一种车辆用发动机的自动停止装置，包括：自动停止控制部，在车辆停止时且在预先设定的自动停止开始条件成立的情况下使发动机自动停止，另一方面在所述自动停止开始条件不成立的情况下禁止发动机的自动停止；重启动控制部，在发动机的自动停止后且在预定的自动停止解除条件成立的情况下使发动机自动重启动；存储部，存储车辆停止时所述发动机的自动停止被禁止时的自动停止禁止的理由或自动停止后的发动机被自动重启动时的自动重启动的理由。
1. 一种车辆用发动机的自动停止装置，其特征在于包括：
自动停止控制部，在车辆停止时且在预先设定的自动停止开始条件成立的情况下使
发动机自动停止，另一方面在所述自动停止开始条件不成立的情况下禁止发动机的自动停止；

重启动控制部，在发动机的自动停止后且在预定的自动停止解除条件成立的情况下使
发动机自动重启动；

存储部，存储车辆停止时所述发动机的自动停止被禁止时的自动停止禁止的理由或自
动停止后的发动机被自动重启动时的自动重启动的理由。

2. 根据权利要求1所述的车辆用发动机的自动停止装置，其特征在于；
所述存储部存储多个理由项目和表示影响度的数据，所述多个理由项目是将所述自动
停止禁止的理由或所述自动重启动的理由按每一同类的理由区分而成的项目，所述影响度
是指各理由项目与自动停止的禁止或自动重启动容易关联的程度。

3. 根据权利要求2所述的车辆用发动机的自动停止装置，其特征在于；
所述存储部按每一所述理由项目来存储各理由项目作为所述自动停止禁止的理由或
所述自动重启动的理由而该属的次数亦即该属次数，以作为表示所述各理由项目的影响度
的数据。

4. 根据权利要求2所述的车辆用发动机的自动停止装置，其特征在于；
所述存储部按每一所述理由项目来存储所述发动机被自动停止的时间亦即自动停止
执行时间，以作为表示所述各理由项目的影响度的数据。

5. 根据权利要求2至4中任一项所述的车辆用发动机的自动停止装置，其特征在于；
在作为所述自动停止禁止的理由或所述自动重启动的理由而有多个所述理由项目该
属的情况下，所述存储部针对所该属的多个理由项目的全项目存储表示其影响度的数据。

6. 根据权利要求2至5中任一项所述的车辆用发动机的自动停止装置，其特征在于；
所述理由项目中包含基于驾驶员的操作的驾驶员要求。

7. 根据权利要求1至6中任一项所述的车辆用发动机的自动停止装置，其特征在于；
所述存储部的存储内容能够显示于显示装置。

8. 根据权利要求7所述的车辆用发动机的自动停止装置，其特征在于；
所述显示装置是从外部连接于所述存储部的数据监视器。

9. 根据权利要求7所述的车辆用发动机的自动停止装置，其特征在于；
所述显示装置是预先设置在仪表板上的车内显示器。

10. 根据权利要求7至9中任一项所述的车辆用发动机的自动停止装置，其特征在于；
所述存储部存储多个理由项目和表示影响度的数据，所述多个理由项目是将所述自动
停止禁止的理由或所述自动重启动的理由按每一同类的理由区分而成的项目，所述影响度
是指各理由项目与自动停止的禁止或自动重启动容易关联的程度。

从存储在所述存储部的多个理由项目中选出的一个以上的项目被显示于所述显示装
置，

作为显示于所述显示装置的显示对象而被选出的理由项目，对应于表示所述各理由项
目的影响度的数据而被变更。

11. 根据权利要求10所述的车辆用发动机的自动停止装置，其特征在于；
所述存储部按每一所述理由项目来存储各理由项目作为所述自动停止禁止的理由或所述自动重启动的理由而该属的次数亦即该属次数，以作为表示所述各理由项目的影响度的数据，

所述该属次数多的理由项目优先地显示于所述显示装置。

12. 根据权利要求10所述的车辆用发动机的自动停止装置，其特征在于：
所述存储部按每一所述理由项目来存储所述发动机被自动停止的时间亦即自动停止执行时间，以作为表示所述各理由项目的影响度的数据，
所述自动停止执行时间短的理由项目优先地显示于所述显示装置。
车辆用发动机的自动停止装置

技术领域
[0001] 本发明涉及车辆用发动机的自动停止装置，该装置进行发动机的自动停止及自动重启动。

背景技术
[0002] 在最近的车辆中，为了提高燃料经济性，在车辆停止时进行发动机自动停止的总速停止的车辆增多。该发动机的自动停止（总速停止）在预先设定的自动停止开始条件成立时被执行。自动停止开始条件一般以满足了所有设定的多个必要条件为条件而成立。例如，在满足了车速为零时（车辆停止中）、正进行制动操作时、未进行加速操作时、变速器处于空档状态时等所有必要条件时，自动停止开始条件成立。
[0003] 此外，为了自动重启动已自动停止的发动机，而预先设定有自动停止解除条件。该自动停止解除条件一般在未满足自动停止开始条件所含的多个必要条件中的一个以上的条件时（例如加速器被踩踏操作时或制动操作被解除时）成立。
[0004] 此处，发动机的自动停止开始条件并不一定仅是与驾驶员的操作相关的条件。例如，在蓄电池的充电量少时、蓄电池的消耗电力多时、发动机的冷却水温度或汽油低时、变速器的油温或油压低时、空调装置的设定温度与实际的温度之间的差值大（即空调要求的程度高）时等状况时，最好不进行发动机的自动停止。在确认到这些状况中的一个以上的状况存在时，即使因驾驶员的操作而起的必要条件全部被满足，较为理想的还是禁止发动机自动停止。
[0005] 由于发动机的自动停止如上述那样地基于不因驾驶员的操作而起的各种必要条件所禁止，因此驾驶员不容易认识到自动停止在怎样的情况下会被禁止。因此，有时在车辆停止但发动机未被自动停止时，可能会令驾驶员怀疑自动停止装置是否发生了故障。此外，有时还会令驾驶员怀疑发动机未自动停止是由于车辆停车中驾驶员的操作存在问题而导致的，从而有可能会令驾驶员进行不必要的操作例如无谓地强力操作制动器等操作。
[0006] 此外，上述那样的值得忧虑的情况同样也会在发动机不依驾驶员的操作而被自动重启动时发生。例如，在发动机的自动停止中，有时会因蓄电池充电量下降而发动机被自动重启动。在这样的情况下，即使驾驶员没有使车辆起步的意图，发动机也会被重启动，因此，这也可能会令驾驶员怀疑自动停止装置发生了故障等。
[0007] 另外，有时会因车辆存在某些不正常的情况而导致自动停止被禁止的频度显著增加，或导致自动停止的持续时间显著缩短（即使被自动停止也会马上被重启动）。因此，在车辆的保养时，还迫切需要对有无这样的不正常进行确认。
[0008] 此外，下述的专利文献1公开了一种自行诊断发动机的自动停止装置的装置，以便能够恰当地进行发动机的自动停止或自动重启动，但是，该装置并不有助于解决上述那样的问题。
[0009] 现有技术文献
[0010] 专利文献
说明内容

