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TISSUE ABLATION WITH IRREVERSIBLE ELECTROPORATION

CROSS-REFERENCE
1001] This application claims the benefit of U.S. Provisional Application No. 60/532,588,

filed December 24, 2003, which application is incorporated herein by reference.

FIELD OF THE INVENTION
1002] This invention resides in the fields of electroporation of tissue and to treatments

whereby tissue is destroyed by irreversible electroporation.

BACKGROUND OF THE INVENTION

1003] In many medical procedures, such as the treatment of benign or malignant tumors, it is
important to be able to ablate the undesirable tissue in a controlled and focused way without
affecting the surrounding desirable tissue. Over the years, a large number of minimally
invasive methods have been developed to selectively destroy specific areas of undesirable
tissues as an alternative to resection surgery. There are a variety of techniques with specific
advantages and disadvantages, which are indicated and contraindicated for various
applications. For example, cryosurgery is a low temperature minimally invasive technique in
which tissue is frozen on contact with a cryogen cooled probe inserted in the undesirable tissue
(Rubinsky, B., ed. Cryosurgery. Annu. Rev. Biomed. Eng. Vol. 2. 2000. 157-187.). The area
affected by low temperature therapies, such as cryosurgery, can be easily controlled through
imaging. However, the probes are large and difficult to use. Non-selective chemical ablation is
a technique in which chemical agents such as ethanol are injected in the undesirable tissue to
cause ablation (Shiina, S., et al., Percutaneous ethanol injection therapy for hepatocellular
carcinoma: results in 146 patients. AJR, 1993. 160: p. 1023-8). Non-selective chemical
therapy is easy to apply. However, the affected area cannot be controlled because of the local
blood flow and transport of the chemical species. Elevated temperatures are also used to ablate
tissue. Focused ultrasound is a high temperature non-invasive technique in which the tissue is
heated to coagulation using high-intensity ultrasound beams focused on the undesirable tissue
(Lynn, J.G., et al., 4 new method for the generation of use of focused ultrasound in
experimental biology. J.Gen Physiol., 1942. 26: p. 179-93; Foster, R.S., et al., High-intensity
Jfocused ultrasound in the treatment of prostatic disease. Eur. Urol., 1993. 23: p. 44-7).

Electrical currents are also commonly used to heat tissue. Radiofrequency ablation (RF) is a
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high temperature minimally invasive technique in which an active electrode is introduced in

the undesirable tissue and a high frequency alternating current of up to 500 kHz is used to heat

the tissue to coagulation (Organ, L.W., Electrophysiological principles of radiofrequency
lesion making. Appl. Neurophysiol., 1976. 39: p. 69-76). In addition to RF heating traditional

Joule heating methods with electrodes inserted in tissue and dc or ac currents are also common,
(Erez, A., Shitzer, A. (Controlled destruction and temperature distribution in biological tissue
subjected to monoactive electrocoagulation) J. Biomech. Eng. 1980:102(1):42-9). Interstitial
laser coagulation is a high temperature thermal technique in which tumors are slowly heated to
temperatures exceeding the threshold of protein denaturation using low power lasers delivered
to the tumors by optical fibers (Bown, S.G., Phototherapy of tumors. World. J. Surgery, 1983.
7:p. 700-9). High temperature thermal therapies have the advantage of ease of application.
The disadvantage is the extent of the treated area is difficult to control because blood
circulation has a strong local effect on the temperature field that develops in the tissue. The
armamentarium of surgery is enhanced by the availability of the large number of minimally
invasive surgical techniques in existence, each with their own advantages and disadvantages
and particular applications. This document discloses another minimally invasive surgical
technique for tissue ablation, irreversible electroporation. We will describe the technique,
evaluate its feasibility through mathematical modeling and demonstrate the feasibility with in
vivo experimental studies.

004] Electroporation is defined as the phenomenon that makes cell membranes permeable by
exposing them to certain electric pulses (Weaver, J.C. and Y.A. Chizmadzhev, Theory of
electroporation: a review. Bioelectrochem. Bioenerg., 1996. 41: p. 135-60). Electroporation
pulses are defined as those electrical pulses that through a specific combination of amplitude,
shape, time length and number of repeats produce no other substantial effect on biological cells
than the permeabilization of the cell membrane. The range of electrical parameters that
produce electroporation is bounded by: a) parameters that have no substantial effect on the cell
and the cell membrane, b) parameters that cause substantial thermal effects (Joule heating) and
c) parameters that affect the interior of the cell, e.g. the nucleus, without affecting the cell
membrane. Joule heating, the thermal effect that electrical currents produce when applied to
biological materials is known for centuries. It was noted in the previous paragraph that
electrical thermal effects which elevate temperatures to values that damage cells are commonly

used to ablate undesirable tissues. The pulse parameters that produce thermal effects are longer
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and/or have higher amplitudes than the electroporation pulses whose only substantial effect is
to permeabilize the cell membrane.

1005] There are a variety of methods to electrically produce thermal effects that ablate tissue.
These include RF, electrode heating, and induction heating. Electrical pulses that produce
thermal effects are distinctly different from the pulses which produce electroporation. The
distinction can be recognizing through their effect on cells and their utility. The effect of the
thermal electrical pulses is primarily on the temperature of the biological material and their
utility is in raising the temperature to induce tissue ablation through thermal effects.

1006] The effect of the electroporation parameters is primarily on the cell membrane and their
utility is in permeabilizing the cell membrane for various applications. Electrical parameters
that only affect the interior of the cell, without affecting the cell membrane were also identified
recently. They are normally referred to as “nanosecond pulses™. It has been shown that high
amplitude, and short (substantially shorter than electroporation pulses - nanoseconds versus
millisecond) length pulses can affect the interior of the cell and in particular the nucleus
without affecting the membrane. Studies on nanosecond pulses show that they are “distinctly
different than electroporation pulses” (Beebe SJ. Fox PM. Rec LJ. Somers K. Stark RH.
Schoenbach KH. Nanosecond pulsed electric field (nsPEF) effects on cells and tissues:
apoptosis induction and tumor growth inhibition. PPPS-2001 Pulsed Power Plasma Science
2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International
Pulsed Power Conference. Digest of Technical Papers (Cat. No.01CH37251). IEEE. Part vol.1,
2001, pp.211-15 vol.1. Piscataway,NJ, USA. Several applications have been identified for
nano-second pulses. One of them is for tissue ablation through an effect on the nucleus
(Schoenbach, K.H., Beebe, S.J., Buescher, K.S. Method and apparatus for intracellular
electro-manipulation U.S. Pattent Application Pub No. US 2002/001 0491 Al, Jan 24 2002).
Another is to regulate genes in the cell interior, (Gunderson, M.A. et al. Method for
intracellular modification within living cells using pulsed electrical fields — regulate gene
transcription and entering intracellular US Patent application 2003/0170898 A1, Sept 11,
2003). Electrical pulses that produce intracellular effects are distinctly different from the pulses
which produce electroporation. The distinction can be recognizing through their effect on cells
and their utility. The effect of the intracellular electrical pulses is primarily on the intracellular
contents of the cell and their utility is in manipulating the intracellular contents for various uses

— including ablation. The effect of the electroporation parameters is primarily on the cell
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membrane and their utility is in permeabilizing the cell membrane for various applications,
which will be discussed in greater detail later.

