WO 2006/069312 A2 | |00 000 0 000 RO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 June 2006 (29.06.2006)

7 3
o IPOS | 0 00 O D O A

(10) International Publication Number

WO 2006/069312 A2

(51) International Patent Classification:
GOGF 3/06 (2006.01)

(21) International Application Number:
PCT/US2005/046795

(22) International Filing Date:
21 December 2005 (21.12.2005)

English
English

(25) Filing Language:
(26) Publication Language:
(30) Priority Data:

60/638,804 21 December 2004 (21.12.2004) US
11/313,538 20 December 2005 (20.12.2005) US
11/314,055 20 December 2005 (20.12.2005) US

(71) Applicant (for all designated States except US): SAN-
DISK CORPORATION [US/US]; 140 Caspian Court,
Sunnyvale, CA 94089 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): JOGAND-
COULOMB, Fabrice [FR/US]; 855 Buckland Avenue,
San Carlos, CA 94070 (US). HOLTZMAN, Michael
[TL./US]; 7602 Barnhart Place, Cupertino, CA 95014 (US).
QAWAMI, Bahman [US/US]; 5899 Killarney Circle,

(74)

(81)

(84)

San Jose, CA 95138 (US). BARZILAI, Ron [IL/IL]; 67
Meron Street, 25147 Kfar-Vradim (IL).

Agents: HSUE, James, S. et al.; Parsons, Hsue & de Runtz
LLP, 595 Market Street, Suite 1900, San Francisco, CA
94105 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, L.C, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, 7M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SYSTEM FOR CREATING CONTROL STRUCTURE FOR VERSATILE CONTENT CONTROL

Level 1

(57) Abstract: The mobile storage device may
be provided with a system agent that is able to
create at least one hierarchical tree comprising
nodes at different levels for controlling access
to data stored in the memory by corresponding
entities. Each node of the tree specifies
permission or permissions of a corresponding
entity or entities for accessing memory data. The
permission or permissions at the node of each
of the trees has a predetermined relationship to
permission or permissions at nodes at a higher or
lower or the same level in the same tree. Thus, the
mobile storage devices may be issued without any
trees already created so that the purchaser of the
devices has a free hand in creating hierarchical
trees adapted to the applications the purchaser
has in mind. Alternatively, the mobile storage
devices may also be issued with the trees already
created so that a purchaser does not have to go
through the trouble of creating the trees. In both
situations, preferably certain functionalities of
the trees can become fixed after the devices are
made so that they cannot be further changed or
altered. This provides greater control over access
to the content in the device by the content owner.
Thus, in one embodiment, the system agent can
preferably be disabled so that no additional trees
can be created.

WO 2006/069312 A2 I} NNV INDVYH) T VKO 00 OO AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gazette.

WO 2006/069312 PCT/US2005/046795

SYSTEM FOR CREATING CONTROL STRUCTURE
FOR VERSATILE CONTENT CONTROL

BACKGROUND OF THE INVENTION

[0001j This invention relates in general to memory systems, and in particular to a

memory system with versatile content control features.

[0002] The computing device market is developing in the direction of including
content storage on mobile storage devices so as to increase the average revenue by
generating more data exchanges. This means that the content in a mobile storage
medium has to be protected when used on a computing device. Content includes
valuable data, which may be data owned by a party other than the onme that

manufactures or sells the storage device.

[0003] One type of storage device with encryption capability is described in U. S.
Patent No. 6,457,126. The capability provided by this device, is however, quite
limited. It is therefore desirable to provide a memory system with more versatile

content control features.

“"SUMMARY OF THE INVENTION
[0004] The protection of content in a mobile storage medium can involve the
encryption of data in the medium so that only authorized users or applications have
access to keys used for encrypting data stored in the medium. In some prior systems,
the key used for encrypting and decrypting data is stored in devices external to the
mobile storage medium. In such circumstancés, the company or individual who owns
proprietary interest in the content may not have much control over the usage of the
content in the medium. Since the key used for encrypting data in the medium exists
external to the medium, this key may be.passed from one device to another in a
manner not subject to control by the content proprietor. The owner of proprietor

interest will be in the better position to control access to the content in the medium if

WO 2006/069312 PCT/US2005/046795

‘the enciyptidn-decryption Key is stored in the medium itself and substantially

inaccessible to external devices, according to one of the features of the invention.

[0005] By making the key essentially inaccessible from outside the medium, this
feature provides portability to secured content. Thus, the storage device containing
secured content ciphered with such a key can be used for access by a variety of host
devices without the danger of security breach, since the device has exclusive control
of access to the key. Only those host devices with the proper credentials are able to

access the key.

[0006] To enhance the commercial value of the content stored in the mobile storage
medium, it is desirable for the owner of proprietary interest in the content to be able to
grant different permissions to different entities for accessing the content. Therefore
another feature of the invention is based on the recognition that an access policy may
be stored which grants different permissions (e.g. to different authorized entities) for
accessing data stored in the medium. A system incorporating a combination of the
two above features is particularly advantageous. On the one hand, the content owner
or proprietor has the ability to control access to the content by using keys that are
substantially inaccessible to external devices and at the same time has the ability to
grant different permissions for accessing content in the medium. Thus, even where
external devices gain access, their access may still be subject to the different

permissions set by the content owner or proprietor recorded in the storage medium.

[0007] Yet another feature is based on the recognition that when the above-described
policy, where different permissions are granted to different authorized entities, is
implemented in a flash memory, this results in a particularly useful medium for

content protection.

[0008] Many storage devices are not aware of file systems while many computer host
devices read and write data in the form of files. According to another feature, the host
device provides a key reference or ID, while the memory system generates a key
value in response which is associated with the key ID, where the key value is used in
cryptographic processing data in a file associated with the key ID. The host
associates the key ID with the file to be processed cryptographically by the memory

WO 2006/069312 PCT/US2005/046795

“P v

systerl. “Thus the key ID issed by the computing device and memory as the handle
through which the memory retains complete and exclusive control over the generation
and use of the key value for cryptographic processes, while the host retains control of

files.

[0009] In some mobile storage devices such as smart cards, the card controller
manages the file system. In many other types of mobile storage devices, such as flash
memories, magnetic or optical discs, the device controller is not aware of the file
system; instead, the device controller relies on a host device (e.g. a personal
computer, digital camera, MP3 player, personal digital assistants, cellular phones) to
manage the file system. The various aspects of this invention may be readily
incorporated into such types of storage devices where the device controller is not
aware of the file system. This means that the various features of this invention may
be practiced on a wide variety of existing mobile storage devices without requiring a
re-design of such devices to make the device controller in such devices become aware

of and able to manage the file system.

[0010] A tree structure stored in the storage medium provides control over what an
entity can do even after gaining access. Each of the nodes of the tree specifies
permissions by an entity who has gained entry through such node of the tree. Some
trees have different levels, where the permission or permissions at a node of the tree
has a predetermined relationship to permission or permissions at another node at a
higher or lower or the same level in the same tree. By requiring entities to comply
with the permissions so specified at each of the nodes, the tree feature of this
application allows a content owner to control which entities can take acﬁon, and
which actions each of the entities can take, irrespective of whether the tree has

different levels.

[0011] To enhance the commercial value that can be provided by the mobile storage
medium, it is desirable for mobile storage devices to be capable of supporting more
than one application simultaneously. When two or more applications are accessing
the mobile storage device at the same time, it can be important to be able to separate
the operations of the two or more applications so that they do not interfere with one

another in a phenomena referred to herein as crosstalk. Therefore another feature of

WO 2006/069312 PCT/US2005/046795

the’ inveiition is based on the recognition that two or more trees which are preferably
hierarchical may be provided for controlling access to the memory. Each tree
comprises nodes at different levels for controlling access to data by a corresponding
set of entities where a node of each tree specifies permission or permissions of the
corresponding entity or entities for accessing memory data. The permission or
permissions at a node of each of the trees has a predetermined relationship to
permission or permissions at another node at a higher or lower level in the same tree.

Preferably, there is no crosstalk between at least two of the trees.

[0012] From the above, it will be evident that trees are powerful structures that can be
used for content security. One of the important controls provided is the control over
the creation of trees. Thus, according to another feature of the invention, the mobile
storage device may be provided with a system agent that is able to create at least one
hierarchical tree comprising nodes at different levels for controlling access to data
stored in the memory by corresponding entities. Each node of the tree specifies
permission or permissions of a corresponding entity or entities for accessing memory
data. The permission or permissions at the node of each of the trees has a
predetermined relationship to permission or permissions at nodes at a higher or lower
or the same level in the same tree. Thus, the mobile storage devices may be issued
without any trees already created so that the purchaser of the devices has a free hand
in creating hierarchical trees adapted to the applications the purchaser has in mind.
Alternatively, the mobile storage devices may also be issued with the trees already
created so that a purchaser does not have to go through the trouble of creating the
trees. In both situations, preferably certain functionalities of the trees can become
fixed after the devices are made so that they cannot be further changed or altered.
This provides greater control over access to the content in the device by the content
owner. Thus, in one embodiment, the system agent can preferably be disabled so that

no additional trees can be created.

[0013] In some mobile storage devices, content protection is afforded by dividing the
memory into separate areas where access to protected areas requires prior
authentication. While such feature does provide some protection, it does not protect

against a user who obtained a password by illicit means. Thus, another aspect of the

WO 2006/069312 PCT/US2005/046795

nnnnnnnnnn

to divide a memory into partitions and so that at least some data in the partitions can
be encrypted with a key, so that in addition to authentication that is required for
accessing some of the partitions, access to one or more keys may be required to

decrypt the encrypted data in such partitions.

[0014] In some applications, it may be more convenient to the user to be able to log in
the memory system using one application, and then be able to use different
applications to access protected content without having to log in again. In such event,
all of the content that the user wishes to access in this manner may be associated with
a first account, so that all such content can be accessed via different applications (e.g.
music player, email, cellular communication etc.) without having to log in multiple
times. Then a different set of authentication information may then be used for
logging in to access protected content that is in an account different from the first

account, even where the different accounts are for the same user or entity.

[0015] The above-described features may be used individually, or may be combined
in any combination, in storage systems to provide greater versatility of control and/or

protection for the content owner.

BRIEF DESCRIPTION OF THE DRAWINGS
[0016] Fig. 1 is a block diagram of a memory system in communication with the host

device useful for illustrating this invention.

[0017] Fig. 2 is a schematic view of different partitions of a memory and of
unencrypted and encrypted files stored in different partitions where access to certain
partitions and the encrypted files is controlled by access policies and authentication

procedures to illustrate an embodiment of the invention.

[0018] Fig. 3 is a schematic view of a memory illustrating the different partitions in

the memory.

WO 2006/069312 PCT/US2005/046795

...........

the memory shown in Fig. 3 where some of the files in the partitions are encrypted to

illustrate an embodiment of the invention.

[0020] Fig. 5 is a schematic view of access control records in an access controlled
record group and the associated key references to illustrate an embodiment of the

invention.

[0021] Fig. 6 is a schematic view of tree structures formed by access controlled
records groups and access controlled records to illustrate an embodiment of the

invention.

[0022] Fig. 7 is a schematic diagram of a tree illustrating three hierarchical trees of

access controlled record groups to illustrate a process of formation of the trees.

[0023] Fig. SA and 8B are flow charts illustrating the processes carried out by a host
device and a memory device such as a memory card for creating and using a system

access control record.

[0024] Fig. 9 is a flow chart illustrating a process using a system access control

record to create an access controlled record group to illustrate the invention.

[0025] Fig. 10 is a flow chart illustrating a process for creating an access control

record.

[0026] Fig. 11 is a schematic view of two access control record groups useful for

illustrating a particular application of the hierarchical tree.
[0027] Fig. 12 is a flow chart illustrating a process for delegation of specific rights.

[0028] Fig. 13 is a schematic view of an access controlled record group and an access

control record to illustrate the process of delegation of Fig. 12.

[0029] Fig. 14 is a flowchart illustrating the process for creating a key for the purpose

of encryption and/or decryption.

WO 2006/069312 PCT/US2005/046795

|||||||||||

permission for data access according to an accessed controlled record.

[0031] Fig. 16 is a flow chart illustrating a process for requesting access when access

rights and/or permission to access has been deleted or has expired.

[0032] Fig. 17A and Fig. 17B are schematic views illustrating an organization of a
rule structure for authentication and policies for granting access to cryptographic keys

to illustrate another embodiment of the invention.

[0033] Fig. 18 is a flow diagram illustrating sessions of authentication and access

when some sessions are open.
[0034] Fig. 19-22 are flow charts illustrating different authentication processes.

[0035] For simplicity in description, identical components are labeled by the same

numerals in this application.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
[0036] An example memory system in which the various aspects of the
present invention may be implemented is illustrated by the block diagram of Fig. 1.
As shown in Fig. 1, the memory system 10 includes a central processing unit (CPU)
12, a buffer management unit (BMU) 14, a host interface module (HIM) 16 and a
flash interface module (FIM) 18, a flash memory 20 and a peripheral access module
(PAM) 22. Memory system 10 communicates with a host device 24 through a host
interface bus 26 and port 26a. The flash memory 20 which may be of the NAND
type, provides data storage for the host device 24. The software code for CPU 12 may
also be stored in flash memory 20. FIM 18 connects to the flash memory 20 through
a flash interface bus 28 and port 28a. HIM 16 is suitable for connection to a host
system like a digital camera, personal computer, personal digital assistants (PDA),
digital media players, MP-3 players, cellular telephones or other digital devices. The
peripheral access module 22 selects the appropriate controller module such as FIM,

HIM and BMU for communication with the CPU 12. In one embodiment, all of the

WO 2006/069312 PCT/US2005/046795

componenfs of systemn 10 ‘within the dotted line box may be enclosed in a single unit

such as in memory card or stick 10’ and preferably encapsulated.

[0037] While the invention is illustrated herein by reference to flash memories, the
invention may also be applicable to other types of memories, such as magnetic disks,

optical CDs, as well as all other types of rewrite-able non volatile memory systems.

[0038] The buffer management unit 14 includes a host direct memory access
(HDMA) 32, a flash direct memory access (FDMA) 34, an arbiter 36, a buffer random
access memory (BRAM) 38 and a crypto-engine 40. The arbiter 36 is a shared bus
arbiter so that only one master or initiator (which can be HDMA 32, FDMA 34 or
CPU 12) can be active at any time and the slave or target is BRAM 38. The arbiter is
responsible for channeling the appropriate initiator request to the BRAM 38. The
HDMA 32 and FDMA 34 are responsible for data transported between the HIM 16,
FIM 18 and BRAM 38 or the CPU random access memory (CPU RAM)12a. The
operation of the HDMA 32 and of the FDMA 34 are conventional and need not be
described in detail herein. The BRAM 38 is used to store data passed between the
host device 24 and flash memory 20. The HDMA 32 and FDMA 34 are responsible
for transferring the data between HIM 16/FIM 18 and BRAM 38 or the CPU RAM

12a and for indicating sector completion.

[0039] For improved security of the content stored in memory 20, memory system 10
generates the key value(s) that are used for encryption and/or decryption, where this
value(s) is substantially not accessible to external devices such as host device 24.
However, encryption and decryption is typically done file by file, since the host
device reads and writes data to memory system 10 in the form of files. Like many
other types of storage devices, memory device 10 is not aware of files or file systems.
While memory 20 does store a file allocation table (FAT) where the logical addresses
of the files are identified, the FAT is typically accessed and managed by the host
device 24 and not by the controller 12. Therefore, in order to encrypt data in a
particular file, the controller 12 will have to rely on the host device to send the logical
addresses of the data in the file in memory 20, so that the data of the particular file
can be found and encrypted and/or decrypted by system 10 using the key value(s)
available only to system 10.

