The present invention relates to novel ethanesulfonate, isethionate, bromide, malonate, L-lactate, and succinate salts and polymorphs thereof of N-(3-ethynylphenylamino)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine (Erlotinib). The invention also relates to pharmaceutical compositions containing Erlotinib ethanesulfonate, isethionate, bromide, malonate, L-lactate, succinate salts and to the methods of treating hyperproliferative disorders such as cancer, by administering the Erlotinib salts.
Title: NOVEL N-(3-ETHYNYLPHENYLAMINO)-6,7-BIS(2-METHOXYETHOXY)-4-
QUINAZOLINAM1NE SALTS

5

Field of the Invention

The present invention relates to novel salts and polymorphs thereof of N-(3-
ethynylphenylamino)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine (Erlotinib). The
invention also relates to pharmaceutical compositions containing Erlotinib salts and to
the methods of treating hyperproliferative disorders such as cancer, by administering
Erlotinib salts.

Background of the invention

The present invention relates to novel salts of Erlotinib and polymorphs of theses
salts. This quinazolamine compounds are useful in the treatment of hyperproliferative
disorders such as cancers in mammals.

United States patent number 5,747,498 filed May 28, 1996, refers to Erlotinib
hydrochloride which, the patent application discloses, is an inhibitor of the erbB family of
oncogenic and protooncogenic protein tyrosine kinases, such as the epidermal growth
factor receptor (EGFR), and is therefore useful for the treatment of proliferative disorders
such as cancers in humans. United States patent number 6,706,721, filed April 08, 1999
refers to Erlotinib mesylate salt. US patent publication 2002/006,443 discloses the
solubility of the mesylate salt of Erlotinib being in the range of approximately 30 µg/mL to
100 µg/mL. The hydrochloric and mesylate compound have very limited solubility in
aqueous compositions which limits their bioavailability and gives rise to an undesirable
strong food effect. Limited solubility also limits the dosing route and formulation to a solid
oral dosage form. However mesylates have an inherent problem in the way that a toxic
impurity in the form of ethyl methanesulfonate can be formed in certain circumstances.

Hence there remains a need for Erlotinib based compounds that overcome the
above described disadvantages. One advantage of the novel salts is that they are all
more soluble in aqueous compositions than the above mentioned hydrochloride
compound, and thus the novel salts of the present invention will posses increased

SUBSTITUTE SHEET (RULE 26)
bioavailability, a reduction of the food effect and can be formulated for possible dosing routes. Furthermore, the toxic effect of ethyl methanesulfonate can be avoided.

Summary of the invention

The present inventors have found different salts and/or solid forms of Eriotinib which are useful for the treatment of proliferative disorders. It has been found that these salts and solid forms possess certain advantages over the prior art hydrochloride and mesylate compounds. It has been found that providing the novel salts in crystalline form provides for an enhanced stability until administration as a liquid and may be easier in the purification step at the end of the synthesis process. It has been found that the salts of the present invention are more soluble in aqueous compositions than the above mentioned hydrochloride, and thus the novel salts of the present invention will possess increased bioavailability, a reduction of the food effect and can be formulated for possible dosing routes. In particular, the invention relates to Eriotinib ethanesulfonate, isethionate, bromide, malonate, L-lactate and succinate in anhydrous and hydrated forms and polymorphic forms thereof.

Detailed Description of the Invention

The present invention relates to anhydrous and hydrated salts of Eriotinib.

One embodiment of the present invention relates to the ethanesulfonate salt of Eriotinib.

Another embodiment of the present invention relates to the isethionate salt of Eriotinib.

Another embodiment of the present invention relates to the bromide salt of Eriotinib.

Another embodiment of the present invention comprises the malonate salt of Eriotinib.

Another embodiment of the present invention comprises the L-lactate salt of Eriotinib.
Another embodiment of the present invention comprises the succinate salt of Erlotinib.

The invention further relates to a pharmaceutical composition for the treatment of hyperproliferative disorder, specifically non-small cell lung cancer and bronchioalveolar cancer, in a mammal, including a human, which comprises a therapeutically effective amount of Erlotinib ethanesulfonate, isethionate, bromide, malonate, L-lactate and succinate and a pharmaceutical acceptable carrier. In one embodiment, said pharmaceutical composition is for the treatment of cancers.

The invention also relates to a pharmaceutical composition for the treatment of pancreatitis or kidney disease (including proliferative glomerulonephritis and diabetes-induced renal disease) in a mammal, including a human, which comprises a therapeutically effective amount of Erlotinib ethanesulfonate, isethionate, bromide, malonate, L-lactate and succinate and a pharmaceutical acceptable carrier.

The invention also relates to a pharmaceutical composition for the prevention of blastocyte implantation in a mammal, including a human, which comprises a therapeutically effective amount of Erlotinib ethanesulfonate, isethionate, bromide, malonate, L-lactate and succinate salt and a pharmaceutical acceptable carrier.

The invention also relates to a pharmaceutical composition for treating a disease related to vasculogenesis or angiogenesis in a mammal, including a human, which comprises a therapeutically effective amount of Erlotinib ethanesulfonate, isethionate, bromide, malonate, L-lactate and succinate salt and a pharmaceutical acceptable carrier. In one embodiment, said pharmaceutical composition is for treating a disease selected from the group consisting of tumor angiogenesis, chronic inflammatory disease such as rheumatoid arthritis, atherosclerosis, skin diseases such as psoriasis, eczema, and scleroderma, diabetes, diabetes retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, Kaposi sarcoma and ovarian, breast, lung, pancreatic, prostate, colon and epidermoid cancer.

The invention also relates to a method of treating hyperproliferative disorder in a mammal, including a human, which comprises administering to said mammal a therapeutically effective amount of Erlotinib ethanesulfonate, isethionate, bromide, malonate, L-factate and succinate salt. In one embodiment said method relates to the treatment of cancer such as brain, lung, squamous cell, bladder, gastric, pancreatic,
breast, neck, head, renal (such as kidney), ovarian, prostate, colorectal, oesophageal, gynecological or thyroid cancer. In another embodiment, said pharmaceutical composition is for the treatment of non-cancerous hyperproliferative disorder such being benign hyperplasia of the skin (e.g. psoriasis) or prostate (e.g. benign prostatic hypertrophy (BPH)).

The invention also relates to a method of treatment of a hyperproliferative disorder in a mammal, including a human, which comprises administering to said mammal a therapeutically effective amount of Erlotinib ethanesulfonate, isethionate, bromide, malonate, L-lactate and succinate salt, optionally in combination with an anti-tumor agent selected from the group of mitotic inhibitors, alkylating agents, anti-metabolites, intercalating agents, growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, biological response modifiers, anti-hormones, and anti-androgens.

Patients that can be treated with Erlotinib ethanesulfonate, isethionate, bromide, malonate, L-lactate and succinate salt according to the methods of this invention include, for example, patients that have been diagnosed as having psoriasis, BPH, lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head and neck, cutaneous or intraocular melanoma, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, colon cancer, breast cancer, gynecologic tumors (e.g., uterine sarcomas, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina or carcinoma of the vulva), Hodgkin's disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system (e.g., cancer of the thyroid, parathyroid or adrenal glands), sarcomas of soft tissues, cancer of the urethra, cancer of the penis, prostate cancer, chronic or acute leukemia, solid tumors of childhood, lymphatic lymphomas, cancer of the bladder, cancer of the kidney or ureter (e.g. renal caly carcinoma, carcinoma of the renal pelvis), or neoplasms of the central nervous system (e.g. primary CNS lymphoma, spinal axis tumors, brainstem gliomas or pituitary adenomas).