0007] Electroporation is known for over half a century. It was found that as a function of the
electrical parameters, electroporation pulses can have two different effects on the permeability
of the cell membrane. The permeabilization of the membrane can be reversible or irreversible
as a function of the electrical parameters used. In reversible electroporation the cell membrane
reseals a certain time after the pulses cease and the cell survives. In irreversible electroporation
the cell membrane does not reseal and the cell lyses. A schematic diagram showing the effect
of electrical parameters on the cell membrane permeabilization (electroporation) and the
separation between: no effect, reversible electroporation and irreversible electroporation is
shown in Figure 1 (Dev, S.B., Rabussay, D.P., Widera, G., Hofmann, G.A., Medical
applications of electroporation, IEEE Transactions of Plasma Science, Vol28 No 1, Feb 2000,
pp 206 —223) Dielectric breakdown of the cell membrane due to an induced electric field,
irreversible electroporation, was first observed in the early 1970s (Neumann, E. and K.
Rosenheck, Permeability changes induced by electric impulses in vesicular membranes. J.
Membrane Biol., 1972. 10: p. 279-290; Crowley, J.M., Electrical breakdown of biomolecular
lipid membranes as an electromechanical instability. Biophysical Journal, 1973. 13: p. 711-
724; Zimmermann, U., J. Vienken, and G. Pilwat, Dielectric breakdown of cell membranes,.
Biophysical Journal, 1974. 14(11): p. 881-899). The ability of the membrane to reseal,
reversible electroporation, was discovered separately during the late 1970s (Kinosita Jr, K. and
T.Y. Tsong, Hemolysis of human erythrocytes by a transient electric field. Proc. Natl. Acad.
Sci. USA, 1977. 74(5): p. 1923-1927; Baker, P.F. and D.E. Knight, Calcizim-dependent
exocytosis in bovine adrenal medullary cells with leaky plasma membranes. Nature, 1978. 276:
p. 620-622; Gauger, B. and F.W. Bentrup, 4 Study of Dielectric Membrarie Breakdown in the
Fucus Egg,. ]. Membrane Biol., 1979. 48(3): p. 249-264).

1008] The mechanism of electroporation is not yet fully understood. It is thought that the
electrical field changes the electrochemical potential around a cell membrane and induces
instabilities in the polarized cell membrane lipid bilayer. The unstable membrane then alters its
shape forming aqueous pathways that possibly are nano-scale pores through the membrane,
hence the term “electroporation” (Chang, D.C., et al., Guide to Electroporation and
Electrofusion. 1992, San Diego, CA: Academic Press, Inc.). Mass transfer can now occur

through these channels under electrochemical control. Whatever the mechanism through which
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the cell membrane becomes permeabilized, electroporation has become an important method
for enhanced mass transfer across the cell membrane.

1009] The first important application of the cell membrane permeabilizing properties of
electroporation is due to Neumann (Neumann, E., et al., Gene transfer into mouse lyoma cells
by electroporation in high electric fields. J. EMBO, 1982. 1: p. 841-5). He has shown that by
applying reversible electroporation to cells it is possible to sufficiently permeabilize the cell
membrane so that genes, which are macromolecules that normally are too large to enter cells,
can after electroporation enter the cell. Using reversible electroporation electrical parameters is
crucial to the success of the procedure, since the goal of the procedure is to have a viable cell
that incorporates the gene.

1010] Following this discovery electroporation became commonly used to reversible
permeabilize the cell membrane for various applications in medicine and biotechnology to
introduce into cells or to extract from cells chemical species that normally do not pass, or have
difficulty passing across the cell membrane, from small molecules such as fluorescent dyes,
drugs and radioactive tracers to high molecular weight molecules such as antibodies, enzymes,
nucleic acids, HMW dextrans and DNA. It is important to emphasize that in all these
applications electroporation needs to be reversible since the outcome of the mass transport
requires for the cells to be alive after the electroporation.

1011] Following work on cells outside the body, reversible electroporation began to be used
for permeabilization of cells in tissue. Heller, R., R. Gilbert, and M.J. Jaroszeski, Clinical
applications of electrochemotherapy. Advanced drug delivery reviews, 1999. 35: p. 119-129.
Tissue electroporation is now becoming an increasingly popular minimally invasive surgical
technique for introducing small drugs and macromolecules into cells in specific areas of the
body. This technique is accomplished by injecting drugs or macromolecules into the affected
area and placing electrodes into or around the targeted tissue to generate reversible
permeabilizing electric field in the tissue, thereby introducing the drugs or macromolecules
into the cells of the affected area (Mir, L.M., Therapeutic perspectives of in vivo cell
electropermeabilization. Bioelectrochemistry, 2001. 53: p. 1-10).

1012] The use of electroporation to ablate undesirable tissue was introduced by Okino and
Mohri in 1987 and Mir et al. in 1991. They have recognized that there are drugs for treatment
of cancer, such as bleomycin and cys-platinum, which are very effective in ablation of cancer
cells but have difficulties penetrating the cell membrane. Furthermore, some of these drugs,

such as bleomycin, have the ability to selectively affect cancerous cells which reproduce
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without affecting normal cells that do not reproduce. Okino and Mori and Mir et al. separately
discovered that combining the electric pulses with an impermeant anticancer drug greatly
enhanced the effectiveness of the treatment with that drug (Okino, M. and H. Mohri, Effects of
a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Japanese
Journal of Cancer Research, 1987. 78(12): p. 1319-21; Mir, L.M,, et al., Electrochemotherapy
potentiation of antitumour effect of bleomycin by local electric pulses. European Journal of
Cancer, 1991. 27: p. 68-72). Mir et al. soon followed with clinical trials that have shown
promising results and coined the treatment electrochemotherapy (Mir, L.M.,, et al.,
Electrochemotherapy, a novel antitumor treatment: first clinical trial. C. R. Acad. Sci., 1991.
Ser. 11 313(613-8)).

013] Currently, the primary therapeutic in vivo applications of electroporation are antitumor
electrochemotherapy (ECT), which combines a cytotoxic nonpermeant drug with
permeabilizing electric pulses and electrogenetherapy (EGT) as a form of non-viral gene
therapy, and transdermal drug delivery (Mir, L.M., Therapeutic perspectives of in vivo cell
electropermeabilization. Bioelectrochemistry, 2001. 53: p. 1-10). The studies on
electrochemotherapy and electrogenetherapy have been recently summarized in several
publications (Jaroszeski, M.J., et al., In vivo gene delivery by electroporation. Advanced
applications of electrochemistry, 1999. 35: p. 131-137; Heller, R., R. Gilbert, and M.J.
Jaroszeski, Clinical applications of electrochemotherapy. Advanced drug delivery reviews,
1999. 35: p. 119-129; Mir, L.M., Therapeutic perspectives of in vivo cell
electropermeabilization. Bioelectrochemistry, 2001. 53: p. 1-10; Davalos, R.V., Real Time
Imaging for Molecular Medicine through electrical Impedance Tomography of
Electroporation, in Mechanical Engineering. 2002, University of California at Berkeley:
Berkeley. p. 237). A recent article summarized the results from clinical trials performed in
five cancer research centers. Basal cell carcinoma (32), malignant melanoma (142),
adenocarcinoma (30) and head and neck squamous cell carcinoma (87) were treated for a total
of 291 tumors (Mir, L.M., et al., Effective treatment of cutaneous and subcutaneous malignant
tumours by electrochemotherapy. British Journal of Cancer, 1998. 77(12): p. 2336-2342).

1014] Electrochemotherapy is a promising minimally invasive surgical technique to locally
ablate tissue and treat tumors regardless of their histological type with minimal adverse side
effects and a high response rate (Dev, S.B., et al., Medical Applications of Electroporation.
IEEE Transactions on Plasma Science, 2000. 28(1): p. 206-223; Heller, R., R. Gilbert, and

M.J. Jaroszeski, Clinical applications of electrochemotherapy. Advanced drug delivery
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reviews, 1999. 35: p. 119-129). Electrochemotherapy, which is performed through the
insertion of electrodes into the undesirable tissue, the injection of cytotoxic dugs in the tissue
and the application of reversible electroporation parameters, benefits from the ease of
application of both high temperature treatment therapies and non-selective chemical therapies
and results in outcomes comparable of both high temperature therapies and non-selective
chemical therapies..

015] In addition, because the cell membrane permeabilization electrical field is not affected
by the local blood flow, the control over the extent of the affected tissue by this mode of
ablation does not depend on the blood flow as in thermal and non-selective chemical therapies.
In designing electroporation protocols for ablation of tissue with drugs that are incorporated in
the cell and function in the living cells it was important to employ reversible electroporation;
because the drugs can only function in a living cell. Therefore, in designing protocols for
electrochemotherapy the emphasis was on avoiding irreversible electroporation. The focus of
the entire field of electroporation for ablation of tissue was on using reversible pulses, while
avoiding irreversible electroporation pulses, that can cause the incorporation of selective drugs
in undesirable tissue to selectively destroy malignant cells. Electrochemotherapy which
employs reversible electroporation in combination with drugs, is beneficial due to its
selectivity however, a disadvantage is that by its nature, it requires the combination of
chemical agents with an electrical field and it depends on the successful incorporation of the
chemical agent inside the cell.

