USOORE45603E

as United States

a2 Reissued Patent 10) Patent Number: US RE45,603 E
Hemink (45) Date of Reissued Patent: *Jul. 7, 2015
(54) DETECTING THE COMPLETION OF (56) References Cited
PROGRAMMING FOR NON-VOLATILE
STORAGE U.S. PATENT DOCUMENTS
5900449 A 6/1999 So
(71) Applicant: SANDISK TECHNOLOGIES INC., 6,185,134 Bl 2/2001 Tanaka
6418059 Bl 7/2002 Kreifels
Plano, TX (US) 6,888,758 Bl 52005 Hemink
(72) Inventor: Gerrit Jan Hemink, Yokohama (JP) (Continued)
(73) Assignee: SANDISK TECHNOLOGIES INC., FOREIGN PATENT DOCUMENTS
Plano, TX (US) CN 1902711 1/2007
. WO W09828745 7/1998
(*) Notice: Thl.S patent is subject to a terminal dis- (Continued)
claimer.
OTHER PUBLICATIONS

(21) Appl. No.: 14/290,520 Office Action dated Mar. 28, 2013, U.S. Appl. No. 13/622,230.

(22) Filed: May 29,2014 (Continued)
Related U.S. Patent Documents Primary Examiner — Ovidio Bscalante
Reissue of: (74) Attorney, Agent, or Firm — Vierra Magen Marcus LLP
(64) Patent No.: 8,416,626 57 ABSTRACT
Issued: Apr. 9,2013 (7
Appl. No.: 13/237,814 A set of non-volatile storage elements are subjected to a
Filed: Sep. 20,2011 programming process in order to store data. During the pro-
’ i gramming process, one or more verification operations are
(51) Int.Cl performed to determine whether the non-volatile storage ele-

ments have reached their target condition to store the appro-

GLIC 1134 (2006.01) priate data. Programming can be stopped when all non-vola-
G11C 16/10 (2006.01) tile storage elements have reached their target level or when
G1IC 11/56 (2006.01) the number of non-volatile storage elements that have not
G1IC 16/34 (2006.01) reached their target level is less than a number or memory
(52) US.CL cells that can be corrected using an error correction process
CPC G1IC 16/10 (2013.01); G1IC 11/5628 during a read operation (or other operation). The number of

(2013.01); G1IC 16/3454 (2013.01) non-volatile storage elements that have not reached their tar-
(58) Field of Classification S ’ h get level can be estimated by counting the number of non-
CII(:C 0 Gl laCssi 17;' 6120; (?TTCC 16/10: G11C 16/3454 volatile storage elements that have not reached a condition

that is different (e.g., lower) than the target level.
USPC oo 365/185.24, 185.22, 189.011
See application file for complete search history. 9 Claims, 18 Drawing Sheets

120CG _|"‘126

/

SGD ——120
10\2/?_:\ 100
10\/2\/?;;\ :|~102
woo
I
2206

SGS

—|N128

US RE45,603 E
Page 2

(56)

6,944,072
7,035,146
7,136,304
7,196,928
7,215,575
7,295,478
7,304,893
7,434,111
7,440,319
8,054,691
8,416,626
8,605,513
2003/0123286
2004/0109362
2004/0257888
2005/0057968
2005/0125708
2005/0157552
2007/0226592
2008/0016392
2008/0072120
2008/0104312
2008/0198662
2008/0250300

B2
B2 *
B2 *
B2
B2 *
B2
Bl
B2
B2
B2
B2
B2
Al
Al
Al
Al*
Al
Al
Al
Al
Al
Al
Al
Al

References Cited

9/2005
4/2006
11/2006
3/2007
5/2007
11/2007
12/2007
10/2008
10/2008
11/2011
4/2013
12/2013
7/2003
6/2004
12/2004
3/2005
6/2005
7/2005
9/2007
1/2008
3/2008
5/2008
8/2008
10/2008

U.S. PATENT DOCUMENTS

Micheloni

Hemink et al. 365/185.22
Cohen et al. .. 365/185.19
Chen

Chenetal. 365/185.22
‘Wan

Hemink

Sugiura

Li

Hemink

Hemink

Hemink

Higuchi

Gongwer

Noguchi

Lutzeetal. 365/185.18
Simon

Hemink

Radke

Earl

Radke

Lasser

Mokhlesi

Mokhlesi

FOREIGN PATENT DOCUMENTS

WO W02005041206
WO WO02006138413

5/2005
12/2006

OTHER PUBLICATIONS

Response to Office Action dated Jul. 29, 2013, U.S. Appl. No.
13/622,230.

Notice of Allowance dated Aug. 9, 2013, U.S. Appl. No. 13/622,230.
Chinese Office Action dated Feb. 12, 2014, Chinese Patent Applica-
tion No. 201080027960.7.

English translation of Abstract of Chinese Patent Appl. No.
CN1902711.

Chinese Response to Office Action dated Aug. 27, 2014, Amended
Claims in English, Chinese Patent Application No. 201080027960.7.
Chinese Office Action dated Oct. 15, 2014, Chinese Patent Applica-
tion No. 201080027960.7.

Nonvolatile Memory and Method With Reduced Program Verify by
Ignoring Fastest and/or Slowest Programming Bits, Inventors: Li et
al., U.S. Appl. No. 12/249,678, filed Oct. 10, 2008.

PCT International Search Report dated Sep. 17, 2010, PCT Patent
Appl. PCT/US2010/037846.

PCT Written Opinion of the International Searching Authority dated
Sep. 17,2010, PCT Patent Appl. PCT/US2010/037846.

Office Action dated Jun. 23, 2011, U.S. Appl. No. 12/492,421.
Response to Office Action dated Jul. 6, 2011, U.S. Appl. No.
12/492,421.

Notice of Allowance dated Aug. 9, 2011, U.S. Appl. No. 12/492,421.
Response to European Office Action, dated Aug. 23, 2012, European
Patent Application No. 10726384.0.

* cited by examiner

U.S. Patent Jul. 7, 2015 Sheet 1 of 18 US RE45,603 E

Fig. 1 Fig. 2
NN 120CG _|"“126
|_120CG
5D SN ——120
| 100FG
1 _100cG 100CC 100
Y WL3 -
. 102FG -
102CG
L_102CG
T Wi SN ~—102
//104FG oneG .
| _104CG
//‘//1 WL \ —~—104
///106FG 06es :
|_106CG
/ //1 WLO\ ——106
L 122CG 122CG
sGs N —122
r 128 1 —128

U.S. Patent Jul. 7, 2015 Sheet 2 of 18 US RE45,603 E

244

212 210
L 7 e
| o Z{ ________ |
| | Data I
L o L
| i CONTROL [———> COLUMN DECODER 2428 | i
| C'Rgg(')TRY READ/WRITE CIRCUITS 2308 i
i ! Sense Sense |39 Sense i :
L B Block Block Block |
| X |
: : Power ! 2 | P : :
1 || Control |
| 226 ||
P]
| ! | |
| : | :
i || on-chip S SIRE
| 1|| Address N N ! |
| i || Decoder | [& gl
o 224 9 MEMORY ARRAY Q1 :
L S 200 Ol !
I | LLl L |
. S S|
|
| : State % % i |
o Machine o x|
: | 222 : |
|
o X
P L
P L
L B
| |
: : ADDRl - READ/WRITE CIRCUITS 230A T : i
| : < » | Sense Sense | 300 Sense ADDR, |
! Block Block Block |
: | 1 2 | p X
(- L
B ADER, COLUMN DECODER 2424 |
| [
: : h 1 Dala : :
L 110 |
| |
| B
| |
|
|
|
|
|
|
|
|
|

U.S. Patent Jul. 7, 2015 Sheet 3 of 18 US RE45,603 E

480
- —— l —————————————————— I
I core > |
: 482 470 |
| / \ 4] |
I
[.
Bitline Latch |
I Hine Late Sense Circuitry |
: Y |
| |
N D R |
i Vs 472

i_ - - - 1" -"—-—"—""""""""7~"~""7""=-7 |
| A 4 |
I [
I |
Processor |
State - | > |
Machine | |
| 493 y \ 492 |
| |
A 4 |

[
| f Data Latches |
| 494 |
| A [
I |
I \ 4 |
|

[
I 495 I/O Interface |
I common + |
|
IT ____________________

490
] 420
F Ig b 4 v Data

U.S. Patent Jul. 7, 2015 Sheet 4 of 18 US RE45,603 E

block 0 F|g 5A

block 1

block 2

— 200
block 3

block i -

block 1023

block i

d

BLO BL1 BL2 BL3 BLe4 BL5 BL69,622 BL69,623

SGD. i IIJ e IIJ N InJ |

WL3 | —

|
Il
| i
C Il] Il Il Il]
WLz i m 1 I I m =
|

w4 —E—E
e e
sesid— I - = |
S U S S e e 1L
{

source

Fig. 5B
User Data ECC |HDR| User Data ECC|HDR]- - «| UserData ECC |HDR
\ /\ / \ /

sector O sector 1 sectorn

U.S. Patent Jul. 7, 2015 Sheet 5 of 18 US RE45,603 E

number of 534

A

A

number of
cells

a

i Vi

2nd pass
cells ’\,_ _ <nhdpass - |:| lower page

\
7 e j —— 532 Oupper page
(Istpass g/ ond pass ¥

O] O[] @I

/\ ANARA N

Vva V;/b Vve

Vra Vrb Vre

upper Page 7
WL3 lower Page 5
WIL2 upper Page 6 F Ig) 9
lower Page 3
W1 upper Page 4
lower Page 1
WLO upper Page 2
lower Page (

U.S. Patent Jul. 7, 2015 Sheet 6 of 18 US RE45,603 E

o Fig. 8A

v

V1

Vb’

+ Fig. 8B

Vi

Vi/b’
Fig. 8C
N AT Y

I
A, ~(B
E / \ C
H L v \ T T »

Vva i Vb 1 Vve

Vra Vrb Vre

—_

Upper 1 0
Lower 1 1 0

OO

U.S. Patent Jul. 7, 2015 Sheet 7 of 18 US RE45,603 E

Fig 10

o
ARARRRR.

FEEFFREE

Vr1 Vr2 Vi3 Vrd

number of
cells

U.S. Patent Jul. 7, 2015 Sheet 8 of 18 US RE45,603 E

number of
cells
<G Fig. 11A
604 —~
602
S0 S4
111 1+ o011 v
E** T
number of
cells
602
S0
Vr
602 /\636
111 T101 Vi
C*
number of
cells 602 606 608 610
Sl S2 sS4 S6
t f i N

c* E* G*

U.S. Patent Jul. 7, 2015 Sheet 9 of 18 US RE45,603 E

wmoerot Fig, 41E meerot Fig {1F

cells cells

number of F|g 111G number of Flg 11H

cells cells

A\ 4

T 011 010 Vr T 001 000 Vr
E* G*
H

E F

)

number of

ells Fig. 111

ANATATATATAVATAN

110 T1o1 T1oo To11 To1o Too1 Tooo v,

U.S. Patent Jul. 7, 2015 Sheet 10 of 18 US RE45,603 E

Fig. 12

650

g pre-program block

A 4

erase block

Flg 13 v 654

soft program block

set magnitude of
initial Vpgm and set |~ 670 v 656
PC =1

program memory cells in block

y |

|apply program pulse,| g72
| program all bit lines

I
I
| 658
A 4

L 674

verified cells

- read data
Verify, and lock out r

678
status = pass

_— 680
count failed cells

failed cells <
predetermined limit?2

688

step Vpgmand | — 686
increment PC

US REA45,603 E

Sheet 11 of 18

Jul. 7, 2015

U.S. Patent

weJbo.d

S Im__MolvmﬂmME:oo

Aus

weuboud

IIIIII H Im__Mo Moﬂ&.uc:oo

Ir_ Ausp

weubo.d
BAA
aAn

OANA

1 B4

weJbo.d Hlm__oo pa|ie) JuNod
Al
weJboid Hm__oo pa|ie) JUNod
Ir_ NI
we.sboid weJboid
BAA
onp M