Brief description of the Figures and Tables

Figure 1A illustrates the high resolution X-Ray Powder Diffraction pattern of Erlotinib ethanesulfonate ERET ULT-1
Figure 1B illustrates the DSC thermogram of Erlotinib ethanesulfonate ERET ULT-1

Figure 1C illustrates the TGA thermogram of Erlotinib ethanesulfonate ERET ULT-1

Figure 2A illustrates the high resolution X-Ray Powder Diffraction pattern of Erlotinib ethanesulfonate ERET ULT-2

Figure 2B illustrates the DSC thermogram of Erlotinib ethanesulfonate ERET ULT-2

Figure 2C illustrates the TGA thermogram of Erlotinib ethanesulfonate ERET ULT-2

Figure 2D illustrates the Raman spectrogram of Erlotinib ethanesulfonate ERET ULT-2

Figure 2E illustrates the FT-IR spectrogram of Erlotinib ethanesulfonate ERET ULT-2

Table 2A Characteristic Raman peaks of Erlotinib ethanesulfonate ERET ULT-2

Table 2B Characteristic FT-IR peaks of Erlotinib ethanesulfonate ERET ULT-2

Figure 3A illustrates the high resolution X-Ray Powder Diffraction pattern of Erlotinib isethionate ERIS ULT-1

Figure 3B illustrates the DSC thermogram of Erlotinib isethionate ERIS ULT-1

Figure 3C illustrates the TGA thermogram of Erlotinib isethionate ERIS ULT-1

Figure 3D illustrates the TGA thermogram (top) and MS spectrum (bottom) of Erlotinib isethionate ERIS ULT-1

Figure 3E illustrates the Raman spectrogram of Erlotinib isethionate ERIS ULT-1

Figure 3F illustrates the FT-IR spectrogram of Erlotinib isethionate ERIS ULT-1

Table 3A Characteristic Raman peaks of Erlotinib isethionate ERIS ULT-1

Table 3B Characteristic FT-IR peaks of Erlotinib isethionate ERIS ULT-1

Figure 4A illustrates the X-Ray Powder Diffraction pattern of Erlotinib isethionate ERIS ULT-2

Figure 4B illustrates the TGA thermogram of Erlotinib isethionate ERIS ULT-2

Figure 4C illustrates the TGA thermogram (top) and MS spectrum (bottom) of Erlotinib isethionate ERIS ULT-2

Figure 5A illustrates the X-Ray Powder Diffraction pattern of Erlotinib isethionate ERIS ULT-3
Figure 5B illustrates the TGA thermogram of Eriotinib isethionate ERIS ULT-3

Figure 5C illustrates the TGA thermogram (top) and MS spectrum (bottom) of Eriotinib isethionate ERIS ULT-3

Figure 6 illustrates the X-Ray Powder Diffraction pattern of Eriotinib isethionate ERIS ULT-4

Figure 7A illustrates the high resolution X-Ray Powder Diffraction pattern of Eriotinib bromide ERBR ULT-1

Figure 7B illustrates the DSC thermogram of Eriotinib bromide ERBR ULT-1

Figure 7C illustrates the TGA thermogram of Eriotinib bromide ERBR ULT-1

Figure 7D illustrates the Raman spectrogram of Eriotinib bromide ERBR ULT-1

Figure 7E illustrates the FT-IR spectrogram of Eriotinib bromide ERBR ULT-1

Table 7A Characteristic Raman peaks of Eriotinib bromide ERBR ULT-1

Table 7B Characteristic FT-IR peaks of Eriotinib bromide ERBR ULT-1

Figure 8 illustrates the X-Ray Powder Diffraction pattern of Eriotinib bromide ERBR ULT-2

Figure 9A illustrates the X-Ray Powder Diffraction pattern of Eriotinib bromide ERBR ULT-3

Figure 9B illustrates the TGA thermogram of Eriotinib bromide ERBR ULT-3

Figure 10 illustrates the X-Ray Powder Diffraction pattern of Eriotinib bromide ERBR ULT-4

Figure 11 illustrates the X-Ray Powder Diffraction pattern of Eriotinib bromide ERBR ULT-5

Figure 12A illustrates the high resolution X-Ray Powder Diffraction pattern of Eriotinib malonate ERMO ULT-1

Figure 12B illustrates the DSC thermogram of Eriotinib malonate ERMO ULT-1

Figure 12C illustrates the TGA thermogram of Eriotinib malonate ERMO ULT-1

Figure 12D illustrates the Raman spectrogram of Eriotinib malonate ERMO ULT-1

Figure 12E illustrates the FT-IR spectrogram of Eriotinib malonate ERMO ULT-1
Table 12A Characteristic Raman peaks of Eriotinib malonate ERMO ULT-1

Table 12B Characteristic FT-IR peaks of Eriotinib malonate ERMO ULT-1

Figure 13 illustrates the X-Ray Powder Diffraction pattern of Eriotinib malonate ERMO ULT-2

Figure 14 illustrates the X-Ray Powder Diffraction pattern of Eriotinib L-lactate ERLA ULT-1

Figure 15A illustrates the high resolution X-Ray Powder Diffraction pattern of Eriotinib succinate ERSC ULT-1

Figure 15B illustrates the DSC thermogram of Eriotinib succinate ERSC ULT-1

Figure 15C illustrates the TGA thermogram of Eriotinib succinate ERSC ULT-1

Figure 15D illustrates the TGA thermogram (top) and MS spectrum (bottom) of Eriotinib succinate ERSC ULT-1

Figure 15E illustrates the Raman spectrogram of Eriotinib succinate ERSC ULT-1

Figure 15F illustrates the FT-IR spectrogram of Eriotinib succinate ERSC ULT-1

Table 15A Characteristic Raman peaks of Eriotinib succinate ERSC ULT-1

Table 15B Characteristic FT-IR peaks of Eriotinib succinate ERSC ULT-1

Figure 16 illustrates the X-Ray Powder Diffraction pattern of Eriotinib succinate ERSC ULT-2

Figure 17 illustrates the X-Ray Powder Diffraction pattern of Eriotinib succinate ERSC ULT-3

Figure 18 illustrates the X-Ray Powder Diffraction pattern of Eriotinib succinate ERSC ULT-4

Figure 19A illustrates the X-Ray Powder Diffraction pattern of Eriotinib free base

Figure 19B illustrates the DSC thermogram of Eriotinib free base

Figure 19C illustrates the TGA thermogram of Eriotinib free base

Figure 19D illustrates the FT-IR spectrogram of Eriotinib free base

Table 19A Characteristic FT-IR peaks of Eriotinib free base
Erlotinib ethanesulfonate.

Erlotinib ethanesulfonate may be prepared as described in examples 1 and 2. Erlotinib ethanesulfonate has been found also in 2 distinct polymorphs, depicted herein as ERET ULT-1 —2.

Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 1 g of Erlotinib free base was weighted in a 50 mL glass reactor in the Mettler Toledo MultiMax™ device equipped with mechanical stirring. The solvent (ethylacetate, water) was added to a final concentration of approximately 50 mg/mL of Erlotinib free base. Ethanesulfonic acid was added drop wise in a ratio of 1:1 with respect to the free base of Erlotinib to the above reaction mass under stirring with a speed of 200 rpm. The reactor was heated from RT to 60°C with a rate of 1°C/min and kept at 60°C for 60 minutes. Subsequently reactor was allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Stirring speed during the temperature profile was 300 rpm. Solid material was obtained by filtration under vacuum with a 5 µm filter and/or by evaporation. The solids were dried at 20-25°C at 200 mbar for approximately 1 day and additionally at 40°C and 200 mbar for about 4-5 h. Dry solid was analyzed by XRPD.

The polymorphs ERET ULT-1 - 2 are characterized by the diffraction peaks found in the XRPD patterns shown below. The XRPD is essentially as shown in Figures 1A and 2A.

ERET ULT-1 - 2 are found as anhydrous forms, as indicated by the results of the DSC and TGA analyses shown in Figures 1B, 1C and 2B, 2C.

