step 672, the verify 
pulses (Verify) applied during step 674 and the time period 
(count failed cells) for counting the failed cells during step 
680 for parts of three iterations of the loops comprising steps 
672–686 of FIG. 13. Like FIG. 16, the waveform of FIG. 17 
pertains to a programming process that is only verifying for 
one state. In the embodiment of FIG. 17, the verify operations 
(step 674) are performed between programming pulses. How 
ever, the counting of the failed cells is performed during the 
next program pulse. 

Because the program Voltage is applied to all memory cells 
connected to a word line, an unselected memory cell (a 
memory cell that is not to be programmed) on the word line 
may become inadvertently programmed. The unintentional 
programming of the unselected cell on the selected word line 
is referred to as “program disturb. For example, a memory 
cell in state E may have its threshold Voltage increased to a 
level outside of state E. FIG. 18 shows threshold voltage 
versus number of memory cells for data states E, A, B and C 
for a population of memory cells during a programming pro 
cess. State E is depicted as having a Subset of its memory 
cells, indicated by shaded region 702, being subjected to 
program disturb so that their respective threshold Voltage is 
above the level normally intended to be part of state E. The 
program disturb is more severe when programming memory 
cells to the highest (most extreme) state (e.g. state C or S7). 
This is because it generally takes more Voltage pulses to 
program memory cells to the highest state and the more pulses 
applied increases the chance of program disturb. Further 
more, since the magnitude of the Voltage increases with each 
pulse, the highest data state is programmed with higher Volt 
ages, which also can increase the chance of program disturb. 

FIG. 18 also shows that some of the memory cells (see 
shaded region 704) that are being programmed to highest 
state C have not yet reached VVc. In this case, continuing to 
program the memory cells represented by shaded region 704 
will only exacerbate the program disturb of the memory cells 
in shaded region 702. Therefore, the programming process 
described above stops the programming of memory cells to 
the highest state (and other data states) before all memory 
cells have reached the target (e.g., have reached Vvc) in order 
to reduce (or prevent further exacerbation) of the program 
disturb. However, the programming is only stopped when the 
number of memory cells not fully programmed is less than the 
number of cells that can be corrected by ECC, as explained 
above with respect to steps 680 and 682 of FIG. 13. 

In one embodiment, instead of counting the number of cells 
that are below the verify compare value (e.g., Vvc), the sys 
tem can count the number of cells that are below an interme 
diate compare value and use that count as an estimate of how 
many cells are below the verify compare value. For example, 
FIG. 19 shows the threshold voltage distribution for data state 
C with verify compare value Vvc and read compare value Vrc. 
FIG. 19 also shows an intermediate compare value VvcL. In 
one embodiment of step 680 of FIG. 13, the system will count 
the number of memory cells Supposed to be programmed to 
state C that have their threshold voltage less than VvcL in 
order to estimate the number of memory cells supposed to be 
programmed to state C that have their threshold voltage less 
than Vvc. 

The number of memory cells that have their threshold 
voltage less than VvcL is proportional to the number of 
memory cells that have their threshold voltage less than VVc. 
For example, if VvcL is 0.4-0.5v lower than Vvc, than the 
number of memory cells that have their threshold voltage less 
than VvcL is approximately one tenth (/10) of the number of 
memory cells that have their threshold voltage less than VVc. 
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If VvcL is 0.8-1.0V lower than Vvc, than the number of 
memory cells that have their threshold voltage less than VvcL 
is approximately one hundredth (/100) of the number of 
memory cells that have their threshold voltage less than VVc. 
In some implementations, the number of cells that are 
counted as being below the compare value will reduce with a 
factor of 10 for each 0.4-0.5V. FIG. 19 shows shaded region 
712 representing those memory cells with a threshold voltage 
below Vvc and above Vrc. Shaded region 714 represents 
those memory cells with a threshold voltage below Vrc and 
above VvcL. Shaded region 714 represents those memory 
cells with a threshold voltage below VvcL. Thus, the number 
of memory cells that have their threshold voltage less than 
Vvc is the sum of shaded regions 712+714+716. As can be 
seen this is significantly larger than the number of memory 
cells that have their threshold voltage less than VvcL. In some 
embodiments, counting the number of memory cells below 
the intermediate compare value VvcL will be faster than 
counting the number of memory cells below VVc. 