Gl ‘b4

U.S. Patent Jul. 7, 2015 Sheet 12 of 18 US RE45,603 E

Fig. 16

Program
Program Program
I | | |
I I I I [I B |
o | | |
Verify | | Verify | |
I I I |
: : : |
le——>l le—>|
count failed count failed
cells cells
Fig. 17
Program Program
Program
I I I I
I I I I | B B |
o I | |
Vern‘yl I Verify | |
I I I I
I I I I
le—>l l€—>|
count failed count failed

cells cells

U.S. Patent Jul. 7, 2015 Sheet 13 of 18 US RE45,603 E

4 number of H
cells Flg 18
702 704
(N ([N

! Vva i Vvb i Ve

\;ra Vr=b \;rc
Fig. 19
712 C

714
716

Vvel Vre Vve

US REA45,603 E

Sheet 14 of 18

Jul. 7, 2015

U.S. Patent

wesbold
|92 pajie) JUNnod
INBEY
wesboud
TOAA ./} S(|192 pajie) 1Unod
Ir_ Ajuop
weuboud
BAA
anp

AN

0¢ ‘b4

wesbou
d H\w__mo pajiel JUnod

welbold

weJsboud

OAA

lC

BAA
LUYAY

614

US REA45,603 E

Sheet 15 of 18

Jul. 7, 2015

U.S. Patent

weisbold

S|199 pajiel JUNod

S||30 P3|I2) 1UNOD

[]

m-|

VTV

weuboid

22 b4

TOAA

OAA

wesbold
S||90 pajie} JUNoo
Ausp
Em._mﬁﬂn_ IIIIII
|99 Pa|ieL JUNo3
—_———_3
Aisp
weuboid mwN @_H_
TIAA
AN

U.S. Patent

Jul. 7, 2015

Fig. 24

set magnitude of
initial Vpgm and set
PC=1

~— 670

A 4
| apply program pulse,

~ 672

" | program all bit lines

v — 674
Verify, and lockout
verified cells

- 740

count failed cells

Sheet 16 of 18

status = pass

US REA45,603 E

678

A

744

742

failed cells <
predetermined limit?

apply predetermined number

of programming pulses and

verify (with lockout) between
pulses

stepVpgmand | 686

increment PC

status = fail

688

U.S. Patent Jul. 7, 2015 Sheet 17 of 18

Fig. 25

set magnitude of
initial Vpgm and set |~ 670
PC =1

A 4

|apply program pulse, | g72
" | program all bit lines

v _ 674
Verify, and lockout
verified cells

616

US REA45,603 E

A

status = pass

_ 782

780

yes
B state finished?

apply pre-determined number
.| of programming pulses and
"| verify (with lockout) between

pulses

688

status = fail

step Vpgmand | — 686
increment PC

U.S. Patent Jul. 7, 2015

t4 time
Vbl
Fig. 26B
Vinhibit
0t 22 3
time
Vpgm
Fig. 26A
© i @ t3 4 time

Sheet 18 of 18

US REA45,603 E

Vbl

Fig. 27B
Vinhibit
Vg - - e e e
t0 t1 t2 t3 4
time
Vpgm
Fig. 27A
© i 2 3 4 time

US RE45,603 E

1
DETECTING THE COMPLETION OF
PROGRAMMING FOR NON-VOLATILE
STORAGE

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough indi-
cates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

This application is a divisional application of U.S. patent
application Ser. No. 12/492,421, Detecting The Completion
Of Programming For Non-Volatile Storage, filed Jun. 26,
2009, which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to technology for non-vola-
tile storage.

2. Description of the Related Art

Semiconductor memory devices have become more popu-
lar for use in various electronic devices. For example, non-
volatile semiconductor memory is used in cellular tele-
phones, digital cameras, personal digital assistants, mobile
computing devices, non-mobile computing devices and other
devices. Electrical FErasable Programmable Read Only
Memory (EEPROM) and flash memory are among the most
popular non-volatile semiconductor memories.

Both EEPROM and flash memory utilize a floating gate
that is positioned above and insulated from a channel region
in a semiconductor substrate. The floating gate is positioned
between source and drain regions. A control gate is provided
over and insulated from the floating gate. The threshold volt-
age of the transistor is controlled by the amount of charge that
is retained on the floating gate. That is, the minimum amount
of voltage that must be applied to the control gate before the
transistor is turned on to permit conduction between its
source and drain is controlled by the level of charge on the
floating gate.

When programming an EEPROM or flash memory device,
typically a program voltage is applied to the control gate and
the bit line is grounded. Electrons from the channel are
injected into the floating gate. When electrons accumulate in
the floating gate, the floating gate becomes negatively
charged and the threshold voltage of the memory cell is raised
so that the memory cell is in the programmed state. More
information about programming can be found in U.S. Pat. No.
6,859,397, titled “Source Side Self Boosting Technique For
Non-Volatile Memory;” and U.S. Pat. No. 6,917,542, titled
“Detecting Over Programmed Memory,” both patents are
incorporated herein by reference in their entirety.

Some EEPROM and flash memory devices have a floating
gate that is used to store two ranges of charges and, therefore,
the memory cell can be programmed/erased between two
states, an erased state and a programmed state that correspond
to data “1” and data “0.” Such a device is referred to as a
binary or two-state device.

A multi-state flash memory cell is implemented by identi-
fying multiple, distinct allowed threshold voltage ranges.
Each distinct threshold voltage range corresponds to a prede-
termined value for the set of data bits. The specific relation-
ship between the data programmed into the memory cell and
the threshold voltage ranges of the cell depends upon the data

20

25

30

40

45

50

55

60

65

2

encoding scheme adopted for the memory cells. For example,
U.S. Pat. No. 6,222,762 and U.S. Patent Application Publi-
cation No. 2004/0255090, both of which are incorporated
herein by reference in their entirety, describe various data
encoding schemes for multi-state flash memory cells.

In some embodiments, the program voltage applied to the
control gate includes a series of pulses that are increased in
magnitude with each successive pulse by a predetermined
step size (e.g. 0.2v, 0.3v, 0.4v, or others). Between pulses, the
memory system will verify whether the individual memory
cells have reached their respective target threshold voltage
ranges. Those memory cells that have reached their target
threshold voltage range will be locked out of future program-
ming (e.g., by raising the bit line voltage to Vdd). When all
memory cells have reached their target threshold voltage
range, programming is complete.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a top view of a NAND string.

FIG. 2 is an equivalent circuit diagram of the NAND string.

FIG. 3 isablock diagram of a non-volatile memory system.

FIG. 4 is a block diagram depicting one embodiment of a
sense block.

FIG. 5A is a block diagram depicting one embodiment of a
memory array.

FIG. 5B depicts a page of data.

FIG. 6 depicts an example set of threshold voltage distri-
butions and describes a process for programming non-volatile
memory.

FIG. 7 depicts an example set of threshold voltage distri-
butions and describes a process for programming non-volatile
memory.

FIGS. 8A-C show various threshold voltage distributions
and describe a process for programming non-volatile
memory.

FIG. 9 is a table depicting the order of programming non-
volatile memory in one embodiment.

FIG. 10 depicts an example set of threshold voltage distri-
butions and describes a process for programming non-volatile
memory.

FIGS. 11A-I show various threshold voltage distributions
and describe a process for programming non-volatile
memory.

FIG. 12 is a flow chart describing one embodiment of a
process for operating non-volatile memory.

FIG. 13 is a flow chart describing one embodiment of a
process for programming non-volatile memory.

FIGS. 14-17 depicts a control gate signal for one embodi-
ment of non-volatile memory.

FIG. 18 depicts an example set of threshold voltage distri-
butions.

FIG. 19 depicts one example threshold voltage distribu-
tion.

FIGS. 20-23 depicts a control gate signal for one embodi-
ment of non-volatile memory.

FIG. 24 is a flow chart describing one embodiment of a
process for programming non-volatile memory.

FIG. 25 is a flow chart describing one embodiment of a
process for programming non-volatile memory.

FIGS. 26A, B and C depict a one embodiment of a pro-
gramming process that is performed as part of coarse/fine
programming.

FIGS. 27A, B and C depict a one embodiment of a pro-
gramming process that is performed as part of coarse/fine
programming.

US RE45,603 E

3
DETAILED DESCRIPTION

In a non-volatile storage system, a set non-volatile storage
elements are subjected to a programming process in order to
store a set of data. Programming can be stopped when all
non-volatile storage elements have reached their target level
or when the number of non-volatile storage elements that
have not reached their target level is less than a number of
memory cells that can be corrected using an error correction
process during a read operation (or other operation). The
number of non-volatile storage elements that have not
reached their target level can be estimated by counting the
number of non-volatile storage elements that have not
reached a condition that is different than the target level.

One example of a non-volatile storage system is a flash
memory system that uses the NAND structure, which
includes arranging multiple transistors in series, sandwiched
between two select gates. The transistors in series and the
select gates are referred to as a NAND string. FIG. 1 is a top
view showing one NAND string. FIG. 2 is an equivalent
circuit thereof. The NAND string depicted in FIGS. 1 and 2
includes four transistors 100, 102, 104 and 106 in series and
sandwiched between (drain side) select gate 120 and (source
side) select gate 122. Select gate 120 connects the NAND
string to a bit line via bit line contact 126. Select gate 122
connects the NAND string to source line 128. Select gate 120
is controlled by applying the appropriate voltages to select
line SGD. Select gate 122 is controlled by applying the appro-
priate voltages to select line SGS. Each of the transistors 100,
102, 104 and 106 has a control gate and a floating gate. For
example, transistor 100 has control gate 100CG and floating
gate 100FG. Transistor 102 includes control gate 102CG and
a floating gate 102FG. Transistor 104 includes control gate
104CG and floating gate 104FG. Transistor 106 includes a
control gate 106CG and a floating gate 106FG. Control gate
100CG is connected to word line WL3, control gate 102CG is
connected to word line WL2, control gate 104CG is con-
nected to word line WL1, and control gate 106CG is con-
nected to word line WLO0.

Note that although FIGS. 1 and 2 show four memory cells
in the NAND string, the use of four memory cells is only
provided as an example. A NAND string can have less than
four memory cells or more than four memory cells. For
example, some NAND strings will include eight memory
cells, 16 memory cells, 32 memory cells, 64 memory cells,
128 memory cells, etc. The discussion herein is not limited to
any particular number of memory cells in a NAND string.
One embodiment uses NAND strings with 66 memory cells,
where 64 memory cells are used to store data and two of the
memory cells are referred to as dummy memory cells because
they do not store data.

A typical architecture for a flash memory system using a
NAND structure will include several NAND strings. Each
NAND string is connected to the common source line by its
source select gate controlled by select line SGS and con-
nected to its associated bit line by its drain select gate con-
trolled by select line SGD. Each bit line and the respective
NAND string(s) that are connected to that bit line via abit line
contact comprise the columns of the array of memory cells.
Bit lines are shared with multiple NAND strings. Typically,
the bit line runs on top of the NAND strings in a direction
perpendicular to the word lines and is connected to a sense
amplifier.

Relevant examples of NAND type flash memories and their
operation are provided in the following U.S. patents/patent
applications, all of which are incorporated herein by refer-
ence in their entirety: U.S. Pat. No. 5,570,315; U.S. Pat. No.

20

25

30

35

40

45

50

55

60

65

4

5,774,397, U.S. Pat. No. 6,046,935; U.S. Pat. No. 6,456,528,
and U.S. Pat. Publication No. US2003/0002348.

Other types of non-volatile storage devices, in addition to
NAND flash memory, can also be used. For example, a
TANOS structure (consisting of a stacked layer of TaN—
AlI203-SiN—SiO2 on a silicon substrate), which is basically
a memory cell using trapping of charge in a nitride layer
(instead of a floating gate), can also be used with the technol-
ogy described herein. Another type of memory cell useful in
flash EEPROM systems utilizes a non-conductive dielectric
material in place of a conductive floating gate to store charge
in a non-volatile manner. Such a cell is described in an article
by Chan et al., “A True Single-Transistor Oxide-Nitride-Ox-
ide EEPROM Device,” IEEE Electron Device Letters, Vol.
EDL-8, No. 3, March 1987, pp. 93-95. A triple layer dielectric
formed of silicon oxide, silicon nitride and silicon oxide
(“ONO”) is sandwiched between a conductive control gate
and a surface of a semi-conductive substrate above the
memory cell channel. The cell is programmed by injecting
electrons from the cell channel into the nitride, where they are
trapped and stored in a limited region. This stored charge then
changes the threshold voltage of a portion of the channel of
the cell in a manner that is detectable. The cell is erased by
injecting hot holes into the nitride. See also Nozaki et al., “A
1-Mb EEPROM with MONOS Memory Cell for Semicon-
ductor Disk Application,” IEEE Journal of Solid-State Cir-
cuits, Vol. 26, No. 4, April 1991, pp. 497-501, which describes
a similar cell in a split-gate configuration where a doped
polysilicon gate extends over a portion of the memory cell
channel to form a separate select transistor.