<table>
<thead>
<tr>
<th>ERET ULT-1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak table for 21.9°</td>
<td>K6</td>
</tr>
<tr>
<td>ID</td>
<td>Peak</td>
</tr>
<tr>
<td>1</td>
<td>2θ</td>
</tr>
<tr>
<td>2</td>
<td>6.94</td>
</tr>
<tr>
<td>3</td>
<td>8.65</td>
</tr>
</tbody>
</table>
ERET ULT-2

Peak table for SUD41

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2θ)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.9 L</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8.36 L</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10.18 L</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11.73 H</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13.02 L</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13.27 L</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16.8 L</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16.89 M</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>17.09 M</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>17.88 H</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>18.81 M</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>19.57 L</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>19.87 L</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>20.05 M</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>20.44 M</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>20.72 L</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>21.57 L</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>22.21 L</td>
<td></td>
</tr>
</tbody>
</table>

L<40<M<60<H
<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2\theta)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>23.62</td>
<td>L</td>
</tr>
<tr>
<td>20</td>
<td>23.98</td>
<td>H</td>
</tr>
<tr>
<td>21</td>
<td>24.72</td>
<td>M</td>
</tr>
<tr>
<td>22</td>
<td>25.16</td>
<td>L</td>
</tr>
<tr>
<td>23</td>
<td>25.38</td>
<td>L</td>
</tr>
<tr>
<td>24</td>
<td>25.72</td>
<td>L</td>
</tr>
<tr>
<td>25</td>
<td>26.01</td>
<td>L</td>
</tr>
<tr>
<td>26</td>
<td>26.29</td>
<td>L</td>
</tr>
<tr>
<td>27</td>
<td>26.73</td>
<td>H</td>
</tr>
<tr>
<td>28</td>
<td>27.84</td>
<td>L</td>
</tr>
<tr>
<td>29</td>
<td>28.15</td>
<td>L</td>
</tr>
<tr>
<td>30</td>
<td>28.93</td>
<td>L</td>
</tr>
<tr>
<td>31</td>
<td>29.56</td>
<td>L</td>
</tr>
<tr>
<td>32</td>
<td>30.06</td>
<td>L</td>
</tr>
<tr>
<td>33</td>
<td>30.49</td>
<td>L</td>
</tr>
<tr>
<td>34</td>
<td>31.09</td>
<td>L</td>
</tr>
<tr>
<td>35</td>
<td>31.72</td>
<td>L</td>
</tr>
<tr>
<td>36</td>
<td>32.77</td>
<td>L</td>
</tr>
<tr>
<td>37</td>
<td>33.94</td>
<td>L</td>
</tr>
<tr>
<td>38</td>
<td>34.22</td>
<td>L</td>
</tr>
<tr>
<td>39</td>
<td>34.62</td>
<td>L</td>
</tr>
<tr>
<td>40</td>
<td>36.38</td>
<td>L</td>
</tr>
</tbody>
</table>

L<35<M<60<H

It has been found that polymorph ERET ULT-2 of Eriotinib ethanesulfonate is more soluble than the hydrochloric acid salt of Eriotinib as demonstrated by a comparative solubility determination in H2O. The solubility is respectively 14.7 mg/mL, compared to 0.9 mg/mL for the hydrochloric acid salt of Eriotinib.
Quantitative solubility determination was performed in water and/or buffers on
Eriotinib ethanesulfonate salt at room temperature. Approximately 20 mg of Eriotinib
ethanesulfonate salt was weighted in a 1.8 ml screw cap glass vial and 400 µl liquid
(water or buffers of pH 3, 5 and 6.8) was added. The vial was then closed and
equilibrated for 24 h at room temperature under continuous stirring. The mother liquor
was isolated from solids using a Tecan Genesis 200 liquid-handling robot. Subsequently
three independent dilutions (factor of 10, 50 and 200) were prepared with Tecan
Genesis 200. The dilutions were measured by HPLC (wavelength 245 nm). Further, two
separate calibration curves for the HPLC (Agilent HP1100, UV-detector HP DAD) were
made from two stock solutions of Eriotinib free base in water (stock concentrations 0.3
mg/ml and 0.5 mg/ml). The solubility was determined from the peak area from the HPLC
chromatogram.

Eriotinib isethionate.

Eriotinib isethionate may be prepared as described in examples 3 - 6. Eriotinib
isethionate has been found also in 4 distinct polymorphs, depicted herein as ERIS ULT-1
-4.

Eriotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical
Group. The free base of Eriotinib was obtained from the hydrochloride salt by standard
conversion known to a person skilled in the art.

About 40 mg of Eriotinib free base was solid dosed in a 1.8 mL glass vial. To the
free base 2-hydroxy-ethanesulfonic acid (isethionic acid) was added in a ratio of 1.1 -
1.4 with respect to the free base of Eriotinib Subsequently, solvent (methanol,
tetrahydrofuran, acetonitrile, 1,2-dimethoxyethane, 1,4-dioxane, 3-methyl-1-butanol,
ethanol, ethylacetate, tert-butyl methyl ether, methanol/water, methylacetate) was added
to a final concentration of approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL) of
Eriotinib free base. The vials were sealed and heated from rT to 60°C with a rate of
10°C/min and kept at 60°C for 60 minutes. Subsequently the vials were allowed to cool
to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from
the mother liquor or if no solid was present, the solvent was evaporated. The
supernatant solution was also evaporated. All resulting solids were dried and analyzed
by XRPD.
The polymorphs ERIS ULT-1 - 4 are characterized by the diffraction peaks found in the XRPD patterns shown below (Figures 3A-5A, 6). ERIS ULT-1 and ERIS ULT-3 are found as hydrates, as indicated by the results of the TGA analyses shown in Figures 3C, 3D, 5B and 5C. ERIS ULT-2 is found as anhydrate, as indicated by the TGA results shown in Figures 4B, 4C.

<table>
<thead>
<tr>
<th>ERIS ULT-1 Peak table for SUD 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak ID</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
</tbody>
</table>
ERIS ULT-1
Peak table for SUD 26

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2θ)</th>
<th>ID</th>
<th>Peak Angle (2θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>24.47</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>24.9</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>25.78</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>26.27</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>27.11</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>27.65</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>28.55</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>29.09</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>29.58</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>30.41</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>30.94</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

L<40<M<60<H

ERIS ULT-2
Peak table for co 03.1 c : K8

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2θ)</th>
<th>ID</th>
<th>Peak Angle (2θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.7</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8.18</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12.26</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13.14</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16.34</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>17.14</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>17.7</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18.54</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19.1</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20.62</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>21.39</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>
ERIS ULT-2
Peak table for co 03.1 c : K8

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2θ)</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>23.04</td>
<td>L</td>
</tr>
<tr>
<td>13</td>
<td>24.58</td>
<td>H</td>
</tr>
<tr>
<td>14</td>
<td>26.5</td>
<td>M</td>
</tr>
<tr>
<td>15</td>
<td>29.15</td>
<td>L</td>
</tr>
<tr>
<td>16</td>
<td>30.2</td>
<td>L</td>
</tr>
<tr>
<td>17</td>
<td>31.26</td>
<td>L</td>
</tr>
</tbody>
</table>

L<35<M<60<H

ERIS ULT-3
Peak table for co 03.1 c : H8

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2θ)</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.38</td>
<td>L</td>
</tr>
<tr>
<td>2</td>
<td>6.54</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>7.3</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>13.38</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>14.48</td>
<td>L</td>
</tr>
<tr>
<td>6</td>
<td>15.63</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>17.86</td>
<td>L</td>
</tr>
<tr>
<td>8</td>
<td>19.18</td>
<td>L</td>
</tr>
<tr>
<td>9</td>
<td>19.58</td>
<td>L</td>
</tr>
<tr>
<td>10</td>
<td>20.54</td>
<td>L</td>
</tr>
<tr>
<td>11</td>
<td>21.35</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>21.9</td>
<td>L</td>
</tr>
<tr>
<td>13</td>
<td>22.83</td>
<td>L</td>
</tr>
<tr>
<td>14</td>
<td>24.31</td>
<td>L</td>
</tr>
<tr>
<td>15</td>
<td>25.05</td>
<td>L</td>
</tr>
<tr>
<td>16</td>
<td>26.02</td>
<td>M</td>
</tr>
</tbody>
</table>
The polymorphs ERIS ULT-1 and ERIS ULT-2 of Eriotinib isethionate are more soluble than the hydrochloric acid salt of Eriotinib as demonstrated by a comparative solubility determination in H2O. The solubility of ERIS ULT-1 and ERIS ULT-2 is respectively 1.7 mg/mL and 7.7 mg/mL compared to 0.9 mg/mL for the hydrochloric acid salt of Eriotinib.
Quantitative solubility determination was performed in water and/or buffers on Erlotinib isethionate salt at room temperature. Approximately 20 mg of Erlotinib ethanesulfonate salt was weighted in a 1.8 ml screw cap glass vial and 400 µl liquid (water or buffers of pH 3, 5 and 6.8) was added. The vial was then closed and equilibrated for 24 h at room temperature under continuous stirring. The mother liquor was isolated from solids using a Tecan Genesis 200 liquid-handling robot. Subsequently three independent dilutions (factor of 10, 50 and 200) were prepared with Tecan Genesis 200. The dilutions were measured by HPLC (wavelength 245 nm). Further, two separate calibration curves for the HPLC (Agilent HP1100, UV-detector HP DAD) were made from two stock solutions of Erlotinib free base in water (stock concentrations 0.3 mg/ml and 0.5 mg/ml). The solubility was determined from the peak area from the HPLC chromatogram.