016] The present inventors have recognized that irreversible electroporation, whose ability to
lyse various types of cells outside the body has been known for at least five decades, has never
been used for tissue ablation in the body and in fact was considered detrimental to
conventional electrochemotherapy. Although irreversible electroporation of tissue is not as
selective as reversible electroporation with drug incorporation the present inventors have found
it to be effective in ablating volumes of undesirable tissues in a way comparable to other non-
discriminating bulk ablative methods such as cryosurgery, thermal methods or alcohol

injection.

SUMMARY OF THE INVENTION
1017] The present invention comprises a method for the ablation of undesirable tissue,
involving the placement of electrodes into or near the vicinity of the undesirable tissue with the

application of electrical pulses causing irreversible electroporation of the cells throughout the
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entire undesirable region. The electric pulses irreversibly permeate the membranes, thereby
invoking cell death. The length of time of the electrical pulses, the voltage applied and the
resulting membrane permeability are all controlled within defined ranges. The irreversibly
permeabilized cells may be left in situ and may be removed by natural processes such as the
body’s own immune system. The amount of tissue ablation achievable through the use of
irreversible electroporation without inducing thermal damage is considerable, as disclosed and
described here.

This concept of irreversible electroporation in tissue to destroy undesirable tissues is
different from other forms of electrical therapies and treatments. Irreversible electroporation is
different from intracellular electro-manipulation which substantially only affects the interior of
the cell and does not cause irreversible cell membrane damage. Irreversible electroporation is
not electrically induced thermal coagulation — which induces cell damage through thermal
effects but rather a more benign method to destroy only the cell membrane of cells in the
targeted tissue. Irreversible electroporation which irreversible destroys the cell membrane is
also different from electrochemotherapy in which reversible electroporation pulses are used to
introduce drugs into the living cells and in which the drugs subsequently affect the living cell.

An electrical pulse can either have no effect on the cell membrane, effect internal cell
components, reversibly open the cell membrane after which cells can survive, or irreversibly
open the cell membrane, after which the cells die. Of these effects, irreversible electroporation
of tissue was (prior to present invention) generally considered undesirable due to the
possibility of instantaneous necrosis of the entire tissue affected by the electrical field,
regardless of its diseased or healthy state. Irreversible electroporation is detrimental in certain
applications, such as gene therapy or electrochemotherapy, where the sole purpose of the
electric pulses is to facilitate the introduction of the drug or gene into the cells of a tissue
without killing the cell (Mir., L.M. and S. Orlowski, The basis of electrochemotherapy, in
Electrochemotherapy, electrogenetherapy, and transdermal drug delivery: Electrically
mediated delivery of molecules to cells, M.J. Jaroszeski, R. Heller, R. Gilbert, Editors, 2000,
Humana Press, p. 99-118).

In contrast, irreversible electroporation of the type described here, solely uses electrical
pulses to serve as the active means for tissue destruction by a specific means, i.e. by fatally
disrupting the cell membrane. Electrochemotherapy may be selective, but it does require the
combination of chemical agents with the electrical field. Irreversible electroporation, although

non-selective, may be used for the ablation of undesirable tissue (such as a tumor) as a
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minimally invasive surgical procedure without the use of adjuvant drugs. Its non-selective
mode of tissue ablation is acceptable in the field of minimally invasive surgery and provides
results which in some ways are comparable to cryosurgery, non-selective chemical ablation
and high temperature thermal ablation.

1021} An aspect of the invention is a method whereby cells of tissue are irreversibly
electroporated by applying pulses of very precisely determined length and voltage. This may
be done while measuring and/or observing changes in electrical impedance in real time and
noting decreases at the onset of electroporation and adjusting the current in real time to obtain
irreversible cellular damage without thermal damage. In embodiments where voltage is
applied, the monitoring of the impedance affords the user knowledge of the presence or
absence of pores. This measurement shows the progress of the pore formation and indicates
whether irreversible pore formation, leading to cell death, has occurred.

1022] An aspect of this invention is that the onset and extent of electroporation of cells in
tissue can be correlated to changes in the electrical impedance (which term is used herein to
mean the voltage over current) of the tissue. At a given point, the electroporation becomes
irreversible. A decrease in the resistivity of a group of biological cells occurs when membranes
of the cells become permeable due to pore formation. By monitoring the impedance of the
biological cells in a tissue, one can detect the average point in time in which pore formation of
the cells occurs, as well as the relative degree of cell membrane permeability due to the pore
formation. By gradually increasing voltage and testing cells in a given tissue one can
determine a point where irreversible electroporation occurs. This information can then be used
to establish that, on average, the cells of the tissue have, in fact, undergone irreversible
electroporation. This information can also be used to control the electroporation process by
governing the selection of the voltage magnitude.

1023] The invention provides the simultaneous irreversible electroporation of multitudes of
cells providing a direct indication of the actual occurrence of electroporation and an indication
of the degree of electroporation averaged over the multitude. The discovery is likewise useful
in the irreversible electroporation of biological tissue (masses of biological cells with
contiguous membranes) for the same reasons. The benefits of this process include a high level
of control over the beginning point of irreversible electroporation.

1024] A feature of the invention is that the magnitude of electrical current during
electroporation of the tissue becomes dependent on the degree of electroporation so that

current and pulse length are adjusted within a range predetermined to obtain irreversible
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electroporation of targeted cells of the tissue while minimizing cellular damage to surrounding
cells and tissue.

)025] An aspect of the invention is that pulse length and current are precisely adjusted within
ranges to provide more than mere intracellular elecctro-manipulation which results in cell
death and less than that which would cause thermal damages to the surrounding tissues.

)026] Another aspect of the invention is that the electroporation is carried out without adding
drugs, DNA, or other materials of any sort to be brought into the cells.

)027] Another feature of the invention is that measuring current (in real time) through a
circuit gives a measurement of the average overall degree of electroporation obtained.

1028] Another aspect of the invention is that the precise electrical resistance of the tissue is
calculated from cross-time voltage measurement with probe electrodes and cross-current
measurement with the circuit attached to electroporation electrodes.

1029] Another aspect of the invention is that the precise electrical resistance of the tissue is
calculated from cross-time voltage measurement with probe electrodes and cross-current
measurement with the circuit attached to electroporation electrodes.

1030] Another aspect of the invention is that electrical measurements of the tissue can be used
to map the electroporation distribution of the tissue.

1031] Unlike electrical impedance tomography for detection of reversible electroporation
which needs to be done during or close to the time the reversible electroporation pulses are
applied — because of the transient nature of the reversible electroporation; in irreversible
electroporation it is possible and perhaps even preferential to perform the current or EIT
measurements a substantial time (several minutes or more) after the electroporation to verify
that it is indeed irreversible.

1032] These and further features, advantages and objects of the invention will be better

understood from the description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS
1033] The invention is best understood from the following detailed description when read in
conjunction with the accompanying drawings. It is emphasized that, according to common
practice, the various features of the drawings are not to scale. On the contrary, the dimensions
of the various features are arbitrarily expanded or reduced for clarity. Included in the drawings
are the following figures:
1034] Fig 1. is a graph showing a schematic relationship between field strength and

pulselength applicable to the electroporation of cells.
10
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)035] Figures 2 A, 2B and 2C are each images of irreversibly electroporated areas for two-
electrode configurations using 10 mm center-to-center spacing as following for Figures 2A, B
and C: (2A) 0.5mm (857V); (2B) 1.0mm (1295V); (2C) 1.5mm (1575V) diameter electrodes
with a 680V/cm threshold for irreversible electroporation.

)036] Figures 3A, 3B, and 3C are images showing irreversibly electroporated regions using a
680 V/cm threshold for a two-electrode confirmation with 1mm diameter and 876V and 5mm
spacing for Figures 3A; 1116V and 7.5mm for Figure 3B; and 1295V and 10mm spacing for
Figure 3C.

1037] Figures 4A, 4B and 4C are images showing the effect of electrode diameter for a 4-
electrode configuration with 10mm spacing wherein Figure 4A is for 0.5mm diameter and
940V; Figure 4B is for 1.0mm diameter and 1404V and Figure 4C is for 1.5mm and 1685V.