Another example is described by Eitan et al., “NROM: A
Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,”
IEEE Electron Device Letters, vol. 21, no. 11, November
2000, pp. 543-545. An ONO dielectric layer extends across
the channel between source and drain diffusions. The charge
for one data bit is localized in the dielectric layer adjacent to
the drain, and the charge for the other data bit is localized in
the dielectric layer adjacent to the source. U.S. Pat. Nos.
5,768,192 and 6,011,725 disclose a non-volatile memory cell
having a trapping dielectric sandwiched between two silicon
dioxide layers. Multi-state data storage is implemented by
separately reading the binary states of the spatially separated
charge storage regions within the dielectric. Other types of
memory devices can also be used.

FIG. 3 illustrates a memory device 210 having read/write
circuits for reading and programming a page of memory cells
(e.g., NAND multi-state flash memory) in parallel. Memory
device 210 may include one or more memory die or chips 212.
Memory die 212 includes an array (two-dimensional or three
dimensional) of memory cells 200, control circuitry 220, and
read/write circuits 230A and 230B. In one embodiment,
access to the memory array 200 by the various peripheral
circuits is implemented in a symmetric fashion, on opposite
sides of the array, so that the densities of access lines and
circuitry on each side are reduced by half. The read/write
circuits 230A and 230B include multiple sense blocks 300
which allow a page of memory cells to be read or pro-
grammed in parallel. The memory array 200 is addressable by
word lines via row decoders 240A and 240B and by bit lines
via column decoders 242A and 242B. In a typical embodi-
ment, a controller 244 is included in the same memory device
210 (e.g., a removable storage card or package) as the one or
more memory die 212. Commands and data are transferred
between the host and controller 244 via lines 232 and between
the controller and the one or more memory die 212 via lines
234.

US RE45,603 E

5

Control circuitry 220 cooperates with the read/write cir-
cuits 230A and 230B to perform memory operations on the
memory array 200. The control circuitry 220 includes a state
machine 222, an on-chip address decoder 224 and a power
control module 226. The state machine 222 provides chip-
level control of memory operations. The on-chip address
decoder 224 provides an address interface between that used
by the host or a memory controller to the hardware address
used by the decoders 240A, 2408, 242A, and 242B. The
power control module 226 controls the power and voltages
supplied to the word lines and bit lines during memory opera-
tions. In one embodiment, power control module 226
includes one or more charge pumps that can create voltages
larger than the supply voltage. Control circuitry 220, the
decoders 240 A/B & 242A/B, the read/write circuits 230A/B
and the controller 244, collectively or separately, can be
referred to as one or more managing circuits.

FIG. 4 is a block diagram of an individual sense block 300
partitioned into a core portion, referred to as a sense module
480, and a common portion 490. In one embodiment, there
will be a separate sense module 480 for each bit line and one
common portion 490 for a set of multiple sense modules 480.
In one example, a sense block will include one common
portion 490 and eight sense modules 480. Each of the sense
modules in a group will communicate with the associated
common portion via a data bus 472. For further details, refer
to U.S. Patent Application Publication 2006/0140007, which
is incorporated herein by reference in its entirety.

Sense module 480 comprises sense circuitry 470 that deter-
mines whether a conduction current in a connected bit line is
above or below a predetermined threshold level. In some
embodiments, sense module 480 includes a circuit commonly
referred to as a sense amplifier. Sense module 480 also
includes a bit line latch 482 that is used to set a voltage
condition on the connected bit line. For example, a predeter-
mined state latched in bit line latch 482 will result in the
connected bit line being pulled to a state designating program
inhibit (e.g., Vdd).

Common portion 490 comprises a processor 492, a set of
datalatches 494 and an I/O Interface 496 coupled between the
set of data latches 494 and data bus 420. Processor 492 per-
forms computations. For example, one of its functions is to
determine the data stored in the sensed memory cell and store
the determined data in the set of data latches. The set of data
latches 494 is used to store data bits determined by processor
492 during a read operation. It is also used to store data bits
imported from the data bus 420 during a program operation.
The imported data bits represent write data meant to be pro-
grammed into the memory. /O interface 496 provides an
interface between data latches 494 and the data bus 420.

During read or sensing, the operation of the system is under
the control of state machine 222 that controls the supply of
different control gate voltages to the addressed cell. As it steps
through the various predefined control gate voltages (the read
reference voltages or the verify reference voltages) corre-
sponding to the various memory states supported by the
memory, the sense module 480 may trip at one of these
voltages and an output will be provided from sense module
480 to processor 492 via bus 472. At that point, processor 492
determines the resultant memory state by consideration of the
tripping event(s) of the sense module and the information
about the applied control gate voltage from the state machine
via input lines 493. It then computes a binary encoding for the
memory state and stores the resultant data bits into data
latches 494. In another embodiment of the core portion, bit

20

25

30

35

40

45

50

55

60

65

6

line latch 482 serves double duty, both as a latch for latching
the output of the sense module 480 and also as a bit line latch
as described above.

It is anticipated that some implementations will include
multiple processors 492. In one embodiment, each processor
492 will include an output line (not depicted in FIG. 4) such
that each of the output lines is wired-OR’d together. In some
embodiments, the output lines are inverted prior to being
connected to the wired-OR line. This configuration enables a
quick determination during the program verification process
of'when the programming process has completed because the
state machine receiving the wired-OR line can determine
when all bits being programmed have reached the desired
level. For example, when each bit has reached its desired
level, a logic zero for that bit will be sent to the wired-OR line
(or a data one is inverted). When all bits output a data O (or a
data one inverted), then the state machine knows to terminate
the programming process. In embodiments where each pro-
cessor communicates with eight sense modules, the state
machine may (in come embodiments) need to read the wired-
OR line eight times, or logic is added to processor 492 to
accumulate the results of the associated bit lines such that the
state machine need only read the wired-OR line one time. In
some embodiments that have many sense modules, the wired-
OR lines of the many sense modules can be grouped in sets of
N sense modules, and the groups can then be grouped to form
a binary tree.

During program or verity, the data to be programmed is
stored in the set of data latches 494 from the data bus 420. The
program operation, under the control of the state machine,
comprises a series of programming voltage pulses (with
increasing magnitudes) concurrently applied to the control
gates of the addressed memory cells to that the memory cells
are programmed at the same time. Each programming pulse is
followed by a verify process to determine if the memory cell
has been programmed to the desired state. Processor 492
monitors the verified memory state relative to the desired
memory state. When the two are in agreement, processor 492
sets the bit line latch 482 so as to cause the bit line to be pulled
to a state designating program inhibit. This inhibits the
memory cell coupled to the bit line from further programming
even if it is subjected to programming pulses on its control
gate. In other embodiments the processor initially loads the
bit line latch 482 and the sense circuitry sets it to an inhibit
value during the verify process.

Data latch stack 494 contains a stack of data latches corre-
sponding to the sense module. In one embodiment, there are
three (or four or another number) data latches per sense mod-
ule 480. In some implementations (but not required), the data
latches are implemented as a shift register so that the parallel
data stored therein is converted to serial data for data bus 420,
and vice versa. In one preferred embodiment, all the data
latches corresponding to the read/write block of m memory
cells can be linked together to form a block shift register so
that a block of data can be input or output by serial transfer. In
particular, the bank of read/write modules is adapted so that
each of its set of data latches will shift data in to or out of the
databus in sequence as if they are part of a shift register for the
entire read/write block.

Additional information about the structure and/or opera-
tions of various embodiments of non-volatile storage devices
can be found in (1) United States Patent Application Pub. No.
2004/0057287, “Non-Volatile Memory And Method With
Reduced Source Line Bias Errors,” published on Mar. 25,
2004; (2) United States Patent Application Pub No. 2004/
0109357, “Non-Volatile Memory And Method with
Improved Sensing,” published on Jun. 10, 2004; (3) U.S.

US RE45,603 E

7

Patent Application Pub. No. 20050169082; (4) U.S. Patent
Application Pub. 2006/0221692, titled “Compensating for
Coupling During Read Operations of Non-Volatile Memory,”
Inventor Jian Chen, filed on Apr. 5, 2005; and (5) U.S. Patent
Application Pub. 2006/0158947, titled “Reference Sense
Amplifier For Non-Volatile Memory, Inventors Siu Lung
Chan and Raul-Adrian Cernea, filed on Dec. 28, 2005. All five
of the immediately above-listed patent documents are incor-
porated herein by reference in their entirety.

FIG. 5A depicts an exemplary structure of memory cell
array 200. In one embodiment, the array of memory cells is
divided into a large number of blocks of memory cells. As is
common for flash EEPROM systems, the block is the unit of
erase. That is, each block contains the minimum number of
memory cells that are erased together.

As one example, a NAND flash EEPROM is depicted in
FIG. 5A that is partitioned into 1,024 blocks. However, more
or less than 1024 blocks can be used. In each block, in this
example, there are 69,624 columns corresponding to bit lines
BL0,BL1, ...BL69,623. In one embodiment, all the bit lines
of a block can be simultaneously selected during read and
program operations. Memory cells along a common word line
and connected to any bit line can be programmed (or read) at
the same time. In another embodiment, the bit lines are
divided into even bit lines and odd bit lines. In an odd/even bit
line architecture, memory cells along a common word line
and connected to the odd bit lines are programmed at one
time, while memory cells along a common word line and
connected to even bit lines are programmed at another time.

FIG. 5A shows four memory cells connected in series to
form a NAND string. Although four cells are shown to be
included in each NAND string, more or less than four can be
used (e.g., 16,32, 64, 128 or another number or memory cells
can be on a NAND string). One terminal of the NAND string
is connected to a corresponding bit line via a drain select gate
(connected to select gate drain line SGD), and another termi-
nal is connected to the source line via a source select gate
(connected to select gate source line SGS).

Each block is typically divided into a number of pages. A
page is a unit of programming. One or more pages of data are
typically stored in one row of memory cells. A page can store
one or more sectors. A sector includes user data and overhead
data. Overhead data typically includes an Error Correction
Code (ECC) that has been calculated from the user data of the
sector. The controller calculates the ECC when data is being
programmed into the array, and also checks it when data is
being read from the array. In some embodiments, the state
machine or other component can calculate and check the
ECC. In some alternatives, the ECCs and/or other overhead
data are stored in different pages, or even different blocks,
than the user data to which they pertain. A sector of user data
is typically 512 bytes, corresponding to the size of a sector in
magnetic disk drives. A large number of pages form a block,
anywhere from 8 pages, for example, up to 32, 64, 128 or
more pages. FIG. 5B depicts data for a page. Depending on
the size of the page, the page contains many sectors. Each
sector includes user data, error correction codes (ECC), and
header information.

In some memory systems utilizing multi-state memory
cells, each bit of data in a memory cell is in a different page.
For example, if an array of memory cells store three bits of
data (eight states or levels of data) per memory cell, each
memory cell stores data in three pages with each of the three
bits being on a different page. Thus, within a block in this
example, each word line is associated with three pages or an
integer multiple of three pages. Other arrangements are also
possible.

20

25

30

35

40

45

50

55

60

65

8

The use of error correction coding (ECC) in mass data
storage devices and storage systems, as well as in data com-
munications systems, is well known. As fundamental in this
art, error correction coding involves the storage or commu-
nication of additional bits (commonly referred to as parity
bits, code bits, checksum digits, ECC bits, etc.) that are deter-
mined or calculated from the “payload” (or original data) data
bits being encoded. For example, the storage of error correc-
tion coded data in a memory resource involves the encoding
of one or more code words to include the actual data and the
additional code bits, using a selected code. Retrieval of the
stored data involves the decoding of the stored code words
according to the same code as used to encode the stored code
words. Because the code bits “over-specify” the actual data
portion of the code words, some number of error bits can be
tolerated, without any loss of actual data evident after decod-
ing.