Erlotinib bromide.

Erlotinib bromide may be prepared as described in examples 7-11 Erlotinib bromide has been found also in 5 distinct polymorphs, depicted herein as ERBR ULT-1 - 5.

Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Erlotinib free base was solid dosed in a 1.8 mL glass vial. To the free base 48 % hydrobromic acid in ACS reagent was added together with the solvent (methylacetate, methanol, tetrahydrofuran, acetonitrile, 1,2-dimethoxyethane, 1,4-dioxane, 3-methyl-1-butanol, ethanol, ethylacetate, water, acetone/water, 2,2,2-trifluoroethanol, tert-butyl methyl ether, ethanol/water, methanol/water) in a ratio of 1.1 - 1.2 with respect to the free base of Erlotinib. The final concentration of Erlotinib free base in the solvent was approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL). The vials were sealed and heated from RT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently vials were allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor or if no solid was present, the solvent was evaporated. The supernatant solution was also evaporated. All resulting solids were dried and analyzed by XRPD.
The polymorphs ERBR ULT-1 - 5 are characterized by the diffraction peaks found in the XRPD patterns shown below (Figures 7-11).

ERBR ULT-1 and ERBR ULT-3 are found as anhydrite forms, as indicated by the results of the TGA analyses shown in Figures 7C, 9B.

<table>
<thead>
<tr>
<th>ERBR ULT-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak table for SUD1</td>
</tr>
<tr>
<td>Peak</td>
</tr>
<tr>
<td>ID</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>ID</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2Î)</th>
<th>Peak Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.66 H</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9.58 L</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12.74 L</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15.18 L</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16.99 L</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13.58 L</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>18.7 M</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>19.1 L</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20.42 L</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>22.42 M</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>23.38 M</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>23.86 H</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>24.54 M</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>25.18 M</td>
<td></td>
</tr>
</tbody>
</table>
ERBR ULT-2

**Peak table for co \(03.1\) c : L4

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle ((2\Theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>25.62 (M)</td>
</tr>
<tr>
<td>16</td>
<td>26.44 (L)</td>
</tr>
<tr>
<td>17</td>
<td>27.29 (L)</td>
</tr>
<tr>
<td>18</td>
<td>28.5 (M)</td>
</tr>
<tr>
<td>19</td>
<td>29.22 (L)</td>
</tr>
<tr>
<td>20</td>
<td>30.58 (L)</td>
</tr>
<tr>
<td>21</td>
<td>31.06 (L)</td>
</tr>
<tr>
<td>22</td>
<td>32.17 (L)</td>
</tr>
<tr>
<td>23</td>
<td>37.57 (L)</td>
</tr>
</tbody>
</table>

\(L<40<M<60<H\)

ERBR ULT-3

**Peak table for co \(03.2\) c : K4

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle ((2\Theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.26 (H)</td>
</tr>
<tr>
<td>2</td>
<td>7.78 (L)</td>
</tr>
<tr>
<td>3</td>
<td>9.3 (M)</td>
</tr>
<tr>
<td>4</td>
<td>13.33 (L)</td>
</tr>
<tr>
<td>5</td>
<td>15.5 (L)</td>
</tr>
<tr>
<td>6</td>
<td>16.74 (L)</td>
</tr>
<tr>
<td>7</td>
<td>18.17 (L)</td>
</tr>
<tr>
<td>8</td>
<td>18.66 (L)</td>
</tr>
<tr>
<td>9</td>
<td>19.7 (M)</td>
</tr>
<tr>
<td>10</td>
<td>20.5 (L)</td>
</tr>
<tr>
<td>11</td>
<td>21 (L)</td>
</tr>
<tr>
<td>12</td>
<td>22.06 (M)</td>
</tr>
<tr>
<td>13</td>
<td>22.94 (H)</td>
</tr>
</tbody>
</table>

Notes:
- \(L\) represents low intensity peaks.
- \(M\) represents medium intensity peaks.
- \(H\) represents high intensity peaks.
ERBR ULT-3

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2θ)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>23.9</td>
<td>M</td>
</tr>
<tr>
<td>15</td>
<td>24.34</td>
<td>M</td>
</tr>
<tr>
<td>16</td>
<td>24.98</td>
<td>M</td>
</tr>
<tr>
<td>17</td>
<td>26.34</td>
<td>M</td>
</tr>
<tr>
<td>18</td>
<td>28.26</td>
<td>M</td>
</tr>
<tr>
<td>19</td>
<td>28.87</td>
<td>L</td>
</tr>
<tr>
<td>20</td>
<td>29.37</td>
<td>L</td>
</tr>
<tr>
<td>21</td>
<td>30.49</td>
<td>L</td>
</tr>
<tr>
<td>22</td>
<td>30.99</td>
<td>L</td>
</tr>
<tr>
<td>23</td>
<td>32.04</td>
<td>L</td>
</tr>
<tr>
<td>24</td>
<td>33.29</td>
<td>L</td>
</tr>
<tr>
<td>25</td>
<td>34.1</td>
<td>L</td>
</tr>
<tr>
<td>26</td>
<td>35.09</td>
<td>L</td>
</tr>
<tr>
<td>27</td>
<td>36.77</td>
<td>L</td>
</tr>
<tr>
<td>28</td>
<td>38.14</td>
<td>L</td>
</tr>
<tr>
<td>29</td>
<td>40.15</td>
<td>L</td>
</tr>
</tbody>
</table>

L<35<M<60<H

ERBR ULT-4

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2θ)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.9</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>8.14</td>
<td>L</td>
</tr>
<tr>
<td>3</td>
<td>11.3</td>
<td>L</td>
</tr>
<tr>
<td>4</td>
<td>11.66</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>12.68</td>
<td>L</td>
</tr>
<tr>
<td>6</td>
<td>16.31</td>
<td>L</td>
</tr>
</tbody>
</table>
ERBR ULT-4

Peak table for co 04.0 c : H5

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>17.9</td>
</tr>
<tr>
<td>8</td>
<td>18.87</td>
</tr>
<tr>
<td>9</td>
<td>21.1</td>
</tr>
<tr>
<td>10</td>
<td>22.63</td>
</tr>
<tr>
<td>11</td>
<td>23.34</td>
</tr>
<tr>
<td>12</td>
<td>23.82</td>
</tr>
<tr>
<td>13</td>
<td>25.98</td>
</tr>
<tr>
<td>14</td>
<td>27.14</td>
</tr>
<tr>
<td>15</td>
<td>28.42</td>
</tr>
<tr>
<td>16</td>
<td>29.17</td>
</tr>
<tr>
<td>17</td>
<td>31.84</td>
</tr>
</tbody>
</table>

L<25<M<60<H

ERBR ULT-5

Peak table for co 04.1 c : H5

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.22</td>
</tr>
<tr>
<td>2</td>
<td>8.38</td>
</tr>
<tr>
<td>3</td>
<td>11.78</td>
</tr>
<tr>
<td>4</td>
<td>14.68</td>
</tr>
<tr>
<td>5</td>
<td>16.85</td>
</tr>
<tr>
<td>6</td>
<td>18.14</td>
</tr>
<tr>
<td>7</td>
<td>18.7</td>
</tr>
<tr>
<td>8</td>
<td>19.44</td>
</tr>
<tr>
<td>9</td>
<td>20.36</td>
</tr>
<tr>
<td>10</td>
<td>20.92</td>
</tr>
<tr>
<td>11</td>
<td>22.63</td>
</tr>
</tbody>
</table>
Peak Table for \(\text{co} 04.1 \text{c} : \text{H}5 \)

<table>
<thead>
<tr>
<th>Peak ID</th>
<th>Peak Angle ((2\Theta))</th>
<th>Polymorph</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>23.13</td>
<td>L</td>
</tr>
<tr>
<td>13</td>
<td>24.62</td>
<td>M</td>
</tr>
<tr>
<td>14</td>
<td>25.25</td>
<td>L</td>
</tr>
<tr>
<td>15</td>
<td>26.46</td>
<td>M</td>
</tr>
<tr>
<td>16</td>
<td>27.82</td>
<td>L</td>
</tr>
<tr>
<td>17</td>
<td>28.59</td>
<td>L</td>
</tr>
<tr>
<td>18</td>
<td>29.46</td>
<td>L</td>
</tr>
</tbody>
</table>

Polymorph ERBR ULT-1 of Erlotinib bromide is more soluble than the hydrochloric acid salt of Erlotinib as demonstrated by a comparative solubility determination in \(\text{H}20 \). The solubility of ERBR ULT-1 is 2.1 mg/mL compared to 0.9 mg/mL for the hydrochloric acid salt of Erlotinib.