FIG.20 shows a portion of the voltage waveform applied to 
the selected word line (and, therefore, to the control gates of 
the memory cells connected to the selected word line) during 
the programming process of FIG. 13 for the embodiment of 
step 680 in which the system will count the number of 
memory cells Supposed to be programmed to state C that have 
their threshold Voltage less than intermediate compare value 
VvcL. If the number of memory cells supposed to be pro 
grammed to state C that have their threshold voltage less than 
VvcL is less than or equal to a particular limit (see step 682 of 
FIG. 13), then the programming process is concluded. Since 
VvcL is lower than VVc, the particular limit compared against 
is lower than if comparing against Vvc. In the two examples 
above, the limit used for VvcL is 10 or 100 times Smaller than 
the limit used for Vvc. The waveform of FIG. 20 shows the 
programming pulse (Program) applied during step 672, the 
verify pulses (Verify) applied during step 674 and the time 
period (count failed cells) for counting the failed cells during 
step 680 for parts of three iterations of the loops comprising 
steps 672–686 of FIG. 13. In this embodiment, step 680 (count 
failed cells) includes applying a Voltage pulse of VVcL in 
order to test whether the memory cells have a threshold volt 
age of at least VvcL. Other methods of testing the threshold 
Voltage can also be used. Additionally note that although the 
Voltage pulse is depicted as a perfect square wave, in reality 
the Voltage pulse (and the other pulses depicted in this figure 
and other figures) is not likely to be a perfect square and in 
Some cases it may be a different shape than a square wave. 
The example of FIG. 20 corresponds to the embodiments 

with two bits per memory cell and four data states. Therefore, 
the verify process includes a verify pulse at Vva, a verify pulse 
at Vvb and a verify pulse a Vvc. In embodiments with three 
bits per memory cell and eight data states, there may be up to 
eight verify pulses. Note that some embodiments will use less 
than all three or eight verify pulses in some iterations when it 
is clear that no memory cell needs to be tested for certain data 
states. Additionally, embodiments with different numbers of 
data states will use different numbers of verify pulses. In the 
embodiment of FIG. 20, the verify operations (step 674) and 
the counting the failed cells (step 680) are performed between 
programming pulses. Therefore, as soon as it is determined 
that all memory cells have verified or that the number of 
memory cells that failed verification is less than a limit, than 
the programming process can stop without applying the next 
programming pulse. 

FIG.21 shows a portion of the voltage waveform applied to 
the selected word line (and, therefore, to the control gates of 
the memory cells connected to the selected word line) for 
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another embodiment of step 680 of FIG. 13, in which the 
system will count the number of memory cells supposed to be 
programmed to state C that have their threshold voltage less 
than VvcL. This waveform shows the programming pulse 
(Program) applied during step 672, the verify pulses (Verify) 
applied during step 674 and the time period (count failed 
cells) for counting the failed cells during step 680 for parts of 
three iterations of the loops comprising steps 672–686 of FIG. 
13. In this embodiment, step 680 (count failed cells) includes 
applying a voltage pulse of VvcL in order to test whether the 
memory cells have a threshold voltage of at least VvcL. Other 
methods of testing the threshold Voltage can also be used. In 
the embodiment of FIG. 21, the verify operations (step 674) 
are performed between programming pulses. However, the 
counting of the failed cells (step 680) is performed during the 
next program pulse. As discussed above, the results of the 
verification process can be stored in latches 494. These 
latches can be read during the next program pulse. 