Many ECC coding schemes are well known in the art.
These conventional error correction codes are especially use-
ful in large scale memories, including flash (and other non-
volatile) memories, because of the substantial impact on
manufacturing yield and device reliability that such coding
schemes can provide, allowing devices that have a few non-
programmable or defective cells to be useable. Of course, a
tradeoff exists between the yield savings and the cost of
providing additional memory cells to store the code bits (i.e.,
the code “rate”). Some ECC codes for flash memory devices
tend to have higher code rates (i.e., a lower ratio of code bits
to data bits) than the codes used in data communications
applications (which may have code rates as low as 1%).

Some memory cells are slower to program or erase than
others because of manufacturing variations among those
cells, because those cells were previously erased to a lower
threshold voltage than others, because of uneven wear among
the cells within a page, or other reasons. And, of course, some
cells cannot be programmed or erased whatsoever, because of
adefect or other reason. As mentioned above, error correction
coding provides the capability of tolerating some number of
slow or failed cells, while still maintaining the memory as
usable. In some applications, a page of data is programmed by
repeatedly applying programming pulses until all memory
cells on that page verify to the desired programmed state. In
these applications, programming terminates if a maximum
number of programming pulses is reached prior to successful
verifying of the programmed page, following which the num-
ber of cells that have not yet been verified to the desired state
is compared with a threshold value, which depends on the
capability of the error correction coding that will be used in
the reading of data from that page. In other applications in
which the error correction is sufficiently robust, program-
ming and erasing time is saved by terminating the sequence of
programming or erasing pulses when the number of slow (or
error) cells that are not yet fully programmed or erased is
fewer than the number of bits that are correctable.

Error correction is typically performed on a sector-by-
sector basis. Thus, each sector will have its own set of ECC
codes. This error correction is convenient and useful because,
in one embodiment, the sector is the desired unit of data
transfer to and from the host system.

At the end of a successful programming process (with
verification), the threshold voltages of the memory cells
should be within one or more distributions of threshold volt-
ages for programmed memory cells or within a distribution of
threshold voltages for erased memory cells, as appropriate.
FIG. 6 illustrates example threshold voltage distributions for
the memory cell array when each memory cell stores two bits
of data. Other embodiments, however, may use more or less

US RE45,603 E

9

than two bits of data per memory cell (e.g., such as three bits
of data per memory cell). FIG. 6 shows a first threshold
voltage distribution E for erased memory cells. Three thresh-
old voltage distributions, A, B and C for programmed
memory cells are also depicted. In one embodiment, the
threshold voltages in the distribution E are negative and the
threshold voltages in the A, B and C distributions are positive.
As can be seen, threshold voltage distribution A is the lowest
of' A, B and C. Threshold voltage distribution C is the highest
of A, B and C.

Each distinct threshold voltage range of FIG. 6 corre-
sponds to predetermined values for the set of data bits. The
specific relationship between the data programmed into the
memory cell and the threshold voltage levels of the cell
depends upon the data encoding scheme adopted for the cells.
For example, U.S. Pat. No. 6,222,762 and U.S. Patent Appli-
cation Publication No. 2004/0255090, “Tracking Cells For A
Memory System,” filed on Jun. 13, 2003, both of which are
incorporated herein by reference in their entirety, describe
various data encoding schemes for multi-state flash memory
cells. In one embodiment, data values are assigned to the
threshold voltage ranges using a Gray code assignment so that
if the threshold voltage of a floating gate erroneously shifts to
its neighboring threshold voltage distribution, only one bit
will be affected. One example assigns “11” to threshold volt-
age range E (state E), “10” to threshold voltage range A (state
A), “00” to threshold voltage range B (state B) and “01” to
threshold voltage range C (state C). However, in other
embodiments, Gray code is not used. Although FIG. 6 shows
four states, the present invention can also be used with other
multi-state structures including those that include more or
less than four states.

FIG. 6 shows three read reference voltages, Vra, Vrb and
Vre, for reading data from memory cells. By testing whether
the threshold voltage of a given memory cell is above or
below Vra, Vrb and Vrc, the system can determine what state
the memory cell is in. That is, by knowing whether a memory
cell turns on in response to Vra, Vrb and Vre, the processor
can figure out which state the memory cell is in. For example,
when reading a memory cell, if the memory cell turns on in
response to receiving Vrc but does not turn on in response to
Vrb, then the memory cell is in state B.

FIG. 6 also shows three verify reference voltages Vva, Vvb
and Vvc. When programming memory cells to state A, the
system will test whether those memory cells have a threshold
voltage greater than or equal to Vva. When programming
memory cells to state B, the system will test whether the
memory cells have threshold voltages greater than or equal to
Vvb. When programming memory cells to state C, the system
will determine whether memory cells have their threshold
voltage greater than or equal to Vvc.

In general, during verify operations and read operations,
the selected word line is connected to a voltage, a level of
which is specified for each read operation (e.g., see read
compare levels Vra, Vrb, and Vre, of FIG. 6) or verify opera-
tion (e.g. see verify levels Vva, Vvb, and Vvc of FIG. 6) in
order to determine whether a threshold voltage of the con-
cerned memory cell has reached such level. After applying the
word line voltage, the conduction current of the memory cell
is measured to determine whether the memory cell turned on
in response to the voltage applied to the word line. If the
conduction current is measured to be greater than a certain
value, then it is assumed that the memory cell turned on and
the voltage applied to the word line is greater than the thresh-
old voltage of the memory cell. If the conduction current is
not measured to be greater than the certain value, then it is

20

25

30

35

40

45

50

55

60

65

10

assumed that the memory cell did not turn on and the voltage
applied to the word line is not greater than the threshold
voltage of the memory cell.

There are many ways to measure the conduction current of
a memory cell during a read or verify operation. In one
example, the conduction current of a memory cell is mea-
sured by the rate it discharges or charges a dedicated capacitor
in the sense amplifier. In another example, the conduction
current of the selected memory cell allows (or fails to allow)
the NAND string that includes the memory cell to discharge
a corresponding bit line. The voltage on the bit line is mea-
sured after a period of time to see whether it has been dis-
charged or not. Note that the technology described herein can
be used with different methods known in the art for verifying/
reading. More information about verifying/reading can be
found in the following patent documents that are incorporated
herein by reference in their entirety: (1) United States Patent
Application Pub. No. 2004/0057287; (2) United States Patent
Application Pub No. 2004/0109357; (3) U.S. Patent Applica-
tion Pub. No. 2005/0169082; and (4) U.S. Patent Application
Pub. No. 2006/0221692. The read and verify operations
described above are performed according to techniques
known in the art. Thus, many of the details explained can be
varied by one skilled in the art. Other read and verify tech-
niques known in the art can also be used.

In one embodiment, known as full sequence programming,
memory cells can be programmed from the erased state E
directly to any of the programmed states A, B or C. For
example, a population of memory cells to be programmed
may first be erased so that all memory cells in the population
are in erased state E. While a first set of memory cells is being
programmed from state E to state A, a second set of memory
cells is being programmed from state E to state B and a third
set of memory cells is being programmed from state E to state
C. Full sequence programming is graphically depicted by the
three curved arrows of FIG. 6.

FIG. 7 illustrates an example of a two-pass technique of
programming a multi-state memory cell that stores data for
two different pages: a lower page and an upper page. Four
states (threshold voltage distributions) are depicted: state E
(11), state A (10), state B (00) and state C (01). For state E,
both pages store a “1.” For state A, the lower page stores a “0”
and the upper page stores a “1.” For state B, both pages store
“0.” For state C, the lower page stores “1” and the upper page
stores “0.” Note that although specific bit patterns have been
assigned to each of the states, different bit patterns may also
be assigned.

In a first programming pass, the memory cell’s threshold
voltage level is set according to the data bit to be programmed
into the lower logical page. If that data bit is a logic “1,” the
threshold voltage is not changed since it is in the appropriate
state as a result of having been earlier erased. However, if the
data bit to be programmed is a logic “0,” the threshold level of
the cell is increased to be state A, as shown by arrow 530.

In a second programming pass, the memory cell’s thresh-
old voltage level is set according to the data bit being pro-
grammed into the upper logical page. Ifthe upper logical page
bit is to store a logic “1,” then no programming occurs since
the cell is in one of the states E or A, depending upon the
programming of the lower page bit, both of which carry an
upper page bit of “1.” If the upper page data bit is to be a logic
“0,” then the threshold voltage is shifted. If the first pass
resulted in the memory cell remaining in the erased state E,
then in the second phase the memory cell is programmed so
that the threshold voltage is increased to be within state C, as
depicted by arrow 534. If the memory cell had been pro-
grammed into state A as a result of the first programming

US RE45,603 E

11

pass, then the memory cell is further programmed in the
second pass so that the threshold voltage is increased to be
within state B, as depicted by arrow 532. The result of the
second pass is to program the cell into the state designated to
store a logic “0” for the upper page without changing the data
for the lower page.

In one embodiment, a system can be set up to perform full
sequence writing if enough data is written to fill up a word
line. If not enough data is being written, then the program-
ming process can program the lower page with the data
received. When subsequent data is received, the system will
then program the upper page. In yet another embodiment, the
system can start writing in the mode that programs the lower
page and convert to full sequence programming mode if
enough data is subsequently received to fill up an entire (or
most of a) word line’s memory cells. More details of such an
embodiment are disclosed in U.S. patent application titled
“Pipelined Programming of Non-Volatile Memories Using
Early Data,” Pub. No. 2006/0126390, Ser. No. 11/013,125,
filed on Dec. 14, 2004, inventors Sergy Anatolievich Goro-
bets and Yan Li, incorporated herein by reference in its
entirety.

FIGS. 8A-C disclose another process for programming
non-volatile memory that reduces the effect of floating gate to
floating gate coupling. In one example of an implementation
of the process taught by FIGS. 8A-C, the non-volatile
memory cells store two bits of data per memory cell, using
four data states. For example, assume that state E is the erased
state and states A, B and C are the programmed states. State E
stores data 11. State A stores data 01. State B stores data 10.
State C stores data 00. This is an example of non-Gray coding
because both bits change between adjacent states A & B.
Other encodings of data to physical data states can also be
used. Each memory cell stores two data in two pages. For
reference purposes these pages of data will be called upper
page and lower page; however, they can be given other labels.
With reference to state A for the process of FIGS. 8A-C, the
upper page stores bit 0 and the lower page stores bit 1. With
reference to state B, the upper page stores bit 1 and the lower
page stores bit 0. With reference to state C, both pages store
bit data 0.

The programming process of FIGS. 8A-C is a two-step
process. In the first step, the lower page is programmed. If the
lower page is to remain data 1, then the memory cell state
remains at state E. If the data is to be programmed to 0, then
the threshold of voltage of the memory cell is raised such that
the memory cell is programmed to state B'. FIG. 8A therefore
shows the programming of memory cells from state E to state
B'. State B' depicted in FIG. 8A is an interim state B; there-
fore, the verify point is depicted as Vvb’, which is lower than
Vvb.

In one embodiment, after a memory cell (on word line WLn
is programmed from state E to state B, its neighbor memory
cell (on word line WLn+1) on the NAND string will then be
programmed with respect to its lower page. For example,
after the lower page for a memory cell connected to WLO0 is
programmed, the lower page for a memory cell (the neighbor
memory cell) on the same NAND string but connected to
WL1 can be programmed. After programming the neighbor
memory cell, the floating gate to floating gate coupling effect
will raise the apparent threshold voltage of earlier memory
cell to be programmed if that earlier memory cell had a
threshold voltage raised from state E to state B'. This will have
the effect of widening the threshold voltage distribution for
state B', as depicted by threshold voltage distribution 550 in

20

25

30

35

40

45

50

55

60

65

12

FIG. 8B. This apparent widening of the threshold voltage
distribution will be remedied when programming the upper
page.