本发明鉴于上述情况而作，其目的在于提供一种能够把握发动机自动停止的理由或把握发动机自动重启动的理由的车辆用发动机的自动停止装置。

为实现上述目的，本发明的车辆用发动机的自动停止装置包括：自动停止控制部，在车辆停止时且在预先设定的自动停止开始条件成立的情况下使发动机自动停止。另一方面在所述自动停止开始条件不成立的情况下禁止发动机的自动停止；重启动控制部，在发动机的自动停止后且在预定的自动停止解除条件成立的情况下使发动机自动重启动；存储部，存储车辆停止时所述发动机的自动停止被禁止时的自动停止禁止的理由或自动停止后的发动机被自动重启动时的自动重启动的理由。

根据本发明，通过把握存储在存储部中的存储内容，能够避免驾驶员对自动停止装置抱有不必要的怀疑的情况，并且能够为驾驶员提供进行良好的燃料经济性驾驶的启示。此外，还能够使所述存储内容在尽早发现异常或故障等各方面上发挥作用。

附图说明

图 1 是表示本发明的一种实施方式的控制系统图。

图 2 是表示用于存储发动机的自动停止被禁止时的理由的图的一例。

图 3 是表示用于存储发动机的自动重启动时的理由的图的一例。

图 4 是表示发动机的自动停止被执行时的控制例的时间图。

图 5 是表示发动机的自动停止在暂时禁止后被允许时的控制例的时间图。

图 6 是表示在车辆停止中的整个期间发动机的自动停止被禁止时的控制例的时间图。

图 7 是表示本发明的控制例的流程图。

图 8 是表示本发明的控制例的流程图。

具体实施方式

图 1 中，U 是利用微电脑而构成的控制器。来自发动机或车辆所具备的各种传感器或开关 S1 至 S9 的信号被输入到控制器 U。本实施方式中，作为传感器或开关的具体例而设置有：车速传感器 S1，检测车速（车辆的行驶速度）；制动传感器 S2，检测脚制动器及驻车制动器的操作状态；加速传感器 S3，检测加速踏板的操作状态；档位传感器 S4，检测自动变速器（AT）的档位；转向角传感器 S5，检测转向盘的转向角；IS 取消开关 S6，用于意图地禁止后述的发动机的自动停止控制；发动机转速传感器 S7，检测发动机的转速；蓄电池电压传感器 S8，检测蓄电池的电压。此外，本实施方式中，除了所述的传感器或开关 S1 至 S8 以外，还设有传感器类 S9。传感器类 S9 检测与蓄电池、空调装置、自动变速器、发动机、以及车辆等有关的除所述传感器或开关 S1 至 S8 所检测的信息以外的各种信息。

控制 U 基于从所述传感器或开关 S1 至 S9 输入的信息等来控制发动机或车辆所具备的各部。本实施方式中，控制器 U 控制至少包含以下机器的各部机器：供应燃料给发动机的燃料喷射阀 1、供电给发动机的起动机马达的起动机继电器 2、设于仪表板的显示
器 3（显示装置）。此外，数据监视器 4（显示装置）从外部装拆自如地连接于控制器 U。在数据监视器 4 连接于控制器 U 的情况下，控制器 U 提供各种数据给数据监视器 4。

【0025】控制器 U 在功能上包含自动停止控制部 U1、重启动控制部 U2、以及存储部 U3。

【0026】控制器 U 的自动停止控制部 U1 是在车辆停止时（车速为零时）在指定的条件下切断来自燃料喷射阀 1 的燃料喷射从而使发动机自动停止的部。

【0027】控制器 U 的重启动控制部 U2 是执行使被自动停止控制部 U1 停止了的发动机在指定的条件下自动重启动的控制部。具体而言，重启动控制部通过供电给起动机继电器 2 而驱动起动机马达并且使来自燃料喷射阀 1 的燃料喷射重新开始来进行发动机的自动重启。此外，本实施方式中，在车辆的每一次停止中，发动机的自动停止以最大只允许进行一次的方式被设定。因此，发动机的自动重启动也是在车辆的每一次停止中最大只允许进行一次。

【0028】控制器 U 的存储部 U3 是包括非易失性存储器的部，存储与发动机的自动停止及自动重启相关的各种数据。

【0029】上述的发动机的自动停止在预定的自动停止开始条件成立时被执行。另外，已自动停止的发动机的自动重启动在预定的自动停止解除条件成立时被执行。控制器 U 的重启动控制部 U2 根据来自所述传感器或开关 S1 至 S9 的输入信号来判定所述自动停止开始条件或自动停止解除条件是否成立。

【0030】本实施方式中，自动停止开始条件为如下所述的自动停止禁止条件 1、2 中所包含的多个必要条件全部未被满足时的情形。即，自动停止禁止条件 1 中所包含的下述必要条件 (1) 至 (6) 和自动停止禁止条件 2 中所包含的下述必要条件 (7) 至 (14) 全部未被满足时，被看成是自动停止开始条件成立。相反，必要条件 (1) 至 (14) 中的任一个条件被满足时，被看成是自动停止开始条件不成立。