1038] Figures 5A, 5B and 5C are images showing the effect of electrode spacing for a 4-
electrode configuration wherein the electrode is 1mm in diameter and Figure 5A shows results
with a Smm and 910V; Figure 5B 7.5mm and 1175V and Figure 5C 10mm and 1404V.

1039] Figure 6 is an image showing the irreversible (1295V, 680V/cm threshold) as compared
to the reversible region (1300V, 360V/cm threshold) using virtually the same electrical
parameters. 1300V is the most common voltage applied across two electrodes for ECT. The
most common voltage parameters are eight 100ps pulses at a frequency of 1Hz. Applying a
single 800us pulse provides a conservative estimate of the heating associated with a procedure.
The one second space normally between pulses will enlarge an area amount of heat to be
dissipated through the tissue.

040] Figure 7 is an image showing reversible electroporation with 1mm electrodes, 10mm
spacing. A voltage of 189V applied between the electrodes induces reversible electroporation
without any irreversible electroporation by not surpassing the 680V/cm irreversible
electroporation threshold anyone in the domain. The shaded area is greater than 360 V/cm.

041] Figures 8A and 8B show a comparison of the effect of blood flow and metabolism on
the amount of irreversible electroporation. Figure 8A no blood flow or metabolism. Figure 8B
wi=1kg/m?, ¢, = 3640 J/(kg K), Ty = 37°C, and q°** = 33.8kW/m®.

042] Figure 9 is a schematic view of a liver between two cylindrical Ag/AgCl electrodes.
The distance between the electrodes was 4mm and the radius of the electrodes is 10mm. The
electrodes were clamped with special rig parallel and concentric to each other. The liver lobe

was compressed between the electrodes to achieve good contact.
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1043] Figure 10 is a photo of a view of a liver which was electroporated by irreversible
electroporation with two cylindrical surface electrodes of 10mm in diameter. Histology shows
that the dark area is necrotic.

1044] Figure 11 is a photo of a cross section through an electroporated liver. Histology
shows that the dark area is necrotic. The distance between the two Al plates that hold the liver
is exactly 4 mm. The electroporation electrodes were 10 mm in diameter and centered in the
middle of the lesion.

1045] Figure 12 shows the liver of calculated temperature distribution (C), upper panel , and
electrical potential gradient (electroporation gradient) (V/cm), lower panel, for the in vivo
experiment. The Figure 12 also shows conditions through a cross section of a liver slab
through the center of the electroporated area. Height of the slab is 4 mm.

1046] Figure 13 combines Figures 11 and 12 to show a comparison between the extent of
tissue necrosis (dark area) and the temperature and voltage gradient distribution in the
electroporated tissue. The photo of Figure 11 is shown schematically at the bottom on Figure
13. Tt is evident that most of the dark area was at a temperature of about 42 C following the 40
milliseconds electroporation pulse. The edge of the dark area seems to correspond to the 300

V/cm electroporation gradient line.

DETAILED DESCRIPTION OF THE INVENTION

1047] Before the present methods, treatments and devices are described, it is to be understood
that this invention is not limited to particular embodiments described, as such may, of course,
vary. It is also to be understood that the terminology used herein is for the purpose of
describing particular embodiments only, and is not intended to be limiting, since the scope of
the present invention will be limited only by the appended claims.

1048] Where a range of values is provided, it is understood that each intervening value, to the
tenth of the unit of the lower limit, unless the context clearly dictates otherwise, between the
upper and lower limits of that range is also specifically disclosed. Each smaller range between
any stated value or intervening value in a stated range and any other stated or intervening value
in that stated range is encompassed within the invention. The upper and lower limits of these
smaller ranges may independently be included or excluded in the range, and each range where
either, neither or both limits are included in the smaller ranges is also encompassed within the
invention, subject to any specifically excluded limit in the stated range. Where the stated range
includes one or both of the limits, ranges excluding either or both of those included limits are

also included in the invention.
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1049] Unless defined otherwise, all technical and scientific terms used herein have the same
meaning as commonly understood by one of ordinary skill in the art to which this invention
belongs. Although any methods and materials similar or equivalent to those described herein
can be used in the practice or testing of the present invention, the preferred methods and
materials are now described. All publications mentioned herein are incorporated herein by
reference to disclose and describe the methods and/or materials in connection with which the
publications are cited. The present disclosure is controlling to the extent it conflicts with any
incorporated publication.

1050] It must be noted that as used herein and in the appended claims, the singular forms "a",
"an", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for
example, reference to "a pulse” includes a plurality of such pulses and reference to "the
sample" includes reference to one or more samples and equivalents thereof known to those
skilled in the art, and so forth.

1051] The publications discussed herein are provided solely for their disclosure prior to the
filing date of the present application. Nothing herein is to be construed as an admission that
the present invention is not entitled to antedate such publication by virtue of prior invention.
Further, the dates of publication provided may be different from the actual publication dates

which may need to be independently confirmed.

DEFINITIONS

1052] The term “reversible electroporation” encompasses permeabilization of the cell
membrane through the application of electrical pulses across the cell. In “reversible
electroporation” the permeabilization of the cell membrane ceases after the application of the
pulse and the cell membrane permeability reverts to normal. The cell survives “reversible
electroporation.” It is used as a means for introducing chemicals, DNA, or other materials into
cells.

)053] The term “irreversible electroporation” also encompasses the permeabilization of the
cell membrane through the application of electrical pulses across the cell. However, in
“irreversible electroporation” the permeabilization of the cell membrane does not cease after
the application of the pulse and the cell membrane permeability does not revert to normal. The
cell does not survive “irreversible electroporation” and the cell death is caused by the
disruption of the cell membrane and not merely by internal perturbation of cellular

components. Openings in the cell membrane are created and/or expanded in size resulting in a
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fatal disruption in the normal controlled flow of material across the cell membrane. The cell
membrane is highly specialized in its ability to regulate what leaves and enters the cell.
Irreversible electroporation destroys that ability to regulate in a manner such that the cell can

not compensate and as such the cell dies.

INVENTION IN GENERAL

)054] The invention provides a method and a system for destruction (ablation) of undesirable
tissue. It involves the insertion (bringing) electroporation electrodes to the vicinity of the
undesirable tissue and in good electrical contact with the tissue and the application of electrical
pulses that cause irreversible electroporation of the cells throughout the entire area of the
undesirable tissue. The cells whose membrane was irreversible permeabilized may be left in
situ (not removed) and as such may be gradually removed by the body’s immune system. Cell
death is produced by inducing the electrical parameters of irreversible electroporation in the
undesirable area.

)055] Electroporation protocols involve the generation of electrical fields in tissue and are
affected by the Joule heating of the electrical pulses. When designing tissue electroporation
protocols it is important to determine the appropriate electrical parameters that will maximize
tissue permeabilization without inducing deleterious thermal effects. It has been shown that
substantial volumes of tissue can be electroporated with reversible electroporation without
inducing damaging thermal effects to cells and has quantified these volumes (Davalos, R.V.,
B. Rubinsky, and L.M. Mir, Theoretical analysis of the thermal effects during in vivo tissue
electroporation. Bioelectrochemistry, 2003. Vol. 61(1-2): p. 99-107).

1056] The electrical pulses required to induce irreversible electroporation in tissue are larger
in magnitude and duration from the electrical pulses required for reversible electroporation.
Further, the duration and strength of the pulses required for irreversible electroporation are
different from other methodologies using electrical pulses such as for intracellular electro-
manipulation or thermal ablation. The methods are very different even when the intracellular
(nano-seconds) electro-manipulation is used to cause cell death, e.g. ablate the tissue of a
tumor or when the thermal effects produce damage to cells causing cell death.

1057] Typical values for pulse length for irreversible electroporation are in a range of from
about 5 microseconds to about 62,000 milliseconds or about 75 microseconds to about 20,000
milliseconds or about 100 microseconds + 10 microseconds. This is significantly longer than

the pulse length generally used in intracellular (nano-seconds) electro-manipulation which is 1
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microsecond or less — see published U.S. application 2002/0010491 published January 24,
2002.