FIG. 8C depicts the process of programming the upper
page. If the memory cell is in erased state E and the upper
page is to remain at 1, then the memory cell will remain in
state E. Ifthe memory cell is in state E and its upper page data
is to be programmed to 0, then the threshold voltage of the
memory cell will be raised so that the memory cell is in state
A. If the memory cell was in intermediate threshold voltage
distribution 550 and the upper page datais to remain at 1, then
the memory cell will be programmed to final state B. If the
memory cell is in intermediate threshold voltage distribution
550 and the upper page data is to become data 0, then the
threshold voltage of the memory cell will be raised so that the
memory cell is in state C. The process depicted by FIGS.
8A-C reduces the effect of coupling between floating gates
because only the upper page programming of neighbor
memory cells will have an effect on the apparent threshold
voltage of a given memory cell.

Although FIGS. 8A-C provide an example with respect to
four data states and two pages of data, the concepts taught by
FIGS. 8A-C can be applied to other implementations with
more or less than four states, different than two pages, and/or
other data encodings.

FIG.9 is atable that describes one embodiment of the order
for programming memory cells utilizing the programming
method of FIGS. 8 A-C. For memory cells connected to word
line WL, the lower page forms page 0 and the upper page
forms page 2. For memory cells connected to word line WL1,
the lower page forms page 1 and the upper page forms page 4.
For memory cells connected to word line WL2, the lower
page forms page 3 and the upper page forms page 6. For
memory cells connected to word line WL3, the lower page
forms page 5 and the upper page forms page 7. Memory cells
are programmed according to page number, from page 0 to
page 7. In other embodiments, other orders of programming
can also be used.

FIG. 10 illustrates example threshold voltage distributions
(also called data states) for the memory cell array when each
memory cell stores three bits of multi-state data. Other
embodiment, however, may use more or less than three bits of
data per memory cell (e.g., such as four or more bits of data
per memory cell).

In the example of FIG. 10, each memory cell stores three
bits of data; therefore, there are eight valid data states S0-S7.
In one embodiment, data state SO is below O volts and data
states S1-S7 are above O volts. In other embodiments, all eight
data states are above 0 volts, or other arrangements can be
implemented. In one embodiment, the threshold voltage dis-
tribution S0 is wider than distributions S1-S7.

In one embodiment, S0 is for erased memory cells. Data is
programmed from S0 to S1-S7. As can be seen from FIG. 10,
of'S1-S7, S1 is the lowest in magnitude and S7 is the highest
in magnitude (e.g. most extreme).

Each data state corresponds to a unique value for the three
data bits stored in the memory cell. In one embodiment,
S0=111, S1=110, S2=101, S3=100, S4=011, S5=010,
S6=001 and S7=000. Other mapping of data to states S0-S7
can also be used. In one embodiment, all of the bits of data
stored in a memory cell are stored in the same logical page. In
other embodiments, each bit of data stored in a memory cell
corresponds to different logical pages. Thus, a memory cell
storing three bits of data would include data in a first page,
data in a second page and data in a third page. In some
embodiments, all of the memory cells connected to the same
word line would store data in the same three pages of data. In

US RE45,603 E

13

some embodiments, the memory cells connected to a word
line can be grouped into different sets of pages (e.g., by odd
and even bit lines, or by other arrangements).

In some prior art devices, the memory cells will be erased
to state SO. From state S0, the memory cells can be pro-
grammed to any of states S1-S7. In one embodiment, known
as full sequence programming, memory cells can be pro-
grammed from the erased state SO directly to any of the
programmed states S1-S7. For example, a population of
memory cells to be programmed may first be erased so that all
memory cells in the population are in erased state S0. While
some memory cells are being programmed from state S0 to
state S1, other memory cells are being programmed from
state SO to state S2, state S0 to state S3, state S0 to state S4,
state SO to state S5, state S0 to state S6, and state S0 to state
S7. Full sequence programming is graphically depicted by the
seven curved arrows of FIG. 10

FIG. 10 shows a set of target verity levels Vv1, Vv2, Vv3,
Vvd4,Vv5,Vv6, and Vv7. These target verify levels are used
as comparison levels during the programming process. For
example, when programming memory cells to state 1, the
system will check to see if the threshold voltages of the
memory cells has reached Vv1. If the threshold voltage of a
memory cell has not reached Vv1, then programming will
continue for that memory cell until its threshold voltage is
greater than or equal to Vv1. If the threshold voltage of a
memory cell has reached Vv1, then programming will stop
for that memory cell. Target verify level Vv2 is used for
memory cells being programmed to state 2. Target verify level
Vv3 is used for memory cells being programmed to state 3.
Target verify level Vv4 is used for memory cells being pro-
grammed to state 4. Target verify level Vv5 is used for
memory cells being programmed to state 5. Target verify level
Vv6 is used for memory cells being programmed to state 6.
Target verify level Vv7 is used for memory cells being pro-
grammed to state 7.

FIG. 10 also shows a set of read compare levels Vrl, Vr2,
Vr3, Vrd, Vi5, Vr6, and Vr7. These read compare levels are
used as comparison levels during the read process. By testing
whether the memory cells turn on or remain off in response to
the read compare levels Vrl, Vr2, Vi3, Vrd, V15, Vr6, and Vr7
being separately applied to the control gates of the memory
cells, the system can determine which states that memory
cells are storing data for.

FIGS. 11A-111 disclose another process for programming
multi-state data. Prior to the first step, the memory cells will
be erased so that they are in the erase threshold distribution of
state S0. The process of FIGS. 11A-111 assumes that each
memory cell stores three bits of data, with each bit for a given
memory cell being in a different page. The first bit of data (the
leftmost bit) is associated with the first page. The middle bit
is associated with the second page. The rightmost bit is asso-
ciated with the third page. In one embodiment, the correlation
of data states to data is as follows: S0=111, S1=110, S2=101,
S3=100, S4=011, S5=010, S6=001 and S7=000. However,
other embodiments can use other data encoding schemes.

When programming the first page (as described in FIG.
11A), if the bit is to be data “1”” then the memory cell will stay
in state SO (threshold voltage distribution 602). If the bit is to
be data “0” then the memory cell is programmed to state S4
(threshold voltage distribution 604). After adjacent memory
cells are programmed, capacitive coupling between adjacent
floating gates may cause the state S4 to widen as depicted in
FIG. 11B. State S0 may also widen, but there is sufficient
margin between S0 and S1 to ignore the effect. More infor-
mation about capacitive coupling between adjacent floating

20

25

30

35

40

45

50

55

60

65

14

gates can be found in U.S. Pat. No. 5,867,429 and U.S. Pat.
No. 6,657,891, both of which are incorporated herein by
reference in their entirety.

When programming the second page (see FIG. 11C), if the
memory cell is in state SO and the second page bit is data “1”
then the memory cell stays in state S0. In some embodiments,
the programming process for the second page will tighten
threshold voltage distribution 602 to a new S0. If the memory
cell was in state SO and the data to be written to the second
page is “0,” then the memory cell is moved to state S2 (thresh-
old voltage distribution 606). State S2 has a verify point of
C*. If the memory cell was in state S4 and the data to be
written to the memory cell is “1” then the memory cell
remains in S4. However, state S4 is tightened by moving the
memory cells from threshold voltage distribution 604 to
threshold voltage distribution 608 for state S4, as depicted in
FIG. 11C. Threshold voltage distribution 608 has a verify
point of E* (as compared to E** of threshold voltage distri-
bution 604). Ifthe memory cell is in state S4 and the datato be
written to the second page is a “0” then the memory cell has
its threshold voltage moved to state S6 (threshold voltage
distribution 610), with a verify point of G*.

After the adjacent memory cells are programmed, states
S0, S2, S4 and S6 are widened due to the floating gate to
floating gate coupling, as depicted by threshold voltages dis-
tributions 602, 606, 608 and 610 of FIG. 11D.

FIGS. 11E, 11F, 11G and 11H depict the programming of
the third page. While one graph can be used, the programming
process is depicted in four graphs for visibility reasons. After
the second page has been programmed, the memory cells are
either in states S0, S2, S4 or S6. FIG. 11E shows the memory
cells that are in state S0 being programmed for the third page.
FIG. 11F shows the memory cells that are in state S2 being
programmed for the third page. FIG. 11G shows the memory
cells that are in state S4 being programmed for the third page.
FIG. 11H shows the memory cells that are in state S6 being
programmed for the third page. FIG. 111 shows the threshold
voltage distributions after the processes of FIGS. 11E, 11F,
11G and 11H have been performed on the population of
memory cells (concurrently or serially).

Ifa memory cell is in state SO and the third page datais “1”
then the memory cell remains at state S0. If the data for the
third page is “0” then the threshold voltage for the memory
cell is raised to be in state S1, with a verify point of B (see
FIG. 11E).

If a memory cell is in state S2 and the data to be written in
the third page is “1,” then the memory cell will remain in state
S2 (see FIG. 11F). However, some programming will be
performed to tighten the threshold distribution 606 to a new
state S2 with a verify point of C. If the data to be written to the
third page is “0,” then the memory cell will be programmed to
state S3, with a verify point of D.

If a memory cell is in state S4 and the data to be written to
the third page is “1” then the memory cell will remain in state
S4 (see FIG. 11G). However, some programming will be
performed so that threshold voltage distribution 608 will be
tightened to new state S4 with a verify point of E. If amemory
cell is in state S4 and the data to be written to the third page is
“0” then the memory cell will have its threshold voltage raised
to be in state S5, with a verity point of F (see FIG. 11G).

If the memory cell is in state S6 and the data to be written
to the third page is “1” then the memory cell will remain in
state S6 (see FIG. 11H). However, there will be some pro-
gramming so that the threshold voltage distribution 510 is
tightened to be in new state S6, with a verify point at G. If the
third page data is “0” then the memory cell will have its
threshold voltage programmed to state S7, with a verify point

US RE45,603 E

15

at H (see FIG. 11H). At the conclusion of the programming of
the third page, the memory cell will be in one of the eight
states depicted in FIG. 111.

FIG. 12 is a flow chart describing a process for operating
memory cells connected to a selected word line. In one
embodiment, the process of FIG. 12 is used to program a
block of memory cells. In one implementation of the process
of FIG. 12, memory cells are pre-programmed in order to
maintain even wear on the memory cells (step 650). In one
embodiment, the memory cells are preprogrammed to the
highest state, a random pattern, or any other pattern. In some
implementations, pre-programming need not be performed.

In step 652, memory cells are erased (in blocks or other
units) prior to programming. Memory cells are erased in one
embodiment by raising the p-well to an erase voltage (e.g., 20
volts) for a sufficient period of time and grounding the word
lines of a selected block while the source and bit lines are
floating. In blocks that are not selected to be erased, word
lines are floated. Due to capacitive coupling, the unselected
word lines, bit lines, select lines, and the common source line
are also raised to a significant fraction of the erase voltage
thereby impeding erase on blocks that are not selected to be
erased. In blocks that are selected to be erased, a strong
electric field is applied to the tunnel oxide layers of selected
memory cells and the selected memory cells are erased as
electrons of the floating gates are emitted to the substrate side,
typically by Fowler-Nordheim tunneling mechanism. As
electrons are transferred from the floating gate to the p-well
region, the threshold voltage of a selected cell is lowered.
Erasing can be performed on the entire memory array, on
individual blocks, or another unit of cells. In one embodi-
ment, after erasing the memory cells, all of the erased
memory cells will be in state E or S0. One implementation of
an erase process includes applying several erase pulses to the
p-well and verifying between erase pulses whether the
NAND strings are properly erased.

Atstep 654, soft programming is (optionally) performed to
narrow the distribution of erased threshold voltages for the
erased memory cells. Some memory cells may be in a deeper
erased state than necessary as a result of the erase process.
Soft programming can apply programming pulses to move
the threshold voltage of the deeper erased memory cells to the
erase threshold distribution (e.g., state E or S0).

In step 656, the memory cells of the block are programmed
After programming, the memory cells of the block can be
read (step 658). Many different read processes known in the
art can be used to read data. In some embodiments, the read
process includes using ECC to correct errors. The data read, is
output to the hosts that requested the read operation. The ECC
process can be performed by the state machine, the controller
or another device.

FIG. 12 shows that the erase-program cycle can happen
many times without or independent of reading, the read pro-
cess can occur many times without or independent of pro-
gramming, and the read process can happen any time after
programming. The process of FIG. 12 can be performed at the
direction of the state machine using the various circuits
described above. In other embodiments, the process of FIG.
12 can be performed at the direction of the controller using the
various circuits described above.