【0031】另外，本实施方式中，自动停止解除条件为如下所示的自动停止禁止条件 1、2 中所包含的多个必要条件的一个以上被满足时的情形。即，自动停止禁止条件 1 中所包含的下述必要条件 (1) 至 (6) 和自动停止禁止条件 2 中所包含的下述必要条件 (7) 至 (14) 中的任一个被满足时，被看成是自动停止解除条件成立。相反，必要条件 (1) 至 (14) 中的全部条件未被满足时，被看成是自动停止解除条件不成立。

【0032】＜自动停止禁止条件 1＞

【0033】自动停止禁止条件 1 是因驾驶员的操作而起的条件，其包含以下的必要条件 (1) 至 (6)。

【0034】(1) 车速传感器 S1 所测出的车速为非零的情形。

【0035】(2) 脚制动器和驻车制动器双方未被操作的情况（制动器关）已被制动传感器 S2 测出的情形。

【0036】(3) 加速踏板被踩踏操作的情况（加速器开）已被加速传感器 S3 测出的情形。

【0037】(4) 自动变速器处于空档状态的情况已被档位传感器 S4 测出的情形。

【0038】(5) 转向角传感器 S5 所测出的转向角的转向角不处于包含正中位置（转向角＝0）的指定的小转向角范围内的情形。

【0039】(6) 基于驾驶员的意图而禁止发动机自动停止的 IS 取消开关 S6 为接通状态的情形。
[0040] 此处，所述（4）的必要条件亦即自动变速器处于空挡状态的情况当然包含换档杆被切入到空挡位置的情形，但其并不限于此。本实施方式的车辆中，在车辆已停止时，自动变速器的特定的摩擦接合单元自动地被接合或被释放，从而形成模拟的空挡状态。因此，即使换档杆处于驱动位置，若向上述模拟的空档状态的切换已结束，则此时的上述必要条件4被满足的情形。

[0041] 〈自动停止禁止条件2〉
[0042] 自动停止禁止条件1是不因驾驶员的操作而起的基于系统上的制约的禁止条件，其包含以下的必要条件7至14。
[0043] （7）转速传感器S7所测出的发动机转速为预定的指定转速以上（比稳定时的怠速转速相当高的值）的情形。
[0044] （8）蓄电池电压传感器S8所测出的蓄电池的电压为预定的指定电压以下的情形。
[0045] （9）蓄电池的充电量为预先设定的充电量以下的情况、蓄电池的消耗电流为预先设定的电流以上的情况以及蓄电池的控制系统发生了异常的条件的任一情况，通过来自传感器类S9的信号而被确定的情形。
[0046] （10）空调装置的车室内的空调要求程度大时的情况（例如，所设定的最小量大的情况、实际的温度与手动设定的设定温度之间的差距大的情况、或室外温度为极热温度或极寒温度的情况），通过来自传感器类S9的信号而被确定的情形。
[0047] （11）变速器的油温不在指定温度范围内的情况、变速器的油压不在指定压力范围内的情况、以及变速器或离合器（包含锁止离合器）发生异常的情况的任一情况，通过来自传感器类S9的信号而被确定的情形。
[0048] （12）发动机的冷却水温度不在指定温度范围的条件的条件、进气温度过高的条件、气压过低的条件、供应给制动助力器（负压式增压装置）的负压不足的条件以及发动机系统发生异常的条件的任一情况，通过来自传感器类S9的信号而被确定的情形。
[0049] （13）点火钥匙已被拿出车外的情况（智能无钥匙进入系统时）、安全带已解开的情况、车辆的任一车门已打开的情况，发动机盖已打开的情况的任一情况，通过来自传感器类S9的信号而被确定的情形。
[0050] （14）路面的倾斜角度大的条件，通过来自传感器类S9的信号而被确定的情形。
[0051] 这些自动停止禁止条件1、2只不过是一例，自动停止禁止条件当然还可以包含上述的（1）至（14）以外的条件，或删除（1）至（14）中的一部分条件。此外，本实施方式中，在自动停止禁止条件1、2所含的必要条件1到14未被全部满足的情况下，自动停止开始条件（允许发动机自动停止的条件）成立，在自动停止禁止条件1、2所含的必要条件1到14中的一个条件被满足的情况下，自动停止解除条件（使已停止的发动机自动重启动的条件）成立，自动停止开始条件与自动停止解除条件是完全表里相反的关系。但是，自动停止开始条件与自动停止解除条件之间的关系并不一定是这样的关系。因此，也可仅在判定自动停止开始条件是否成立时设定所考虑的必要条件，或仅在判定自动停止解除条件是否成立时设定所考虑的必要条件。
[0052] 此处，包含与制动或加速操作或与转向盘转向角等相关的必要条件的自动停止禁止条件1是因驾驶员的操作而起的条件。因此，在基于自动停止禁止条件1中的至少一个必要条件被满足而禁止发动机自动停止或使发动机自动重启动的情况下，驾驶员能够比较
容易认识其原因。

[0053] 另一方面，包含与蓄电池或发电机、空调装置等相关的必要条件的自动停止或禁止条件 2 是与驾驶员的操作基本上无关的条件。因此，在基于自动停止禁止条件 2 中的至少一个必要条件被满足而禁止发动机自动停止或发动机自动重启的情况下，驾驶员不能够马上认识其原因。这有可能成为令驾驶员怀疑自动停止装置是否存在异常的主要原因。为此，作为对这样的问题的对策，在本实施方式中采用了以下所说明的技术方案。

[0054] 图 2 及图 3 表示控制器 U 的存储器 U3 所存储的地图 (map) 的一例。其中，图 2 是用于存储发动机的自动停止被禁止的理由的图，而图 3 是表示用于存储使发动机停止的发动机自动重启动的理由的图。