WO 2006/069312 PCT/US2005/046795

[0040] To"piovide" a"hiandlé for both the host device 24 and memory system 10 to
refer to the same key(s) for cryptographically processing data in files, the host device
provides a reference for each of the key values generated by system 10, where such
reference may simply be a key ID. Thus, the Host 24 associates each file that is
cryptographically processed by system 10 with a key ID, and the system 10 associates
each key value that is used to cryptographically process data with a key ID provided
by the host. Thus, when the host requests that a file be cryptographically processed,
it will send the request along with a key ID along with the logical addresses of data to
be fetched from or stored in memory 20 to system 10. System 10 generates a key
value and associates the key ID provided by the host 24 with such value, and performs
the cryptographic processing. In this manner, no change needs to be made in the
manner memory system 10 operates while allowing it to completely control the
cryptographic processing using the key(s), including exclusive access to the key
value(s). In other words, system 10 continues to allow the host 24 to manage the files
by having exclusive control of FAT, while it maintains exclusive control for the
generation and management of the key value(s) used for cryptographic processing.
The host device 24 has no part in the generation and management of the key value(s)

used for cryptographic processing of data. .

[0041] The key ID provided by the host 24 and the key value generated by the
memory system form two attributes of a quantity referred to below as the “content
encryption key” or CEK in one of the embodiments. While the host 24 may associate
each key ID with one or more files, host 24 may also associate each key ID with
unorganized data or data organized in any manner, and not limited to data organized

into complete files.

[0042] In order for a user or application to gain access to protected content or area in
system 10, it will need to be authenticated using a credential which is pre-registered
with system 10. A credential is tied to the access rights granted to the particular user
or application with such credential. In the pre-registration process, system 10 stores a
record of the identity and credential of the user or application, and the access rights
associated with such identity and credential determined by the user or application and

provided through the host 24. After the pre-registration has been completed, when the

WO 2006/069312 PCT/US2005/046795

..........

through the host device its identity and credential, a key ID for encrypting the data,
and the logical addresses where the encrypted data is to be stored. System 10
generates a key value and associates this value with the key ID provided by the host
device, and stores in its record or table for this user or application the key ID for the
key value used to encrypt the data to be written. It then encrypts the data and stores
the encrypted data at the addresses designated by the host as well as the key value it

generated.

[0043] When a user or application requests to read encrypted data from memory 20, it
will need to provide its identity and credential, the key ID for the key previously used
to encrypt the requested data, and the logical addresses where the encrypted data is
stored. System 10 will then match the user or application identity and credential
provided by the host to those stored in its record. If they match, system 10 will then
fetch from its memory the key value associated with the key ID provided by the user
or application, decrypt the data stored at the addresses designated by the host device

using the key value and send the decrypted data to the user or application.

[0044] By separating the authentication credentials from the management of keys
used for cryptographic processing, it is then possible to share rights to access data
without sharing credentials. Thus, a group of users or applications with different
credentials can have access to the same keys for accessing the same data, while users
outside this group have no access. While all users or applications within a group may
have access to the same data, they may still have different rights. Thus, some may
have read only access, while others may have write access only, while still others may
have both. Since system 10 maintains a record of the users or application identities
and credentials, the key IDs they have access to, and the associated access rights to
each of the key IDs, it is possible for system 10 to add or delete key IDs and alter
access rights associated with such key IDs for particular users or applications, to
delegate access rights from one user or application to another, or even to delete or add
records or tables for users or applications, all as controlled by a properly authenticated

host device. The record stored may specify that a secure channel is required for

10

WO 2006/069312 PCT/US2005/046795

algorithms as well as passwords.

[0045] Especially important is the portability of the secured content in the memory
system 10. Since the key value is generated by the memory system and substantially
not available to external systems, when the memory system or a storage device
incorporating the system is transferred from one external system to another, security
of the content stored therein is maintained, and external systems are not able to access
such content unless they have been authenticated in a manner completely controlled
by the memory system. Even after being so authenticated, access is totally controlled
by the memory system, and external systems can access only in a manner controlled
according to preset records in the memory system. If a request does not comply with

such records, the request will be denied.

[0046] To provide greater flexibility in protecting content, it is envisioned that certain
areas of the memory referred to below as partitions can be accessed only by properly
authenticated users or applications. When combined with the above described
features of key-based data encryption, system 10 provides greater data protection
capability. As shown in Fig. 2, the flash memory 20 may have its storage capacity
divided into a number of partitions: a user area or partition and custom partitions.
The user area or partition PO is accessible to all users and applications without
authentication. While all bit values of data stored in the user area can be read or
written to by any application or user, if the data read is encrypted, the user or
application withoﬁt authority to decrypt would not be able to access the information
represented by the bit values stored in a user area. This is illustrated, for example, by
files 102 and 104 stored in user area PO. Also stored in the user area are unencrypted
files such as 106 which can be read and understood by all applications and users.
Thus, symbolically, the files that are encrypted are shown with locks associated with

them such as for files 102 and 104.

[0047] While an encrypted file in a user area PO cannot be understood by
unauthorized applications or users, such applications or users may still be able to
delete or corrupt the file, which may be undesirable for some applications. For this

purpose, memory 20 also includes protected custom partitions such as partitions P1

11

WO 2006/069312 PCT/US2005/046795

dnd P2 WhicH ‘canndt be ‘acCessed without prior authentication. The authentication

process permitted in the embodiments in this application is explained below.

[0048] As also illustrated in Fig. 2, a variety of users or applications may access the
files in memory 20. Thus users 1 and 2, and applications 1-4 (running on devices) are
shown in Fig. 2. Before these entities are allowed to access protected content in
memory 20, they are first authenticated by an authentication process in a manner
explained below. In this process, the entity that is requesting access needs to be
identified at the host side for role based access control. Thus, the entity requesting
access first identifies itself by supplying information such as “I am application 2 and I
wish to read file 1.” Controller 12 then matches the identity, authentication
information and request against the record stored in memory 20 or controller 12. If
all requirements are met, access is then granted to such entity. As illustrated in Fig. 2,
user 1 is allowed to read from and write to file 101 in partition P1, but can only read
files 102 and 104 in addition to user 1 having unrestricted rights to read from and
write to files 106 in PO. User 2, on the other hand, is not allowed access to file 101
and 104 but has read and write access to file 102. As indicated in Fig. 2, users 1 and 2
have the same login algorithm (AES) while applications 1 and 3 have different login
algorithms (e.g. RSA and 001001) which are also different from those of users 1 and
2.

[0049] The Secure Storage Application (SSA) is a security application of the memory
system 10, and illustrates an embodiment of the invention, which can be used to
implement many of the above-identified features. SSA may be embodied as software
or computer code with database stored in the memory 20 or a non-volatile memory
(not shown) in CPU 12, and is read into RAM 12a and executed by CPU 12. The

acronyms used in reference to the SSA are set forth in the table below:

12

WO 2006/069312 PCT/US2005/046795

............

ACR Access Control Records

AGP ACR Group

CBC Chain Block Cipher

CEK Content Encryption Key

ECB Electronic Codebook

ACAM ACR Attributes Management

PCR Permissions Control Record

SSA Secure Storage Application

Entity Any thing that has real and individual existence (host side) that logs
in the SSA and thus utilizes its functionalities.

SSA System Description
[0050] Data security, integrity and access control are the major roles of the SSA. The

data are files that would otherwise be stored plainly on a mass-storage device of some
kind. The SSA system sits atop of the storage system and adds the security layer for
the stored host files.

[0051] The main task of the SSA is to manage the different rights associated with the
stored (and secured) content in the memory. The memory application needs to
manage multiple users and content rights to multiple stored content. Host
applications from their side, see drives and partitions that are visible to such
applications, and file allocation tables (FATSs) that manage and portray the locations

of the stored files on the storage device.

[0052] In this case the storage device uses NAND flash chip divided to partitions,
although other mobile storage devices may also be used and are within the scope of
this invention. These partitions are continuous threads of logical addresses, where a
start and an end address define their boundaries. Restrictions may therefore be
imposed on access to hidden partitions, if desired, by means of software (such as
software stored in memory 20) that associates such restrictions with the addresses
within such boundaries. Partitions are fully recognizable to the SSA by their logical
address boundaries that are managed by it. The SSA system uses partitions to
physically secure data from unauthorized host applications. To the host, the partitions
are a mechanism of defining proprietary spaces in which to store data files. These

partitions can either be public, where anyone with access to the storage device can see

13

WO 2006/069312 PCT/US2005/046795

Horsdt cemnB Wl eotncdt’ 97 3133

and be Award"of the partition’s presence on the device, or private or hidden, where
only the selected host applications have access to and are aware of their presence in

the storage device.

[0053] Fig. 3 is a schematic view of a memory illustrating the partitions of the
memory: PO, P1, P2 and P3 (obviously fewer or more partitions than four may be
employed), where PO is a public partition which can be accessed by any entity without

authentication.

[0054] A private partition (such as P1, P2 or P3) hides the access to the files within it.
By preventing the host from accessing the partition, the flash device (e.g. flash card)
delivers protection of the data files inside the partition. This kind of protection,
however, engulfs all of the files residing in the hidden partition by imposing
restrictions on access to data stored at the logical addresses within the partition. In
other words, the restrictions are associated with a range of logical addresses. All of
the users/hosts that have access to that partition will have unlimited access to all of
the files inside. To isolate different files from one another — or groups of files — the
SSA system provides another level of security and integrity per file - or groups of
files — using keys and key references or Key IDs. A key reference or key ID of a
particular key value used for encrypting data at differqnt memory addresses can be
analogized to a container or domain that contains the encrypted data. For this reason,
in Fig. 4, the key references or key IDs (e.g. “key 1” and “key 2”) are shown
graphically as areas surrounding the files encrypted using the key values associated
with the key IDs.

[0055] In reference to Fig. 4, for example, File A is accessible to all entities without
any authentication, since it is shown as not enclosed by any key ID. Even though File
B in the public partition can be read or overwritten by all entities, it contains data
encrypted with a key with ID key 17, so that the information contained in File B is
not accessible to an entity unless such entity has access to such key. In this manner
using key values and key references or Key IDs provide logical protection only, as
opposed to the type of protection provided by the partition described above. Hence,
any host that can access a partition (public or private) is capable of reading or writing

the data in the entire partition, including the encrypted data. However, since the data

14

WO 2006/069312 PCT/US2005/046795

is encrypted, unauthorized uSers can only corrupt it. They preferably cannot alter the
data without detection or use it. By restricting the access to the encryption and/or
decryption keys, this feature can allow only the authorized entities to use the data.

Files B and C are also encrypted using a key with key ID “key 2” in PO.

[0056] Data confidentiality and integrity can be provided through symmetric
encryption methods that use Content Encryption Keys (CEK), one per CEK. In the
SSA embodiment, the CEKs are generated by the flash device (e.g. flash card), used
internally only, and kept as secrets from the outside world. The data that is encrypted
or ciphered may also be either hashed or the cipher is chain blocked to ensure data

integrity.

[0057] Not all the data in the partition is encrypted by different keys and associated
with different key IDs. Certain logical addresses either in public or user files or in the
operating system area (i.e. FAT) may not be associated with any key or key reference,

and thus are available to any entity that can access the partition itself.

[0058] An entity that calls for the ability to create keys and partitions as well as
writing and reading data from them or using the keys, needs to login to the SSA
system through an Access Control Record (ACR). The privileges of an ACR in the
SSA system are called Actions. Every ACR may have Permissions to perform
Actions of the following three categories: Creating partitions and keys/key IDs,

accessing partitions and keys and creating/updating other ACRs.

[0059] ACRs are organized in groups called ACR Groups or AGPs. Once an ACR
has successfully authenticated, the SSA system opens a Session through which any of

the ACR’s actions can be executed..

User Partition(s)

[0060] The SSA system manages one or more public partitions, also referred to as the
user partition(s). This partition exists on the storage device and is a partition or

partitions that can be accessed through the standard read write commands of the

15

WO 2006/069312 PCT/US2005/046795

existence on the device preferably cannot be hidden from the host system.

[0061] The SSA system enables accessing this partition(s) either through the standard
read write commands or the SSA commands. Therefore, accessing the partition
preferably cannot be restricted to specific ACRs. The SSA system, however, can
enable the host devices to restrict the access to the user partition. Read and write
accesses can be enabled/disabled individually. All four combinations (e.g. write only,

read only (write protect), read and write and no access) are allowed.

[0062] The SSA system enables ACRs to associate key IDs with files within the user
partition and encrypt individual files using keys associated with such key IDs.
Accessing encrypted files within the user partitions as well as setting the access rights
to the partitions will be done using the SSA command set (refer to Appendix A for
detailed description of the SSA commands—In the Appendix, key ID is referred to as

“domain”).The above features also apply to data not organized into files.

SSA partitions
[0063] These are hidden (from the host operating system or OS) partitions that can be

accessed only through the SSA commands. The SSA system will preferably not allow
the host device to access an SSA partition, other than through a session (described
below) established by logging onto an ACR. Similarly, preferably the SSA will not
provide information regarding the existence, size and access permission of an SSA

partition, unless this request is coming through an established session.

[0064] Access rights to partitions are derived from the ACR permissions. Once an
ACR is logged into the SSA system, it can share the partition with other ACRs
(described below). When a partition is created, the host provides a reference name or
ID (e.g. PO-P3 in Figs. 3 and 4) for the partition. This reference is used in further read

and write commands to the partition.

16

WO 2006/069312 PCT/US2005/046795
Partitiofiing 6f the $t6tdge d€vice
[0065] All available storage capacity of the device is preferably allocated to the user
partition and the currently configured SSA partitions. Therefore, any repartition
operation may involve reconfiguration of the existing partitions. The net change to the
device capacity (sum of sizes of all partitions) will be zero. The IDs of the partitions

in the device memory space are defined by the host system.

[0066] The host system can either repartition one of the existing partitions into two
smaller ones or, merge two existing partitions (which may or may not be adjacent)
into one. The data in the divided or merged partitions can be either erased or left

untouched, at the host’s discretion.

[0067] Since repartitioning of the storage device may cause loss of data (either
because it was erased or moved around in the logical address space of the storage
device) severe restrictions on repartitioning are administered by the SSA system. Only
an ACR residing in a root AGP (explained below) is allowed to issue a repartition
command and it can only reference partitions owned by it. Since the SSA system is
not aware of how data is organized in the partitions (FAT or other file system
structure) it is the host’s responsibility to reconstruct these structures any time the

device is repartitioned.

[0068] Repartitioning of the user partitioh will change the size and other attributes of

this partition as seen by the host OS.

[0069] After repartitioning, it is the host system’s responsibility to make sure any
ACR in the SSA system is not referencing the non-existing partitions. If these ACRs
are not deleted or updated appropriately, future attempts, on behalf of these ACRs, to
access the non-existing partitions will be detected and rejected by the system. Similar

care is taken, regarding deleted keys and key IDs.

Keys, Key IDs and Logical Protection

[0070] When a file is written to a certain hidden partition, it is hidden from the

general public. But, once an entity (hostile or not) gets knowledge and access to this

17

WO 2006/069312 PCT/US2005/046795

partition the file becomes available and plain to see. To further secure the file, the
SSA can encrypt it in the hidden partition, where the credentials for accessing the key
for decrypting the file are preferably different from those for accessing the partition.
Due to the fact that files are not something that the SSA is aware of (totally controlled
and managed by the host), associating a CEK with a file is a problem. Linking the file
to something the SSA acknowledges — the key ID, rectifies this. Thus, when a key is
created by the SSA, the host associates the key ID for this key with the data encrypted
using the key created by the SSA.

[0071] The key value and key ID provide logical security. All data associated with a
given key ID, regardless of its location, is ciphered with the same content encryption
key (CEK) whose reference name or key ID is uniquely provided at creation by the
host application. If an entity obtains access to a hidden partition (by authenticating
through an ACR) and wishes to either read or write an encrypted file within this
partition, it needs to have access to the key ID that is associated with the file. When
granting access to the key for this key ID, the SSA loads the key value in CEK
associated with this key ID and either decrypts the data before sending it to the host or
encrypts the data before writing it to the flash memory 20. A key value in CEK
associated with a key ID is randomly created once by the SSA system and maintained
by it. No one outside the SSA system has knowledge or access to this key value in
CEK. The outside world only provides and uses a reference or key ID, not the key

value in CEK. The key value is entirely managed and only accessible by the SSA

[0072] The SSA system protects the data associated with the key ID using any one
(user defined) of the following cipher modes (the actual cryptographic algorithms
used, as well as the key values in CEKs, are system controlled and not revealed to the

outside world):

[0073] Block mode — Data is divided into blocks, each one of them, encrypted
individually. This mode is generally considered less secure and susceptive to
dictionary attacks, However, it will allow users to randomly access any one of the

data blocks.