FIG. 13 is a flow chart describing one embodiment of a
process for performing programming on memory cells con-
nected to a common word line to one or more target condi-
tions (e.g., data states or threshold voltage ranges). The pro-
cess of FIG. 13 can be performed one or multiple times during
step 656 of F1G. 12. For example, the process of FIG. 13 can
be used to program memory cells (e.g., full sequence pro-

20

25

30

35

40

45

50

55

60

65

16

gramming) from state E or S0 directly to any of states A-C
(see FIG. 6) or S1-S7 (see FIG. 10). Alternatively, the process
of FIG. 13 can be used to perform one or each of the phases of
the process of FIG. 7, one or each of the steps of the process
of FIGS. 8A-C, or one or each of the steps of the process of
FIGS. 11A-1. For example, when performing the process of
FIG. 7, the process of FIG. 13 is used to implement the first
phase that includes programming some of the memory cells
from state E to state A. The process of FIG. 13 can then be
used again to implement the second phase that includes pro-
gramming some of the memory cells from state E to state C
while programming other memory cells from state A to state
B.

Typically, the program voltage applied to the control gate
during a program operation is applied as a series of program
pulses. Between programming pulses are a set of verify
pulses to perform verification. In many implementations, the
magnitude of the program pulses is increased with each suc-
cessive pulse by a predetermined step size. In step 670 of FIG.
13, the programming voltage (Vpgm) is initialized to the
starting magnitude (e.g., ~12-16V or another suitable level)
and a program counter PC maintained by state machine 222 is
initialized at 1. In step 672, a program pulse of the program
signal Vpgm s applied to the selected word line (the word line
selected for programming). In one embodiment, the group of
memory cells being programmed are all connected to the
same word line (the selected word line). The unselected word
lines receive one or more boosting voltages (e.g., ~9 volts) to
perform boosting schemes known in the art. If a memory cell
should be programmed, then the corresponding bit line is
grounded. On the other hand, if the memory cell should
remain at its current threshold voltage, then the correspond-
ing bit line is connected to Vdd to inhibit programming. In
step 672, the program pulse is concurrently applied to all
memory cells connected to the selected word line so that all of
the memory cells connected to the selected word line are
programmed concurrently. That is, they are programmed at
the same time (or during overlapping times). In this manner
all of the memory cells connected to the selected word line
will concurrently have their threshold voltage change, unless
they have been locked out from programming.

In step 674, the states of the selected memory cells are
verified using the appropriate set of target levels. Step 674
includes performing one or more verify operations. If it is
detected that the threshold voltage of a memory cell has
reached the appropriate target level, then that memory cell is
locked out of further programming by, for example, raising its
bit line voltage to Vdd during subsequent programming
pulses.

In step 676, it is checked whether all the memory cells have
reached their target threshold voltages. If so, the program-
ming process is complete and successful because all selected
memory cells were programmed and verified to their target
states. A status of “PASS” is reported in step 678. If, in 676,
it is determined that not all of the memory cells have reached
their target threshold voltages, then the programming process
continues to step 680.

In step 680, the system counts the number of memory cells
that have not yet reached their respective target threshold
voltage distribution. That is, the system counts the number of
cells that have failed the verify process. This counting can be
done by the state machine, the controller, or other logic. In
one implementation, each of the sense block 300 (see FIG. 3)
will store the status (pass/fail) of their respective cells. These
values can be counted using a digital counter. As described
above, many of the sense blocks have an output signal that is
wire-Or’d together. Thus, checking one line can indicate that

US RE45,603 E

17

no cells of a large group of cells have failed verity. By appro-
priately organizing the lines being wired-Or together (e.g., a
binary tree-like structure), a binary search method can be
used to determine the number of cells that have failed. In such
a manner, if a small number of cells failed, the counting is
completed rapidly. If a large number of cells failed, the count-
ing takes a longer time. More information can be found in
United States Patent Publication 2008/0126676, incorporated
herein by reference. In another alternative, each of the sense
amplifiers can output an analog voltage or current if its cor-
responding cell has failed and an analog voltage or current
summing circuit can be used to count the number of cells that
have failed.

In one embodiment, there is one total counted, which
reflects the total number of memory cells currently being
programmed that have failed the last verify step. In another
embodiment, separate counts are kept for each data state.

In step 682, it is determined whether the count from step
680 is less than or equal to a predetermined limit. In one
embodiment, the predetermined limit is the number of bits
that can be corrected by ECC during a read process for the
page of memory cells. If the number of failed cells is less than
or equal to the predetermined limit, than the programming
process can stop and a status of “PASS” is reported in step
678. In this situation, enough memory cells programmed
correctly such that the few remaining memory cells that have
not been completely programmed can be corrected using
ECC during the read process (see step 658 of FIG. 12).

In another embodiment, the predetermined limit can be less
than the number of bits that can be corrected by ECC during
a read process to allow for future errors. When programming
less than all of the memory cells for a page, or comparing a
count for only one data state (or less than all states), than the
predetermined limit can be a portion (pro-rata or not pro-rata)
of the number of bits that can be corrected by ECC during a
read process for the page of memory cells. In some embodi-
ments, the limit is not predetermined. Instead, it changes
based on the number of errors already counted for the page,
the number of program-erase cycles performed, temperature
or other criteria.

If the number of failed cells is not less than the predeter-
mined limit, than the programming process continues at step
684 and the program counter PC is checked against the pro-
gram limit value (PL). One example of a program limit value
is 20; however, other values can be used. If the program
counter PC is not less than the program limit value PL, then
the program process is considered to have failed and a status
of FAIL is reported in step 688. If the program counter PC is
less than the program limit value PL, then the process con-
tinues at step 686 during which time the Program Counter PC
is incremented by 1 and the program voltage Vpgm is stepped
up to the next magnitude. For example, the next pulse will
have a magnitude greater than the previous pulse by a step
size (e.g., a step size of 0.1-0.4 volts). After step 686, the
process loops back to step 672 and another program pulse is
applied to the selected word line.

FIG. 14 shows a portion of the voltage waveform applied to
the selected word line and, therefore, to the control gates of
the memory cells connected to the selected word line during
the programming for the process of FIG. 13. The waveform
shows the programming pulse (Program) applied during step
672, the verity pulses (Verify) applied during step 674 and the
time period (count failed cells) for counting the failed cells
during step 680 for parts of three iterations of the loops
comprising steps 672-686 of F1G. 13. The example of FIG. 14
corresponds to the embodiments with two bits per memory
cell and four data states. Therefore, the verify process

20

25

30

35

40

45

50

55

60

65

18

includes a verify pulse at Vva, a verify pulse at Vvb and a
verify pulse a Vvc. In embodiments with three bits per
memory cell and eight data states, there may be up to eight
verify pulses. Note that some embodiments will use less than
all three or eight verify pulses in some iterations when it is
clear that no memory cell needs to be tested for certain data
states. Additionally, embodiments with different numbers of
data states will use different numbers of verify pulses. In the
embodiment of FIG. 14, the verity operations (step 674) and
the counting the failed cells (step 680) are performed between
programming pulses. Therefore, as soon as it is determined
that all memory cells have verified or that the number of
memory cells that failed verification is less than the predeter-
mined limit (or a limit that is not predetermined), than the
programming process can stop without applying the next
programming pulse.

FIG. 15 shows a portion of another embodiment of the
voltage waveform applied to the selected word line and,
therefore, to the control gates of the memory cells connected
to the selected word line during the programming process of
FIG. 13. This waveform shows the programming pulse (Pro-
gram) applied during step 672, the verify pulses (Verify)
applied during step 674 and the time period (count failed
cells) for counting the failed cells during step 680 for parts of
three iterations of the loops comprising steps 672-686 of F1G.
13. In the embodiment of FIG. 15, the verify operations (step
674) are performed between programming pulses. However,
the counting of the failed cells is performed during the next
program pulse, which can save time. When it is determined
that all memory cells have verified or that the number of
memory cells that failed verification is less than the predeter-
mined limit (or a limit that is not predetermined), than the
programming process can stop; however, the next program-
ming pulse has already been applied. As discussed above, the
results of the verification process can be stored in latches 494.
These latches can be read during the next program pulse.

FIG. 16 shows a portion of another embodiment of the
voltage waveform applied to the selected word line and,
therefore, to the control gates of the memory cells connected
to the selected word line. This waveform shows the program-
ming pulse (Program) applied during step 672, the verify
pulses (Verity) applied during step 674 and the time period
(count failed cells) for counting the failed cells during step
680 for parts of three iterations of the loops comprising steps
672-686 of FIG. 13. The embodiment of FIG. 16 pertains to a
programming process that is only verifying for one state. For
example, when programming data to four, eight or more
states, the process may reach a condition where the memory
cells have all reached their target states except for the memory
cells being programmed to the highest state (e.g., state C or
state S7). At that point, the verify process will only perform a
verify at Vve (see FIG. 6) or Vv7 (see FIG. 7). Thus, FIG. 16
only shows on verify pulse for testing whether the memory
cells the highest data state (or another state that is not the
highest). In another example, the waveform of FIG. 16 can be
used with a programming operation that is only programming
to one state; for example, the first phase of the process of F1G.
7, the process of FIG. 8A, the process of FIG. 11A or other
processes. For programming operations that program to more
than one state, the additional verify pulses can be added to the
waveform, as appropriate. In the embodiment of FIG. 16, the
verify operations (step 674) and the counting the failed cells
(step 680) are performed between programming pulses.

FIG. 17 shows a portion of another embodiment of the
voltage waveform applied to the selected word line and,
therefore, to the control gates of the memory cells connected
to the selected word line. This waveform shows the program-

US RE45,603 E

19

ming pulse (Program) applied during step 672, the verify
pulses (Verify) applied during step 674 and the time period
(count failed cells) for counting the failed cells during step
680 for parts of three iterations of the loops comprising steps
672-686 of F1G. 13. Like FIG. 16, the waveform of FIG. 17
pertains to a programming process that is only verifying for
one state. In the embodiment of FIG. 17, the verify operations
(step 674) are performed between programming pulses. How-
ever, the counting of the failed cells is performed during the
next program pulse.

Because the program voltage is applied to all memory cells
connected to a word line, an unselected memory cell (a
memory cell that is not to be programmed) on the word line
may become inadvertently programmed. The unintentional
programming of the unselected cell on the selected word line
is referred to as “program disturb.” For example, a memory
cell in state E may have its threshold voltage increased to a
level outside of state E. FIG. 18 shows threshold voltage
versus number of memory cells for data states E, A, B and C
for a population of memory cells during a programming pro-
cess. State E is depicted as having a subset of its memory
cells, indicated by shaded region 702, being subjected to
program disturb so that their respective threshold voltage is
above the level normally intended to be part of state E. The
program disturb is more severe when programming memory
cells to the highest (most extreme) state (e.g. state C or S7).
This is because it generally takes more voltage pulses to
program memory cells to the highest state and the more pulses
applied increases the chance of program disturb. Further-
more, since the magnitude of the voltage increases with each
pulse, the highest data state is programmed with higher volt-
ages, which also can increase the chance of program disturb.

FIG. 18 also shows that some of the memory cells (see
shaded region 704) that are being programmed to highest
state C have not yet reached Vvc. In this case, continuing to
program the memory cells represented by shaded region 704
will only exacerbate the program disturb of the memory cells
in shaded region 702. Therefore, the programming process
described above stops the programming of memory cells to
the highest state (and other data states) before all memory
cells have reached the target (e.g., have reached Vvc) in order
to reduce (or prevent further exacerbation) of the program
disturb. However, the programming is only stopped when the
number of memory cells not fully programmed is less than the
number of cells that can be corrected by ECC, as explained
above with respect to steps 680 and 682 of FIG. 13.

In one embodiment, instead of counting the number of cells
that are below the verify compare value (e.g., Vvc), the sys-
tem can count the number of cells that are below an interme-
diate compare value and use that count as an estimate of how
many cells are below the verify compare value. For example,
FIG. 19 shows the threshold voltage distribution for data state
C with verify compare value Vvc and read compare value Vrc.
FIG. 19 also shows an intermediate compare value VvcL. In
one embodiment of step 680 of F1G. 13, the system will count
the number of memory cells supposed to be programmed to
state C that have their threshold voltage less than VvcL in
order to estimate the number of memory cells supposed to be
programmed to state C that have their threshold voltage less
than Vve.