[0055] 首先，说明用于存储自动停止禁止的理由的图 2 的图形的内容。图 2 的横轴 (X 轴) 上设定有理由项目，该理由项目是表示在车辆停止时发动机的自动停止被禁止时 (亦即自动停止开始条件不成立时) 是基于怎样的理由的项目。理由项目是将上述的自动停止禁止条件 1、2 所含的必要条件 (1) 至 (14) 按每一类的理由区分而成的项目。具体而言，本实施方式中，作为自动停止禁止的理由项目而设定有：蓄电池电压的“蓄电池要求”的项目，因空调装置起动的“空调要求”的项目，因驾驶员的操作而起的必要的“驾驶员要求”的项目，因自动变速器 AT 起动的“AT 要求”的项目，因发动机自动起动的“发动机要求”的项目，因自动停止起动的“其他要求”的项目。各个理由项目中能够包含有蓄电池的电压小的情况、蓄电池的充电量少的情况、以及蓄电池的消耗电流过大等 (上述必要条件 (8)、(9) 多个理由。

[0056] 图 2 的纵轴 (Y 轴) 上设定有自动停止执行时间 (1S 执行时间)，该自动停止执行时间是发动机的自动停止 (怠速停止) 持续的时间。因此，图 2 中的自动停止执行时间是车辆停止时在自动停止暂时被禁止后，自动停止条件成立 (禁止条件 1、2 的必要条件 (1) 至 (14) 全部未被满足) 而执行了自动停止时的时间。因此，图 2 中的自动停止执行时间中不包含有车辆停止几乎同时地进行了自动停止时 (亦即自动停止不被禁止时) 的自动停止执行时间。此外，纵轴的自动停止执行时间按项目分为多个时间范围。位于最下方的“1S 不可” (无怠速停止) 的项目对应于自动停止执行时间为零的情形。

[0057] 图 2 的图形中，在车辆停止时，例如在以蓄电池的充电量少为理由而禁止了发动机自动停止时，作为自动停止禁理由的项目，应该属于“蓄电池要求”的理由项目。于是，在该“蓄电池要求”的列 (从图 2 的左侧开始的第一列) 内，自动停止执行时间一致的任一栏被计数 1 个。例如，在自动停止的禁止持续至车辆重起步为止时 (亦即自动停止完全没有被执行时)，自动停止执行时间为零，因此，“蓄电池要求”的列与“1S 不可”的行相交的第一列 (最右下) 的栏被计数。另外，例如因蓄电池的充电量少而暂时禁止自动停止，但之后充电量回复而发动自动停止，此后自动停止持续了 40 秒的时间时 (亦即自动停止执行时间为 40 秒时)，蓄电池要求的列与“30 ～ 60 秒”的行相交的三行第第一列的栏被计数。每当因与各栏的对应的理由项目而禁止自动停止且自动停止被执行了与各栏对应的时间时，各栏的计数加 1。

[0058] 此外，发动机的自动停止的禁理由并不限于一个，有时为多个。在这样的情况下，属于该属的所有理由项目的列 (且自动停止执行时间一致) 的多个栏分别被计数。例
如，当因蓄电池的充电量少的情况和空调要求大的情况这两者的理由而发生了自动停止禁止时，属于“蓄电池要求”的列和“空调要求”的列的两个栏分别被计数。[0059] 下面，说明用于存储自动重启动的理由的图3的图形的内容。图3的横轴（X轴）上设定有理由项目，该理由项目是表示在自动停止后的发动机被自动重启动时（亦即自动停止解除条件成立时）是基于怎样的理由的项目。本实施方式中，如前所述，由于自动停止开始条件和自动停止解除条件基于相同的必要条件（1）至（14）（自动停止禁止条件1.2）而被设定，因此，图3的横轴上设定的自动重启动的理由项目与图2所示的自动停止禁止的理由项目相同。即，本实施方式中，作为自动重启动的理由项目而言定有：因蓄电池而起的理由的“蓄电池要求”的项目；因空调装置而起的理由的“空调要求”的项目；因驾驶员的操作而起的理由的“驾驶员要求”的项目；因自动变速器（AT）而起的理由的“AT要求”的项目；因发动机而起的理由的“发动机要求”的项目；除此以外的其他的理由的“其他”的项目。各个理由项目中能够包含上述必要条件（1）至（14）中的多个理由。[0060] 此外，在图3的纵轴（Y轴）上，发动机自动停止后且自动重启动时的自动停止执行时间（从自动停止至重启动为止的时间）以划分为多个时间范围的状态被设定。另外，图3的图形其与图2的图形不同。其在自动停止后的发动机被自动重启动时均被使用（即使不自动停止也被使用），因此，图3的图形中的自动停止执行时间中，与图2的图形中的自动停止执行时间不同，还包含与车辆停止几乎同时地进行了发动机自动停止时（自动停止未被禁止时）的自动停止执行时间。[0061] 图3的图形中，在车辆停止时被自动停止后的发动机，其后例如在以蓄电池的充电量下降为理由而被自动重启动时，作为自动重启动的理由项目，应该属于“蓄电池要求”的理由项目。于是，在该“蓄电池要求”的列（从图3的左侧开始的第一列）内，自动停止执行时间一致的每一栏被计数1个。每当因自动停止被执行了与各栏对应的时间且因与各栏对应的理由项目而发动机被自动重启动时，各栏的计数数加1。[0062] 此外，因多个理由而发动机被自动重启动时，属于该属的所有理由项目的列（且自动停止执行时间一致）的各个栏分别被计数。例如，当因蓄电池的充电量少的情况和空调要求大的情况这两者的理由而发动机被自动重启动时，属于“蓄电池要求”的列和“空调要求”的列的两个栏分别被计数。[0063] 此处，本实施方式中，随着发动机的自动停止被禁止，对图2的图形中的特定的栏进行的计数，意味着对图2的横轴所示的多个理由项目确定各自的影响度。例如，图2中，将横轴的理由项目相同（属于特定的一列）的栏的计数数相加而得的数，相当于该理由项目作为自动停止禁止的理由所该属的次数。可以说，越是因为该属次数多的理由项目，作为禁止自动停止的理由的作用越大，影响度越大。另外，能够从横轴的理由项目相同（属于特定的一列）的栏的各计数数和各栏的自动停止执行时间，求出例如基于该理由项目而禁止了发动机的自动停止时的（之后发动机被自动停止时的）自动停止执行时间的平均值。该自动停止执行时间的平均值短，换言之就是说自动停止被禁止的时间长。因此可以说，越是自动停止执行时间短的理由项目，作为禁止自动停止的理由的作用越大，影响度越大。这样，本实施方式中，利用图2的图形来存储按每一种类的理由来区分自动停止禁止的理由的各个理由项目，以及表示各理由项目对于自动停止的禁止有何种程度的易关联性这样的影响度的数据。
此外，本实施方式中，随着发动机被自动重启动，对图3的图形中的特别的栏进行的计数，意味着对图3的横轴所代表的多个理由项目确定各自的影响度。例如，图3中，将横轴的理由项目相同（属于特定的一列）的栏的计数值相加而得的数，相当于该理由项目作为自动重启动的理由所对应的次数。可以说，越是该该属次数大的理由项目，作为使发动机自动重启动的理由的作用越大，影响度越大。另外，能够从横轴的理由项目相同（属于特定的一列）的栏的计数值和各栏的自动停止执行时间，求出例如基于该理由项目而使发动机自动重启动的自动停止执行时间的平均值。该自动停止执行时间的平均值短，意味着自动停止后的发动机马上被重启动。因此可以说，越是自动停止执行时间短的理由项目，作为使发动机自动重启动的理由的作用越大，影响度越大。这样，本实施方式中，利用图3的图形来存储按每一同样理由来区分自动重启动的理由的多个理由项目，以及表示各理由项目对于自动重启动有某种程度的易关联性这样的影响度的数据。