18

WO 2006/069312 PCT/US2005/046795

[0074] Chained mode — Data is divided into blocks, which are chained during the
encryption process. Every block is used as one of the inputs to the encryption process
of the next one. This mode, although considered as more secure, requires that the data
is always written and read sequentially from start to end, creating an overhead not

always acceptable to the users.

[0075] Hashed — Chain mode with the additional creation of a data digest that can be

used for validating data integrity.

ACRs and Access Control
[0076] The SSA is designed to handle multiple applications where each one of them

is represented as a tree of nodes in the system database. Mutual exclusion between the

applications is achieved by ensuring no cross talk between the tree branches.

[0077] In order to gain access to the SSA system, an entity needs to establish a
connection via one of the system’s ACRs. Login procedures are administered by the
SSA system according to the definitions embedded in the ACR the user chose to

connect with.

[0078] The ACR is an individual login point to the SSA system. The ACR holds the
login credentials and the authentication method. Also residing in the record are the
login permissions within the SSA system, among which are the read and write
privileges. This is illustrated in Fig. 5, which illustrates n ACRs in the same AGP.
This means that at least some of the n ACRs may share access to the same key. Thus,
ACR #1 and ACR #n share access to a key with key ID “key 3”, where ACR#1 and
ACR#n are the ACR IDs, and “key 3” is a key ID for the key that is used to encrypt
data associated with “key 3”. The same key can also be used to encrypt and/or

decrypt multiple files, or multiple sets of data.

[0079] The SSA system supports several types of login onto the system where
authentication algorithms and user credentials may vary, as may the user’s privileges
in the system once he logged in successfully. Fig. 5 again illustrates different login
algorithms and credentials. ACR#1 requires a password login algorithm and

password as credential whereas ACR#2 requires a PKI (public key infrastructure)

19

WO 2006/069312 PCT/US2005/046795

"login algorithm and public key as credential. Thus, to login, an entity will need to

present a valid ACR ID, as well as the correct login algorithm and credential.

[0080] Once an entity is logged into an ACR of the SSA system, its permissions - its
rights to use SSA commands - are defined in the Permissions Control Record (PCR)
which is associated with the ACR. In Fig. 5, ACR#1 grants read only permission to
data associated with “key 37, and ACR #2 grants permission to read and write data

associated with “key 5” according to the PCR shown.

[0081] Different ACRs may share common interests and privileges in the system such
as in keys with which to read and write. To accomplish that, ACRs with something in
common are grouped in AGPs — ACR Groups. Thus, ACR #1 and ACR #n share
access to a key with key ID “key 3”.

[0082] AGPs and, the ACRs within, are organized in hierarchical trees and so aside
from creating secure keys that keep sensitive data secure; an ACR can preferably also
create other ACR entries that correspond to his key ID/partitions. These ACR children
will have the same or less permissions as their father — creator and, may be given
permissions for keys the father ACR himself created. Needless to add, the children
ACRs get access permissions to any key that they create. This is illustrated in Fig. 6.
Thus, all of the ACRs in AGP 120 were created by ACR 122 and two of such ACRs
inherit from ACR 122 permission(s) to access to data associated with “key 3”.

AGP
[0083] Logging onto the SSA system is done by specifying an AGP and an ACR
within the AGP. '

[0084] Every AGP has a unique ID (reference name), which is used as an index to its
entry in the SSA database. The AGP name is provided to the SSA system, when the
AGP is created. If the provided AGP name already exists in the system, the SSA will

reject the creation operation.

[0085] AGPs are used to administer restrictions on delegation of access and
management permissions as will be described in the following sections. One of the

functions served by the two trees in Fig. 6 is to administer the access by entirely

20

WO 2006/069312 PCT/US2005/046795

separate entities, such as two different applications, or two different computer users.
For such purposes, it may be important for the two access processes to be
substantially independent of one another (i.e. substantially no cross-talk), even though
both occur at the same time. This means that the authentication, permissions as well
as the creation of additional ACRs and AGPs in each tree are not connected to and do
not depend on those of the other tree. Hence, when the SSA system is used in
memory 10, this allows the memory system 10 to serve multiple applications
simultaneously. It also allows the two applications to access two separate sets of data
independently of one another (e.g. a set of photographs and a set of songs). This is
illustrated in Fig. 6. Thus, the data associated with “keys 37, “key X” and “key Z”
for the application or user accessing via nodes (ACRs) in the tree in the top portion of
Fig. 6 may comprise photographs. The data associated with “key 5" and “key Y for
the application or user accessing via nodes (ACRs) of the tree in the bottom portion of
Fig. 6 may comprise songs. The ACR that created the AGP has the permission to
delete it only when the AGP is empty of ACR entries

The entity’s SSA entry point: Access Control Record (ACR)
[0086] An ACR in the SSA system describes the way the entity is permitted to log

into the system. When an entity logs into the SSA system it needs to specify the ACR
that corresponds to the authentication process it is about to perform. An ACR includes
a Permissions Control Record (PCR) that illustrates the granted actions the user can
execute once authenticated as defined in the ACR as illustrated in Fig. 5. The host

side entity provides all of the ACR data fields.

[0087] When an entity has successfully logged onto an ACR, the entity will be able to
query on all of the ACR’s partition and key access permissions and ACAM

permissions (explained below).

ACRID
[0088] When an SSA system entity initiates the login process it needs to specify the
ACR ID (as provided by the host when the ACR was created) that corresponds to the

login method so that the SSA will set up the correct algorithms and select the correct

21

WO 2006/069312 PCT/US2005/046795

.....................

system when the ACR is created.

Login/Authentication Algorithm

[0089] The authentication algorithm specifies what sort of login procedure will be
used by the entity, and what kind of credentials are needed to provide proof of user’s
identity. The SSA system supports several standard login algorithms, ranging from no
procedure (and no credential) and password-based procedures to a two-way

authentication protocols based on either symmetric or asymmetric cryptography.

Credentials

[0090] The entity’s credentials correspond to the login algorithm and are used by the
SSA to verify and authenticate the user. An example for credential can be a
password/PIN-number for password authentication, AES-key for AES authentication,
etc. The type/format of the credentials (i.e. the PIN, the symmetric key, etc...) is
predefined and derived from the authentication mode; they are provided to the SSA
system when the ACR is created. The SSA system has no part in defining, distributing
and managing these credentials, with the exception of PKI based authentication where
the device (e.g. flash card) can be used to generate the RSA key pair and the public

key can be exported for certificate generation.

The Permissions Control Record (PCR

[0091] The PCR shows what is granted to the entity after logging into the SSA system
and passing the ACR’s authentication process successfully. There are three types of
permission categories: Creation permissions for partition and keys, Access
permissions to partitions and keys and management permissions for Entity-ACR

Attributes

Accessing Partitions
[0092] This section of the PCR contains the list of partitions (using their IDs as

provided to the SSA system) the entity can access upon completing the ACR phase
successfully. For each partition the access type may be restricted to write-only or

read-only or may specify full write/read access rights. Thus, the ACR#1 in Fig. 5 has

22

WO 2006/069312 PCT/US2005/046795

to the SSA partitions and the public partition.

[0093] The public partition can be accessed either by regular read and write
commands to the device (e.g. flash card) hosting the SSA system, or by SSA
commands. When a root ACR (explained below) is created with the permission to
restrict the public partition, he can pass it on to his children. An ACR can preferably
only restrict the regular read and write commands from accessing the public partition.
ACRs in the SSA system can be restricted preferably only upon their creation. Once
an ACR has the permission to read/write from/to the public partition, preferably it

cannot be taken away.

Accessing Key IDs
[0094] This section of the PCR contains the data associated with the list of key IDs

(as provided to the SSA system by the host) the entity can access when the ACR
policies have been met by the entity’s login process. The key ID specified is
associated with a file/files that reside in the partition appearing in the PCR. Since the
key IDs are not associated with logical addresses in the device (e.g. flash card), when
more than one partition is associated with a specific ACR, the files can be in either
one of the partitions. The key IDs specified in the PCR can have each, a different set
of access rights. Accessing data pointed to by key IDs can be restricted to write-only

or read-only or may specify full write/read access rights.

ACR Attributes Management (ACAM)

[0095] This section describes how in certain cases the ACR’s system attributes can be

changed.

[0096] The ACAM actions that may be permitted in the SSA system are:
[0097] Create/delete/update AGPs and ACR.

[0098] Create/delete Partitions and Keys.

[0099] Delegate access rights to keys and partitions.

23

WO 2006/069312 PCT/US2005/046795
001007 A father ACR preferably cannot edit ACAM permissions. This would
preferably require the deletion and recreation of the ACR. Also the access permission

to a key ID created by the ACR can preferably not be taken away.
[00101] Create/delete/update AGPs and ACR

[00102] An ACR may have the capacity to create other ACRs and AGPs.
Creating ACRs also may mean delegating them some or all of the ACAM permissions
possessed by their creator. Having the permission to create ACRs means having the

permission for the following actions:

1. Define and edit the child’s credentials — the authentication method
preferably cannot be edited once set by the creating ACR. The credentials may be
altered within the boundary of the authentication algorithm that is already defined for
the child.

2. Delete an ACR.

3. Delegate the creating permission to the child ACR (thus having
grandchildren).
[00103] An ACR with the permissions to create other ACRs has the permission

to delegate the unblocking permission to ACRs it creates (although it probably does
not have the permission to unblock ACRs). The father ACR will place in the child

ACR a reference to his unblocker.

[00104] The father ACR is the only ACR that has the permission to delete his
child ACR. When an ACR deletes a lower level ACR that he created, then all ACRs
spawned by this lower-level ACR are automatically deleted as well. When an ACR is
deleted thén all the key IDs and partitions that it created are deleted.

[00105] There are two exceptions by which an ACR can update its own record:

[00106] Passwords/PINs, although set by the creator ACR, can be updated only
by the ACR that includes them.

[00107] A root ACR may delete itself and the AGP that it resides in.

24

WO 2006/069312 PCT/US2005/046795

Delegate access rights to Keys and partitions

[00108] ACRs and their AGPs are assembled in hierarchical trees where the
root AGP and the ACRs within are at the top of the tree (e.g. root AGPs 130 and 132
in Fig. 6). There can be several AGP trees in the SSA system though they are totally

separated from one another. An ACR within an AGP can delegate access permissions
to its keys to all ACRs within the same AGP that it is in, and to all the ACRs created
by them. The permission to create keys preferably includes the permission to delegate

access permissions to use the keys.

Permissions to keys are divided into three categories:

1. Access — this defines the access permissions for the key i.e. Read,
Write.

2. Ownership — an ACR that created a key is by definition its owner. This
ownership can be delegated from one ACR to another (provided that they are in the
same AGP or in a child AGP). An ownership of a key provides the permission to
delete it as well as delegate permissions to it.

3. Access Rights Delegation — this permission enables the ACR to
delegate the rights he holds.

[00109] An ACR can delegate access permissions to partitions he created as

well as other partitions he has access permissions to.

[00110] The permission delegation is done by adding the names of the
partitions and key IDs to the designated ACR’s PCR. Delegating key access
permissions may either be by the key ID or by stating that access permission is for all

of the created keys of the delegating ACR.

Blocking and Unblocking of ACRs
[00111] An ACR may have a blocking counter which increments when the
entity’s ACR authentication process with the system is unsuccessful. When a certain
maximum number (MAX) of unsuccessful authentications is reached, the ACR will

]
be blocked by the SSA system.

25

WO 2006/069312 PCT/US2005/046795

[00112] The blocked ACR can be unblocked by another ACR, referenced by
the blocked ACR. The reference to the unblocking ACR is set by its creator. The
unblocking ACR preferably is in the same AGP. as the creator of the blocked ACR

and has the “unblocking” permission.

[00113] No other ACR in the system can unblock the blocked ACR. An ACR
may be configured with a blocking counter but without an unblocker ACR. In this
case, if this ACR get blocked it cannot be unblocked.

Root AGP ~— Creating an application database

[00114] The SSA system is designed to handle multiple applications and isolate
the data of each one of them. The tree structure of the AGP system is the main tool
used to identify and isolate application specific data. The root AGP is at the tip of an
application SSA database tree and adheres to somewhat different behavior rules.
Several root AGPs can be configured in the SSA system. Two root AGPs 130 and
132 are shown in Fig. 6. Obviously fewer or more AGPs may be used and are within

the scope of this invention.

[00115] Registering the device (e.g. flash card) for a new application and/or
issue credentials of a new applications for the device are done through the process of

adding new AGP/ACR tree to the device.

[00116] The SSA system supports three different modes of root AGP creation
(as well as all of the ACRs of the root AGP and their permissions):

1. Open: Any user or entity without requiring any sort of authentication,
or users/entities authenticated through the system ACR (explained below), can create
a new root AGP. The open mode enables creation of root AGPs either without any
security measures while all data transfer is done on an open channel (i.e. in the secure
environment of an issuance agency) or, through a secure channel established through
the system ACR authentication (i.e. Over The Air (OTA) and post issuance
procedures).

If the system ACR is not configured (this is an optional feature) and the root

AGP creation mode is set to Open, only the open channel option is available.

26

WO 2006/069312 PCT/US2005/046795

2 Controlled: Only entities authenticated through the System ACR can
create a new root AGP. The SSA system cannot be set to this mode if system ACR is
not configured.

3. Locked: Creation of root AGPs is disabled and no additional root
AGPs can be added to the system

Two SSA commands control this feature (these commands are available to any
user/entity without authentication):

1. Method configuration command — Used to configure the SSA system
to use any one of the three root AGP creation modes. Only the following mode
changes are allowed: Open -> Controlled, Controlled -> Locked (i.e. if the SSA
system is currently configured as Controlled, it can only be changed to locked).

2. Method configuration lock command - Used to disable the method

configuration command and permanently lock the currently selected method.

[00117] When a root AGP is created, it is in a special initializing mode that
enables the creation and configuration of its ACRs (using the same access restrictions
that applied to the creation of the root AGP). At the end of the root AGP
configuration process, when the entity explicitly switches it to operating mode, the
existing ACRs can no longer be updated and additional ACRs can no longer be

created

[00118] Once a root AGP is put in standard mode it can be deleted only by
logging into the system through one of its ACRs that is assigned with the permission
to delete the root AGP. This is another exception of root AGP, in addition to the
special initialization mode; it is preferably the only AGP that may contain an ACR

with the permission to delete its own AGP, as opposed to AGPs in the next tree level.

[00119] The third and last difference between a root ACR and a standard ACR
is that it is the only ACR in the system that can have the permission to create and

delete partitions.

SSA System ACR
[00120] The system ACR may be used for the following two SSA operations:

27

WO 2006/069312 PCT/US2005/046795

1. . Create an ACR/AGP tree under the protection of a secured channel
within hostile environments.

2. Identify and authenticate the device hosting the SSA system.
[00121] There may preferably be only one System ACR in the SSA and once
defined it preferably cannot be changed. There is no need for system authentication
when creating the System ACR; only a SSA command is needed. The create-system-
ACR feature can be disabled (similarly to the create-root-AGP feature). After the
system ACR is created, the create-system-ACR command has no effect, since

preferably only one System ACR is allowed.

[00122] While in the process of creating, the System ACR is not operational.
Upon finishing, a special command needs to be issued indicating that the System
ACR is created and ready to go. After this point the System ACR preferably cannot be
updated or replaced.