The number of memory cells that have their threshold
voltage less than VvcL is proportional to the number of
memory cells that have their threshold voltage less than Vvc.
For example, if VvcL is 0.4-0.5v lower than Vvc, than the
number of memory cells that have their threshold voltage less
than VvcL is approximately one tenth (Y/10) of the number of
memory cells that have their threshold voltage less than Vvc.

20

25

30

35

40

45

50

55

60

65

20

If VvcL is 0.8-1.0v lower than Vvc, than the number of
memory cells that have their threshold voltage less than VvcL
is approximately one hundredth (Yic0) of the number of
memory cells that have their threshold voltage less than Vvc.
In some implementations, the number of cells that are
counted as being below the compare value will reduce with a
factor of 10 for each 0.4-0.5v. FIG. 19 shows shaded region
712 representing those memory cells with a threshold voltage
below Vve and above Vrc. Shaded region 714 represents
those memory cells with a threshold voltage below Vrc and
above VvcL. Shaded region 714 represents those memory
cells with a threshold voltage below VvcL. Thus, the number
of memory cells that have their threshold voltage less than
Vvc is the sum of shaded regions 712+714+4716. As can be
seen this is significantly larger than the number of memory
cells that have their threshold voltage less than VvcL. In some
embodiments, counting the number of memory cells below
the intermediate compare value Vvcl. will be faster than
counting the number of memory cells below Vve.

FIG. 20 shows a portion of the voltage waveform applied to
the selected word line (and, therefore, to the control gates of
the memory cells connected to the selected word line) during
the programming process of FIG. 13 for the embodiment of
step 680 in which the system will count the number of
memory cells supposed to be programmed to state C that have
their threshold voltage less than intermediate compare value
VvcL. If the number of memory cells supposed to be pro-
grammed to state C that have their threshold voltage less than
VvcL is less than or equal to a particular limit (see step 682 of
FIG. 13), then the programming process is concluded. Since
VvcL is lower than Ve, the particular limit compared against
is lower than if comparing against Vvc. In the two examples
above, the limit used for VvcL is 10 or 100 times smaller than
the limit used for Vve. The waveform of FIG. 20 shows the
programming pulse (Program) applied during step 672, the
verify pulses (Verify) applied during step 674 and the time
period (count failed cells) for counting the failed cells during
step 680 for parts of three iterations of the loops comprising
steps 672-686 of F1G. 13. In this embodiment, step 680 (count
failed cells) includes applying a voltage pulse of VvcL in
order to test whether the memory cells have a threshold volt-
age of at least VvcL. Other methods of testing the threshold
voltage can also be used. Additionally note that although the
voltage pulse is depicted as a perfect square wave, in reality
the voltage pulse (and the other pulses depicted in this figure
and other figures) is not likely to be a perfect square and in
some cases it may be a different shape than a square wave.

The example of FIG. 20 corresponds to the embodiments
with two bits per memory cell and four data states. Therefore,
the verity process includes a verify pulse at Vva, a verify pulse
at Vvb and a verify pulse a Vvc. In embodiments with three
bits per memory cell and eight data states, there may be up to
eight verify pulses. Note that some embodiments will use less
than all three or eight verify pulses in some iterations when it
is clear that no memory cell needs to be tested for certain data
states. Additionally, embodiments with different numbers of
data states will use different numbers of verify pulses. In the
embodiment of FIG. 20, the verity operations (step 674) and
the counting the failed cells (step 680) are performed between
programming pulses. Therefore, as soon as it is determined
that all memory cells have verified or that the number of
memory cells that failed verification is less than a limit, than
the programming process can stop without applying the next
programming pulse.

FIG. 21 shows a portion of the voltage waveform applied to
the selected word line (and, therefore, to the control gates of
the memory cells connected to the selected word line) for

US RE45,603 E

21

another embodiment of step 680 of FIG. 13, in which the
system will count the number of memory cells supposed to be
programmed to state C that have their threshold voltage less
than VvcL. This waveform shows the programming pulse
(Program) applied during step 672, the verify pulses (Verify)
applied during step 674 and the time period (count failed
cells) for counting the failed cells during step 680 for parts of
three iterations of the loops comprising steps 672-686 of F1G.
13. In this embodiment, step 680 (count failed cells) includes
applying a voltage pulse of VvcL in order to test whether the
memory cells have a threshold voltage of at least VvcL. Other
methods of testing the threshold voltage can also be used. In
the embodiment of FIG. 21, the verify operations (step 674)
are performed between programming pulses. However, the
counting of the failed cells (step 680) is performed during the
next program pulse. As discussed above, the results of the
verification process can be stored in latches 494. These
latches can be read during the next program pulse.

FIG. 22 shows a portion of the voltage waveform applied to
the selected word line (and, therefore, to the control gates of
the memory cells connected to the selected word line) for
another embodiment of step 680 of FIG. 13, in which the
system will count the number of memory cells supposed to be
programmed to state C that have their threshold voltage less
than VvcL. This waveform shows the programming pulse
(Program) applied during step 672, the verify pulses (Verify)
applied during step 674 and the time period (count failed
cells) for counting the failed cells during step 680 for parts of
three iterations of the loops comprising steps 672-686 of F1G.
13. The embodiment of FIG. 16 pertains to a programming
process that is only verifying for one state. For example, when
programming data to four, eight or more states, the process
may reach a condition where the memory cells have all
reached their target states except for the memory cells being
programmed to the highest state (e.g., state C or state S7). At
that point, the verify process will only perform a verify at Vvc
(see FIG. 6) or Vv7 (see FIG. 7). Thus, FIG. 22 only shows
one verify pulse for testing whether the memory cells reached
the highest data state (or another state that is not the highest).
The waveform of FIG. 22 can be used with a programming
operation that is only programming to one state; for example,
the first phase of the process of FIG. 7, the process of FIG. 8 A,
the process of FIG. 11A or other processes. For programming
operations that program to more than one state, the additional
verify pulses can be added to the waveform, as appropriate. In
the embodiment of FIG. 22, the verify operations (step 674)
and the counting the failed cells (step 680) are performed
between programming pulses. In this embodiment, like the
embodiment of FIG. 21, step 680 (count failed cells) includes
applying a voltage pulse of VvcL in order to test whether the
memory cells have a threshold voltage of at least VvcL. Other
methods of testing the threshold voltage can also be used.

FIG. 23 shows a portion of the voltage waveform applied to
the selected word line (and, therefore, to the control gates of
the memory cells connected to the selected word line) for
another embodiment of step 680 of FIG. 13, in which the
system will count the number of memory cells supposed to be
programmed to state C that have their threshold voltage less
than VvcL. This waveform shows the programming pulse
(Program) applied during step 672, the verify pulses (Verify)
applied during step 674 and the time period (count failed
cells) for counting the failed cells during step 680 for parts of
three iterations of the loops comprising steps 672-686 of F1G.
13. Like FIG. 22, the waveform of FIG. 23 pertains to a
programming process that is only verifying for one state. In
the embodiment of FIG. 23, the verify operations (step 674)
are performed between programming pulses. However, the

20

25

30

35

40

45

50

55

60

65

22

counting of the failed cells (count failed cells) of step 680 is
performed during the next program pulse. In this embodi-
ment, like the embodiment of FIG. 21, step 680 (count failed
cells) includes applying a voltage pulse of VvcL in order to
test whether the memory cells have a threshold voltage of at
least VvcL. In one embodiment, the voltage pulse of VvcL is
applied prior to the next program pulse while the counting of
failed cells is performed concurrently with the next program
pulse. Other methods of testing the threshold voltage can also
be used.

FIGS. 20-23 describe the use of a intermediate compare
level (e.g., VvcL) when performing step 680 for memory cells
being programmed to state C. In one set of embodiments, step
680 will be performed on memory cells being programmed to
states other than state C (which is the highest state, or most
extreme state) by counting the number of memory cells that
have not reached the respective verify compare levels (e.g.
Vva and Vvb). Thus, programming to state A will stop when
less than a first predetermined number of memory cells
intended to be programmed to state A have not reached Vva,
programming to state B will stop when less than a second
predetermined number (may be the same or different than the
first predetermined number) of memory cells intended to be
programmed to state B have not reached Vvb, and program-
ming to state C will stop when less than a first predetermined
number of memory cells intended to be programmed to state
C have not reached VvcL.

In another set of embodiment, step 680 and 682 will only
be performed by memory cells being programmed to the
highest, or most extreme, state (e.g. state C or state S7).

In another set of embodiments, step 680 will use a inter-
mediate compare value for each state. For example, step 680
will use an intermediate compare value for memory cells
being programmed to state A that is lower than Vva and step
680 will use an intermediate compare value for memory cells
being programmed to state B that is lower than Vvb.

In some embodiments, such as where the threshold volt-
ages are lowered for programming and raised during erase,
the intermediate compare value will be higher than the verify
compare value.

FIGS. 20-23 illustrate the use of an intermediate compare
level (e.g., VvcL) with memory cells that store two bits of
data. However, the concepts taught by FIGS. 20-23 can be
applied to memory cells that store more than two bits of data.
For example, counting memory cells that have a threshold
voltage less than the intermediate value in step 680 can be
used with the programming processes of FIGS. 10 and 11. In
one example that includes memory cells storing three bits of
data, step 680 will count memory cells that have threshold
voltages less than the respective verify levels for S1-S6 (e.g.,
Vvl, Vv2, Vv3, Vv4, Vv5, Vv6) for memory cells being
programmed to S1-S6 and count memory cells that are less
than VV7L for memory cells being programmed to state S7,
where Vv7L is 0.5v (or a different value) less than Vv7. In one
alternative, V7L can be equal to Vv6, Vv5 or another value
near those values.

In another example that includes memory cells storing
three bits of data, step 680 will count memory cells that have
threshold voltages less than the respective verify levels for
S1-S5 (e.g., Vv1,Vv2,Vv3, Vvd4, and Vv5) for memory cells
being programmed to S1-S5, count memory cells that are less
than Vv6L for memory cells being programmed to state S6,
and count memory cells that are less than Vv7L for memory
cells being programmed to state S7, where Vv6L. is 0.5v (or a
different value) less than Vvé.

FIG. 24 describes another embodiment where VvcL is set
to be equal to Vb, or VV7L is set to be Vv6. Additionally,

US RE45,603 E

23

after determining that the number of failed cells (e.g., cells
having a threshold voltage that is less the intermediate com-
pare value) is less than the predetermined number, a prede-
termined number of one or more additional programming
pulses is applied. In the embodiments that perform step 680
during the next program pulse (see FIGS. 21 and 23), the
predetermined number of one or more additional program-
ming pulses are applied after the next program pulse. The
process of FIG. 24 is similar to the process of FIG. 13 (with
like reference numbers depicting the same steps); however,
steps 680 and 682 are replaced by steps 740-744. Step 740 is
similar to step 680 except that VvcL=Vvb or Vv7L=Vv6.
Step 742 is similar to step 682, except the predetermined limit
compared to the failed cells may be different. If the number of
failed cells is greater than the predetermined limit, than the
process continues at step 684. If the number of failed cells is
less than or equal to the predetermined limit, than the process
continues at step 744. In step 744, a predetermined number of
programming pulses are applied to the memory cells via the
selected word line. Verify operations (with lockout for
memory cells that verify successfully) are performed
between these predetermined number of programming
pulses. The predetermined limit and the predetermined num-
ber of programming pulses can be determined based on simu-
lation or device characterization. In one embodiment, the
limit and the number of programming pulses are set dynami-
cally based on number of program-erase cycles, temperature
or other factors, rather than be predetermined.

FIG. 25 describes another embodiment that includes
applying a predetermined number of programming pulses
and concluding the programming after all memory cells
intended to be programmed to state B have sufficiently been
programmed to state B. It is assumed that when after all
memory cells intended to be programmed to state B have
sufficiently been programmed to state B, that a small number
of memory cells intended to be programmed to state C do not
yet have threshold voltages that have reached Vvb. The phrase
“sufficiently programmed” means that enough memory cells
have reached state B to consider the programming process
successful. For example, when programming a group of
memory cells to state B using the process of FIG. 13, the
group of memory cells are sufficiently programmed when
enough memory cells have successfully verified such that the
number of memory cells that have failed verification is less
than predetermined limit (e.g., the predetermined limit that
can be fixed with ECC). At this point, it is assumed that less
than the predetermined limit of memory cells intended to be
programmed to state C would have failed verification for state
B if so tested. Therefore, only apply a predetermined addi-
tional set of one or more programming pulses and then stop
the programming. When applying the additional set of one or
more programming pulses (in this embodiment or the
embodiment of FIG. 24), there will be no counting failed cells
during or between the additional set of one or more program-
ming pulses. To achieve this embodiment, the memory cells
being programmed to state C will perform the process of FIG.
25, while the memory cells being programmed to states A and
B will perform the process of FIG. 13.