Quantitative solubility determination was performed in water and / or buffers on Erlotinib bromide salt at room temperature. Approximately 20 mg of Erlotinib bromide salt was weighted in a 1.8 ml screw cap glass vial and 400 \(\mu \text{l} \) liquid (water or buffers of pH 3, 5 and 6.8) was added. The vial was then closed and equilibrated for 24 h at room temperature under continuous stirring. The mother liquor was isolated from solids using a Tecan Genesis 200 liquid-handling robot. Subsequently three independent dilutions (factor of 10, 50 and 200) were prepared with Tecan Genesis 200. The dilutions were measured by HPLC (wavelength 245 nm). Further, two separate calibration curves for the HPLC (Agilent HP1100, UV-detector HP DAD) were made from two stock solutions of Erlotinib free base in water (stock concentrations 0.3 mg/ml and 0.5 mg/ml). The solubility was determined from the peak area from the HPLC chromatogram.

Erlotinib malonate.

Erlotinib malonate may be prepared as described in examples 12, 13. Erlotinib malonate has been found also in 2 distinct polymorphs, depicted herein as ERMO ULT-1 in anhydrate form and ERMO ULT-2.
Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Erlotinib free base was solid dosed in a 1.8 mL glass vial. To the free base malonic acid was added in a ratio of 1.1 - 1.4 with respect to the free base of Erlotinib. Subsequently, solvent (methylacetate, acetonitrile, ethanol/water, methanol/water, tetrahydrofuran/water, acetonitrile/water, methanol, acetone/water, 1,4-dioxane) was added to a final concentration of approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL) of Erlotinib free base. The vials were sealed and heated from rT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently, vials were allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor or if no solid was present, the solvent was evaporated. The supernatant solution was also evaporated. All resulting solids were dried and analyzed by XRPD.

The polymorphs ERMO ULT-1 - 2 are characterized by the diffraction peaks found in the XRPD patterns shown below. The XRPD is essentially as shown in Figures 12A, 13.

<table>
<thead>
<tr>
<th>Peak ID</th>
<th>Peak Angle (2θ)</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.68</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>8.85</td>
<td>L</td>
</tr>
<tr>
<td>3</td>
<td>9.31</td>
<td>L</td>
</tr>
<tr>
<td>4</td>
<td>12.07</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>13.29</td>
<td>L</td>
</tr>
<tr>
<td>6</td>
<td>15.98</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>16.78</td>
<td>L</td>
</tr>
<tr>
<td>8</td>
<td>17.43</td>
<td>L</td>
</tr>
<tr>
<td>9</td>
<td>18.91</td>
<td>M</td>
</tr>
<tr>
<td>10</td>
<td>19.36</td>
<td>M</td>
</tr>
<tr>
<td>11</td>
<td>20.17</td>
<td>L</td>
</tr>
</tbody>
</table>
ERMO ULT-1

Peak table for SDU 25

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>20.44 L</td>
</tr>
<tr>
<td>13</td>
<td>21.05 L</td>
</tr>
<tr>
<td>14</td>
<td>21.67 M</td>
</tr>
<tr>
<td>15</td>
<td>22.85 L</td>
</tr>
<tr>
<td>16</td>
<td>23.09 L</td>
</tr>
<tr>
<td>17</td>
<td>23.70 L</td>
</tr>
<tr>
<td>18</td>
<td>24.70 L</td>
</tr>
<tr>
<td>19</td>
<td>24.89 L</td>
</tr>
<tr>
<td>20</td>
<td>26.68 H</td>
</tr>
<tr>
<td>21</td>
<td>26.90 H</td>
</tr>
<tr>
<td>22</td>
<td>27.69 L</td>
</tr>
<tr>
<td>23</td>
<td>28.25 M</td>
</tr>
</tbody>
</table>

L<35<M<60<H

ERMO ULT-2

Peak table for co 11.1 c : H4

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.26 L</td>
</tr>
<tr>
<td>2</td>
<td>5.42 H</td>
</tr>
<tr>
<td>3</td>
<td>8.26 M</td>
</tr>
<tr>
<td>4</td>
<td>10.82 L</td>
</tr>
<tr>
<td>5</td>
<td>14.3 M</td>
</tr>
<tr>
<td>6</td>
<td>16.5 M</td>
</tr>
<tr>
<td>7</td>
<td>17.86 M</td>
</tr>
<tr>
<td>8</td>
<td>20.81 L</td>
</tr>
<tr>
<td>9</td>
<td>21.74 L</td>
</tr>
<tr>
<td>10</td>
<td>22.46 M</td>
</tr>
</tbody>
</table>
It has been found that polymorph ERMO ULT-1 of Erlotinib malonate is more soluble than the hydrochloric acid salt of Erlotinib as demonstrated by a comparative solubility determination in H2O. The solubility is 1.6 mg/mL compared to 0.9 mg/mL for the hydrochloric acid salt of Erlotinib.

Quantitative solubility determination was performed in water and / or buffers on Erlotinib malonate salt at room temperature. Approximately 20 mg of Erlotinib malonate salt was weighted in a 1.8 ml screw cap glass vial and 400 µl liquid (water or buffers of pH 3, 5 and 6.8) was added. The vial was then closed and equilibrated for 24 h at room temperature under continuous stirring. The mother liquor was isolated from solids using a Tecan Genesis 200 liquid-handling robot. Subsequently three independent dilutions (factor of 10, 50 and 200) were prepared with Tecan Genesis 200. The dilutions were measured by HPLC (wavelength 245 nm). Further, two separate calibration curves for the HPLC (Agilent HP1100, UV-detector HP DAD) were made from two stock solutions of Erlotinib free base in water (stock concentrations 0.3 mg/ml and 0.5 mg/ml). The solubility was determined from the peak area from the HPLC chromatogram.

Erlotinib L-lactate.

Erlotinib L-lactate may be prepared as described in example 14 Erlotinib L-lactate has been found also in 1 distinct polymorph, depicted herein as ERLA ULT-1.

Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.
About 40 mg of Eriotinib free base was solid dosed in a 1.8 mL glass vial. To the free base Lactic acid was added in a ratio of 1.2 - 6.1 with respect to the free base of Eriotinib. Subsequently, solvent (methyiacetate, 1,2-dimethoxyethane, 3-methyl-1-butanol, ethanol, ethylacetate) was added to a final concentration of approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL) of Eriotinib free base. The vials were sealed and heated from rT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently vials were allowed to cool to 5°C at a rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor or if no solid was present, the solvent was evaporated. The supernatant solution was also evaporated. All resulting solids were dried and analyzed by XRPD.

The polymorph ERLA ULT-1 is characterized by the diffraction peaks found in the XRPD patterns shown below. The XRPD is essentially as shown in Figure 20.

<table>
<thead>
<tr>
<th>Peak ULT-1</th>
<th>Peak table for co 22.0 c : J2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Angle (20)</td>
</tr>
<tr>
<td>1</td>
<td>6.46</td>
</tr>
<tr>
<td>2</td>
<td>7.83</td>
</tr>
<tr>
<td>3</td>
<td>12.41</td>
</tr>
<tr>
<td>4</td>
<td>12.81</td>
</tr>
<tr>
<td>5</td>
<td>15.84</td>
</tr>
<tr>
<td>6</td>
<td>16.66</td>
</tr>
<tr>
<td>7</td>
<td>18.2</td>
</tr>
<tr>
<td>8</td>
<td>19.48</td>
</tr>
<tr>
<td>9</td>
<td>20.42</td>
</tr>
<tr>
<td>10</td>
<td>21.03</td>
</tr>
<tr>
<td>11</td>
<td>21.7</td>
</tr>
<tr>
<td>12</td>
<td>22.58</td>
</tr>
<tr>
<td>13</td>
<td>23.53</td>
</tr>
<tr>
<td>14</td>
<td>24.64</td>
</tr>
<tr>
<td>15</td>
<td>26.24</td>
</tr>
<tr>
<td>16</td>
<td>25.66</td>
</tr>
<tr>
<td>ERLA ULT-1</td>
<td>Peak table for co 22.0 c : J2</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>ID</td>
<td>Peak</td>
</tr>
<tr>
<td>17</td>
<td>26.75</td>
</tr>
<tr>
<td>18</td>
<td>27.2</td>
</tr>
<tr>
<td>19</td>
<td>29.24</td>
</tr>
</tbody>
</table>

It has been found that ERLA ULT-1 polymorph of Eriotinib L-lactate is more soluble than the hydrochloric acid salt of Eriotinib as demonstrated by a comparative solubility determination in H2O. The solubility is 14.9 mg/mL compared to 0.9 mg/mL for the hydrochloric acid salt of Eriotinib.