图4是表示发动机被自动停止时的控制例的时间图。具体而言，该图4的时间图表示发动机与车辆停止几乎同时地被自动停止，之后发动机被自动重启动时的控制例。以下，将该图4所示的动作模式称之为“模式1”。

在图4所示的模式1中，首先，行驶中的车辆减速至车速为零（车辆停止），在紧后的时间点t1，确认到所述自动停止禁止条件1、2的必要条件（1）至（14）全部未被满足，自动停止开始条件成立。于是，与此同时地，发动机的自动停止开始，在此后，发动机转速从怠速转速下降至零。

以自动停止开始的时间点t1为始点，自动停止执行时间（IS执行时间）被计数。自动停止执行时间由于是自动停止持续的时间，因此与从自动停止的开始时间点t1的时间以比例地增长。

在从自动停止的开始时间点t1经过一定时间后的时间点t2，确认到所述必要条件（1）至（14）中的任意一个以上的条件被满足，自动停止解除条件成立。于是，与此同时地，发动机的自动重启动开始，在此后，发动机转速上升至怠速转速。

在自动重启动开始的时间点t2，自动停止执行时间的计数结束。由此，从自动停止的开始时间点t1到自动重启动的开始时间点t2的经过时间（t2-t1），作为自动停止执行时间而被确定。之后，在从自动重启动的开始时间点t2经过1秒后的时间点t3，进行将自动重启动的理由存储到图3的图形中的处理。

具体而言，属于与在时间点t2发动机被自动重启动时的理由对应的理由项目（横轴）的列而且属于与从时间点t1至t2为止的经过时间对应的自动停止执行时间（纵轴）的行的特定的栏的计数值被计数。例如，以蓄电池充电量下降（必要条件（14））为理由而自动停止解除条件成立，从而发动机被自动重启动，并且从自动停止的开始时间点t1至自动重启动的开始时间点t2的经过时间为40秒。此情况下，作为图3的横轴所示的自动重启动的理由，应该属于“蓄电池要求”，作为纵轴所示的自动停止执行时间，应该属于“30～60秒”。因此，上述的“蓄电池要求”的列与“30～60秒”的行相交的栏亦即二行第一列的栏的计数值被加1并被更新存储。

图5是表示车辆停止而发动机未被自动停止时（发动机的自动停止被禁止时）的控制例的时间图。具体而言，该图5的时间图表示在车辆停止的时间点虽然发动机的自动停止被禁止，但基于之后的状态变化而允许发动机自动停止而且在其它发动机被自动重启动
动时的控制例。以下，将该图 5 所示的动作模式称作“模式 2”。

在图 5 所示的模式 2 中，车辆在时间点 t11 停止，车速为零。但是，在该车辆的停止时间点 t11，自动停止开始条件未成立（即，所述必要条件（1）至（14）中的任意一个以上的条件被满足），因此发动机的自动停止不开始，发动机转速维持在怠速转速的状态。

之后，状态变为所述必要条件（1）至（14）全部未被满足的状态，因此，在时间点 t12，自动停止开始条件成立。于是，与此同时地，发动机的自动停止开始。在此后，发动机转速从怠速转速下降至零。

在从自动停止的开始时间点 t12 经过一定时间后的时间点 t13，自动停止解除条件成立（即，所述必要条件（1）至（14）中的任意一个以上的条件被满足）。于是，与此同时地，发动机的自动重启开始，在此后，发动机转速上升至怠速转速。之后，在从自动重启的开始时间点 t13 经过 1 秒后的时间点 t14，进行将自动停止禁止的理由及自动重启动的理由存储到图 2 及图 3 的图形中的处理。

具体而言，在存储自动停止禁止的理由的图 2 的图形中，属于与在时间点 t11 自动停止被禁止时的理由对应的理由项目（横轴）的列而且属于与从时间点 t12 至 t13 为止的经过时间对应的自动停止执行时间（纵轴）的行的特定的栏的计数值被计数。此外，在存储自动重启的启动的理由的图 3 的图形中，属于与在时间点 t13 发动机被自动重启时的理由对应的理由项目（横轴）的列而且属于与从时间点 t12 至 t13 为止的经过时间对应的自动停止执行时间（纵轴）的行的特定的栏的计数值被计数。