FIG.22 shows a portion of the voltage waveform applied to 
the selected word line (and, therefore, to the control gates of 
the memory cells connected to the selected word line) for 
another embodiment of step 680 of FIG. 13, in which the 
system will count the number of memory cells supposed to be 
programmed to state C that have their threshold voltage less 
than VvcL. This waveform shows the programming pulse 
(Program) applied during step 672, the verify pulses (Verify) 
applied during step 674 and the time period (count failed 
cells) for counting the failed cells during step 680 for parts of 
three iterations of the loops comprising steps 672–686 of FIG. 
13. The embodiment of FIG. 16 pertains to a programming 
process that is only verifying for one state. For example, when 
programming data to four, eight or more states, the process 
may reach a condition where the memory cells have all 
reached their target states except for the memory cells being 
programmed to the highest state (e.g., state C or state S7). At 
that point, the verify process will only perform a verify at Vvc 
(see FIG. 6) or Vv7 (see FIG. 7). Thus, FIG. 22 only shows 
one verify pulse for testing whether the memory cells reached 
the highest data state (or another state that is not the highest). 
The waveform of FIG. 22 can be used with a programming 
operation that is only programming to one state; for example, 
the first phase of the process of FIG. 7, the process of FIG.8A, 
the process of FIG. 11A or other processes. For programming 
operations that program to more than one state, the additional 
Verify pulses can be added to the waveform, as appropriate. In 
the embodiment of FIG. 22, the verify operations (step 674) 
and the counting the failed cells (step 680) are performed 
between programming pulses. In this embodiment, like the 
embodiment of FIG. 21, step 680 (count failed cells) includes 
applying a voltage pulse of VvcL in order to test whether the 
memory cells have a threshold voltage of at least VvcL. Other 
methods of testing the threshold Voltage can also be used. 

FIG.23 shows a portion of the voltage waveform applied to 
the selected word line (and, therefore, to the control gates of 
the memory cells connected to the selected word line) for 
another embodiment of step 680 of FIG. 13, in which the 
system will count the number of memory cells supposed to be 
programmed to state C that have their threshold voltage less 
than VvcL. This waveform shows the programming pulse 
(Program) applied during step 672, the verify pulses (Verify) 
applied during step 674 and the time period (count failed 
cells) for counting the failed cells during step 680 for parts of 
three iterations of the loops comprising steps 672–686 of FIG. 
13. Like FIG. 22, the waveform of FIG. 23 pertains to a 
programming process that is only verifying for one state. In 
the embodiment of FIG. 23, the verify operations (step 674) 
are performed between programming pulses. However, the 
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counting of the failed cells (count failed cells) of step 680 is 
performed during the next program pulse. In this embodi 
ment, like the embodiment of FIG. 21, step 680 (count failed 
cells) includes applying a Voltage pulse of VvcL in order to 
test whether the memory cells have a threshold voltage of at 
least VvcL. In one embodiment, the voltage pulse of VvcL is 
applied prior to the next program pulse while the counting of 
failed cells is performed concurrently with the next program 
pulse. Other methods of testing the threshold voltage can also 
be used. 

FIGS. 20-23 describe the use of a intermediate compare 
level (e.g., VvcL) when performing step 680 for memory cells 
being programmed to state C. In one set of embodiments, step 
680 will be performed on memory cells being programmed to 
states other than state C (which is the highest state, or most 
extreme state) by counting the number of memory cells that 
have not reached the respective verify compare levels (e.g. 
Vva and Vwb). Thus, programming to state A will stop when 
less than a first predetermined number of memory cells 
intended to be programmed to state A have not reached V va, 
programming to state B will stop when less than a second 
predetermined number (maybe the same or different than the 
first predetermined number) of memory cells intended to be 
programmed to state B have not reached Vvb, and program 
ming to state C will stop when less than a first predetermined 
number of memory cells intended to be programmed to state 
Chave not reached VvcL. 

In another set of embodiment, step 680 and 682 will only 
be performed by memory cells being programmed to the 
highest, or most extreme, state (e.g. state C or state S7). 

In another set of embodiments, step 680 will use a inter 
mediate compare value for each state. For example, step 680 
will use an intermediate compare value for memory cells 
being programmed to State A that is lower than Vva and step 
680 will use an intermediate compare value for memory cells 
being programmed to state B that is lower than Vvb. 

In some embodiments, such as where the threshold volt 
ages are lowered for programming and raised during erase, 
the intermediate compare value will be higher than the verify 
compare value. 