1058] The pulse is at voltage of about 100 V/cm to 7,000 V/cm or 200 V/em to 2000 V/en or
300V/cm to 1000 V/ecm about 600 V/em =+ 10% for irreversible electroporation. This is
substantially lower than that used for intracellular electro-manipulation which is about 10,000
V/cm, see U.S. application 2002/0010491 published January 24, 2002.

1059] The voltage expressed above is the voltage gradient (voltage per centimeter). The
electrodes may be different shapes and sizes and be positioned at different distances from each
other. The shape may be circular, oval, square, rectangular or irregular etc. The distance of
one electrode to another may be 0.5 to 10 cm., 1 to 5 cm., or 2-3 cm. The electrode may have
a surface area of 0.1 — 5 sq. cm. or 1-2 sq. cm.

1060] The size, shape and distances of the electrodes can vary and such can change the
voltage and pulse duration used. Those skilled in the art will adjust the parameters in
accordance with this disclosure to obtain the desired degree of electroporation and avoid
thermal damage to surrounding cells.

1061] Thermal effects require electrical pulses that are substantially longer from those used in
irreversible electroporation (Davalos, R.V., B. Rubinsky, and L.M. Mir, Theoretical analysis
of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry, 2003. Vol.
61(1-2): p. 99-107). Figure 1 is showing that irreversible electroporation pulses are longer and
have higher amplitude than the reversible electroporation pulses. When using irreversible
electroporation for tissue ablation, there may be concern that the irreversible electroporation
pulses will be as large as to cause thermal damaging effects to the surrounding tissue and the
extent of the tissue ablated by irreversible electroporation will not be significant relative to that
ablated by thermal effects. Under such circumstances irreversible electroporation could not be
considered as an effective tissue ablation modality as it will act in superposition with thermal
ablation.

1062] The present invention evaluates, through mathematical models and experiment, the
maximal extent of tissue ablation that could be accomplished by irreversible electroporation
prior to the onset of thermal effects. The models focused on electroporation of liver tissue with
two and four needle electrodes and on electroporation of liver tissue with two infinite parallel
plates using available experimental data. The experiment (EXAMPLE 3) evaluates irreversible
electroporation between two cylindrical electrodes, also in the liver. The liver was chosen

because it is considered a potential candidate for irreversible electroporation ablation. The
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results show that the area that can be ablated by irreversible electroporation prior to the onset
of thermal effects is comparable to that which can be ablated by electrochemotherapy,
validating the use of irreversible electroporation as a potential minimally invasive surgical
modality.

0063] Earlier studies have shown that the extent of electroporation can be imaged in real time
with electrical impedance tomography (EIT) (Davalos, R.V., B. Rubinsky, and D.M. Otten, 4
Seasibility study for electrical impedance tomography as a means to monitor tissue
electroporation for molecular medicine. IEEE Transactions on Biomedical Engineering, 2002.
49(4): p. 400-403). In irreversible electroporation the electroporated area persists indefinitely
after the electroporation pulse, showing that irreversible electroporation may be imaged
leisurely with EIT. Irreversible electroporation, therefore, has the advantage of a tissue
ablation technique that is as easy to apply as high temperature ablation, without the need for
adjuvant chemicals as electrochemotherapy and with real-time control of the affected area with

electrical impedance tomography.

EXAMPLES

0064] The following examples are put forth so as to provide those of ordinary skill in the art
with a complete disclosure and description of how to make and use the present invention, and
are not intended to limit the scope of what the inventors regard as their invention nor are they
intended to represent that the experiments below are all or the only experiments performed.
Efforts have been made to ensure accuracy with respect to numbers used (e.g. amounts,
temperature, etc.) but some experimental errors and deviations should be accounted for.
Unless indicated otherwise, parts are parts by weight, molecular weight is weight average

molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.

EXAMPLE 1
0065] The mathematical model provided here shows that irreversible tissue ablation can affect
substantial volumes of tissue, without inducing damaging thermal effects. To this end, the
present invention uses the Laplace equation to calculate the electrical potential distribution in
tissue during typical electroporation pulses and a modified Pennes (bioheat), (Pennes, H.H.,
Analysis of tissue and arterial blood flow temperatures in the resting forearm. J of Appl.
Physiology., 1948. 1: p. 93-122), equation to calculate the resulting temperature distribution. It

is important to note that there are several forms of the bioheat equation which have been
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reviewed (Carney, C K., Mathematical models of bioheat transfer, in Bioengineering heat
transfer, Y .I. Choi, Editor. 1992, Academic Press, Inc: Boston. p. 19-152; Eto, T.K. and B.
Rubinsky, Bioheat transfer, in Introduction to bioengineering, S.A. Berger, W. Goldsmith, and
E.R. Lewis, Editors. 1996, Oxford Press). While the Pennes equation is controversial, it is
nevertheless commonly used because it can provide an estimate of the various biological heat
transfer parameters, such as blood flow and metabolism. The modified Pennes equation in this
study contains the Joule heating term in tissue as an additional heat source.
066] The electrical potential associated with an electroporation pulse is determined by
solving the Laplace equation for the potential distribution:
V.- (6V$)=0 1)
067] where ¢ is the electrical potential and o is the electrical conductivity. The electrical

boundary condition of the tissue that is in contact with the leftmost electrode(s) on which the

electroporation pulse is applied is:

=V, 2)
068] The electrical boundary condition at the interface of the rightmost electrode(s) is:

$=0 €)
069] The boundaries where the analyzed domain is not in contact with an electrode are

treated as electrically insulative to provide an upper limit to the electrical field near the

electroporation electrodes and an upper limit to the temperature distribution that results from

electroporation:
o
———— 4
- (4)
070] Solving the Laplace equation enables one to calculate the associated Joule heating, the

heat generation rate per unit volume from an electrical field (p):
2
p=0|V| (5)
071] This term is added to the original Pennes equation, (Pennes, H.H., Analysis of tissue

and arterial blood flow temperatures in the resting forearm. J of Appl. Physiology., 1948. 1: p.

93-122) to represent the heat generated from the electroporation procedure:
V-Vt ey T, ~T)+d +p=pe, o ©

072] To solve equation (4) it is assumed that the entire tissue is initially at the physiological

temperature of 37°C:
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T(x,y,z,0)=37 @)
1073] The outer surface of the analyzed domain and the surfaces of the electrodes are taken to

be adiabatic, which should produce an upper limit to the calculated temperature distribution in

the tissue:
orT .
= = 0 on the electrodes boundary and the outer surface domain ®)
7
1074] The analysis modeled conditions typical to tissue electroporation in the liver. The liver

was chosen because it is the organ that most minimally invasive ablation techniques treat since
cancer in the liver can be resolved by extirpation of the diseased area while surgical resection
is not possible in many cases for this organ (Onik, G., B. Rubinsky, and et al., Ultrasound-
Guided Hepatic Cryosurgery in the Treatment of Metastatic Colon Carcinoma. Cancer, 1991.
67(4): p. 901-907).. The electroporation parameters, i.e. pulse parameters for reversible and
irreversible electroporation where obtained from rat liver data (Miklavcic, D., et al., 4
validated model of in vivo electric field distribution in tissues for electrochemotherapy and for
DNA electrotransfer for gene therapy. Biochimica et Biophysica Acta, 2000. 1523(1): p. 73-
83; Suzuki, T., et al., Direct gene transfer into rat liver cells by in vivo electroporation. FEBS
Letters, 1998. 425(3): p. 436-440), but biological parameters corresponding to the human liver
were used in the analysis. Tissue thermal properties are taken from reference (Duck, F.A.,
Physical Properties of Tissues: A Comprehensive Reference Book. 1990, San Diego: Academic
Press) and the electrical properties from reference (Boone, K., D. Barber, and B. Brown,
Review - Imaging with electricity: report of the European Concerted Action on Impedance
Tomography. J. Med. Eng. Technol., 1997. 21: p. 201-232) and are listed in table 1. The tissue
is assumed isotropic and macroscopically homogeneous.The intent of the analysis was to
determine the extent of the region in which reversible or irreversible electroporation is induced
in the liver for various electroporation voltages and durations while the maximal temperature
in the tissue is below 50°C. Thermal damage is a time-dependent process described by an
Arhenius type equation (Henriques, F.C. and A.R. Moritz, Studies in thermal injuries: the
predictability and the significance of thermally induced rate processes leading to irreversible
epidermal damage. Arch Pathol., 1947. 43: p. 489-502; Diller, K.R., Modeling of bioheat
transfer processes at high and low temperatures, in Bioengineering heat transfer, Y.I. Choi,

Editor. 1992, Academic Press, Inc: Boston. p. 157-357),
Q= [/ dt ©)
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1075] Where Q is a measure of thermal damage, & is the frequency factor, E, is the activation
energy and R is the universal gas constant. A detailed description on the various degrees of
thermal damage as described in Equation (9) above can be found in (Diller, K.R., Modeling of
bioheat transfer processes at high and low temperatures, in Bioengineering heat transfer, Y 1.
Choi, Editor. 1992, Academic Press, Inc: Boston. p. 157-357).