[00123] The System ACR creates the root ACR/AGP in the SSA. It has
permission to add/change the root level until such time that the host is satisfied with it
and blocks it. Blocking the root AGP essentially cuts off its connection to the system
ACR and renders it temper proof. At this point no one can change/edit the root AGP
and the ACRs within. This is done through an SSA command. Disabling creation of
root AGPs has a permanent effect and cannot be reversed. The above features
involving the system ACR are illustrated in Fig. 7. The system ACR is used to create
three different root AGPs. At a certain time after these are created, the SSA
command is sent from the host to block the root AGPs from the system ACR, thereby
disabling the create-root-AGP feature, as indicated by the dotted lines connecting the
System ACR to the root AGPs in Fig. 7. This renders the three root AGPs temper
proof. The three root AGPs may be used to create children AGPs to form three

separate trees, before or after the root AGPs are blocked.

[00124] The above described features provides great flexibility to the content
owner in configuring secure products with content. Secure products need to be
"Issued". Issuance is the process of putting identification keys by which the device
can identify the host and vice versa. Identifying the device (e.g. flash card) enables

the host to decide whether it can trust its secrets with it. On the other hand,

28

WO 2006/069312 PCT/US2005/046795

identifying the host enables the device to enforce security policies (grant and execute

a specific host command) only if the host is allowed to.

[00125] Products that are designed to serve multiple applications will have
several identification keys. The product can be "pre-issued" - keys stored during
manufacturing before shipping, or "post issued" - new keys are added after shipping.
For post issuance, the memory device (e.g. memory card) needs to contain some kind
of master or device level keys which are being used to identify entities which are

allowed to add applications to the device.

[00126] The above described features enables a product to be configured to
enable/disable post issuance. In addition, the post issuance configuration can be
securely done after shipping. The device may be bought as a retail product with no
keys on it in addition to the master or device level keys described above, and then be
configured by the new owner to either enable further post issuance applications or

disable them.

[00127] Thus, the system ACR feature provides the capability to accomplish

the above objectives:

- Memory devices with no system ACR will allow unlimited and uncontrolled
addition of applications.

- Memory devices without system ACR can be configured to disable the
system ACR creation, which means there is no way to control adding of new
applications (unless the feature of creating new root AGP is disabled as well)

- Memory devices with system ACR will allow only controlled addition of
applications via a secure channel to establish through an authentication procedure
using the system ACR credential.

- Memory devices with system ACR may be configured to disable the

application adding feature, before or after applications have been added.

29

WO 2006/069312 PCT/US2005/046795

Key ID list
[00128] Key IDs are created per specific ACR request; however, in the memory
system 10, they are used solely by the SSA system. When a key ID is created the

following data is provided by or to the creating ACR:

1. Key ID. The ID is provided by the entity through the host and is used
to reference the key and data that is encrypted or decrypted using the key in all further
read or write accesses.

2. Key Cipher and data integrity Mode (the Blocked, Chained and
Hashed Modes above and as explained below)

[00129] In addition to the host provided attributes, the following data is
maintained by the SSA system:

1. Key ID Owner. The ID of the ACR that is the owner. When a key ID is
created the creator ACR is its owner. Key ID ownership may, however, be transferred
to another ACR. Preferably only the key ID owner is allowed to transfer ownership
of, and delegate, a key ID. Delegating access permission to the associated key, and
revoking these rights can be administered either by the key ID owner or any other
ACR assigned with delegation permissions. Whenever an attempt is made to exercise
any one of these operations, the SSA system will grant it only if the requesting ACR
is authorized.

2. CEK. This is the CEK used to cipher the content associated with or
pointed to by the key ID. The CEK may be a 128 bit AES random key generated by
the SSA system.

3. MAC and IV values. Dynamic information (message authentication
codes and initiation vectors) used in the Chained Block Cipher (CBC) encryption
algorithms.

[00130] The various features of the SSA are also illustrated in reference to the
flow charts in Figs. 8A-16, where ‘H’ to the left of a step means the operation is
performed by the host, and ‘C’ means the operation is performed by the card. In order
to create a System ACR, the host issues to the SSA in the memory device 10 a

command to create System ACR (block 202). The device 10 responds by checking

30

WO 2006/069312 PCT/US2005/046795

whether a System ACK alteady exists (block 204, diamond 206). If it already exists,
then device 10 returns failure and stops (oblong 208). If it does not, then memory 10
checks to see if System ACR creation is allowed (diamond 210), and returns a failure
status if not allowed (block 212). Thus, there may be instances where the device
issuer does not allow the creation of a System ACR, such as in the case where the
security features needed have been predetermined so that no System ACR is needed.
If this is allowed, the device 10 returns OK status and waits for System ACR
credentials from the host (block 214). The host checks the SSA status and whether
the device 10 has indicated that the creation of a System ACR is allowed (block 216
and diamond 218). If creation is not allowed or if a system ACR already exists, the
host stops (oblong 220). If the device 10 has indicated that the creation of a System
ACR is allowed, the host issues a SSA command to define its login credential and
sends it to the device 10 (block 222). The device 10 updates a System ACR record
with the credential received and returns OK status (block 224). In response to this
status signal, the host issues SSA command indicating the system ACR is ready
(block 226). The device 10 responds by locking the System ACR so that it cannot be
updated or replaced (block 228). This locks in the features of the system ACR and its
identity for identifying the device 10 to the host.

[00131] The procedure for creating new trees (New Root AGPs and ACR) is
determined by the way these functions are configured in the device. Fig 9 explains the
procedures. Both the host 24 and the memory system 10 follow it. If adding new root
AGP is disabled altogether, new root AGPs cannot be added (diamond 246). If it is
enabled but requires a system ACR, the host authenticates through the system ACR
and establishes a secure channel (diamond 250, block 252) prior to issuing the Create
Root_AGP command (block 254). If system ACR is not required (diamond 248) the
host 24 can issue the create root AGP command without authentication and proceed to
block 254. If system ACR does exist, the host may use it even if it is not required (not
shown in the flow chart). The device (e.g. flash card) will reject any attempt to create
a new root AGP if the function is disabled and it will reject an attempt to create a new
root AGP without authentication, if system ACR is required (diamonds 246 and 250).
The newly created AGP and ACR in block 254, are now switched to Operational
Mode so that the ACRs in such AGPs cannot be updated or otherwise changed, and

31

WO 2006/069312 PCT/US2005/046795

no ACRS can be addéd to"thém (block 256). The system is then, optionally locked so
that additional root AGPs cannot be created (block 258). The dotted line box 258 is a
convention indicating that this step is an optional step. All the boxes in the flow
charts of the figures of this application in dotted lines are optional steps. This allows
the content owner to block the use of device 10 for other illicit purposes that may

imitate a genuine memory device with legitimate content.

[00132] To create ACRs (other than the ACRs in the root AGP as described
above), one may start with any ACR that has the right to create an ACR (block 270)
as shown in Figure 10. An entity may attempt to enter through the host 24 by
providing the entry point ACR identity, and the ACR with all the necessary attributes
that it wishes to create (block 272). The SSA checks for a match to the ACR identity
and whether the ACR with such identity has the permission to create an ACR
(diamond 274). If the request is verified to be authorized, the SSA in device 10
creates an ACR (block 276).

[00133] Fig. 11 shows two AGPs that illustrate a tree useful in security
applications using the method of Fig. 10. Thus, the ACR with identity m1 in the
marketing AGP has the permission to create an ACR. The ACR ml also has the
permission to use a key for reading and writing data associated with the key ID
“Marketing Information” and data associated with the key ID “Price List”. Using the
method of Fig. 10, it creates the Sales AGP with two ACRs: s1 and s2 with only read
permission to the key for accessing pricing data associated with the key ID “Price
List”, but not to the key necessary for accessing data associated with the key ID
“Marketing Information”. In this manner, the entities with the ACRs s1 and s2 can
only read but not change the pricing data, and will have no access to marketing data.
The ACR m2, on the other hand, has no permission to create ACRs, and has only read
permission to the keys for accessing data associated with the key ID “Price List” and

with the key ID “Marketing Information”.

[00134] Thus, access rights may be delegated in the manner explained above
where m1 delegates rights to read pricing data to s1 and s2. This is particularly useful
where large marketing and sales groups are involved. Where there are but one or a

few sales people, there may be no need to use the method of Fig. 10. Instead, the

32

WO 2006/069312 PCT/US2005/046795

~ access rights may be delegated, by an ACR to one at a lower or the same level within
the same AGP, as illustrated in Fig. 12. First, the entity enters the tree for such AGP
by specifying an ACR in the manner described above in the tree through the host
(block 280). Next the host will specify the ACR and the rights to delegate to. The
SSA checks the tree(s) for such ACR and whether the ACR has the permission to
delegate rights to the specified another ACR (diamond 282). If it does, the rights are
delegated (block 284); if not it stops. The result is illustrated in Fig. 13. The ACR
m1 in this case has the permission to delegate read permission to the ACR sl, so that
s1 will be able to use a key to access pricing data after the delegation. This may be
performed if m1 has the same or greater rights to access pricing data and the
permission to so delegate. In one embodiment, m1 retains its access rights after the
delegation. Preferably access rights may be delegated under restricted conditions
(rather then permanently) such as for a limited time, limited number of accesses,

etc...

[00135] The process for creating a key and key ID is illustrated in Fig. 14. The
entity authenticates through an ACR (block 302). The entity requests the creation of a
key with an ID specified by the host (block 304). The SSA checks and see if the ACR
specified has the pennission to do so (diamond 306). For example, if the key is to be
used for accessing data in a particular partition, the SSA will check and see if the
ACR may access such partition. If the ACR is authorized, then the memory device 10
creates a key value associated with the key ID provided by the host (block 308), ands
stores the key ID in the ACR, and the key value in its memory (either in the
controller-associated memory or memory 20) and assigns rights and permissions
according to information supplied by the entity (block 310) and modifies the PCR of
such ACR with such assigned rights and permissions (block 312). Thus, the creator
of the key has all available rights, such as read and write permissions, right to
delegate and share with other ACRs in the same AGP or an ACR at a lower level, and
the right to transfer ownership of the key.

[00136] An ACR can change the permissions (or the existence altogether) of
another ACR in the SSA system as illustrated in Fig. 15. An entity may enter a tree

through an ACR as before; in one case the entity is authenticated and then it specifies

33

WO 2006/069312 PCT/US2005/046795

an ACR (blocks 330, 332). It requests the deletion of a target ACR or the permission
in a target ACR (block 334). If the ACR specified or the one active at such time has
the right to do so (diamond 336), the target ACR is deleted, or the PCR of the target
ACR is altered to delete such permission (block 338). If this is not authorized the

System stops.

[00137] After the above described process, the target will no longer be able to
access the data it was able to prior to the process. As shown in Fig. 16, an entity may
attempt to enter at the target ACR (block 350) and finds that the authentication
process fails, since the previously existing ACR ID is no longer present in the SSA, so
that access rights are denied (diamond 352). Assuming that the ACR ID has not been
deleted, the entity specifies an ACR (block 354) and the key ID and/or data in a
particular partition (block 356), and the SSA then checks to see the key ID or partition
access request is permitted according to the PCR of such ACR (diamond 358). If the
permission has been deleted or has expired, then the request is again denied.

Otherwise, the request is granted (block 360).

[00138] The above process describes how access to protected data is managed
by the device (e.g. flash card), regardless of whether the ACR and its PCR were just
changed by another ACR or were so configured to begin with.

Sessions

[00139] The SSA system is designed to handle multiple users, logged in
concurrently. This feature requires that every command received by the SSA is
associated with a specific entity and executed only if the ACR, used to authenticate

this entity, has the permissions for the requested action.

[00140] Multiple entities are supported through the session concept. A session
is established during the authentication process and assigned a session-id by the SSA
system. The session-id is internally associated with the ACR used for logging into the

system and is exported to the entity to be used in all further SSA commands.

34

WO 2006/069312 PCT/US2005/046795

[00141] The SSA system supports two types of sessions: Open, and Secure
sessions. The session type associated with a specific authentication process is defined
in the ACR. The SSA system will enforce session establishment in a way similar to
the way it enforces the authentication itself. Since the ACR defines the entity
permissions, this mechanism enables system designers to associate secure tunneling
either with accessing specific key IDs or invoking specific ACR management

operations (i.e. creating new ACRs and setting credentials)

Open session
[00142] Open session is a session identified with a session-id but without bus

encryption, all commands and data are passed in the clear. This mode of operation is
preferably used in a multi-user or multi-entity environment where the entities are not

part of the threat model, nor is eavesdropping on the bus.

[00143] Although not protecting the transmission of the data nor enabling
efficient fire-walling between the applications on the host side, the Open session
mode enables the SSA system to allow access only to the information allowed for the

currently authenticated ACRs.

[00144] The Open session can also be used for cases where a partition or a key
needs to be protected. However, after a valid authentication process, access is granted
to all entities on the host. The only thing the various host applications need to share,
in order to get the permissions of the authenticated ACR is the session-id. ~This is
illustrated in Fig. 17A. The steps above the line 400 are those taken by the host 24.
After an entity is authenticated (block 402) for ACR1, it requests access to a file
associated with a key ID X in the memory device 10 (blocks 404, 406 and 408). If the
PCR of the ACR 1 allows such access, device 10 grants the request (diamond 410). If
not, the system returns to block 402. After authentication is completed, the memory
system 10 identifies the entity issuing a command only by the assigned session id (and
not the ACR credentials). Once the ACR 1 gains access to the data associated with
the key IDs in its PCR, in an open session, any other application or user can access
the same data by specifying the correct session ID which is shared between the
different applications on the host 24. This feature is advantageous in applications

where it is more convenient to the user to be able to log in only once, and be able to

35

WO 2006/069312 PCT/US2005/046795

“access all thé data tied to the account through which the log in is performed for
different applications. Thus, a cellular phone user may be able to access stored
emails, and listen to stored music in memory 20 without having to log in multiple
times. On the other hand, data not encompassed by the ACR1 will not be accessible.
Thus, the same cellular phone user may have valuable content such as games and
photographs accessible through a separate account ACR2. This is data that he does
not wish others who borrow his phone to access, even though he may not mind others
accessing data available through his first account ACR1. Separating access to the
data into two separate accounts while allowing access to ACR1 in open session

provides ease of use as well as affording protection of valuable data.

[00145] To even further ease the process of sharing the session-id amongst the
host applications, when an ACR is requesting an Open session it can specifically
request that the session will be assigned the “0 (zero)” id. This way, applications can
be designed to use a pre-defined session-id. The only restriction is, for obvious
reasons, that only one ACR, requesting session 0, can be authenticated at a specific

time. An attempt to authenticate another ACR requesting session 0, will be rejected.

Secure session

[00146] To add a layer of security, the session id may be used as shown in Fig.
17B. The memory 10 then also stores the session ids of the active sessions. In Fig.
17B, for example, in order to be able to access a file associated with key ID X, the
entity will need to also provide a session id, such as session id “A” before it is
allowed to access the file (blocks 404, 406, 412 and 414). In this manner, unless the
requesting entity is aware of the correct session id, it cannot access the memory 10.
Since the session id is deleted after the session is over and will be different for each
session, an entity can gain access only when it has been able to provide the session

number.

[00147] The SSA system has no way to make sure that a command is really

coming from the correct authenticated entity, other than by using the session number.

36

WO 2006/069312 PCT/US2005/046795

For applications and use cases where there is a threat that attackers will try to use an
open channel to send malicious commands, the host application uses a secure session

(a secure channel).

[00148] When using a secure channel, the session-id, as well as the entire
command, is encrypted with the secure channel encryption (session) key and the

security level is as high as the host side implementation.

Terminating a session

[00149] A session is terminated and, the ACR is logged off, in any one of the
following scenarios:

1. The entity issues an explicit end-session command.

2. Time out on communication. A specific entity issued no command for

a time period defined as one of the ACR parameters.

3. All open sessions are terminated after device (e.g. flash card) reset

and/or power cycle.

Data Integrity services '
[00150] The SSA system verifies the integrity of the SSA database (which

contains all the ACRs, PCRs, etc...). In addition data integrity services are offered for

entity data through the key ID mechanism.