FIGS. 20-23 illustrate the use of an intermediate compare 
level (e.g., VvcL) with memory cells that store two bits of 
data. However, the concepts taught by FIGS. 20-23 can be 
applied to memory cells that store more than two bits of data. 
For example, counting memory cells that have a threshold 
voltage less than the intermediate value in step 680 can be 
used with the programming processes of FIGS. 10 and 11. In 
one example that includes memory cells storing three bits of 
data, step 680 will count memory cells that have threshold 
voltages less than the respective verify levels for S1-S6 (e.g., 
Vv1, Vv2, Vv3, Vv4, Vv5, Vv6) for memory cells being 
programmed to S1-S6 and count memory cells that are less 
than Vv7L for memory cells being programmed to state S7. 
where Vv7L is 0.5v (or a different value) less than Vv7. In one 
alternative, Vv7L can be equal to Vv6, Vv5 or another value 
near those values. 

In another example that includes memory cells storing 
three bits of data, step 680 will count memory cells that have 
threshold voltages less than the respective verify levels for 
S1-S5 (e.g., Vv1, Vv2, Vv3, Vv4, and Vv5) for memory cells 
being programmed to S1-S5, count memory cells that are less 
than Vv6L for memory cells being programmed to state S6, 
and count memory cells that are less than Vv7L for memory 
cells being programmed to state S7, where VvGL is 0.5v (or a 
different value) less than Vv6. 

FIG. 24 describes another embodiment where VvcL is set 
to be equal to Vvb, or Vv7L is set to be VvG. Additionally, 
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after determining that the number of failed cells (e.g., cells 
having a threshold Voltage that is less the intermediate com 
pare value) is less than the predetermined number, a prede 
termined number of one or more additional programming 
pulses is applied. In the embodiments that perform step 680 
during the next program pulse (see FIGS. 21 and 23), the 
predetermined number of one or more additional program 
ming pulses are applied after the next program pulse. The 
process of FIG. 24 is similar to the process of FIG. 13 (with 
like reference numbers depicting the same steps); however, 
steps 680 and 682 are replaced by steps 740-744. Step 740 is 
similar to step 680 except that VvcL=Vvb or Vv7L=Vv6. 
Step 742 is similar to step 682, except the predetermined limit 
compared to the failed cells may be different. If the number of 
failed cells is greater than the predetermined limit, than the 
process continues at step 684. If the number of failed cells is 
less than or equal to the predetermined limit, than the process 
continues at step 744. In step 744, a predetermined number of 
programming pulses are applied to the memory cells via the 
selected word line. Verify operations (with lockout for 
memory cells that verify successfully) are performed 
between these predetermined number of programming 
pulses. The predetermined limit and the predetermined num 
ber of programming pulses can be determined based on simu 
lation or device characterization. In one embodiment, the 
limit and the number of programming pulses are set dynami 
cally based on number of program-erase cycles, temperature 
or other factors, rather than be predetermined. 

FIG. 25 describes another embodiment that includes 
applying a predetermined number of programming pulses 
and concluding the programming after all memory cells 
intended to be programmed to state B have sufficiently been 
programmed to state B. It is assumed that when after all 
memory cells intended to be programmed to state B have 
Sufficiently been programmed to state B, that a small number 
of memory cells intended to be programmed to state C do not 
yet have threshold voltages that have reached Vvb. The phrase 
“Sufficiently programmed' means that enough memory cells 
have reached State B to consider the programming process 
Successful. For example, when programming a group of 
memory cells to state B using the process of FIG. 13, the 
group of memory cells are Sufficiently programmed when 
enough memory cells have successfully verified such that the 
number of memory cells that have failed verification is less 
than predetermined limit (e.g., the predetermined limit that 
can be fixed with ECC). At this point, it is assumed that less 
than the predetermined limit of memory cells intended to be 
programmed to state C would have failed verification for state 
B if so tested. Therefore, only apply a predetermined addi 
tional set of one or more programming pulses and then stop 
the programming. When applying the additional set of one or 
more programming pulses (in this embodiment or the 
embodiment of FIG. 24), there will be no counting failed cells 
during or between the additional set of one or more program 
ming pulses. To achieve this embodiment, the memory cells 
being programmed to state C will perform the process of FIG. 
25, while the memory cells being programmed to States A and 
B will perform the process of FIG. 13. 
The process of FIG.25 is similar to the process of FIG. 13, 