The process of FIG. 25 is similar to the process of F1G. 13,
with the following exceptions. If, in step 676, it is determined
that not all memory cells have been properly verified, then in
step 780 it is determined whether all memory cells intended to
be programmed to state B have sufficiently been programmed
to state B. If not, the process continues at step 684. If all
memory cells intended to be programmed to state B have
sufficiently been programmed to state B, then in step 782 a
predetermined number of programming pulses are applied to

20

25

30

35

40

45

50

55

60

65

24

the memory cells via the selected word line. Verify operations
(with lockout for memory cells that verify successfully) are
performed between these predetermined number of program-
ming pulses. The number of programming pulses are applied
to the memory cells during step 782 can be determined based
on experimentation, simulation and/or device characteriza-
tion. The amount of the increment between programming
pulses may affect the number of programming pulses that are
applied to the memory cells during step 782.

The embodiment of FIG. 25 can also be used with memory
cells storing more than two bits of data. For example, the
process of FIG. 25 can be used with memory cells being
programmed as depicted in FIGS. 10 and 11H, as well as
other programming processes. In one embodiment, when
using the process of FIG. 25 with memory cells storing three
bits of data, step 780 test whether all memory cells intended
to be programmed to state S6 (the second highest state) have
sufficiently been programmed to state S6.

One solution for achieving tight threshold voltage distri-
butions, without unreasonably slowing down the program-
ming process, includes using a two-phase programming pro-
cess. The first phase, a coarse programming phase, includes
an attempt to raise a threshold voltage in a faster manner and
paying less attention to achieving a tight threshold voltage
distribution. The second phase, a fine programming phase,
attempts to raise the threshold voltage in a slower manner in
order to reach the target threshold voltage, while also achiev-
ing a tighter threshold voltage distribution. One example of a
coarse/fine programming methodology can be found in U.S.
Pat. No. 6,643,188, incorporated herein by reference in its
entirety.

FIGS. 26A-C and 27A-C provide more detail of one
example of a coarse/fine programming methodology. FIGS.
26A and 27A depict the programming pulses Vpgm applied
to the control gate. FIGS. 26B and 27B depict the bit line
voltages for the memory cells being programmed. FIGS. 26C
and 27C depict the threshold voltage of the memory cells
being programmed. This example uses two verify levels, indi-
cated in the Figures as Vverl and Vver2. The final target level
is Vverl. When a threshold voltage of the memory cell has
reached Vverl, the memory cell will be inhibited from further
programming by applying an inhibit voltage to the bit line
corresponding to that memory cell. For example, the bit line
voltage can be raised to Vinhibit (See FIG. 26B and FIG.
27B). In one embodiment, Vinhibit is Vdd. However, when a
memory cell has reached a threshold voltage close to (but
lower than) the target value Vverl, the threshold voltage shift
to the memory cell during subsequent programming pulses is
slowed down by applying a certain bias voltage to the bit line,
typically in the order of 0.3v to 0.8v. Because the rate of
threshold voltage shift is reduced during the next few pro-
gramming pulses, the final threshold voltage distribution can
be narrower than otherwise. To implement this method, a
second verify level that is lower than that of Vverl is used.
This second verify level is depicted as Vver2. When the
threshold voltage of the memory cell is larger than Vver2, but
still lower than Vverl, the threshold voltage shift to the
memory cell will be reduced for subsequent programming
pulses by applying a bit line bias Vs (FIG. 27B). Note that in
this case, two verify operations are required for each state.
One verify operation at the corresponding Vverl for each
state, and one verify operation at the corresponding Vver2 for
each state. This may increase the total time needed to program
the memory cells. However, a larger AVpgm step size can be
used to speed up the process.

FIGS. 26A, 26B, and 26C show the behavior of a memory
cell whose threshold voltage moves past Vver2 and Vverl in

US RE45,603 E

25

one programming pulse. For example, the threshold voltage is
depicted in FIG. 26C to pass Vver2 and Vverl in between 12
and t3. Thus, prior to t3, the memory cell is in the coarse
phase. After t3, the memory cell is in the inhibit mode.

FIGS. 27A, 27B, and 27C depict a memory cell that enters
both the coarse and fine programming phases. The threshold
voltage of the memory cell crosses Vver2 in between time t2
and time t3. Prior to t3, the memory cell is in the coarse phase.
After t3, the bit line voltage is raised to Vs; therefore, the
memory cell is in the fine phase. In between t3 and t4, the
threshold voltage of the memory cell crosses Vverl; there-
fore, the memory cell is inhibited from further programming
by raising the bit line voltage to Vinhibit.

The technology described above with respect to stopping
programming when an estimated number of memory cells
that have failed verification is less than a limit can be used
with the coarse/fine programming described with respect to
FIGS. 26 A-C and 27A-C (or a different type of coarse/fine
programming). The intermediate value used to estimate the
number of memory cells that have failed verification can be
Vver2.

One embodiment includes applying a programming signal
to a first set of non-volatile storage elements in order to
program the first set of non-volatile storage elements to a first
target condition, determining whether the amount of non-
volatile storage elements of the first set that have not yet
reached an intermediate condition is less than a compare
value, and concluding programming of the first set of non-
volatile storage elements in response to determining that the
amount of non-volatile storage elements of the first set that
have not yet reached the intermediate condition is less than
the compare value. The intermediate condition is different
than the first target condition.

One embodiment includes a first set of non-volatile storage
elements and one or more managing circuits in communica-
tion with the first set of non-volatile storage elements. The
one or more managing circuits perform a programming pro-
cess on the first set of non-volatile storage elements to pro-
gram the first set of non-volatile storage elements to a first
target condition. The programming process includes the one
or more managing circuits applying a programming signal to
the first set of non-volatile storage elements and veritying
whether the first set of non-volatile storage elements have
reached the first target condition. The one or more managing
circuits determine a number of non-volatile storage elements
of the first set that have not yet reached an intermediate
condition during the programming process. The intermediate
condition is different than the first target condition. The one or
more managing circuits conclude the programming process
for the first set of non-volatile storage elements if the number
of non-volatile storage elements of the first set that have not
yet reached the intermediate condition is less than the com-
pare value.

One embodiment includes applying a programming signal
to a plurality of non-volatile storage elements in order to
concurrently program the non-volatile storage elements to
different target conditions, verifying whether the non-volatile
storage elements have reached their respective target condi-
tions, counting non-volatile storage elements of the first sub-
set that have not yet reached an intermediate condition with
respect to the highest target condition, and concluding pro-
gramming of the non-volatile storage elements in response to
counting less than a predetermined number of the non-vola-
tile storage elements of the first subset to have not yet reached
the intermediate condition and determining that other non-
volatile storage elements intended for other target conditions
of'the different target conditions are sufficiently programmed

20

25

30

35

40

45

50

55

60

65

26

Non-volatile storage elements reaching the highest target
condition pass through the intermediate condition. The dif-
ferent target conditions include a lowest target condition and
a highest target condition. The programming signal includes
a set of pulses. The plurality of non-volatile storage elements
includes a first subset of non-volatile storage elements being
programmed to the highest target condition. The verifying
includes performing one or more verifying processes
between pulses.

One embodiment includes applying a programming signal
to a plurality of non-volatile storage elements in order to
program the non-volatile storage elements to different target
conditions. The programming signal includes a set of pulses.
The different target conditions include a first target condition
and a second target condition. The plurality of non-volatile
storage elements includes a first subset of non-volatile stor-
age elements being programmed to the first target condition
and a second subset of non-volatile storage elements being
programmed to the second target condition. The method fur-
ther comprises verifying whether the second subset of non-
volatile storage elements have sufficiently reached the second
target condition, applying a predetermined number of one or
more pulses to the first subset of non-volatile storage ele-
ments in response to determining that the second subset of
non-volatile storage elements have sufficiently reached the
second target condition, and concluding programming of the
first subset of non-volatile storage elements in response to and
after applying the predetermined number of one or more
pulses to the first subset of non-volatile storage elements.

The foregoing detailed description of the invention has
been presented for purposes of illustration and description. It
is not intended to be exhaustive or to limit the invention to the
precise form disclosed. Many modifications and variations
are possible in light of the above teaching. The described
embodiments were chosen in order to best explain the prin-
ciples of the invention and its practical application, to thereby
enable others skilled in the art to best utilize the invention in
various embodiments and with various modifications as are
suited to the particular use contemplated. It is intended that
the scope of the invention be defined by the claims appended
hereto.

I claim:

1. An non-volatile storage apparatus, comprising:

a first set of non-volatile storage elements; and

one or more managing circuits in communication with the
first set of non-volatile storage elements, the one or more
managing circuits perform a programming process on
the first set of non-volatile storage elements to program
the first set of non-volatile storage elements to a first
target condition, the programming process includes the
one or more managing circuits applying a programming
signal to the first set of non-volatile storage elements and
verifying whether the first set of non-volatile storage
elements have reached the first target condition, the one
or more managing circuits determine a number of non-
volatile storage elements of the first set that have not yet
reached an intermediate condition during the program-
ming process, the intermediate condition is different
than the first target condition, the one or more managing
circuits conclude the programming process for the first
set of non-volatile storage elements if the number of
non-volatile storage elements of the first set that have not
yet reached the intermediate condition is less than [the]
a compare value.

2. The non-volatile storage apparatus of claim 1, wherein:

the programming signal includes a set of pulses;

US RE45,603 E

27

the one or more managing circuits perform the veritying
between pulses.

3. The non-volatile storage apparatus of claim 1, wherein:

the first set of non-volatile storage elements are associated
with a set of threshold voltage ranges, the first target
condition is a highest threshold voltage range set of
threshold voltage ranges, the intermediate condition is a
threshold voltage value below the highest threshold volt-
age range.

4. The non-volatile storage apparatus of claim 1, further

comprising:

a second set of non-volatile storage elements, the one or
more managing circuits program the second set of non-
volatile storage elements to a second target condition;
and

athird set of non-volatile storage elements, the one or more
managing circuits program the third set of non-volatile
storage elements to a third target condition, the first
target condition is the most extreme target condition in
comparison to the second target condition and the third
target condition.

5. The non-volatile storage apparatus of claim 1, further

comprising:

a second set of non-volatile storage elements, the one or
more managing circuits program the second set of non-
volatile storage elements to a second target condition
concurrently with programming the first set of non-vola-
tile storage elements to the first target condition; and

athird set of non-volatile storage elements, the one or more
managing circuits program the third set of non-volatile
storage elements to a third target condition concurrently
with programming the first set of non-volatile storage
elements to the first target condition.

20

25

28

6. The non-volatile storage apparatus of claim 1, wherein:

the programming signal includes a set of pulses;

the first set of non-volatile storage elements are associated
with a set of data states, the first target condition is one of
the set of data states, the intermediate condition is a
verify value for a different data state of the set of data
states;

the one or more managing circuits apply a predetermined
number of one or more pulses to the first set of non-
volatile storage elements in response to determining that
the amount of non-volatile storage elements of the first
set that have not yet reached the intermediate condition
is less than the compare value; and

the programming of the first set of non-volatile storage
elements is concluded after the applying the predeter-
mined number of one or more pulses to the first set of
non-volatile storage elements.

7. The non-volatile storage apparatus of claim 1, wherein:

the first set of non-volatile storage elements are multi-state
flash memory devices.

8. The non-volatile storage system according to claim 1,

wherein:

the first set of non-volatile storage elements arve part of a
three dimensional memory structure.

9. The non-volatile storage system according to claim 1,

wherein:

the first set of non-volatile storage elements arve part of a
three dimensional memory array,; and

the first set of non-volatile storage elements include stor-
age areas disposed above a substrate.

#* #* #* #* #*