[00151] If a key ID is configured with Hashed as its encryption algorithms the
hash values are stored along side with the CEK and IV in the CEK record. Hash
values are calculated and stored during write operation. Hash values are again
calculated during read operations and compared with the values stored during the
previous write operations. Every time the entity is accessing the key ID the additional
data is concatenated (cryptographically) to the old data and the appropriate Hash

value (for read or for write) updated.

[00152] Since only the host knows the data files associated with or pointed to
by a key ID, the host explicitly manages several aspects of the data integrity function

in the following manner:

37

WO 2006/069312 PCT/US2005/046795

1. A data file associated with or pointed to by a key ID is written or read
from the beginning to end. Any attempt to access portions of the file will mess it up
since the SSA system is using a CBC encryption method and generates a hashed
message digest of the entire data

2. There is no need to process the data in a contiguous stream (the data
stream can be interleaved with data streams of other key Ids and may be split over
multiple sessions) since intermediate Hash values are maintained by the SSA system.
However, the entity will need to explicitly instruct the SSA system to reset the Hash
values if the data stream is restarted.

3. When a read operation is completed, the host must explicitly request
the SSA system to validate the read Hash by comparing it with the Hash value
calculated during the write operation.

4. The SSA system provides a “dummy read” operation as well. This
feature will stream the data through the encryption engines but will not send it out to
the host. This feature can be used to verify data integrity before it is actually read out

of the device (e.g. flash card).

Random number generation

[00153] The SSA system will enable external entities to make use of the
internal random number generator and request random numbers to be used outside of
the SSA system. This service is available to any host and does not require

authentication.

RSA key pair generation

[00154] The SSA system will enable external users to make use of the internal
RSA key pair generation feature and request an RSA key pair to be used outside of
the SSA system. This service is available to any host and does not require

authentication.

Alternative Embodiment

[00155] Instead of using a hierarchical approach, similar results can be

achieved using a data base approach, as illustrated in Fig. 18.

38

WO 2006/069312 PCT/US2005/046795

[00156] As shown in Fig. 18, a list of credentials for entities, authentication
methods, the maximum number of failed attempts, and the minimum number of
credentials needed to unblock may be entered into a database stored in controller 12
or memory 20, which relates such credential requirements to the policies (read, write
access to keys and partitions, secure channel requirement) in the database carried out
by the controller 12 of memory 10. Also stored in the database are constraints and
limitations to the access to keys and partitions. Thus, some entities (e.g. system
administrator) may be on a white list, which means that these entities can always
access all keys and partitions. Other entities may be on a black list, and their attempts
to access any information will be blocked. The limitation can be global, or key and/or
partition specific. This means that only certain entities can always access certain
specific keys and partitions, and certain entities always cannot do so. Constraints can
also be put on the content itself, irrespective of the partition it is in or the key used to
encrypt or decrypt it. Thus, certain data (e.g. songs) may have the attribute that they
can only be accessed by the first five host devices that access them, or that other data
(e.g. movies) can only be read for a limited number of times, irrespective of which

entities had access.

AUTHENTICATION
Password Protection
Password-protect means that a password needs to be presented to
access the protected area. Unless it cannot be more than one password then passwords
could be associated with different rights such as read access or read/write access.
Password protect means that the device (e.g. flash card) is able to
verify a password provided by the host i.e. the device also has the password stored in
device managed secured memory area.
Issues and limitations
Passwords are subject to replay attack. Because the password does not
change after each presentation it can be identically resent. It means that password as is
must not be use if the data to be protected are valuable, and the communication bus is
easily accessible.
Password could protect access to stored data but should NOT be used

to protect data (not a key)

39

WO 2006/069312 PCT/US2005/046795

" To increase the security level associated with passwords, they can be
diversified using a master key, with the result that hacking one does not crack entire
system. A session key based secure communication channel can be use to send the

password.

[00157] Fig. 19 is a flow chart illustrating authentication using a password.
The entity sends in an account id and password to system 10 (e.g. flash memory card).
The system checks to see if the password matches that in its memory. If it matches,
authenticated status is returned. Otherwise, the error counter is incremented for that
account, and the entity is asked to re-enter an account id and password. If the counter

overflows, the system return status that access is denied.

Challenge Response
[00158] Fig. 20 is a Flow Chart illustrating authentication using a
challenge/response type method. The entity sends in an account id and requests a
challenge from system 10. System 10 generates a random number and presents it to
the host. The host computes a response from the number and sends it to the system
10. System 10 compares the response to the value stored. The remaining steps are

similar to those in Fig. 19 for determining whether to grant access.

[00159] Fig. 21 is a Flow Chart illustrating authentication using another
challenge/response type method. Fig. 21 differs from that in Fig. 20 in that, in
addition to requiring the host to be authenticated by the system 10, it also requires the
system 10 to be authenticated by a challenge/response where system 10 also requests

a challenge from the host and returns a response to be checked by the host.

[00160] Fig. 22 is a Flow Chart illustrating authentication using another
challenge/response type method. In this case, only the system 10 needs to be
authenticated, where the host sends a challenge to system 10, which computes a

response that is checked by the host for a match with its record of system 10.

Symmetric key
[00161] Symmetric key algorithm means that the SAME key is used on both

sides to encrypt and decrypt. It means that the key must have been pre-agreed prior to

40

WO 2006/069312 PCT/US2005/046795

communicating. Also each side should implement the reverse algorithm of each other
i.e. encrypt algorithm on one side and decrypt on the other. Both sides do not need to

implement both algorithms to communicate.

Authentication

Symmetric key authentication means that device (e.g. flash card) and
host share the same key and have the same cryptographic algorithm (direct and
reverse e.g. DES and DES-1).

Symmetric key authentication means challenge-response (protect
against replay attack). The protected device generates a challenge for the other device
and both compute the response. The authenticating device sends back the response
and the protected device check the response and validate authentication accordingly.

Then rights associated with authentication can be granted.

Authentication could be:
External: the device (e.g. flash card) authenticates the outside world
i.e. the device validates credentials of a given host or application
Mutual: a challenge is generated on both sides
Internal: the host application authenticates the device (e.g. flash card)

i.e. host checks if device is genuine for its application.

To increase the security level of the entire system (i.e. breaking one does not

break all)

Symmetric key are usually combined with diversification using a
master key
Mutual authentication uses challenge from both side to ensure

challenge is a real challenge
Encryption

Symmetric key cryptography is also used for encryption because it is a very

efficient algorithm i.e. it does not need a powerful CPU to handle cryptography.

41

WO 2006/069312 PCT/US2005/046795

[00162] "~ When used to secure a communication channel:

Both devices have to know the session key used to secure the channel
(i.e. encrypt all outgoing data and decrypt all incoming data). This session key is
usually established using a pre-shared secret symmetric key or using PKI.

Both devices have to know and implement the same cryptographic

algorithms
Signature
[00163] Symmetric key can also be used to sign data. In that case the signature

is a partial result of the encryption. Keeping the result partial allows to sign as many

time as needed without exposing the key value.

Issues and Limitations
[00164] Symmetric algorithms are very efficient and secure but they are based
on a pre-shared secret. The issue is securely share this secret in a dynamic manner and
possibly to have it random (like a session key). The idea is that a shared secret is hard

to keep safe in a long term and is almost impossible to share with multiple people.

[00165] To facilitate this operation, public key algorithm has been invented as

it allows the exchange of secrets without sharing them.

Public key cryptography
[00166] Asymmetric key algorithm is commonly referred Public Key
cryptograph. It is a quite complex and usually CPU intensive mathematical
implementation. It has been invented to solve the issues of key distribution associated
with symmetric key algorithms. It also provides signing capabilities used to ensure

data integrity.

[00167] Asymmetric key algorithm uses a key which has private and public
elements respectively referred as private key and public key. Both private key and
public key are mathematically linked together. The public key can be shared whereas
the private has to remain secret. As for the keys, asymmetric algorithm uses two
mathematical functions (one for the private key and one for the public key) to provide

wrap and unwrap or sign and verify.

42

WO 2006/069312 PCT/US2005/046795

Key exchange and Key distribution

[00168] Key exchange becomes very simple using PK algorithm. The device '
sends its public key to the other device. The other device wraps its secret key with the
public key and returns the encrypted data to the first device. The first device uses its
private key to unwrap the data and retrieve the secret key which is now known to both
sides and can be used to exchange data. Because the symmetric key can be exchanged

that easily it is usually a random key.

Signature
[00169] Because of its nature public key algorithm is usually used only to sign
small amount of data. To ensure data integrity it is then combine with a hash function

that provides a one-way foot print of the message.

[00170] The Private key is used to sign the data. The public key (freely

available) allows to verify the signature.

Authentication
[00171] Authentication usually uses signature: a challenge is signed and

returned for validation

[00172] The public part of the key is used for verification. Because anyone can
generate a key pair, there is a need to certify the owner of the public key in order to
prove that this is the right person using the correct key. Certification authority
provides certification and will include the public key in a signed certificate. The
certificate is signed by the authority itself. Then using a public key to verify a
signature means that the authority that issued the certificate containing that key is
trusted and that one is able to verify that the certificate has not been hacked i.e. that
the certificate hash signed by the authority is correct; meaning that the user has and

trusts the authority public key certificate.

[00173] The most common way to provide PK authentication is to trust the
authority or root certificate and indirectly trust all key pairs certified by the given
authority. Authenticating is then a matter of proving that the private key that one has

matches the certificate by signing a challenge and providing the challenge response,

43

WO 2006/069312 PCT/US2005/046795

and the certificate. Then certificate is checked to make sure it has not been hacked and
it is signed by a trusted authority. Then the challenge response is verified.
Authentication is successful if the certificate is trusted and the challenge response is

correct.

[00174] Authentication in a device (e.g. flash card) means that the device is
loaded with trusted root certificates and that the device is able to verify the challenge

response as well as the certificate signed hash.

File encryption
[00175] PK algorithm is not used to encrypt large amounts of data because it is
too CPU intensive, but is usually used to protect a randomized encryption / decryption
key generated to encrypt the content. For example SMIME (Secure email) generate a

key which is then encrypted with all recipients’ public key.

Issues and Limitations
[00176] Because anything can generate a key pair, it has to be certified to
ensure its origin. During key exchange one may want to make sure that the secret key
is provided to the right device i.e. the origin of the provided public key will need to be
checked. Certificate management then becomes part of the security as it can inform

about the validity of the key, and whether the key has been revoked.

[00177] While the invention has been described above by reference to various
embodiments, it will be understood that changes and modifications may be made
without departing from the scope of the invention, which is to be defined only by the
appended claims and their equivalent. All references referred to herein are

incorporated by reference.

44

WO 2006/069312 PCT/US2005/046795

1 SSA Commands

The SSA system commands are passed to a memory card using standard (for the
relevant form factor protocol) write and read commands. Therefore, from the host
point of view, sending an SSA command really means writing data to a special file,
on the memory device, used as the buffer file. Getting information from the SSA
system is done via reading data from the buffer file. The host application must make
sure data is always written and read from the first LBA of the buffer file. Managing
the buffer files in the host OS is beyond the scope of this specification.

1.1 Communicating with the SSA system

The following sections define how SSA related commands and data are
communicated with the SSA system by using the form factor standard write/read
commands.

1.1.1 Sending commands/data to the SSA system

The first data block of every write commands is scanned for a pass through signature.
If found, the data is interpreted as an SSA commands. If not found, the data is written
to the designated address.

SSA application specific write commands, may include multiple sector transfer where
the first sector holds the required signatures and command’s arguments and the rest of
the data blocks hold the relevant data if any. ‘
Table ... defines the format of the first block (data blocks are always 512 bytes as
used in standard OS file systems) of an SSA command.

Byte | Length Description Comments

Index | [bytes]

0-31 |32 Application Must be the ASCII string:
pass through “SSTA Pass Through Mode Supported”
signature

32 4 SSA Must be: 0x00000000
Application ID

36 4 SSA session ID | The SSA session ID as provided by the SSA

system through an authentication process. If
no session is open, this field shall contain
the value 0x00000000. When a secure
channel is used the remainder of the
command arguments (starting a\t byte offset
64 of the firsdt block) and data blocks are
encrypted with the session key

40 24 Reserved for Data is undefined
future use
64 4 SSA session ID | A second copy of the SSA session ID. This
field is used to verify usage of session key.
68 4 SSA As defined in the detailed SSA command
Application ~ | description in the following sections
Command op-
Code

45

WO 2006/069312 PCT/US2005/046795

72 4 SSA Number of additional data blocks. 0 if no
application data | data blocks are used.
blocks
76- 436 SSA As defined in the detailed SSA command
511 Application description in the following sections
command
arguments

Table 1: SSA command Argument LBA Format

1.1.2 Reading data from the SSA system
Read commands will be executed in two parts:

1. Initiating the read command by first sending a write command with a single
data block defining all the arguments of the read command.

2. After the write command sets the card application on the correct state of
transfer, a read command is used to initiate the actual data transfer from the
card to the host. The read command must use the same LBA address the
previous write command used. This is the only indication to the card that the
host is trying to get the SSA data, previously requested.

The write/read command pairs must be carefully synchronized. The next session
defines how sequence errors are handled and recovered from. As defined, the SSA
system supports multiple host side users, which may be concurrently logged on. Each
user is expected to, independently and asynchronously, initiate write/read command
pairs hence, not requiring any special behavior of the host OS. From the card point of
view these individual pairs are identified by the LBA address used in the write half of
the sequence. From the host point of view it means each user must use a different file
buffer.

1.1.3 Write/read sequence errors

1.2 Commands Detailed Description

Table 2 provides a general overview of the SSA commands.

The command name column provides a basic description of the commands usage and
also index to the detail description of the command. The command op-code is the
actual value used in the SSA command. Argument length (Arg Len) column defines
the size of the argument field of the command (a value of zero means no argument).
The arguments are command specific and specified in the detailed command
description.

Data length is the size of the command data in the additional data blocks associated
with the commands. A value of zero means no data, a value of “Var” means the
command has variable data sizes and the actual size is specified in the command
itself. For fixed sized data commands this column stores the size of data size.

Data direction can be either blank if the command has no data (meaning that the
command arguments as specified in Table 1 all fit in the space between byte 76 and
byte 511 — beyond this lays the data payload accompanying the command sector),
“write” if the data is moving from the host to the card (appended to the argument
block of the write command), or “read” if the data is moving from the card to the host
(in read command following a write command that provides the arguments, as
described above).

All size related columns use byte units.