1076] A careful examination shows that the thermal damage is a complex function of time,
temperature and all the parameters in Equation (9) above and that there are various degrees of
thermal damage. In various applications or for various considerations it is possible to design
irreversible electroporation protocols that induce some degree of thermal damage, either in part
of the electroporated region or at a reduced level throughout the electroporated region.
However, in this example we have chosen 50°C as the target temperature for several reasons.
Thermal damage begins at temperatures higher than 42°C, but only for prolonged exposures.
Damage is relatively low until 50°C to 60°C at which the rate of damage dramatically
increases (Diller, K.R., Modeling of bioheat transfer processes at high and low temperatures,
in Bioengineering heat transfer, Y 1. Choi, Editor. 1992, Academic Press, Inc: Boston. p. 157-
357). Therefore 50 C will be a relatively low bound on the possible thermal effects during
irreversible electroporation. It is anticipated that the electrical parameters chosen for
irreversible electroporation without a thermal effect could be substantially longer and higher
than those obtained from an evaluation for 50 C in this example. Furthermore, since the
Laplace and bioheat equations are linear, the results provided here can be extrapolated and
considered indicative of the overall thermal behavior.

1077] The analyzed configurations have two needles or four needle electrodes embedded in a
square model of the liver. Needle electrodes are commonly used in tissue electroporation and
will be most likely also used in the liver (Somiari, S., et al., Theory and in vivo application of
electroporative gene delivery. Molecular Therapy, 2000. 2(3): p. 178-187). The square model
of the liver was chosen large enough to avoid outer surface boundary effects and to produce an
upper limit for the temperature, which develops during electroporation in the liver. For each
configuration the surface of one electrode is assumed to have a prescribed voltage with the
other electrode set to ground. The effect of the spacing between the electrodes was investigated
by comparing distances of 5, 7.5 and 10 mm, which are typical. The electrodes were also
modeled with typical dimensions of 0.5, 1 and 1.5 mm in diameter. The blood flow perfusion
rate was taken to zero or 1.0 kg/m® s (Deng, Z.S. and J. Liu, Blood perfusion-based model for

characterizing the temperature fluctuations in living tissue. Phys A STAT Mech Appl, 2001.
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300: p. 521-530). The metabolic heat was taken to be either zero or 33.8 kW/m® (Deng, Z.S.
and J. Liu, Blood perfusion-based model for characterizing the temperature fluctuations in
living tissue. Phiys A STAT Mech Appl, 2001. 300: p. 521-530).

The calculations were made for an electroporation pulse of 800 ps. This pulse duration
was chosen because typically, reversible electroporation is done with eight separate 100 ps
pulses, (Miklavcic, D., et al., 4 validated model of in vivo electric field distribution in tissues
for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochimica et
Biophysica Acta, 2000. 1523(1): p. 73-83) and therefore the value we chose is an upper limit
of the thermal effect in a pulse time frame comparable to that of reversible electroporation.
Consequently, the results obtained here are the lower limit in possible lesion size during
irreversible electroporation. It should be emphasized that we believe irreversible
electroporation tissue ablation can be done with shorter pulses than 800 ps. To evaluate the
thermal effect, we gradually increased in our mathematical model the applied pulse amplitude
for the 800 ps pulse length until our calculations indicated that the electroporation probe
temperature reached 50°C, which we considered to be the thermal damage limit. Then, we
evaluated the electric field distribution throughout the liver.

A transmembrane potential on the order of 1V is required to induce irreversible
electroporation. This value is dependent on a variety of conditions such as tissue type, cell size
and other external conditions and pulse parameters. The primary electrical parameter affecting
the transmembrane potential for a specific tissue type is the amplitude of the electric field to
which the tissue is exposed. The electric field thresholds used in estimating the extent of the
region that was irreversibly electroporated were taken from the fundamental studies of
Miklavcic, Mir and their colleagues performed with rabbit liver tissue (Miklavcic, D., et al., 4
validated model of in vivo electric field distribution in tissues for electrochemotherapy and for
DNA electrotranisfer for gene therapy. Biochimica et Biophysica Acta, 2000. 1523(1): p. 73~
83). In this study, that correlated electroporation experiments with mathematical modeling,
they have found that the electric field for reversible electroporation is 362 +/- 21 V/cm and is
637 +/- 43 V/em for irreversible electroporation for rat liver tissue. Therefore, in the analysis
an electric field of 360 V/cm is taken to represent the delineation between no electroporation
and reversible electroporation and 680 V/cm to represent the delineation between reversible
and irreversible electroporation.

All calculations were performed using MATLAB’s finite element solver, Femlab v2.2

(The MathWorks, Inc. Natick, MA). To ensure mesh quality and validity of solution, the mesh
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was refined until there was less than a 0.5% difference in solution between refinements. The
baseline mesh with two 1mm electrodes, 10mm spacing had 4035nodes and 7856 triangles.
The simulations were conducted on a Dell Optiplex GX240 with 512MB of RAM operating on
Microsoft Windows 2000.

RESULTS and DISCUSSION

081] Figures 2 and 3 examine the effect of the electrode size and spacing on the ablated area
in a two-needle electroporation configuration. In obtaining these figures, we ignored the effect
of the blood flow and metabolism in the heat transfer equation, which should give an upper
limit for the estimated ablation area. Figure 2 compares the extent of the irreversible
electroporated area for electroporation electrode sizes of 0.5, 1 and 1.5 mm in diameter and a
distance between electrodes of 10 mm. The strong effect of the electrode size is evident. It is
seen that for the smaller electrodes, the irreversibly electroporated area is not contiguous, while
for a 1.5 mm electrode the area of potential tissue, ablation has an elliptical shape with
dimensions of about 15 mm by 10 mm. In the brackets, we give the electroporation voltage for
which the probe temperature reaches 50°C in these three configurations. It is seen that the
range is from 857V for the 0.5 mm probe to 1575V for the 1.5 mm probe. This is within the
typical range of tissue electroporation pulses. Figure 3 evaluates the effect of the spacing
between the electrodes. It is observed that in the tested range, the small dimension of the
contiguous elliptical shape of the ablated lesion remains the same, while the larger dimension
seems to scale with the distance between the electrodes.

082] Figures 2 and 3 demonstrate that the extent of tissue ablation with irreversible
electroporation is comparable to that of other typical minimally invasive methods for tissue
ablation, such as cryosurgery (Onik, G.M., B. Rubinsky, and et. al., Ultrasound-guided hepatic
cryosurgery in the treatment of metastatic colon carcinoma. Cancer, 1991. 67(4): p. 901-907;
Onik, G.M., et al., Transrectal ultrasound-guided percutaneous radical cryosurgical ablation
of the prostate. Cancer, 1993. 72(4): p. 1291-99). It also shows that varying electrode size and
spacing can control lesion size and shape. The shape and size of the ablated lesion can be also
controlled by varying the number of electrodes used. This is shown in Figures 4 and 5, for a
four-electrode configuration. These figures also compare the effect of probe size and spacing
and the results were also obtained by ignoring the effect of blood flow and metabolism in the

energy equation. Again, it is seen that larger electrodes have a substantial effect on the extent
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of the ablated region and that the extent of ablation scales with the spacing between the
electrodes.