例如，以蓄电池充电量下降（必要条件（14））为原因而发动机的自动停止暂时被禁止（时间点 t11），在之后的时间点 t12 发动机被自动停止。而且，以脚制动器的踩踏已被解除（必要条件（2））为原因而发动机被重新启动，并且从所述发动机自动停止的开始时间点 t12 至自动重启的开始时间点 t13 的经过时间为 15 秒。此情况下，作为图 2 的横轴所示的自动停止禁止的理由，应该属于“蓄电池要求”，作为图 2 的纵轴所示的自动停止执行时间，应该属于“0～30秒”，因此，上述的“蓄电池要求”的列与“0～30秒”的行相交的栏亦即图 2 的二行第一列的栏的计数被加 1 并被更新存储。而且，作为图 3 的横轴所示的自动重启的理由，应该属于“驾驶员要求”，作为图 3 的纵轴所示的自动停止执行时间，应该属于“0～30秒”，因此，上述的“驾驶员要求”的列与“0～30秒”的行相交的栏亦即图 3 的一行第三列的栏的计数被加 1 并被更新存储。

图 6 是表示车辆停止时发动机的自动停止被禁止时的别的控制例的时间图。具体而言，该图 6 的时间图表示在车辆停止时发动机的自动停止被禁止并且该禁止状态维持到车辆起步为止时的控制例。以下，将该图 6 所示的动作模式称作“模式 3”。

在图 6 所示的模式 3 中，车辆在时间点 t21 停止，车速为零。但是，在该车辆的停止时间点 t21，自动停止开始条件未成立（即，所述必要条件（1）至（14）中的任意一个以上的条件被满足），因此发动机的自动停止不开始，发动机转速维持在怠速转速的状态。之后，车辆在自动停止开始条件不成立的状态起步，在时间点 t22，车速超越 0。于是，在车辆从起步的一定时间 t22 经过 1 秒后的时间点 t23，进行将自动停止禁止的理由存储到图 2 的图形中的处理。

即，在时间点 t21 自动停止被禁止时的理由对应的理由项目（横轴）的列中的自动停止执行时间（纵轴）一致的特定的栏的计数值被计数。此外，在图 6 的模式 3 中，由
于发动机的自动停止一概未进行，因此自动停止执行时间为零。因此，被计数的栏为属于图
2 的“IS 不可” 的行的栏。
[0080] 存储到图 2 及图 3 所示那样的图形中的内容，在任意的时期均能够显示在设置于
仪表板的显示器 3 上。由此，即使驾驶员感觉到自动停止的频度少时也能够通过观看显示
在显示器 3 上的存储内容，而知道例如蓄电池充电量多而禁止自动停止等甚情，其结果，
能够知道自动停止装置没有异常的情况。而且，车辆的维修人员便能够对驾驶员给予进行
蓄电池的补充充电等指引。
[0081] 下面，参照图 7 及图 8 的流程图说明基于上述的控制器 U 进行的发动机的自动停
止及自动重启动的控制例。以下的说明中，Q 表示步骤。
[0082] 图 7 的流程图所示的控制，在行驶中的车辆停止时（车速从零以外变为零时）开
始。于是，首先在步骤 Q1 中，来自各种传感器或开关 S1 至 S9 的信号被输入控制器 U。之
后，在 Q2 中，判定标志是否为零。该标志为 1 时表示发动机的自动停止为非执行中，该标志为
零时表示发动机的自动停止为非执行中。标志的初始值被设定为零。
[0083] 在图 7 的控制的开始时间点（在车辆停止的瞬间），发动机未停止，因此，Q2 中的
最初的判定为“是”。于是，在之后的 Q3 中，判定自动停止开始条件是否成立。当确认到所
述自动停止禁止条件 1,2 的必要条件 (1) 至 (14) 全部未被满足时，Q3 中的判定为“是”。
Q3 的判定为“是”时，在之后的 Q4 中，发动机被自动停止。即，通过执行停止来自燃料喷射
阀 1 的燃料喷射的燃料切断，使发动机停止。之后，在 Q5 中，为了表示处于自动停止中的情
况，标志被设为 1。进一步在此后，在 Q6 中，自动停止执行时间的计数开始。
[0084] Q6 之后，返回到 Q1，但此时由于标志被设为 1，因此，此后的 Q2 中的判定为“否”。
于是，处理移到 Q7，判定自动停止解除条件是否成立。当确认到所述自动停止禁止条件 1,2
的必要条件 (1) 至 (14) 全部未被满足时，Q7 中的判定为“否”。Q7 的判定为“否”时，回
到 Q1，发动机的自动停止被继续。伴随此，自动停止执行时间的计数数也增大。
[0085] 另一方面，Q7 中的判定为“是”时，亦即，基于所述必要条件 (1) 至 (14) 中的任意
一个以上的条件被满足而自动停止解除条件成立时，在 Q8 中，发动机被自动重启动。即，基
于起动机马达被驱动并且来自燃料喷射阀 1 的燃料喷射重新开始，发动机被自动重启动。
之后，在 Q9 中，标志被复位到零，在 Q10 中，自动停止执行时间的计数结束。
[0086] Q10 后，Q11 中，发动机被自动重启动的理由被存储到存储器 U3 中。亦即，图 3
的图形中自动重启动的理由项目（横轴）与自动停止执行时间（纵轴）一致的特定的
栏的计数数被计数，该被计数后的数据被更新存储。这样，在 Q3 中的最初的判定为“是”时
（在车辆的停止后马上允许发动机自动停止时），之后，基于通过 Q10, Q11, 仅利用图 3 的图
形，来存储自动重启动的理由。
[0087] 接着，对在上述 Q3 中的判定为“否”时亦即即使车辆停止而由于所述必要条件 (1)
至 (14) 中的任意一个以上的条件被满足从而被判定为自动停止开始条件不成立时的控制
进行说明。在 Q3 中的判定为“否”时，处理移到 Q12（不经过 Q4 以后的处理），从而禁止发
动机的自动停止。而且，在 Q12 中，判定车辆是否处于停止状态。在 Q12 中的判定中为“是”
时，处理返回到 Q1。
[0088] 若 Q12 中的判定为“否”且确认到车辆已起步，则在步骤 Q11 中，将发动机的自动停
止被禁止的理由存储到存储器 U3 中。亦即，图 2 的图形中自动停止禁止的理由项目（横
轴）与自动停止执行时间（纵轴）一致的特定的碳的计数数被计数，该被计数后的数据被
更新存储。但是，此处的自动停止执行时间一定为零。这样，从 Q12 经由 Q11 时（亦即在车
辆停止后，一次也没有允许发动机自动停止而车辆起步时），仅利用图 2 的图形，来存储自
动停止禁止的理由。