46

WO 2006/069312

PCT/US2005/046795

Cmd

Cmd

Arg | Data | Data | Description
Op-code | Name Len |Len | Dir
ACR/AGP management commands
1 CREATE _SYSTE |1 0 Creates a system ACR entry in the
M ACR SSA database and start the system
ACR configuration sequence
2 SYS ACR_CREA |0 0 Terminates the system ACR
TION_DONE configuration sequence and
renders the system ACR active
3 PASSWORD_CRE Write | Provides the credential data for
DENTIAL ACR that use password
authentication.
4 SYMMETRIC_CR Write | Provides the credential data for
EDENTIAL ACR that use symmetric
authentication.
5 ASYMETRIC_CR Write | Provides the credential data for
EDENTIAL ACR that use asymmetric
authentication.
6 GET _ACR_PUBLI Write | Get the public key of an ACR for
C KEY signing by a CA. ACR RSA key
pair where created in the SSA
system when the ACR was
created.
7 SEND_CERTIFIC Read | Provides a certificate signing the
ATE ACR public key
8 CONFIGURE_AC Write | Sets the ACAM (ACR
AM management permissions) record
of an ACR.
9-15 Reserved for future use
16 CREATE_ROOT_ Write | Creates a root AGP eniry in the
AGP SSA system data base
17 ROOT AGP_CRE |0 0 Terminates the configuration
ATION_DONE process of a root AGP and renders
it active
18 DISBALE_SYSTE |0 0 Disables the feature of creating
M_ACR_CREATI and configuring system ACR
ON
19 SET ROOT_AGP_ |1 Defines the mode (open,
CREATION_MOD controlled or block) of root AGP
E creation
20 DISBALE _ROOT_ Disables the feature of changing
AGP_CHANGE _ the creation mode of root AGPs
MODE
21-25 | Reserved for future use :
26 CREATE_AGP Write | Creates an AGP entry in the SSA
system data base
27 DELETE_AGP Write | Deletes an AGP entry in the SSA
system data base
28 CREATE ACR Write | Creates an ACR entry in the SSA

47

WO 2006/069312

PCT/US2005/046795

system data base
29 CREATE ACR D |0 0 Terminates the creation and
ONE configuration process of an ACR
and renders it active
30 DELETE_ACR Write | Deletes and ACR entry from the
SSA system database.
31 UNBLOCK_ACR Write | Unblocks a blocked (due to
authentication failures) ACR
32-49 | Reserved for future use
Partition & Domain management commands
50 CREATE_PARTIT Write | This command splits a given
ION partition into two. It can be issued
only by a root ACR.
51 UPDATE_PARTIT Write | Changes the size of two existing
ION partitions. The net change to total
size of these two partitions must
be 0.
52 DELETE PARTIT Write | Merges two existing partitions into
ION a single one.
53 RESTRIC_PUBLI Wiite | Enable/disable ac accessing the
C_PARTITION_A public partition of the device using
CCESS the standard (not SSA) commands.
54-59 Reserved for future use
60 CREATE_DOMAI Write | Creates a security domain in the
N SSA database
61 DELET DOMAIN Write | Deletes a security domain in the
SSA database
62-69 | Reserved for future use
70 DELEGATE_DO Write | Delegates access and ownership
MAIN_PERMISSI permission of a Domain to a
ONS specific ACR
71 DELEGATE_PAR Write | Delegates acess permission of a
TITION_PERMISS Partition to a specific ACR
ION
72-99 Reserved for future use
System login and authentication commands
100 SYSTEM_LOGIN Write
101 SYSTEM_LOGOU | 0 0
T
102- Reserved for future use
109
110 SEND_PASSWOR Write
D TO SSA
111- Reserved for future use
119
121 GET_SYMETRIC _ Read
CHALLENGE

48

WO 2006/069312 PCT/US2005/046795

122 SEND SYMETRI Write
C CHALLENGE
123 GET_SYMETRIC_ Read
CHLLENGE_RES
PONSE
124 SEND SYMETRI Write
C_CHLLENGE R
ESPONSE
125- Reserved for future use
129
130 SEND_ASYMETR Write
IC CHALLENGE
131 GET_ASYMTERI Read
C CHALLENGE
132 SEND_USER _CE Write
RTIFICATE
133 GET SSA PRE M Read
ASTER SECRETE
134 GET_ACR_CERTI Read
FICATE
135 SEND HOST PR Write
E_MASTER_SEC
RET
136 START_SERSSIO Write
N
137 AHUTHENTICAT | O 0 Read
ION COMPLETE
138- Reserved for future use
199 ‘
Read Write and status commands
200 WRITE Var | Write | Write data command
201 READ Var | Read | Read data command
202 COMMAND_STA Var | Read | Get the current SSA command
TUS execution status
203 SYSTEM_QUERY Var | Read | Gets the requesting ACR current
configuration data

Table 2: SSA commands

1.2.1 Create System ACR

Create system ACR builds a system ACR entry in the SSA database. Once the entry is
created the credentials can be configured according to the specified login algorithm.
Finally the CREATE_SYSTEM_ACR_DONE command is used to terminate the
sequence and render the system ACR active.

Create system ACR command will be rejected if an ACR entry already exists or
create system ACR feature is disabled. System ACR may be configured only with a
subset of the available login modes (refer to section 1.3.2 for details). If an invalid
mode is used the command will be rejected.

49

WO 2006/069312 PCT/US2005/046795

Command arguments are given in Table 3. The byte offset is relative to the start of the
command argument LBA (see section 1.1.1). Argument length is given in byte units.
Argument name defines the purpose of the argument and can be used as index to the
detailed argument description.

Byte | Arg Argument Name Commentes
Offset | Length
76 1 Login Algorithm System ACR can be configured only with

the following login algorithms:

e AES, DES, 3DES, Asymmetric
authentications in mutual mode
only.

Table 3: Create System ACR command argument

1.2.2 System ACR Creation Done

This command is sent only after the system ACR creation began. In any other time the
command will be rejected. Sending this command ends the system ACR creation and
will leave the ACR with the current configuration forever.

There are no arguments for this command.

1.2.3 PASSWORD CREDENTIAL

After sending SSA command [28] — CREATE_ACR - it is followed by sending the
ACR’s credentials. In this case it is password in a certain length — maximum length in
bytes is 20.

Byte | Arg Argument Name Commentes
Offset | Length

76 As specified in the PASSWORD _CRE | See section 1.3.2 on the password
Password Length in | DENTIAL phrase format and length.
Bytes argument field.

Table 4: Password Credential command arguments

1.2.4 SYMMETRIC CREDENTIAL

When picking a symmetrical login procedure for an ACR it will be followed by
sending the ACR’s symmetrical credential in the form of AES, DES or 3DES key.
The nature of the algorithm will indicate the credential’s (key) length in bytes. This
command can be used at regular ACRs and system ACR creation time.

Error! Reference source not found.Table 13describes the different types of
asymmetrical credentials.

Byte | Arg Argument Name Commentes
Offset | Length
76 1 Credential Type See Table 13Error! Reference
source not found. for type values
| and symbols

50

WO 2006/069312 PCT/US2005/046795

78 1 Credential Length
in Bytes
79 As specified in the Symmetric
Credential Length in | Credential
Bytes field

Table 5: Symmetric Credential command arguments

1.2.5 ASYMETRIC CREDENTIAL

For an ACR with asymmetric login procedure there are several credentials that have
to be passed to the SSA. The following Table 14describes the different types of
asymmetrical credentials:

Byte | Arg Argument Name Commentes
Offset | Length
76 1 Session ID Session ID eliminates the need of

the ACR ID. When in the case of
the system ACR creation this field

stays NULL. .
77 1 Credential Type See Error! Reference source not
found. for type codes
78 1 Credential Length
in Bytes
79 As specified in the Symmetric
Credential Length in | Credential
Bytes field

Table 6: Asymmetric Credential command arguments

ot

1,26 EXPORT PUBLIC KEY
1.2.7 IMPORT' CERTIFICATE
1.2.8 CONFIGURE ACAM

Sending this command configures the ACR management permissions. The
command is sent during the ACR creation only. The command is not valid for
system ACR. ACAM types and codes are described in Table 16: ACAM Types

Byte | Arg : Argument Name Commentes

Offset | Length

76 1 Session ID Valid only when used after
system ACR login procedure.

51

WO 2006/069312 PCT/US2005/046795

Otherwise left NULL.
77 1 AGP NAME/ID Maximum length is 20 bytes.
Length in Bytes
78 As specified in the AGP NAMEFE/ID
AGP NAME/ID
Length in Bytes
argument field.

Table 7: Configure ACAM command arguments

1.2.9 Create Root AGP

To create a root AGP under a secure channel, an SSA system login through the
system ACR has to be executed. After the login, a session ID will be created and used
for the creation sequence. The session ID is available when requesting system-
command return status right after the system ACR login sequence is done.

Creating a root AGP without logging in to the system ACR first (create root AGP
with a secure channel) does not require a session ID.

Table 8 reviews the commands arguments. When not using the system ACR the
Session ID field is left with NULL (NA). AGP name/ID is preceded by the bytes
number of its length.

Byte | Arg Argument Name Commentes
Offset | Length '
76 1 Session ID Valid only when used after
system ACR login procedure.
Otherwise left NULL.
77 1 AGP NAME/ID Maximum length is 20 bytes.
Length in Bytes
78 As specified in the AGP NAME/ID
AGP NAME/ID
Length in Bytes
argument field.

Table 8: Create Root AGP command arguments

Command Structure:
e Command Name/OP Code — 1 Byte: SSA_ CREATE_ROOT_AGP_CMD [3]
e Command Arguments —
1. Session ID —is it needed???
2. AGP Name/ID Length in Bytes — 1 Byte
3. AGP Name/ID —

1.2.10 Root AGP Creation Done

This command is delivered when the root AGP is done — meaning all of the ACRs in
the AGP are created. This command will lock the AGP so no more ACRs can be
created.

There are no arguments for this command.

52

WO 2006/069312 PCT/US2005/046795

Command Structure:
¢ Command Name/OP Code — 1 Byte:
SSA_ROOT_AGP_CREATION_DONE_CMD [4]
e Command Arguments —
1. Session ID —is it needed???
2. AGP Name/ID Length in Bytes — 1 Byte
3. AGP Name/ID —

1.2.11 DISBALE SYSTEM ACR _CREATION

Sending this command will terminate the ability to create the system ACR.
This command has no arguments.

1.2.12 SET _ROOT AGP_CREATION MODE

Controlling the creation of root AGPs is handled with SSA command [19]
SET_ROOT_AGP_CREATION_MODE. The codes for the different modes.is
described in Table 9. This command does not require to login to the SSA thus there is
no Session ID needed.

Mode Name Code | Description

OPEN 1 Root AGP creation can be either through system
ACR or regular open channel.

CONTROLLED 2 Root AGP creation through system ACR only.

LOCKED 3 No root AGP can be created.

Table 9: Root AGP Creation Modes

Byte | Arg Argument Name Commentes
Offset | Length
76 1 Root AGP Creation

Mode.

Table 10: Set Root AGP Creation Mode command arguments

1.2.13 DISBALE ROOT AGP_CHANGE MODE
This command renders SET_ROO_AGP_CREATION_MODE command inoperable
and it will be rejected by the SSA. This command has no arguments.

1.2.14 Create AGP

Byte | Arg Argument Name Commentes
Offset | Length
76 1 Session ID
77 1 AGP Name/ID Length | Maximum length is 20 bytes.
in Bytes
78 As specified in the AGP Name/ID
AGP NAME/ID
Length in Bytes
argument field.

Table 11: Create AGP command arguments

53

WO 2006/069312 PCT/US2005/046795

Command Structure:
e Command Name/OP Code ~ 1 Byte: SSA_ CREATE_AGP_CMD [5]
e Command Arguments —
1. Session ID — 1 Byte
2. AGP Name/ID Length in Bytes — 1 Byte
3. AGP Name/ID —

1.2.15 Delete AGP

This command is valid for the ACR that created the AGP and given that it is empty of
ACRs.
Command Structure:
e Command Name/OP Code — 1 Byte: SSA._ DELETE_AGP_CMD [6]
¢ Command Arguments —
1. Session ID — 1 Byte
2. AGP Name/ID Length in Bytes — 1 Byie
3. AGP Name/ID —

1.2.16 Create ACR

Command Structure:
e Command Name/OP Code — 1 Byte: SSA_CREATE_ACR_CMD [7]
¢ Command Arguments —

AGP Name/ID —

ACR Name/ID —

Login Algorithm — 1 Byte

Key Length

Unblocking ACR Name/ID

Number of Management Rights (ACAM) — 1 Byte

ACAM #1

ACAM #n

PN W=

This command can be sent only by the ACR creator to update the child ACR. ACRs
residing in the root AGP can’t be updated, as they haven’t a father ACR.
Command Structure:
e Command Name/OP Code — 1 Byte: SSA UPDATE_ACR_CMD (8]
e Command Arguments —
1. Session ID —1 Byte
2. AGP Name/ID Length in Bytes — 1 Byte
3. AGP Name/ID —
4. ACR Name/ID Length in Bytes — 1Byte

5. ACR Name/ID —

1.2.18 Delete ACR
This command can be sent only by the ACR creator to delete the child ACR. ACRs
residing in the root AGP have the ability to delete themselves.
Command Structure:
e Command Name/OP Code — 1 Byte: SSA DELETE_ACR_CMD [9]
e Command Arguments —

54

WO 2006/069312 PCT/US2005/046795

rts Uy

Séssion TiS — 1 Byte

AGP Name/ID Length in Bytes — 1 Byte
AGP Name/ID —

ACR Name/ID Length in Bytes — 1Byte
ACR Name/ID —

DB W g

1.2.19 Unblock ACR

This command can be sent only by an ACR with this explicit permission to unblock a
certain ACR.
Command Structure:
¢ Command Name/OP Code — 1 Byte: SSA_UNBLOCK_ACR_CMD [10]}
o Command Arguments —
1. Session ID —1 Byte
2. AGP Name/ID Length in Bytes — 1 Byte
3. AGP Name/ID —
4. ACR Name/ID Length in Bytes — 1Byte
5. ACR Name/ID —

1.2.20 Delegate Domain Permissions

Command Structure:
¢ Command Name/OP Code — 1 Byte:
SSA DELEGATE_DOMAIN_PERMISSION_CMD [11]}
o Command Arguments —
1. Session ID —1 Byte
2. Number of Permissions to Delegate — 1 Byte
3. Delegated Permission Code
4. Domain Name/ID Length in Bytes — 1 Byte
5. Domain Name/ID

1.2.21 Create Partition

This command can be sent only by an ACR residing in a root AGP.

Command Structure:
¢ Command Name/OP Code — 1 Byte: SSA_ CREATE_PARTITION_CMD [12]
e Command Arguments —

Session ID — 1 Byte

Partition Name/ID Length in Bytes — 1 Byte

Partition Name/ID :

Partition Size in Sectors [512 bytes] — 4 Bytes

Decreased Partition Name/ID Length in Bytes — 1 Byte

Decreased Partition Name/ID

S A LN

1.2.22 Update Partition
This command can be sent only by an ACR residing in a root AGP.

Command Structure:
e Command Name/OP Code — 1 Byte: SSA_ UPDATE _PARTITION_CMD
[13]

55

WO 2006/069312 PCT/US2005/046795

e (Command Arguments —

Session ID — 1 Byte

Partition Name/ID Length in Bytes — 1 Byte

Partition Name/ID

Partition Size in Sectors [512 bytes] — 4 Bytes
Decreased Partition Name/ID Length in Bytes — 1 Byte
Decreased Partition Name/ID

SN e

1.2.23 Delete Partition
This command can be sent only by an ACR residing in a root AGP.
Command Structure:
e Command Name/OP Code — 1 Byte: SSA_ DELETE_PARTITION_CMD [14]
o Command Arguments —
6. Session ID —1 Byte
7. Partition Name/ID Length in Bytes — 1 Byte
8. Partition Name/ID

1.2.24 Restrict Public Domain Access

This command will restrict regular Read/Write commands (commands sent by the
host and are not part of the SSA command protocol) to/from the public partition
(a.k.a. user area).
Command Structure:
e Command Name/OP Code — 1 Byte:
SSA_RESTRICT PAUBLIC_PARTITION_CMD [15]
e Command Arguments —
1. Session ID — 1 Byte
2. Public Partition Restriction Code — 1 Byte

1.2.25 Create Domain

Command Structure:
e Command Name/OP Code — 1 Byte: SSA_CREATE_DOMAIN_CMD [16]
¢ Command Arguments —
1. Session ID — 1 Byte
2. Partition Name/ID Length in Bytes — 1 Byte
3. Partition Name/ID
4. Domain Name/ID Length in Bytes — 1 Byte
5. Domain Name/ID

1.2.26 Delete Domain
Only the Domain owner may send this command and delete a Domain.
Command Structure:
e Command Name/OP Code — 1 Byte: SSA_ DELETE_DOMAIN_CMD [17]
¢ Command Arguments —
1. Session ID — 1 Byte
2. Partition Name/ID Length in Bytes — 1 Byte
3. Partition Name/ID

56

WO 2006/069312 PCT/US2005/046795

" 4. "Domain Name/ID Length in Bytes — 1 Byte
5. Domain Name/ID '