1083] A comparison between reversible and irreversible electroporation protocols can be
achieved from Figures 6 and 7. In Figure 6, an 800 ps, 1295 V pulse was applied between two
1.5 mm diameter electrodes placed 10 mm apart. This produces a tissue temperature lower than
50°C. The figure plots the margin of the irreversibly electroporated region, i.e. the 680 V/em
voltage-to-distance gradients and that of the reversible electroporated region, the 360 V/em
gradients. Figure 7 was obtained for two 1 mm electrodes placed 10 mm apart. In this figure,
we produced an electroporated region that was only reversibly electroporated, i.e. with electric
fields lower than 360 V/em. In comparing Figures 6 and 7, it is obvious that the extent of the
ablated area possible through electrochemotherapy alone is substantially smaller than that
through irreversible electroporation alone.

084] The effect of blood flow and metabolism on the extent of irreversible electroporation is
illustrated in Figure 8. The figures compare a situation with metabolism and a relatively high
blood flow rate to a situation without blood flow or metabolism. It is obvious that metabolism
and blood perfusion have a negligible effect on the possible extent of irreversible tissue
electroporation. This is because the effect of the Joule heating produced by the electroporation
current is substantially larger than the effects of blood flow or metabolism.

085] An even more conservative estimate for the thermal damage can be obtained by
assuming that the tissue reaches 50 °C instantaneously, during the electroporation pulses such

that the damage is defined as
Q=tp§e“AE/RT (10)

086] Several values taken from the literature for activation energy and frequency factor were
applied to equation (10) with the pulse lengths calculated in the examples above. Because the
application of the pulse is so short, the damage would be near zero, many times less than the
value (€2=0.53) to induce a first degree burn (Diller, K.R., Modeling of bioheat transfer
processes at high and low temperatures, in Bioengineering heat transfer, Y.I. Choi, Editor.
1992, Academic Press, Inc: Boston. p. 157-357) regardless of the values used for activation
energy and frequency factor.

087] Currently, tissue ablation by electroporation is produced through the use of cytotoxic
drugs injected in tissue combined with reversible electroporation, a procedure known as
electrochemotherapy. The present invention shows that irreversible electroporation by itself

produces substantial tissue ablation for the destruction of undesirable tissues in the body. The
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concern was that higher voltages required for irreversible electroporation would cause Joule
heating and would induce thermal tissue damage to a degree that would make irreversible
electroporation a marginal effect in tissue ablation. Using a mathematical model for calculating
the electrical potential and temperature field in tissue during electroporation, the present
invention shows that the area ablated by irreversible tissue electroporation prior to the onset of
thermal effects is substantial and comparable to that of other tissue ablation techniques such as
cryosurgery. Our earlier studies have shown that the extent of electroporation can be imaged
in real time with electrical impedance tomography (Davalos, R.V., B. Rubinsky, and D.M.
Otten, 4 feasibility study for electrical impedance tomography as a means to monitor tissue
electroporation for molecular medicine. IEEE Transactions on Biomedical Engineering, 2002.
49(4): p. 400-403; Davalos, R.V., et al., Electrical impedance tomography for imaging tissue
electroporation. IEEE Transactions on Biomedical Engineering, 2004). Irreversible
electroporation, therefore, has the advantage of being a tissue ablation technique, which is as
easy to apply as high temperature ablation, without the need for adjuvant chemicals as required
in electrochemical ablation and electrochemotherapy. In addition, a unique aspect of
irreversible electroporation is that the affected area can be controlled in real time with

electrical impedance tomography.

EXAMPLE 2

1088] This example was developed to produce a correlation between electroporation pulses
and thermal effects. The system analyzed is an infinitesimally small control volume of tissue
exposed to an electroporation voltage gradient of V (Volts/cm).The entire electrical energy is
dissipated as heat and there is no conduction of heat from the system. The calculations produce
the increase in temperature with time during the application of the pulse and the results are a
safe lower limit for how long a certain electroporation pulse can be administered until a certain
temperature is reached. To generate the correlation an energy balance is made on a control
volume between the Joule heating produced from the dissipation of heat of the V (volt/cm)
electrical potential gradient (local electrical field) dissipating through tissue with an electrical
conductivity of o (ohm-cm) and the raise in temperature of the control volume made of tissue

with a density p (g/cc) and specific heat, ¢, (J/g K). The calculation produces the following

equation for the raise in temperature (T) per unit time (t) as a function of the voltage gradients

and the thermal and electrical properties of the liver.
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The table below was obtained for the liver with the following properties:

Electrical resistivity of liver — 8.33 Ohm-meter

Specific heat of liver — J/g K

Density of liver — 1 g/cc

We obtain the following table:

TABLE 1

Voltage Gradient - V

Time per degree C rise

time from 37 Cto 65 C

(V/icm) (ms) (ms)

50 1199.52 33586.56
100 299.88 8396.64
150 133.28 3731.84
200 74.97 2099.16
250 47.98 1343.46
300 33.32 932.96
350 24.48 685.44
400 18.74 524.79
450 14.81 414.65
500 12.00 335.87
550 9.91 277.57
600 8.33 233.24
650 7.10 198.74
700 6.12 171.36
750 5.33 149.27
800 4.69 131.20
850 415 116.22
900 3.70 103.66
950 3.32 93.04

1000 3.00 83.97
1050 272 76.16
1100 2.48 69.39
1150 2.27 63.49
1200 2.08 58.31
1250 1.92 53.74
1300 1.77 49.68
1350 1.65 46.07
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Voltage Gradient -V | Time per degree C rise time from 37 Cto 65 C
(Vicm) {ms) {ms)
1400 1.53 42.84

1450 1.43 39.94
1500 1.33 37.32

094] The second column of Table 1 gives the amount of time it takes for the temperature of
the liver to raise 1 C, when the tissue experiences the electroporation pulse in column 1. The
time for even a relatively high electroporation voltage of 1500V/cm is of the order of 1.33
millisecond for 1 C rise and 37.32 millisecond until a temperature of 65 C is reached. Using
the equation (2-1) or Table 1 it is possible to evaluate the amount of time a certain pulse can be
applied without inducing thermal effects. Considering the typical electroporation parameters
reported so far there is no limitation in the electroporation length from thermal considerations.
Column 3 of Table 1 shows the time required to reach 65 C, which is where thermal damage
may begin. The calculations in this example give a lower limit for the extent of time in which a
certain thermal effects will be induced by electroporation pulses. For more precise calculations
it is possible to use the equation developed in this example with equation (9) or (10) from

Example 1.

EXAMPLE 3

095] The goal of this experiment was to verify the ability of irreversible electroporation
pulses to produce substantial tissue ablation in the non-thermal regime. To this end we have
performed experiments on the liver of Spraque-Dawley male rats (250g to 350 g) under an
approved animal use and care protocol. After the animals were anesthetized by injection of
Nembutal Sodium Solution (50mg/ml Pentobarbital) the liver was exposed via a midline
incisions and one lobed clamped between two cylindrical electrodes of Ag/AgCl, with a
diameter of 10 mm (In Vivo Metric, Healdsburg, CA). The electrodes had their flat surface
parallel; they were concentric and the liver between the electrodes was compressed so that the
lobes were separated by 4 mm. A schematic of the electrodes and the liver is shown in Figure
9. The liver was exposed to a single electroporation pulse of 40 milliseconds. One electrode
was set to 400 V and the other grounded. The rest of the liver was not in contact with any
media and therefore is considered electrically insulated. After electroporation the rat was
maintained under controlled anesthesia for three hours. Following exsanguination the liver was
flushed with physiological saline under pressure and fixed by perfusion with formaldehyde.

The liver was resected through the center of the electroporated region and analyzed by
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histology. Figures 10 and 11 show the appearance of the liver. Histology has determined that
the dark area corresponds to the region of tissue necrosis. The electrical field in the
electroporated liver and the temperature distribution were calculated using the equations in
Example 1, subject to one electrode at a voltage of 400V and the other grounded, for 40
milliseconds. The liver was modeled as an infinite slab of 4 mm thickness, with concentric
cylindrical electrodes (see Figure 9). The results are shown in Figure 12. Figure 12 shows
lines of constant voltage gradients (V/cm) and lines of constant temperature. It is evident that
in the majority of the electroporated tissue the temperature is about 42 C immediately after the
pulse. The highest temperature occurs near the edge of the cylindrical electrodes, where it is
about 50 C. Figure 13 was obtained by bringing together Figures 11 and 12. Superimposing
the calculated results on the histological measurements reveals that the dark (necrotic) area
margin corresponds to electroporation parameters of about 300 V/cm. The results demonstrate
that irreversible electroporation can induce substantial tissue necrosis without the need for
chemical additives as in electrochemotherapy and without a thermal effect.