[0090] 另一方面，在车辆的起步前（Q12 中的判定为“是”的期间），有时存在自动停止开
始条件成立而 Q3 中的判定为“是”的情形。此情况下，从 Q4 经过 Q6，发动机被自动停止，
直至之后在 Q7 中的判定为“是”为止，发动机的自动停止被继续。而且，在 Q7 中的判定为
“是”而自动停止解除条件成立的时间点，经由 Q8 以后的处理，发动机被自动重启动。这样，
在车辆起步前在 Q3 中的判定为“是”时，执行发动机的自动停止的禁止和自动停止之后的发
动机的自动重启动这二者。因此，该情况下，在处理移到 Q11 时，利用图 2 及图 3 的图形的
双方，将发动机的自动停止被禁止的理由和发动机被自动重启动的理由分别存储到存储部
U3 中。

[0091] 图 8 是表示图 7 的 Q11 中的详细处理内容的子程序。该子程序开始后，首先在 Q21
中判定车辆停止时的动作模式是否该属于图 4 所示的模式 1。如前所述，模式 1 是指车辆停
止而且马中发动机的自动停止开始条件成立（在 Q3 中为“是”）且随着之后的自动停止解
除条件成立（在 Q7 中为“是”）从而发动机被自动重启动的模式。因此，Q3 中的最初始的判
定为“是”时，能够判定其该属于模式 1。

[0092] 当确认到 Q21 中的判定为“是”而该属于模式 1 时，在 Q23 中，仅更新图 3 的图形
数据，并存储自动重启动的理由。

[0093] 另一方面，Q21 中的判定为“否”时，在 Q22 中，判定车辆停车时的动作模式是否该
属于图 5 所示的模式 2。如同前所述，模式 2 是指在车辆停止的时间点发动机的自动停止被禁
止（在 Q3 中为“否”）但基于之后的状态变化而自动停止开始条件成立（在 Q3 中为“是”）
并且随着之后的自动停止解除条件的成立（在 Q7 中为“是”）从而发动机被自动重启动的
模式。因此，Q3 中的至少最初的判定为“否”，且之后 Q3 中的变为“是”时，能够判定其该属
于模式 2。

[0094] 当确认到 Q22 中的判定为“是”而该属于模式 2 时，在 Q24 中，更新图 2 及图 3 的
图形数据双方，并分别存储自动停止禁止的理由和自动重启动的理由。

[0095] 另一方面，Q22 中的判定为“否”时，意味着车辆停车时的动作模式该属于图 6 所示
的模式 3。如同前所述，模式 3 是指在车辆停止的时间点发动机的自动停止被禁止（在 Q3 中
为“否”）并且该禁止状态维持到车辆的起步为止（在 Q12 中成为“否”为止）的模式。

[0096] 当确认到 Q22 中的判定为“否”而该属于模式 3 时，在 Q25 中，仅更新图 2 的图形
数据，并存储自动停止禁止的理由。

[0097] 在 Q23 至 Q25 的任一处理之后，在 Q26 中，将所存储的理由显示在显示器 3 上。该
显示处理在每次的发动机的自动停止被禁止时，或在每次的发动机的自动重启动时，被自
动地执行。即，在发动机的自动停止被禁止时，与该禁止的理由对应的理由项目（图 2 的横
轴的项目的任一项）被显示于显示器 3，在发动机被自动重启动时，与该重启动的理由对应
的理由项目（图 3 的横轴的项目的任一项）被显示于显示器 3。通过观看这样的显示器 3
的显示，驾驶员能够马上认识到与自动停止相关的信息。此外，Q26 中的显示处理也可以例
如以设置在仪表板上或转向盘上的显示要求开关被操为条件来予以执行。
Q26 之后，在 Q27 中，判定数据监视器 4 是否从外部连接于控制器 U 的存储部 U3。该 Q27 中的判定为“是”时，存储于存储部 U3 中的存储内容被输出到数据监视器 4，并以指定的形式被显示。另外，作为数据监视器 4，也可采用被称作所谓的行驶记录仪（ODR）的机器。此时，数据监视器 4 具有将所输入的数据预先存储的存储部，能够对应于操作者对数据监视器 4 的操作，变更存储内容的显示形式。

此处，在显示存储内容时，可考虑将由图 2 或图 3 的图形中的多个理由项目中按指定的标准选择的一个以上的理由项目予以显示。此时，考虑到显示面积有限的情况，较为理想的是优先显示与自动停止的禁止与否与自动重启的执行容易关联的理由项目。例如，可考虑优先地显示自动停止禁止的理由或自动重启的理由由该类的次序多的理由项目（按该类次序多的顺序予以显示），或优先地显示自动停止执行时间短的理由项目（按自动停止执行时间短的顺序予以显示）。此外，也可以通过手动操作，从而能够对优先地显示该类次序多的理由项目的形态和优先地显示自动停止执行时间短的理由项目的形态恰当地进行选择。当然，显示形态并不限于述的例例，例如作为自动停止禁止的理由或自动重启的理由，也可以按新的该类的顺序来显示理由项目。

以上，对本发明的理想实施方式进行了说明，但本发明并不限定于所例示的实施方式。本发明是能够在发明内容中所记载的范围内进行适当的变更的。例如，显示存储部的存储内容的显示装置也可以是设置于该仪表板的显示器，或形是外部连接的数据监视器。