with the following exceptions. If, in step 676, it is determined 
that not all memory cells have been properly verified, then in 
step 780 it is determined whetherall memory cells intended to 
be programmed to state Bhave Sufficiently been programmed 
to state B. If not, the process continues at step 684. If all 
memory cells intended to be programmed to state B have 
sufficiently been programmed to state B, then in step 782 a 
predetermined number of programming pulses are applied to 
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the memory cells via the selected word line. Verify operations 
(with lockout for memory cells that verify successfully) are 
performed between these predetermined number of program 
ming pulses. The number of programming pulses are applied 
to the memory cells during step 782 can be determined based 
on experimentation, simulation and/or device characteriza 
tion. The amount of the increment between programming 
pulses may affect the number of programming pulses that are 
applied to the memory cells during step 782. 
The embodiment of FIG.25 can also be used with memory 

cells storing more than two bits of data. For example, the 
process of FIG. 25 can be used with memory cells being 
programmed as depicted in FIGS. 10 and 11H, as well as 
other programming processes. In one embodiment, when 
using the process of FIG. 25 with memory cells storing three 
bits of data, step 780 test whether all memory cells intended 
to be programmed to state S6 (the second highest state) have 
sufficiently been programmed to state S6. 
One solution for achieving tight threshold voltage distri 

butions, without unreasonably slowing down the program 
ming process, includes using a two-phase programming pro 
cess. The first phase, a coarse programming phase, includes 
an attempt to raise a threshold Voltage in a faster manner and 
paying less attention to achieving a tight threshold Voltage 
distribution. The second phase, a fine programming phase, 
attempts to raise the threshold Voltage in a slower manner in 
order to reach the target threshold voltage, while also achiev 
ing a tighter threshold Voltage distribution. One example of a 
coarse/fine programming methodology can be found in U.S. 
Pat. No. 6,643,188, incorporated herein by reference in its 
entirety. 

FIGS. 26A-C and 27A-C provide more detail of one 
example of a coarse/fine programming methodology. FIGS. 
26A and 27A depict the programming pulses Vpgm applied 
to the control gate. FIGS. 26B and 27B depict the bit line 
voltages for the memory cells being programmed. FIGS. 26C 
and 27C depict the threshold voltage of the memory cells 
being programmed. This example uses two verify levels, indi 
cated in the Figures as V ver1 and V ver2. The final target level 
is Vver1. When a threshold voltage of the memory cell has 
reached V ver1, the memory cell will be inhibited from further 
programming by applying an inhibit Voltage to the bit line 
corresponding to that memory cell. For example, the bit line 
voltage can be raised to Vinhibit (See FIG. 26B and FIG. 
27B). In one embodiment, Vinhibit is Vdd. However, when a 
memory cell has reached a threshold voltage close to (but 
lower than) the target value V ver1, the threshold voltage shift 
to the memory cell during Subsequent programming pulses is 
slowed down by applying a certain bias Voltage to the bit line, 
typically in the order of 0.3v to 0.8v. Because the rate of 
threshold voltage shift is reduced during the next few pro 
gramming pulses, the final threshold Voltage distribution can 
be narrower than otherwise. To implement this method, a 
second verify level that is lower than that of V ver1 is used. 
This second verify level is depicted as Vver2. When the 
threshold voltage of the memory cell is larger than Vver2, but 
still lower than Vver1, the threshold voltage shift to the 
memory cell will be reduced for Subsequent programming 
pulses by applying a bit line bias Vs (FIG. 27B). Note that in 
this case, two verify operations are required for each state. 
One verify operation at the corresponding V ver1 for each 
state, and one verify operation at the corresponding V ver2 for 
each state. This may increase the total time needed to program 
the memory cells. However, a larger AVpgm step size can be 
used to speed up the process. 

FIGS. 26A, 26B, and 26C show the behavior of a memory 
cell whose threshold voltage moves past Vver2 and V ver1 in 
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one programming pulse. For example, the threshold Voltage is 
depicted in FIG. 26C to pass V ver2 and V ver1 in between t2 
and t3. Thus, prior to t3, the memory cell is in the coarse 
phase. After t3, the memory cell is in the inhibit mode. 