1.2.27 System Login
This command is issued when a host user wishes to use the SSA system through one
of the ACRs. The command will start the login/authentication process.
Command Structure:
e Command Name/OP Code — 1 Byte: SSA_SYSTEM_LOGIN_CMD [18]
e Command Arguments —
1. AGP Name/ID Length in Bytes — 1 Byte
2. AGP Name/ID —
3. ACR Name/ID Length in Bytes — 1Byte
4. ACR Name/ID —-

1.2.28 System Logout

This command is issued when the host user wishes to terminate a working session
with the SSA system. The command ends all of the user activity for the current login
session. After this command the host user will need to start the login process again to
be able to execute further actions with the SSA system.
Command Structure:
e Command Name/OP Code — 1 Byte: SSA_SYSTEM_LOGOUT_CMD [19]
e Command Arguments —
1. AGP Name/ID Length in Bytes — 1 Byte
2. AGP Name/ID —
3. ACR Name/ID Length in Bytes — 1Byte
4. ACR Name/ID —

1.2.29 Read

Command Structure:
e Command Name/OP Code — 1 Byte: SSA_ READ_CMD [20]

¢ Command Arguments —

1. Session ID — 1 Byte

2. Partition Name Length in Bytes - 1 Byte

3. Partition Name

4. Domain Name Length in Bytes — 1 Byte

5. Domain Name

6. Partition Address (LBA) — 4 Bytes

7. Number of LBAs (Sectors — Sector=512bytes) to read — 4 Bytes
1.2.30 Write

Command Structure:
e Command Name/OP Code — 1 Byte: SSA_WRITE _CMD [21]
e Command Arguments —
1. Session ID —1 Byte
2. Partition Name Length in Bytes - 1 Byte
3. Partition Name
4. Domain Name Length in Bytes — 1 Byte

57

WO 2006/069312 PCT/US2005/046795

6. Partition Address (LBA) — 4 Bytes
7. Number of LBAs (Sectors — Sector=512bytes) to read — 4 Bytes

1.2.31 Command Status
This status command can be sent to get the return status of the previous command
sent. The status deals with the command process and SSA system state.
Command Structure: '
e Command Name/OP Code — 1 Byte: SSA_CMD_STATUS_CMD [22]
e Command Arguments —
1. Session ID — 1 Byte

1.2.32 System Query
The system query command reads SSA information that is in the scope of the ACR
that is logged in.
Command Structure:
e Command Name/OP Code — 1 Byte: SSA_SYS_QUERY_CMD [23]
e Command Arguments —
1. Session ID —1 Byte

1.2.33 Password Authentication Commands
1.2.33.1 Send Password To SSA

The command sends the actual ACR password to be verified by the SSA. Sending the
Command Status command (22) will, the host will be able to read the command status
and upon command completion the status of the authentication process — PASS/FAIL.
Command Structure:
e Command Name/OP Code — 1 Byte: SSA_PWD_AUTH_SEND PWD_CMD
[24]
e Command Arguments —
1. Password Length in Bytes — 1 Byte
2. Password Data.

1.2.34 Symmetrical Authentication Commands
1.2.34.1 Get Challenge from SSA

Command Structure:
e Command Name/OP Code — 1 Byte: SSA_SYM_AUTH_GET_CHLG_CMD
[25]
e Command Arguments —
1.2.34.2 Send Challenge to SSA

Command Structure:
e Command Name/OP Code — 1 Byte:
SSA_SYM_AUTH_SEND_CHLG_CMD [26]

o Command Arguments —

58

WO 2006/069312 PCT/US2005/046795

2345 }Gﬁe{“Chalulgﬁge ﬁems"bonse from SSA
Command Structure:
o Command Name/OP Code — 1 Byte:
SSA_SYM_AUTH_GET CHLG_RES_CMD [27]
¢ Command Arguments —
1.2.34.4 Send Challenge Response from SSA

Command Structure:
e Command Name/OP Code — 1 Byte:
SSA_SYM_AUTH_SEND_CHLG_RES_CMD [28]

¢ Command Arguments —

1.2.35 Asymmetrical Authentication Process Commands
1.2.35.1 Send Challenge to SSA

Command Structure:
¢ Command Name/OP Code — 1 Byte:
SSA_ASYM_AUTH_SEND_CHLG_CMD [29]
e Command Arguments — Challenge random number — 28 Bytes
1.2.35.2 Get Challenge from SSA

Command Structure:
e Command Name/OP Code — 1 Byte:
SSA_ASYM_AUTH_GET_CHLG_CMD [30]
e Command Arguments — NA
1.2.35.3 Send CA Certificate to SSA

Command Structure:
e Command Name/OP Code — 1 Byte:
SSA _ASYM_AUTH_SEND_CA_CERT_CMD [31]
e Command Arguments —
1.2.35.4 Get SSA Pre-Master Secret

Command Structure:
e Command Name/OP Code — 1 Byte:
SSA_ASYM_AUTH_GET _PRE_MASTER_SECRET_CMD [32]
o Command Arguments —
1.2.35.5 Get ACR Certificate from SSA

Command Structure:
e Command Name/OP Code — 1 Byte:
SSA_ASYM_AUTH_GET_CHLG_CMD [33]

e Command Arguments —

1.2.35.6 Send Host Pre-Master Secret to SSA

Command Structure:
e Command Name/OP Code — 1 Byte:
SSA _ASYM_AUTH_SEND PRE MASTER SECRET_CMD [34]

e Command Arguments —

59

WO 2006/069312

"1:2.35.7 Sefid " Start Session Massage
g

Command Structure:

e Command Name/OP Code — 1 Byte:
SSA_ASYM_AUTH_SEND_START_SESSION_MSG_CMD [35]

e Command Arguments —

1. PIN option —

2. PIN Length in Bytes —

3. PIN string -

1.2.35.8 Get Authentication Complete Massage from SSA

Command Structure:

PCT/US2005/046795

¢ Command Name/OP Code — 1 Byte: SSA_SYM_AUTH_GET_CHLG_CMD

[36]

¢ Command Arguments —

1.3 SSA Command Arguments

1.3.1 Not Applicable

All fields defined as Not Applicable (NA) in the argument list must be set to 0.
1.3.2 Password and PIN Structure

Password and PIN phrases are 20 bytes long and are of binary value to the SSA
system. Any phrase shorter then 20 bytes must be padded with 0’.

‘0’ Padding

Phrase

MSB
19

LSE

00 |00]|00)00|00

00

00

49

F3 17015

CC

52

74 | A1 |EC | 2B | 00

01

05

1.3.3 Login Algorithm

This argument defines the login algorithm of an ACR. Itis a1 byte long. Available

values defined in the following table:

Symbol

Value

Description

NONE

No authentication is
required. The session is
opened as soon as the
system login command
is issued for this ACR.

PASSWORD

Password based
authentication

Reserved for future use

AES _HOST _AUTH

One way symmetric
authentication using
AES algorithm. Card is
authentication user.

AES_HOST _AUTH_SEC

11

One way symmetric
authentication using
AES algorithm. Card is

60

WO 2006/069312 PCT/US2005/046795

authenticating user.
Secure channel is
established and used
for this ACR.

AES HOST AUTH_SEC_PIN 12 One way symmetric
authentication using
AES algorithm. Card is
authenticating user.
Secure channel is
established and used
for this ACR.
Authentication is
complete after an
additional PIN is
provided.

AES MUTUAL_AUTH 13 Two way symmetric
authentication using

AES algorithm. Card
and host authenticate
each other

AES_MUTUAL_AUTH_SEC 14 Two way symmetric
authentication using
AES algorithm. Card
and host authenticate
each other. Secure
channel is established
and used for this ACR.

AES MUTUAL_AUTH_SEC PIN |15 A two-factor
authentication using
AES algorithm. Card
and host authenticate
each other. Secure
channel is established
and used for this ACR.
Authentication is
complete after an

additional PIN is

provided.

Reserved for future use 16-19

DES_HOST_AUTH 20 Similar to the AES
group of login modes
with the exception that
DES algorithm is used.

DES HOST AUTH_SEC 21

DES HOST AUTH _SEC _PIN 22

DES MUTUAL AUTH 23

DES MUTUAL AUTH_SEC 24

DES MUTUAL AUTH_SEC PIN |25

Reserved for future use 26-29

61

WO 2006/069312 PCT/US2005/046795

SBES HOST AUTH 30 Similar to the AES
group of login modes
with the exception that
3DES algorithm is
used.

3DES HOST AUTH SEC 31

3DES HOST AUTH SEC_PIN 32

3DES MUTUAL AUTH 33

3DES MUTUAL AUTH_SEC 34

3DES MUTUAL AUTH SEC_PIN | 35

Reserved for future use 36-39

RSA HOST AUTH 40

RSA HOST AUTH_PIN 41

RSA MUTUAL AUTH 42

RSA MUTUAL AUTH PIN 43

Reserved for future use 44-255

Table 12: Login Algorithm Types

1.3.4 Symmetric Credentials Symbols

Symbol Value Description

SYMMETRIC_KEY 1 A symmetric key that

corresponds to the chosen
symmetric authentication
sequence. The chosen
authentication sequence
will also reflect on the key
length.

USER_PIN 2 PIN is binary value of
maximum 20 bytes

Table 13: Symmetrical Credential Types

1.3.5 Asymmetrical Credential Types

Symbol Value Description
CA_ID

CA PUBLIC RSA KEY 1

ACR CERTIFICATE 2

USER_PIN 4

Table 14: Asymmetrical Credential Types
1.3.6 Partition Rights

Partition Rights BYTE Bitmap

Read | Wiite | Delegate | Reserved | Reserved | Reserved | Reserved | Reserved

62

WO 2006/069312 PCT/US2005/046795

'1:3.7 "Domain Rights

Domain Rights BYTE Bitmap

Read | Write | Delegate | Reserved | Reserved | Reserved | Reserved | Reserved

1.3.8 Domain Permission Codes

Symbol Value | Description
READ 1
WRITE 2
DOMAIN PERMISSION DELEGATION | 3
DOMAIN OWNERSHIP 4

Table 15: Domain Permission Types

1.3.9 ACAM

Symbol Value | Description
CREATE_AGP 1

ACAM_CREATE_ACR 2 | Create/delete/update AGPs

and ACR.

ACAM CREATE PARTITION Create/delete Partitions.

ACAM CREATE DOMAIN Create/delete Domains.

(SARE N OV

ACAM_DELEGATE_DOMAIN_RIGHTS Delegate access rights to
domain — this one is per

domain.

ACAM_DELEGATE_PARTITION_RIGHTS 6 | Delegate access rights to
partitions — this one is per

partition.
UNBLOCK._ACR 7
Table 16: ACAM Types
1.3.10 Public Partition restriction Codes
Symbol Value | Description
READ_ RESTRICTION 1.
WRITE RESTRICTION 2
READ WRITE RESTRICTION 3
Table 17: Public Partition Restriction Types
1.3.11 ommand Siatus
Field Name Contents Number of Bytes
Session ID ID number 1
Last Command OP-Code | A valid SSA command OP- 1
Code

63

WO 2006/069312 PCT/US2005/046795
L EShiand Status ©]« COMPLETE_OK—0 1
e COMPLETE_ERROR
-1
e BUSY-2
Error Code 1
Authentication state Applicable only for 1
authentication commands
Number of transferred | Applicable for only for data
sectors transfer commands
1.3.12 SSA Query
Field Name Contents Number of Bytes
Session ID ID number 1
Last Command OP-Code | A valid SSA command OP- 1
Code
Last Command Status COMPLETE_OK -0 1
COMPLETE_ERROR
-1
e BUSY-2
Error Code 1
SSA Version Version number
List of accessible The partition ID, net size
partitions and access permissions
List of accessible domains | The domain ID and access
permissions

1.3.13 Command Sequences

1.3.13.1 Command Sequence for SSA login via Mutual Symmetric

Authentication

Sequence | Command Name & Op-Code Argument Description | General
Description
1. | SSA_SYSTEM_LOGIN_CMD | ACR & AGP names Starts the login

[18]

sequence. Acts as
a request only.

2. | SSA_CMD_STATUS_CMD [22]

Session ID — NA

Get status on
CMD18. If

64

WO 2006/069312

PCT/US2005/046795
T
o CMD18 fails then
the login sequence
terminates.
SSA_SYM_AUTH_SEND_CHL | Challenge #1 Send challenge #1
G_CMD [26] to the SSA

SSA_CMD_STATUS_CMD [22]

Session ID — NA

Get status on
CMD26. If
CMD26 fails then
the login sequence
terminates.

SSA_SYM_AUTH_GET_CHLG
_RES_CMD [27]

NA

Read the SSA
response to
challenge #1. The
host verifies that
he response is
valid.

SSA_CMD_STATUS_CMD [22]

Session ID — NA

Get status on
CMD27. If
CMD?27 fails then
the login sequence
terminates.

SSA_SYM_AUTH_GET_CHLG
_CMD [25]

NA

Read challenge #2
from the SSA.

SSA_CMD_STATUS_CMD [22]

Session ID — NA

Get status on
CMD25. If
CMD25 fails then
the login sequence
terminates.

SSA_SYM_AUTH_SEND_CHL
G_RES_CMD [28]

Challenge #2 response

Send challenge #2
response to the
SSA.

.| SSA_CMD_STATUS_CMD [22]

Session ID — NA

Get status on
CMD28. If
CMD28 fails then
the login sequence
terminates. At this
stage the command
status should show
if the
authentication
process completed
successfully or
failed.

65

WO 2006/069312 PCT/US2005/046795

When this sequence is done successfully the SSA’s ACR is logged in and SSA
operations can begin.

1.3.13.2 Command Sequence for creating a root AGP

A root AGP can be created either via the system ACR (which requires to execute a
login sequence to the system ACR) or forgo the secure channel and skip the system
ACR authentication process. Command SSA_CREATE_ROOT_AGP_CMD [3] is
sent with the root AGP’s identity.

This command can be followed by SSA_CMD_STATUS_CMD [22] to make sure
that the SSA did not reject the command and that it was done without an error.
When the root AGP is done and all of it’s ACRs are created then to seal the root
AGP, SSA_ROOT_AGP_CREATION_DONE_CMD [4] command will be sent.
1.3.13.3 Command Sequence for Creating an AGP

To create an AGP, the user must first login to the SSA by executing the login
command sequence shown in 1.3.13.1. The AGP must be created before creating new
group of ACRs. The AGP is created by sending command SSA
CREATE_AGP_CMD [5] with the AGP Name/ID. ‘

To verify that CMD [5] was received and executed without an error the user sends
SSA_CMD_STATUS_CMD [22] and reads the status of the previous sent command.
When the user is done creating the AGP he can proceed with creating an ACR or
logout from the SSA system.

1.3.13.4 Command Sequence for Creating an ACR

To create an ACR, the user must first login to the SSA by executing the login
command sequence shown in 1.3.13.1. Also, there must be an AGP were the new
ACR belong. Then the user sends command SSA_CREATE_ACR_CMD [7] with
all of the new ACR data (name, AGP, login methods...etc.). To verify that CMD [7]
was received and executed without an error the user sends
SSA_CMD_STATUS_CMD [22] and reads the status of the previous sent command.
‘When the user is done creating the ACR he can proceed with other SSA operations or
logout from the SSA system.

1.4 Product parameters |

igth.

€

d to define'error conditions and messages per protocols.

10 define time out and busy handlifig:
pecify number of fevels on the trees
imit # 0froot MAROS

i

e ‘limit # of Childs {on the root) on all? delegateupto. . _

e There will be a limit on’ the number of CBC contexts in
parallel, such as'5-10

e Protocol anid pioduct versions

66

WO 2006/069312 PCT/US2005/046795

WHAT IS CLAIMED IS:

1. A secure storage method for use in a storage system, comprising a non-
volatile memory; and a controller controlling access to the memory, said method
comprising:

creating, by means of a system agent stored in the controller or the memory, at
least one hierarchical tree comprising nodes at different levels for controlling access
to data stored in the memory by corresponding entities, Whereiﬁ each node of the at
least one tree specifies permission(s) of a corresponding entity or entities for
accessing memory data, wherein permission(s) at a node of each of the trees has a
predetermined relationship to permission(s) at another node at a higher or lower level
in the same tree; and

using the at least one hierarchical tree to control access to memory data.