Quantitative solubility determination was performed in water and / or buffers on Eriotinib L-lactate salt at room temperature. Approximately 20 mg of Eriotinib L-lactate salt was weighted in a 1.8 ml screw cap glass vial and 400 μl liquid (water or buffers of pH 3, 5 and 6.8) was added. The vial was then closed and equilibrated for 24 h at room temperature under continuous stirring. The mother liquor was isolated from solids using a Tecan Genesis 200 liquid-handling robot. Subsequently three independent dilutions (factor of 10, 50 and 200) were prepared with Tecan Genesis 200. The dilutions were measured by HPLC (wavelength 245 nm). Further, two separate calibration curves for the HPLC (Agilent HP1100, UV-detector HP DAD) were made from two stock solutions of Eriotinib free base in water (stock concentrations 0.3 mg/ml and 0.5 mg/ml). The solubility was determined from the peak area from the HPLC chromatogram.

Eriotinib succinate.

Eriotinib succinate may be prepared as described in example 15-18. Eriotinib succinate has been found also in 4 distinct polymorphs, depicted herein as ERSC ULT-1 - 4 in anhydrate and hydrate forms.
Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Erlotinib free base was solid dosed in a 1.8 mL glass vial. To the free base succinic acid was added in a ratio of 0.9 - 1.9 with respect to the free base of Erlotinib. Subsequently, solvent (2,2,2-trifluoroethanol, ethylacetate, water, ethanol/water, methanol/water, acetone/water, tetrahydrofuran/water, methylacetate, methanol, tetrahydrofuran, acetonitrile, 1,4-dioxane, 3-methyl-1-butanol, ethanol, tert-butyl methyl ether) was added to a final concentration of approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL) of Erlotinib free base. The vials were sealed and heated from rT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently vials were allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor or if no solid was present, the solvent was evaporated. The supernatant solution was also evaporated. All resulting solids were dried and analyzed by XRPD.

In the case of polymorph ERSC ULT-2, about 50 mg of Erlotinib free base was solid dosed in a stainless steel vial. To the free base succinic acid was added in a ratio of 1.1 with respect to the free base of Erlotinib. Subsequently, about 5μL of solvent (2-propanol, isopropyl acetate, n-heptane, water) was added and the vials were sealed and shaken for at least 20 minutes and up till 90 minutes at a frequency of 30 s⁻¹. Solid material was analyzed by XRPD.

The polymorphs ERSC ULT-1 - 4 are characterized by the diffraction peaks found in the XRPD patterns shown below. The XRPD is essentially as shown in Figures 21-24.

| ERSC ULT-1 |
|---|---|
| Peak table for SUD36 |
ID	Peak (2θ)	Angle
1	7.34	M
2	7.45	H
3	8.04	M

SUBSTITUTE SHEET (RULE 26)
ERSC ULT-1

Peak table for SUD36

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2θ)</th>
<th>ID</th>
<th>Peak Angle (2θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>11.64 L</td>
<td>10</td>
<td>15.90 M</td>
</tr>
<tr>
<td>5</td>
<td>12.05 L</td>
<td>11</td>
<td>16.35 L</td>
</tr>
<tr>
<td>6</td>
<td>14.40 L</td>
<td>12</td>
<td>16.54 L</td>
</tr>
<tr>
<td>7</td>
<td>14.71 L</td>
<td>13</td>
<td>19.91 L</td>
</tr>
<tr>
<td>8</td>
<td>14.95 L</td>
<td>14</td>
<td>20.38 M</td>
</tr>
<tr>
<td>9</td>
<td>15.15 L</td>
<td>15</td>
<td>20.84 L</td>
</tr>
<tr>
<td>10</td>
<td>15.50 L</td>
<td>16</td>
<td>21.27 L</td>
</tr>
<tr>
<td>11</td>
<td>16.54 L</td>
<td>17</td>
<td>21.50 L</td>
</tr>
<tr>
<td>12</td>
<td>16.87 L</td>
<td>18</td>
<td>21.77 L</td>
</tr>
<tr>
<td>13</td>
<td>19.91 L</td>
<td>19</td>
<td>22.15 L</td>
</tr>
<tr>
<td>14</td>
<td>20.38 M</td>
<td>20</td>
<td>22.51 L</td>
</tr>
<tr>
<td>15</td>
<td>20.84 L</td>
<td>21</td>
<td>22.69 M</td>
</tr>
<tr>
<td>16</td>
<td>21.27 L</td>
<td>22</td>
<td>22.87 L</td>
</tr>
<tr>
<td>17</td>
<td>21.50 L</td>
<td>23</td>
<td>23.27 L</td>
</tr>
<tr>
<td>18</td>
<td>21.77 L</td>
<td>24</td>
<td>23.94 H</td>
</tr>
<tr>
<td>19</td>
<td>22.15 L</td>
<td>25</td>
<td>24.26 L</td>
</tr>
<tr>
<td>20</td>
<td>22.51 L</td>
<td>26</td>
<td>25.26 M</td>
</tr>
<tr>
<td>21</td>
<td>22.69 M</td>
<td>27</td>
<td>25.67 L</td>
</tr>
<tr>
<td>22</td>
<td>22.87 L</td>
<td>28</td>
<td>26.70 M</td>
</tr>
<tr>
<td>23</td>
<td>23.27 L</td>
<td>29</td>
<td>27.51 H</td>
</tr>
<tr>
<td>24</td>
<td>23.94 H</td>
<td>30</td>
<td>28.46 L</td>
</tr>
<tr>
<td>25</td>
<td>24.26 L</td>
<td>31</td>
<td>29.08 L</td>
</tr>
</tbody>
</table>

L<35<M<60<H

<table>
<thead>
<tr>
<th>L<35<M<60<H</th>
</tr>
</thead>
</table>

L<35<M<60<H

SUBSTITUTE SHEET (RULE 26)
ERSC ULT-2

Peak table for grc 06.4 c : L4

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2Θ)</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.54</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>7.34</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>9.82</td>
<td>L</td>
</tr>
<tr>
<td>4</td>
<td>11.36</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>12.88</td>
<td>L</td>
</tr>
<tr>
<td>6</td>
<td>14.77</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>18.74</td>
<td>M</td>
</tr>
<tr>
<td>8</td>
<td>19.67</td>
<td>L</td>
</tr>
<tr>
<td>9</td>
<td>20.46</td>
<td>M</td>
</tr>
<tr>
<td>10</td>
<td>22.17</td>
<td>L</td>
</tr>
<tr>
<td>11</td>
<td>22.78</td>
<td>M</td>
</tr>
<tr>
<td>12</td>
<td>23.94</td>
<td>L</td>
</tr>
<tr>
<td>13</td>
<td>25.18</td>
<td>M</td>
</tr>
<tr>
<td>14</td>
<td>26.32</td>
<td>M</td>
</tr>
<tr>
<td>15</td>
<td>27.02</td>
<td>L</td>
</tr>
<tr>
<td>16</td>
<td>27.58</td>
<td>L</td>
</tr>
<tr>
<td>17</td>
<td>28.62</td>
<td>L</td>
</tr>
<tr>
<td>18</td>
<td>29.3</td>
<td>L</td>
</tr>
<tr>
<td>19</td>
<td>31.29</td>
<td>L</td>
</tr>
</tbody>
</table>

L<40<M<60<H

ERSC ULT-3

Peak table for co 07.0 c : C2

<table>
<thead>
<tr>
<th>ID</th>
<th>Peak Angle (2Θ)</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.62</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>7.97</td>
<td>L</td>
</tr>
</tbody>
</table>
ERSC ULT-3