096] ~  The preceding merely illustrates the principles of the invention. It will be appreciated
that those skilled in the art will be able to devise various arrangements which, although not
explicitly described or shown herein, embody the principles of the invention and are included
within its spirit and scope. Furthermore, all examples and conditional language recited herein
are principally intended to aid the reader in understanding the principles of the invention and
the concepts contributed by the inventors to furthering the art, and are to be construed as being
without limitation to such specifically recited examples and conditions. Moreover, all
statements herein reciting principles, aspects, and embodiments of the invention as well as
specific examples thereof, are intended to encompass both structural and functional equivalents
thereof. Additionally, it is intended that such equivalents include both currently known
equivalents and equivalents developed in the future, i.e., any elements developed that perform
the same function, regardless of structure. The scope of the present invention, therefore, is not
intended to be limited to the exemplary embodiments shown and described herein. Rather, the

scope and spirit of present invention is embodied by the appended claims.
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CLAIMS

That which is claimed is:

1. A method of ablating tissue, comprising the steps of:
(a) identifying tissue to be ablated;
(b) placing a first electrode and a second electrode such that the identified
tissue is positioned between the first and second electrodes;
(c) applying electrical pulses between the first and second electrodes in an
amount sufficient to induce irreversible electroporation of cells of the tissue;
(d) allowing the irreversibly electroporated cells to be removed by internal

systems of an organism comprised of the tissue.

2. The method of claim 1, wherein the electrical pulses are applied for a

duration in a range of from about 5 microseconds to about 62 seconds.

3. The method of claim 1, wherein the electrical pulses are applied for a period
of about 100 microseconds, + about 10 microseconds. (note our experiment for other times
and voltages)

4. The method of claim 1, wherein from about 1 to about 15 pulses are applied.

5. The method of claim 1, wherein about eight pulses of about 100

microseconds each in duration are applied.

6. The method of claim 1, wherein the pulses produce a voltage gradient in a

range of from about 50 volt/cm to about 8000 volt/cm.

7. The method of claim 1, wherein the first electrode is placed at about Smm to

10 cm from the second electrode.

8. The method of claim 1, wherein the first electrode and second electrode are

circular in shape.

9. The method of claim 1, wherein the first electrode and the second electrode
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each have a surface area of about 1 square centimeter.

10.  The method of claim 1, further comprising:
monitoring temperature of the identified tissue and adjusting the electrical

pulses to maintain the temperature at 100°C or less.

11.  The method of claim 10, wherein the temperature is maintained at 50°C or

less.

12. A method of claim 1, further comprising:
adjusting the applied voltage, length of the pulses, and number of pulses to
obtain irreversible electroporation averaged over the biological cells, thereby achieving
irreversible electroporation of the biological cells in the tissue at a level which minimizes

damage to non-target tissue.

13.  The method of claim 1, wherein:
adjusting duration of the applied voltage is in accordance with the current-to-
voltage ratio to achieve irreversible electroporation of identified tissue cells whereby cell

membranes are disrupted in a manner resulting in cell death.

14.  The method of claim 13, wherein the current-to-voltage ratio is adjusted

based on temperature to maintained target tissue temperature at 100°C or less.

15.  The method of claim 13, wherein the current-to-voltage ratio is adjusted

based on temperature to maintained target tissue temperature at 50°C or less.

16. A method of ablating tissue, comprising:
(a) identifying a grouping of biological cells in a tissue of a living
mammal as being cancer cells and applying a voltage across the cells;
(b) continuously detecting a ratio of electric current through the cells
to voltage across the cells as an indication of degree of electroporation of the biological
cells; and

(c) adjusting a determined magnitude of the applied voltage in
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accordance with changes in detected magnitude of the current-to-voltage ratio to achieve

irreversible electroporation of the grouping of cells identified as being cancer cells.

17.  The method of claim 16, wherein step (b) comprises continuously detecting
the current-to-voltage ratio in an indication of onset of electroporation of biological cells,
and step (c) comprises adjusting the duration of the applied voltage in accordance with
continuously detected current-to-voltage ratio to achieve irreversible electroporation of the

grouping of cells identified as being cancer cells.

18.  The method of claim 16, wherein the current-to-voltage ratio is an indication
of degree of electroporation averaged over the cells identified as cancer cells, achieving

irreversible electroporation of the cancer cells.

19.  The method of claim 16, wherein the voltage is applied between two

microelectrodes positioned with the grouping of biological cells in between.

20. A method, comprising:

(a) removing a tissue sample from a cancerous tumor;

(b) placing the tissue in an electrically conductive medium and applying a
voltage across the medium;

(c) continuously detecting the ratio of electric current through the medium to
voltage across the medium as an indication of degree of electroporation of cells of the
biological tissue; and

(d) adjusting a magnitude of the applied voltage in accordance with changes
in magnitude of the current-to-voltage ratio to achieve irreversible electroporation of cells of

the biological tissue.

21.  The method of claim 20, further comprising:

applying the voltage of (d) to cancerous tissue in the tumor to obtain
irreversible electroporation of cells in the tumor.

22.  The method of claim 20, wherein the tumor is in a mammal.

23.  The method of claim 22, wherein the mammal is a human.
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24. A method for performing irreversible electroporation, comprising:

(a) applying a voltage across a target tissue comprising a plurality of
biological cells;

(b) continuously detecting the ratio of electric current through the target
tissue to voltage across the tissue as an indication of degree of electroporation of the
biological cells; and

(c) adjusting the applied voltage in accordance with changes in current-to-
voltage ratio to achieve irreversible electroporation averaged over the biological cells,
thereby achieving irreversible electroporation of the biological cells in the tissue at a level

which minimizes darmage to non-target tissue.

25.  The method of claim 24, wherein:

step (b) comprises continuously detecting the current-to-voltage ratio as an indication
of an onset of electroporation of the biological cells, and

step (c) comprises adjusting duration of the applied voltage in accordance with the

current-to-voltage ratio to achieve irreversible electroporation of target tissue cells.

26.  The method of claim 24, wherein:
voltage is applied between two electrodes inserted in a mammal, and the electrodes
are positioned to apply voltage across a target tissue;
step (b) comprises further correlating the current-to-voltage ratio with the
temperature of the target tissue; and
step (c) comprises adjusting the magnitude of the voltage while the biological
cells are between the electrodes based on an averaged degree of electroporation of the

biological cells in the tissue.

27.  The method of claim 26, wherein the current-to-voltage ratio is adjusted

based on temperature to maintained target tissue temperature at 60°C or less.

28.  The method of claim 27, wherein the current-to-voltage ratio is adjusted

based on temperature to maintained target tissue temperature at 50°C or less.

29. A method of ablating tissue, comprising the steps of:

30



WO 2005/065284 PCT/US2004/043477

identifying a tissue zone to be treated;

placing first and second electrodes such that an identified tissue zone
is positioned between the first and second electrodes;

applying a predetermined electric field to the identified tissue zone for
a time sufficient to perform irreversible electroporation to kill substantially all of the cells in

the identified tissue zone.

30.  The method of claim 29, wherein the irreversible electroporation results in a

fatal disruption the cells’ normal controlled flow of material across a membrane of the cell.

31. A device for ablating tissue, comprising:
first and second electrodes that position a tissue zone to be treated
therebetween;
a voltage generator means that applies a voltage between the first and
second electrodes in a manner which provides a predetermined electric field around the
tissue zone for a time sufficient to perform irreversible electroporation to kill substantially

all of the cells in the identified tissue zone.

32.  The device of claim 31, wherein the generator means generates pulses of 100
microseconds % about 10 microseconds at a voltage gradient in a range of from about 50

volt/cm to about 8000 volt/cm.

33.  The device of claim 31, further comprising:
a means for adjusting the voltage and pulse duration of the generator
means to obtain irreversible electroporation of cells in the tissue zone while minimizing

damage to cells not in the tissue zone.
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