2. The method of claim 1, wherein the creating creates at least two trees,

and there is no cross-talk between the at least two trees created by the agent.

3. The method of claim 1, wherein the first node of any tree created by
the agent is the root node, said method further comprising disabling the agent,
wherein the root node of any tree(s) created by the agent cannot be altered after the

agent is disabled.

4. The method of claim 1, further comprising disabling the agent, wherein

no additional tree(s) can be created.

5. The method of claim 1, wherein said permission(s) at a node of each of
the trees indicate access rights to data in the memory not less than those indicated by

permission(s) at a node at a lower level in the same tree.
6. The method of claim 1, wherein a node in a tree has the capability to

create a child node at a lower level for enabling access by an entity to data in the

memory, said method further comprising creating the child node.

67

WO 2006/069312 PCT/US2005/046795

7. The method of claim 6, wherein the permission(s) of the child node is

not greater than that of the node that created the child node.

8. The method of claim 1, wherein said permission(s) at a node of a tree
permits a corresponding entity to create and/or delete another node in the same tree,
and/or alter the permission at a node in the same tree, and/or delegate permission(s) to
another node in the same tree and/or transfer association with a node to another node
in the same tree, said method further comprising deleting another node, altering
permission at a node, delegating permission(s) to another node and/or transfer
association with a node to another node, in the same tree, in accordance with the

permission(s).

9. The method of claim 1, wherein said permission(s) at a node of a tree

is for access to a key for encrypting and/or decrypting data in the memory.

10. The method of claim 1, wherein said permission(s) at a node of a tree
is for access to one or more partitions of the memory, said method further comprising
accessing the ome or more partitions of the memory, in accordance with the

permission(s).

11. The method of claim 1, wherein the permission(s) at a node permits
key(s) for data encryption and/or decryption to be created on behalf of a
corresponding entity, said method further comprising creating said key(s), in

accordance with the permission(s).

12. The method of claim 11, wherein the permission(s) at a node permits
the corresponding entity to delegate ownership of key(s) created on its behalf and/or
permission(s) of access to key(s), said key(s) used in encrypting and/or decrypting
data stored in the memory, said method further comprising delegating ownership of
key(s) created on its behalf and/or permission(s) of access to key(s), in accordance

with the permission(s).

68

WO 2006/069312 PCT/US2005/046795

13. The method of claim 11, wherein the permission(s) at a node permits a
corresponding entity for whom key(s) have been created to delete such key(s) , said
method further comprising deleting such key(s), in accordance with the permission(s).

14." A secure storage system, comprising:

a non-volatile memory; and

a controller controlling access to the memory, said controller or memory
storing a system agent that is capable of creating at least one hierarchical tree
comprising nodes at different levels for controlling access to data stored in the
memory by corresponding entities, wherein each node of the at least one tree specifies
permission(s) of a corresponding entity or entities for accessing memory data,
wherein permission(s) at a node of each of the trees has a predetermined relationship

to permission(s) at another node at a higher or lower level in the same tree.

15. The system of claim 14, wherein there is no cross-talk between at least

two of the trees created by the agent.

16. The system of claim 14, wherein the first node of any tree created by
the agent is the root node, and wherein when the agent is disabled, the root node of

any tree(s) created by the agent cannot be altered.

17. The system of claim 14, wherein when the agent is disabled, no

additional tree(s) can be created.

18. The system of claim 14, wherein said permission(s) at a node of each
of the trees indicate access rights to data in the memory not less than those indicated

by permission(s) at a node at a lower level in the same tree.
19. The system of claim 14, wherein a node in a tree has the capability to

create a child node at a lower level for enabling access by an entity to data in the

memory.

69

WO 2006/069312 PCT/US2005/046795

20. The system of claim 19, wherein the permission(s) of the child node is

not greater than that of the node that created the child node.

21. The system of claim 14, wherein said permission(s) at a node of a tree
permits a corresponding entity to create and/or delete a node for another node in the
same tree, and/or alter the permission at a node in the same tree, and/or delegate
permission(s) to a node for another node in the same tree or transfer association with a

node to another node in the same tree.

22. The system of claim 14, wherein said permission(s) at a node of a tree

is for access to a key for encrypting or decrypting data in the memory.

23. The system of claim 14, wherein said permission(s) at a node of a tree

is for access to one or more partitions of the memory.

24. The system of claim 14, wherein the permission(s) at a node permits
key(s) for data encryption and/or decryption to be created on behalf of a

corresponding entity.

25. The system of claim 24, wherein the permission(s) at a gode permits
the corresponding entity to delegate ownership of key(s) created on its behalf and/or
permission(s) of access to key(s), said key(s) used in encrypting and/or decrypting

data stored in the memory.

26. The system of claim 24, wherein the permission(s) at a node permits a

corresponding entity for whom key(s) have been created to delete such key(s).

70

PCT/US2005/046795

1714

291A9(1SOH

T ™ o Thmse

=
/1useld ~8¢ Vb dpisoH
8L~ Hw\ww Wvxg @N/HH o
Jaousanbag 0 A/l
d/1 yseid Snd 1soH
96 4 gy
o4l or “
J NG odid
vINd -
| yseld > suibuz-oidli) t— ﬁoI-AIlIV
e 0 \ 9 26
J
slosiboy Ndo 01 NNG sieysibay sleisibey
e 9 r H nne b NI
a|npoyy sse09Y |essydusd \ ¢e
o | ”
. a
SWvd NdO Ndo

SUBSTITUTE SHEET (RULE 26)

WO 2006/069312

ll.l.I||II|||I|IIl'lIl.'|I|-Illll|I-ll'll.llllll'll.ll.lll'-lll‘l'llIlll'l'lllllllllll

PCT/US2005/046795

WO 2006/069312

2/14

Z o

auibug
o01dA1n

.

gddv | 3lid pesy

|onuoD !

L00L00 $S900y paseg gddy wy |

4 M| o | H | ddv s8]0y J0} .
uoneosunuapj ISOH omwﬁﬁm@
dd

R v ey

$3191|0d SS90y

A
%

UONEORUBINY

x | x ma| X Losn ﬂ pies
zddy
M d H | WY |= Hr(
A A A + M@ \ 0¢
[]
[]
[J
cd
wolshy
140) co}
JUsjU0D
pejosjold ru
PED] hd SIUAMS
oisn !
% - LOL 11 o9 pesys
r r WHdo/ ds
0d Baly Jesn (s)ealy payosiold pied

spJe) uoneIauan MaN ysiques

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/046795

WO 2006/069312

3/14

v "OId

¢ -1ed

3 °ld aaid

(IENEN

} -ied

AL)" —
9olld- gefid

0-1ed

uoniued wajsAg

H:oz_tmn_
-€d

e
3

uoniled

-2d

7
b

| uopiped
-1d

AN

uopiyed
> olland
- 0d

€ 'Old

uonied ¢d

uoned zd

uonied Ld

uonnted
aNgnd 0d

uoniled weisAs

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/046795

WO 2006/069312

4114

G 'OId

\N_Un_
/

4 - ; J/
{{ 2 PDUOID | ke sav | sav A
_ sjgnog us
_ sjubry ai Aoy ——ugv
| < poUyio wyiuoBly
| cd uoleanusyIny S{euaps.o wbo
, al uonied
“ r HOV k
“ x sjybiy [04)uo) sSBI0Y /
i “wumvmb\mum_mﬂ\mumo._o
" sulewo(‘sdoy :8leeg/eiess)
] sofsuajoRIey) Uy Koz o1Iand Sld
“ " SIAVPESY 8# dal A2 o
! pEsy i < ouep wyoBy | ¥OY
| J_ 411 ejppesy G coz_Mo_EmE:,q SIERUSPSIO wbo
_ sy at Aoy
=1 |\ a1 uopiyed .
_
_ T
peay ch
4L ssed payseH | piomssed plomssed
peay €# P
sybry afey e DOUIOIN siequopaig | WUIOBIY "oV
Z#d uonesjuayny uibon
Qi uonied YOV)
_ doV Y,
_ wisjsAS ¥SS .

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/046795

WO 2006/069312

5/14

L3

o & a— -

Level 3

Level 3

Level 1

FIG. 6 -
SUBSTITUTE SHEET (RULE 26)

WO 2006/069312 PCT/US2005/046795

6/14

AGP
Level n

AGP
Level 2

AGP
Level 1
AGP
Level 1
AGP
Level 1

AGP
Level 1
AGP
Level 3
AGP
Level 1
AGP
Level 3
AGP
Level 1

—(32) FIG. 7

AGP
Level n

AGP
Level 2

AGP
Level 2
AGP
Level 2

SUBSTITUTE SHEET (RULE 26)

WO 2006/069312

Create System ACR
Host Side

issue SSA Command fo
Create System ACR

\-202

\
Read SSA Status

\-216

218

Card
Status OK
2

Yes

222
/‘

Issue SSA Command to
Define System ACR
Login Credential

226
//-

Issue SSA Command:
System ACR Ready

FIG. 8A

PCT/US2005/046795

7114

Create System ACR
Card Side

Create System ACR
Command Received

\- 204
206

System
ACR Already

Exist
?

Return Failure
Status and Stop

210

System

ACR Creation

Allowed
2

Return Failure
Status and Stop

Return OK Status and Wait
for System ACR Credentials

224
/-

System ACR Credentials
Command Received:
Update System ACR

Record, Return Status OK,
and Wait for Creation Done

System ACR | System ACR Creation Done
Cannot Be Command Received: Retum
Updated or OK Status, Mark System

Replaced ACR as Existing and Active

FIG. 8B

SUBSTITUTE SHEET (RULE 26)

WO 2006/069312

PCT/US2005/046795

8/14

System

ACR Exists
?

?

® 252
/_

Authenticate through System ACR
and Establish a Secure Channel

[

Use SSA Commands to Create

246

Adding Root

AGP Enabled
?

Does
Adding Root
AGP Require System ACR?
(Set to Controlled)

Root AGP and Root ACRs

l ~ 256

Switch the AGPs to Operational

Mode. Existing ACRs in AGP(s)

Cannot Be Updated, No Addition
of New ACRs to the Root AGP

—»: Feature: Additional AGP :

258
_ 2

Disable Root AGP Addition

FIG. 9

Cannot Be Created I

— v o ——— S — S W S -

Authenticate Through an Existing ACR

/270 ProcessUsed)

to Create

l /—272

H | Request to Create Account (ACR)
274
C Authorized
?
Yes 276
i
HIC ACR Created

m1, m2, si,
s2

~ FIG. 10

Stop

~

SUBSTITUTE SHEET (RULE 26)

WO 2006/069312 PCT/US2005/046795

9/14
Create 2 ACRs (m1, m2) in Marketing AGP, 2ACRs (s1, s2) in Sales AGP
Level 1 Level 2
Marketing AGP /Efgtgia’_les/-» Sales AGP

m1 (ACR) AGP s1 (ACR)

m2 (ACR) - / s2 (ACR)\
T\ ~<

R Onlyi \R/W ~ R Only/ \R Only

\

Marketing

FIG. 11 | mfomation RONly ~~ .| Price List

H Specify Accounts for 280
Delegation of Specific Rights } /

Marketing AGP - s1 (ACR)
ow | nain
Yes
- 264 Price List
rice Lis
Rights Delegated
FIG. 12 FIG. 13

H | Authenticate Through an ACR |/ 302

'

H Request to Create Key, Vs 304
Pravide Reference Name

306
c Authorized Stop | 310
? [)
' Assign Rights Creator Has All

H \gr Rights
and Permissions (R/W Delegate..)

‘ (312« Share Rights with

Other Accounts
c)
Modify PCR + Share Keys

c Create Random Key with
Reference Name for Account

FIG. 14
SUBSTITUTE SHEET (RULE 26)

WO 2006/069312

PCT/US2005/046795

10/ 14
HIC Authentication Process | /~ 330
[=
H Specify Account
l 334
H Request Deletion of Access
Rights/Permission of Another Account

Stop

Authorized
?

Yes

e 338
Access Right
Permissiox:%else(t)«;d F I G- 1 5

Request Access | /~ 350

Access Authorized

5 Stop (Access

Rights Deleted)

Yes 354
Y

Specify Account

Request Protected Content

358

Authorized Stop /Permission
? Delefed or Expired)
Yes

- 360
Permission Granted Fl G. 1 6

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/046795

WO 2006/069312

11/14

g/l 'Old

Vil "Old

uoisses uedQ

a]1d §S800Y

SUOISSOS JaYl0 — _
$8809Y 9914 ANVN o o $S900Y 8814 ANVN
2 2
\\ //// zZ 2
)) _J
00— s " 1 00
]34
SOA
X ai Aoy
pue Yy UoISSaS
Ev.\ Buisn sseooy @ oN
_ oLy P
€]e(q Pe)eIoossy o |l |+ m
UoISsas e g = ¥ | Aoy Buisn ss900Y Q
215 /1 uedo 0 8iqel sl gl |2 g07/| _ < 1S0H
| 81 18] |8 , =
ol @} |? Aoy <- aji4 =3
X @l Aoy <- X 8jid < - L h s X al ! 8
g0r N N7) 90%
| 4 \ /
X @i £ey uim LOREORUSUINY X Qi Aox uim 2051 suonespusYINY

1414

ajl4 SS809Y | zop

SuoISSag JoYJ0 "SA uolssag uadQ

1404

suoissag Jayl0 "sSA uoissag uado

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/046795

WO 2006/069312

12/14

8L "Old

joy Aay Jusjuo)
oioadg Aay Jo [BQO|D
1817 30.]1g 10 9)UM

uopeywI

BUON Jo

1817 598]g 10 SHYM

Joy sulelsSuo) 1eqo|o
SS800Y

P3jied jeqo|o jusuny
$S800Y pazuoyiny-un
10 I8qWINN SARONIISUOD
palied [eqo|O XeN
pazuoyiny Ajinjssaoong
1O J8quinN Uil :SS890y
1091014 dmyjoeg

AjuQ jeuuey) 81ndsg
anjep Aay

BlUIB| 8oualeloy ajpueH

aJels Juaun)

Xep Jo Uiy

(-018 Usjunon
‘awi] ‘selAqy) adAL

sulessuon

ELIEICTENEST T ST o)
[ouueY?) 8IN9ag 8210
uonebsjeg ss800Y
(o8

‘BIIM ‘peay) sjubry

jooiqun o} jeuapald
JO 1aquinN Uiy
s|enuspaln
Bupoolqun o} Joy
abesn psjied yuaing
sbesn pajed

JO JaquInN Xe

(010

‘VSY ‘S3YV) poulsiy
(o190 ‘deimun

‘ubis ‘yiny) abesn
(piomssed ‘Aayy) adAL

Aayf Jusjuoyn

sellj0d

sjeljuapaln

SUBSTITUTE SHEET (RULE 26)

WO 2006/069312

PCT/US2005/046795

13/14
Login/Password Type
Host Card
Specify Account
Send Password s
Check if Password
and Account Match
No:) .
Yes:
. |ﬂ%‘ emeint Set Account
rror Counter as Authenticated
for Account etc.
F I G 1 9 Return Status
Challenge/Response Type
Host Authentication
Host Card
Specify Account
Get Challenge - Gen Rnd
Response
ég‘?\ Compute
etc. Response
- Check if Match
I NO; Yes:
n((:_;remen Set Account
Error Counter as Authenticated
for Account etc.

FIG. 20 -

Return Status

SUBSTITUTE SHEET (RULE 26)

WO 2006/069312

14 /14

Challenge/Response Type

Mutual Authentication

PCT/US2005/046795

Host

Card

Specify Account

Send Challenge1

Compute
Response

Compute
@onse

Check if Match| ~e—

Gen Rnd2

Compute
Response

FIG. 21

Challenge/Response Type
Card Authentication

\
Compute
Response

\
Check if Match

Host

Card

Specify Account

Send Challenge

Compute
Response

Check if Match

FIG. 22

AES
Compute RSA
Response etc.

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