FIGS. 27A, 27B, and 27C depict a memory cell that enters 
both the coarse and fine programming phases. The threshold 
voltage of the memory cell crosses V ver2 in between time t2 
and time t3. Prior to t3, the memory cell is in the coarse phase. 
After t3, the bit line voltage is raised to Vs; therefore, the 
memory cell is in the fine phase. In between t3 and tak, the 
threshold voltage of the memory cell crosses V ver1; there 
fore, the memory cell is inhibited from further programming 
by raising the bit line voltage to Vinhibit. 

The technology described above with respect to stopping 
programming when an estimated number of memory cells 
that have failed verification is less than a limit can be used 
with the coarse/fine programming described with respect to 
FIGS. 26A-C and 27A-C (or a different type of coarse/fine 
programming). The intermediate value used to estimate the 
number of memory cells that have failed verification can be 
Vver2. 
One embodiment includes applying a programming signal 

to a first set of non-volatile storage elements in order to 
program the first set of non-volatile storage elements to a first 
target condition, determining whether the amount of non 
volatile storage elements of the first set that have not yet 
reached an intermediate condition is less than a compare 
value, and concluding programming of the first set of non 
Volatile storage elements in response to determining that the 
amount of non-volatile storage elements of the first set that 
have not yet reached the intermediate condition is less than 
the compare value. The intermediate condition is different 
than the first target condition. 
One embodiment includes a first set of non-volatile storage 

elements and one or more managing circuits in communica 
tion with the first set of non-volatile storage elements. The 
one or more managing circuits perform a programming pro 
cess on the first set of non-volatile storage elements to pro 
gram the first set of non-volatile storage elements to a first 
target condition. The programming process includes the one 
or more managing circuits applying a programming signal to 
the first set of non-volatile storage elements and Verifying 
whether the first set of non-volatile storage elements have 
reached the first target condition. The one or more managing 
circuits determine a number of non-volatile storage elements 
of the first set that have not yet reached an intermediate 
condition during the programming process. The intermediate 
condition is different than the first target condition. The one or 
more managing circuits conclude the programming process 
for the first set of non-volatile storage elements if the number 
of non-volatile storage elements of the first set that have not 
yet reached the intermediate condition is less than the com 
pare value. 
One embodiment includes applying a programming signal 

to a plurality of non-volatile storage elements in order to 
concurrently program the non-volatile storage elements to 
different target conditions, verifying whether the non-volatile 
storage elements have reached their respective target condi 
tions, counting non-volatile storage elements of the first Sub 
set that have not yet reached an intermediate condition with 
respect to the highest target condition, and concluding pro 
gramming of the non-volatile storage elements in response to 
counting less than a predetermined number of the non-vola 
tile storage elements of the first subset to have not yet reached 
the intermediate condition and determining that other non 
Volatile storage elements intended for other target conditions 
of the different target conditions are sufficiently programmed 
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Non-volatile storage elements reaching the highest target 
condition pass through the intermediate condition. The dif 
ferent target conditions include a lowest target condition and 
a highest target condition. The programming signal includes 
a set of pulses. The plurality of non-volatile storage elements 
includes a first Subset of non-volatile storage elements being 
programmed to the highest target condition. The Verifying 
includes performing one or more verifying processes 
between pulses. 
One embodiment includes applying a programming signal 

to a plurality of non-volatile storage elements in order to 
program the non-volatile storage elements to different target 
conditions. The programming signal includes a set of pulses. 
The different target conditions include a first target condition 
and a second target condition. The plurality of non-volatile 
storage elements includes a first Subset of non-volatile stor 
age elements being programmed to the first target condition 
and a second Subset of non-volatile storage elements being 
programmed to the second target condition. The method fur 
ther comprises verifying whether the second subset of non 
volatile storage elements have sufficiently reached the second 
target condition, applying a predetermined number of one or 
more pulses to the first Subset of non-volatile storage ele 
ments in response to determining that the second Subset of 
non-volatile storage elements have Sufficiently reached the 
second target condition, and concluding programming of the 
first Subset of non-volatile storage elements in response to and 
after applying the predetermined number of one or more 
pulses to the first Subset of non-volatile storage elements. 
The foregoing detailed description of the invention has 