此外，本发明的目的并不限于说明书所明示的目的，其还暗示了提供实质上较理想的或作为优点而被表述的目的。

＜实施方式的总结＞

最后，对在上述实施方式中所公开的特征结构以及基于该结构的作用效果进行总结说明。

上述实施方式的车辆用发动机的自动停止装置，包括：自动停止控制部，在车辆停止时且在预先设定的自动停止开始条件成立的情况下使发动机自动停止，另一方面在所述自动停止开始条件不成立的情况下禁止发动机的自动停止；重启控制部，在发动机的自动停止后且在所述的自动停止解除条件成立的情况下使发动机自动重启；存储部，存储车辆停止时所述发动机的自动停止被禁止时的自动停止禁止的理由或自动停止后的发动机被自动重启时的自动重启的理由。

根据该结构，由于发动机的自动停止被禁止的理由或被自动重启的理由存储在存储部，因此，通过确认存储在该存储部中的存储内容，驾驶员能够明确地认识到发动机被自动停止的理由或被自动重启的理由。由此，能够防止驾驶员对自动停止装置抱有不必要的怀疑的情况。另外，通过确认存储部的存储内容，能够学习为了增加自动停止的持续时间（自动停止执行时间）以改善燃料经济性的做法。另一方面，对于车辆的维修人员而言，即使驾驶员指出自动停止被禁止的频度高或自动停止后的发动机会马上被自动重启这样情况，也能够通过确认存储部的存储内容，对驾驶员提出恰当的建议。此外，还能够使所述存储内容在尽早发现自动停止装置自身或与此关联的各种传感器类的故障等方面上发挥作用。

所述自动停止装置中较为理想的是，所述存储部存储多个理由项目和表示影响度的数据，所述多个理由项目是将所述自动停止禁止的理由或所述自动重启的理由按每一
同类的理由区分而成的项目，所述影响度是指各理由项目与自动停止的禁止或自动重启动容易关联的程度。

【0106】 根据该结构，能够恰当地把握：在作为自动停止禁止的理由或自动重启动的理由而存在有多个的理由项目中，哪一个是最重要的。

【0107】 上述结构中较为理想的是，所述存储部按每一所述理由项目来存储各理由项目作为所述自动停止禁止的理由或所述自动重启动的理由而该属的次数亦即该属次数，以作为表示所述各理由项目的影响力的数据。

【0108】 根据该结构，能够从多个理由项目中确定自动停止被禁止的频度或自动重启动的频度变高的理由是什么。

【0109】 所述存储部也可以按每一所述理由项目来存储所述发动机被自动停止的时间亦即自动停止执行时间，以作为表示所述各理由项目的影响力的数据。

【0110】 根据该结构，能够从多个理由项目中确定自动停止执行时间变短的理由是什么。

【0111】 较为理想的是，在作为所述自动停止禁止的理由或所述自动重启动的理由而有多个所述理由项目该属的情况下，所述存储部针对所该属的多个理由项目的全项目存储表示其影响度的数据。

【0112】 根据该结构，即使自动停止禁止的理由或自动重启动的理由存在有多个，也能够将它们无遗漏地予以存储。

【0113】 所述理由项目中也可包含基于驾驶员的操作的驾驶员要求。

【0114】 根据该结构，在因驾驶员的操作而自动停止被禁止或自动重启动被禁止时，使得驾驶员理解到该情况。由此，能够使驾驶员学习增加自动停止执行的持续时间（自动停止执行时间）以提高燃料经济性的操作方法。

【0115】 上述自动停止装置中较为理想的是，所述存储部的存储内容能够显示于显示装置。

【0116】 根据该结构，通过显示装置能够使驾驶员或车辆的维修人员切实地认识到存储部的存储内容。

【0117】 所述显示装置可以是从外部连接于所述存储部的数据监视器。

【0118】 根据该结构，车辆的维修人员通过确认数据监视器的显示，能够对驾驶员提供为了提高燃料经济性的恰当的建议，或能够尽早发现异常或故障等。

【0119】 所述显示装置可以是预先设置在仪表板上的车内显示器。

【0120】 根据该结构，驾驶员通过确认车内显示器的显示，能够确切地进行为了提高燃料经济性的学习等。

【0121】 在所述存储部存储多个理由项目和表示影响度的数据的情况下，所述多个理由项目是将所述自动停止禁止的理由或所述自动重启动的理由按每一同类的理由区分而成的项目，所述影响度是指各理由项目与自动停止的禁止或自动重启动容易关联的程度，较为理想的是，从存储在所述存储部的多个理由项目中选出的一个以上的项目被显示于所述显示装置，作为显示于所述显示装置的显示对象而被选出的理由项目，对应于表示所述各理由项目的影响度的数据而被变更。

【0122】 这样的结构，在选择所显示的必要性高的理由项目这一点上是较为理想的结构。

【0123】 上述结构中较为理想的是，所述存储部按每一所述理由项目来存储各理由项目作
为所述自动停止的频率或所述自动重启的频率而该属的次数亦即该属次数，以作为表示所述各理由项目的影响度的数据，所述该属次数多的理由项目优先地显示于所述显示装置。

[0124] 这样的结构，在马上知道自动停止被禁止的频率或自动重启的频率变高的理由这一点上是较为理想的结构。

[0125] 或者也即可为，所述存储部按每一所述理由项目来存储所述发动机被自动停止的时间亦即自动停止执行时间，以作为表示所述各理由项目的影响度的数据，所述自动停止执行时间短的理由项目优先地显示于所述显示装置。

[0126] 这样的结构，在马上知道自动停止执行时间变短的理由这一点上是较为理想的结构。

[0127] 产业上的可利用性

[0128] 本发明能够合适地应用于进行怠速停止的车辆。
图 2
图 3
图6

模式3

车速

发动机转速

IS 禁止理由

IS 执行时间

存储处理

1秒间

t21 t22 t23

时间
图7