Peak table for co 07.0 c : C2

<table>
<thead>
<tr>
<th>Peak ID</th>
<th>Angle (2θ)</th>
<th>Peak Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>13.04</td>
<td>L</td>
</tr>
<tr>
<td>4</td>
<td>15.2</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>16.31</td>
<td>M</td>
</tr>
<tr>
<td>6</td>
<td>17.71</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>19.21</td>
<td>L</td>
</tr>
<tr>
<td>8</td>
<td>19.91</td>
<td>L</td>
</tr>
<tr>
<td>9</td>
<td>21.07</td>
<td>M</td>
</tr>
<tr>
<td>10</td>
<td>21.73</td>
<td>L</td>
</tr>
<tr>
<td>11</td>
<td>22.63</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>24.49</td>
<td>L</td>
</tr>
<tr>
<td>13</td>
<td>25.49</td>
<td>M</td>
</tr>
<tr>
<td>14</td>
<td>26.34</td>
<td>M</td>
</tr>
<tr>
<td>15</td>
<td>27.45</td>
<td>L</td>
</tr>
<tr>
<td>16</td>
<td>28.95</td>
<td>L</td>
</tr>
<tr>
<td>17</td>
<td>30.31</td>
<td>L</td>
</tr>
</tbody>
</table>

L<15<M<60<H

ERSC ULT-4

Peak table for co 16.0 c : G3

<table>
<thead>
<tr>
<th>Peak ID</th>
<th>Angle (2θ)</th>
<th>Peak Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.7</td>
<td>M</td>
</tr>
<tr>
<td>2</td>
<td>6.66</td>
<td>M</td>
</tr>
<tr>
<td>3</td>
<td>7.46</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td>8.28</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>13.05</td>
<td>L</td>
</tr>
<tr>
<td>6</td>
<td>13.66</td>
<td>L</td>
</tr>
<tr>
<td>7</td>
<td>14.54</td>
<td>L</td>
</tr>
</tbody>
</table>
Polymorph ERSC ULT-1 of Erlotinib succinate is more soluble than the hydrochloric acid salt of Erlotinib as demonstrated by a comparative solubility determination in sodium dihydrogen phosphate buffer, pH=6.8. The solubility is 3.3 mg/mL, compared to <0.01 mg/mL for the hydrochloric acid salt of Erlotinib.

Quantitative solubility determination was performed in water and/or buffers on Erlotinib L-lactate salt at room temperature. Approximately 20 mg of Erlotinib L-lactate salt was weighted in a 1.8 ml screw cap glass vial and 400 µl of liquid (water or buffers of pH 3, 5 and 6.8) was added. The vial was then closed and equilibrated for 24 h at room temperature under continuous stirring. The mother liquor was isolated from solids using a Tecan Genesis 200 liquid-handling robot. Subsequently three independent dilutions (factor of 10, 50 and 200) were prepared with Tecan Genesis 200. The dilutions were measured by HPLC (wavelength 245 nm). Further, two separate calibration curves for the HPLC (Agilent HP1100, UV-detector HP DAD) were made from two stock solutions of Erlotinib free base in water (stock concentrations 0.3 mg/ml and 0.5 mg/ml). The solubility was determined from the peak area from the HPLC chromatogram.
The compounds of this present invention are potent inhibitors of the erbB family of oncogenic and proncogenic protein tyrosine kinases such as epidermal growth factor receptor (EGFR), erbB2, HER3, or HER4 and thus are all adapted to therapeutic use as antiproliferative agents (e.g., anticancer) in mammals, particularly in humans. The compounds of the present invention are also inhibitors of angiogenests and/or vasculogenesis. In particular, the compounds of the present invention are useful in the prevention and treatment of a variety of human hyperproliferative disorders such as malignant and benign tumors of the liver, kidney, bladder, breast gastric, ovarian, colorectal, prostate, pancreatic, lung, vulval, thyroid, hepatic carcinomas, sarcomas, glioblastomas, head and neck, and other hyperplasic conditions such as benign hyperplasia of the skin (e.g., psoriasis) and benign hyperplasia of the prostate (e.g., BPH). It is expected that a compound of the present invention may possess activity against a range of leukemias and lymphoid malignancies. The compounds of the present invention may also be useful in the treatment of additional disorders in which aberrant expression ligand/receptor interactions or activation or signaling events related to various protein tyrosine kinases are involved. Such disorders may include those of neuronal, glial, astrocytal, hypothalamic, glandular, macrophagal, epithelial, stromal, or blastocoeilic nature in which aberrant function, expression, activation or signaling of the erbB tyrosine kinases are involved. In addition, the compounds of the present invention may have therapeutic utility in inflammatory, angiogenic and immunologic disorders involving both identified and as yet unidentified tyrosine kinases that are inhibited by the compounds of the present invention.

Other methods for determining the activity of the compounds of the present invention are described in United States patent number 5,747,498, referred to above.

Administration of the compounds of the present invention (hereinafter the active compound(s)) can be effected by any method that enables delivery of the compounds to the site of action. These methods include oral routes intraduodenal routes, parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular and infusion), topical, and rectal administration. The amount of the active compound administered will be dependent on the subject being treated, the severity of the disorder or condition, the rate of administration and the judgment of the prescribing physician. However, an effective dosage is in the range of about 0.001 to about 100 mg per kg body weight per day, preferably about 1 to about 35 mg/kg/day, in single or divided doses. For a 70 kg...
human, this would amount to about 0.05 to about 7 g/day, preferably about 0.2 to about 2.5 g/day. In some instances, dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effects provided that such larger doses are first divided into several smaller doses by administration throughout the day. The active compound may be applied as a sole therapy or may involve one or more other antitumor substances, for example those selected from, for example, mitotic inhibitors. For example vinblastine; alkylating agents, for example cis-platin, carboplatin and cyclophosphamide; antimetabolites, for example 5-fuorouracil, cytosine arabinoside and hydroxyurea, or, for example, one of the preferred antimetabolites disclosed in European patent Application No. 239362 such as N-(5-[(3,4dihydro-2-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino]-2-thenoyl)-L-glutamic acid; growth factor inhibitors; cell cycle inhibitors; intercalating antibiotics, for example adriamycin and bleomycin; enzymes, for examples interferon; and anti-hormones, for example anti-estrogens such as Nolvadex™ (Tamoxifen) or for example anti-androgens such as Casodex™. Such conjoint treatment may be achievable by way of the simultaneous, sequential or separate dosing of the individual components of the treatment.

The pharmaceutical composition may, for example, be in a form suitable for oral administration as a tablet capsule, pill, powder, sustained release formulations, solution, suspension for parenteral injection as a sterile solution, suspension or emulsion, for topical administration as an ointment or cream or for rectal administration as a suppository. The pharmaceutical composition may be in unit dosage forms suitable for single administration of precise dosages. The pharmaceutical composition will include a conventional pharmaceutical carrier or excipient and a compound according to the invention as an active ingredient. In addition, it may include other medicinal or pharmaceutical agents, carriers, adjutants, etc. Exemplary parenteral administration forms include solutions or suspensions of the active compounds in sterile aqueous solutions, for example, aqueous propylene glycol or dextrose solutions. Such dosage forms can be suitably buffered, if desired. Suitable pharmaceutical carriers include inert diluents or fillers, water and various organic solvents. The pharmaceutical compositions may, if desired, contain additional ingredients such as flavorings, binders, excipients and the like. Thus for oral administration, tablets containing various excipients, such as citric acid may be employed together with various disintegrant such as starch, alginic acid and certain complex silicates and with binding agents such as sucrose, gelatin and acacia.
Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and
talc are often useful for tableting purposes. Solid compositions of a similar type may also
be employed in soft and hard filled gelatin capsules. Preferred materials, therefore,
include lactose or milk sugar and high molecular weight polyethylene glycols. When
aqueous suspensions or elixirs are desired for oral administration the active compound
herein may be combined with various sweetening or flavoring agents, coloring matters or
dyes and, if desired, emulsifying agents or suspending agents, together with diluents
such as water, ethanols, propylene glycol, glycerin, or combinations thereof. Methods of
preparing various pharmaceutical compositions with a specific amount of active
compound are known, or will be apparent to those skilled in this art. For examples, see
Remington's Pharmaceutical Sciences, Mack Publishing Company, Easter, Pa., 15th
Edition (1975). The examples and preparations provided below further illustrate and
exemplify the compounds of the present invention and methods of preparing such
compounds. It is to be understood that the scope of the present invention is not limited in
any way by the scope of the following examples and preparations.