been presented for purposes of illustration and description. It 
is not intended to be exhaustive or to limit the invention to the 
precise form disclosed. Many modifications and variations 
are possible in light of the above teaching. The described 
embodiments were chosen in order to best explain the prin 
ciples of the invention and its practical application, to thereby 
enable others skilled in the art to best utilize the invention in 
various embodiments and with various modifications as are 
Suited to the particular use contemplated. It is intended that 
the scope of the invention be defined by the claims appended 
hereto. 

I claim: 
1. An non-volatile storage apparatus, comprising: 
a first set of non-volatile storage elements; and 
one or more managing circuits in communication with the 

first set of non-volatile storage elements, the one or more 
managing circuits perform a programming process on 
the first set of non-volatile storage elements to program 
the first set of non-volatile storage elements to a first 
target condition, the programming process includes the 
one or more managing circuits applying a programming 
signal to the first set of non-volatile storage elements and 
verifying whether the first set of non-volatile storage 
elements have reached the first target condition, the one 
or more managing circuits determine a number of non 
volatile storage elements of the first set that have not yet 
reached an intermediate condition during the program 
ming process, the intermediate condition is different 
than the first target condition, the one or more managing 
circuits conclude the programming process for the first 
set of non-volatile storage elements if the number of 
non-volatile storage elements of the first set that have not 
yet reached the intermediate condition is less than the 
a compare value. 

2. The non-volatile storage apparatus of claim 1, wherein: 
the programming signal includes a set of pulses; 
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the one or more managing circuits perform the verifying 
between pulses. 

3. The non-volatile storage apparatus of claim 1, wherein: 
the first set of non-volatile storage elements are associated 

with a set of threshold Voltage ranges, the first target 5 
condition is a highest threshold Voltage range set of 
threshold Voltage ranges, the intermediate condition is a 
threshold voltage value below the highest threshold volt 
age range. 

4. The non-volatile storage apparatus of claim 1, further 10 
comprising: 

a second set of non-volatile storage elements, the one or 
more managing circuits program the second set of non 
Volatile storage elements to a second target condition; 
and 15 

a third set of non-volatile storage elements, the one or more 
managing circuits program the third set of non-volatile 
storage elements to a third target condition, the first 
target condition is the most extreme target condition in 
comparison to the second target condition and the third 
target condition. 

5. The non-volatile storage apparatus of claim 1, further 
comprising: 

a second set of non-volatile storage elements, the one or 
more managing circuits program the second set of non 
Volatile storage elements to a second target condition 
concurrently with programming the first set of non-vola 
tile storage elements to the first target condition; and 

a third set of non-volatile storage elements, the one or more 
managing circuits program the third set of non-volatile 
storage elements to a third target condition concurrently 
with programming the first set of non-volatile storage 
elements to the first target condition. 

25 
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6. The non-volatile storage apparatus of claim 1, wherein: 
the programming signal includes a set of pulses; 
the first set of non-volatile storage elements are associated 

with a set of data States, the first target condition is one of 
the set of data states, the intermediate condition is a 
verify value for a different data state of the set of data 
States: 

the one or more managing circuits apply a predetermined 
number of one or more pulses to the first set of non 
Volatile storage elements in response to determining that 
the amount of non-volatile storage elements of the first 
set that have not yet reached the intermediate condition 
is less than the compare value; and 

the programming of the first set of non-volatile storage 
elements is concluded after the applying the predeter 
mined number of one or more pulses to the first set of 
non-volatile storage elements. 

7. The non-volatile storage apparatus of claim 1, wherein: 
the first set of non-volatile storage elements are multi-state 

flash memory devices. 
8. The non-volatile storage system according to claim I, 

wherein. 

the first set of non-volatile storage elements are part of a 
three dimensional memory structure. 

9. The non-volatile storage system according to claim I, 
wherein. 

the first set of non-volatile storage elements are part of a 
three dimensional memory array, and 

the first set of non-volatile storage elements include stor 
age areas disposed above a substrate. 
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