Examples

Experimental conditions

X-ray Powder Diffraction:

XRDP patterns were obtained using a T2 high-throughput XRDP set-up by
Avantium technologies, The Netherlands. The plates were mounted on a Bruker GADDS
diffractometer equipped with a Hi-Star area detector. The XRDP platform was calibrated
using Silver Behenate for the long d-spacings and Corundum for the short d spacings.

Data collection was carried out at room temperature using monochromatic

CuK(α) radiation (1.54178 Å) in the two-theta region between 1.5 ° and 41.5 °. The
diffraction pattern of each well is collected in two two-theta ranges (1.5 ° ≤ 2θ ≤ 21.5 °
for the first frame, and 19.5 ° ≤ 2θ ≤ 41.5 ° for the second) with an exposure
time of 120 s for each frame. One of ordinary skill in the art understands that
experimental differences may arise due to differences in instrumentation, sample
preparation, or other factors. Typically XRDP data are collected with a variance of about
0.3 degrees two-theta, preferable about 0.2 degrees, more preferably 0.1 degrees, even
more preferable 0.05 degrees. This has consequences for when X-ray peaks are considered overlapping.

High-resolution X-ray Powder Diffraction:

The High resolution powder patterns were collected on the D8 Advance system in the Bragg-Brentano geometry equipped with LynxEye solid state detector. The radiation used for collecting the data was CuK(α = 1.54056 Å) monochromatized by the Germanium crystal. The patterns were collected in various 2θ ranges, starting from about 2 4° 2θ until about 60-65° 2θ, with a step in the range of 0.04-0.16° 2θ without further processing. All patterns were taken at Room Temperature, approximately 295K.

Single-crystal X-ray diffraction

Suitable single crystals were selected and glued to a glass fibre, which was then mounted on an X-ray diffraction goniometer. X-ray diffraction data were collected for these crystals at a temperature of 120K and at room temperature, using a KappaCCD system and MoKα radiation, generated by a FR590 X-ray generator (Bruker Nonius, Delft, The Netherlands).

Unit-cell parameters and crystal structures were determined and refined using the software package MaXus.

Thermal analysis:

Melting properties were obtained from DSC thermograms, recorded with a heat flux DSC822e instrument (Mettler-Toledo GmbH, Switzerland). The DSC822e was calibrated for temperature and enthalpy with a small piece of indium (m.p. = 156.6°C; delta-H(f) = 28.45 J/g). Samples were sealed in standard 40 microliter aluminum pans and heated in the DSC from 25°C to 300°C, at a heating rate of 20°C/min. Dry N2 gas, at a flow rate of 50 ml/min, was used to purge the DSC equipment during measurement.

Mass loss due to solvent or water loss from the crystals was determined by TGA/SDTA. Monitoring of the sample weight, during heating in a TGA/SDTA851e instrument (Mettler-Toledo GmbH, Switzerland), resulted in a weight vs. temperature curve. The TGA/SDTA851e was calibrated for temperature with indium and aluminium.
Samples were weighed into 100 microliter aluminium crucibles and sealed. The seals were pin-holed and the crucibles heated in the TGA from 25°C to 300°C at a heating rate of 20°C/min. Dry N2 gas is used for purging. Melting point determinations based on DSC have a variability of +/- 2.0 degrees Celsius, preferably 1.0 degrees Celsius.

Raman spectroscopy:

The Raman spectra were collected with a Raman microscope mW (Kaiser Opticals Inc) at 0.96 cm-1 resolution using a laser of 780 nm and a power output of 100.

Eriotinib free base

Eriotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Eliotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art. Dry solid was analyzed by XRPD and additional analytical methods. Analytical data are presented in Figures 19A-19D.

Example 1

Preparation of Eliotinib ethanesulfonate polymorph ERET ULT-1

Eriotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Eliotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 1 g of Eliotinib free base was weighted in a 50 mL glass reactor in the Mettler Toledo MultiMax device equipped with mechanical stirring. Ethylacetate was added to a final concentration of approximately 50 mg/mL of Eliotinib free base. Ethanesuifonic acid was added drop wise in a ratio of 1:1 with respect to the free base of Eliotinib to the above reaction mass under stirring with a speed of 200 rpm. The reactor was heated from rt to 60°C with a rate of 1°C/min and kept at 60°C for 60 minutes. Subsequently reactor was allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Stirring speed during the temperature profile was 300 rpm. Solid material was obtained by filtration under vacuum with a 5 μm filter. The solids were dried at 20-25 °C at 200 mbar for approximately 1 day and additionally at 40°C and 200 mbar for about 4 -
5 h. Dry solid was analyzed by XRPD and additional analytical methods. Analytical data are presented in Figures 1A - 1E.

Example 2

Preparation of Erlotinib ethanesulfonate polymorph ERET ULT-2

Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 1 g of Erlotinib free base was weighted in a 50 mL glass reactor in the Mettler Toledo MultiMax™ device equipped with mechanical stirring. Water was added to a final concentration of approximately 50 mg/mL of Erlotinib free base. Ethanesulfonic acid was added drop wise in a ratio of 1:1 with respect to the free base of Erlotinib to the above reaction mass under stirring with a speed of 200 rpm. The reactor was heated from rT to 60°C with a rate of 1°C/min and kept at 60°C for 60 minutes. Subsequently reactor was allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Stirring speed during the temperature profile was 300 rpm. Solid material was obtained by evaporation. The solids were dried at 20 -25 °C at 200 mbar for approximately 1 day and additionally at 40°C and 200 mbar for about 4 - 5 h. Dry solid was analyzed by XRPD and additional analytical methods. Analytical data are presented in Figures 2A - 2E.

Example 3

Preparation of Erlotinib isethionate polymorph ERIS ULT-1

Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 1 g of Erlotinib free base was weighted in a 50 mL glass reactor in the Mettler Toledo MultiMax™ device equipped with mechanical stirring. To the free base 2-hydroxy-ethanesulfonic acid (isethionic acid) was added in a ratio of 1:1 with respect to the free base of Erlotinib. Subsequently, ethylacetate was added to a final concentration of approximately 50 mg/mL of Erlotinib free base. The reactor was heated from rT to 60°C with a rate of 1°C/min and kept at 60°C for 60 minutes. Subsequently the reactor was allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Stirring speed during the temperature profile was 300 rpm. Solid material was obtained by filtration.
under vacuum with a 5 µm filter. The solids were dried at 20-25 °C at 200 mbar for approximately 1 day and additionally at 40°C and 200 mbar for about 4 - 5 h. Subsequently, the solids were dispensed in water and the resulting slurry was stirred at room temperature for at least 1 day and up till 5 days. Solid material was separated from water, dried as mentioned above and analyzed by XRPD and additional analytical methods. Analytical data are presented in Figures 3A - 3F.

Example 4

Preparation of Erlotinib isethionate polymorph ERIS ULT-2

Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Erlotinib free base was solid dosed in a 1.8 mL glass vial. To the free base 2-hydroxy-ethanesulfonic acid (isethionic acid) was added in a ratio of 1.1 with respect to the free base of Erlotinib. Subsequently, ethylacetate was added to a final concentration of approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL) of Erlotinib free base. The vials were sealed and heated from rT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently, vials were allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor and dried at 20-25 °C at 200 mbar for at least 1 day and up till 6 days. If remaining solid was still wet further drying was done at 20-25 °C at 5 mbar until sample was completely dry as judged by visual inspection. Dry solid was analyzed by XRPD and TGA(MS). Analytical data are presented in Figures 4A-4C.

Example 5

Preparation of Erlotinib isethionate polymorph ERIS ULT-3

Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Erlotinib free base was solid dosed in a 1.8 mL glass vial. To the free base 2-hydroxy-ethanesulfonic acid (isethionic acid) was added in a ratio of 1.2 with respect to the free base of Erlotinib. Subsequently, methylacetate was added to a final concentration of approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL) of Erlotinib free
base. The vials were sealed and heated from rT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently vials were allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor and dried at 20-25 °C at 200 mbar for at least 1 day and up till 6 days. If remaining solid was still wet further drying was done at 20-25 °C at 5 mbar until sample was completely dry as judged by visual inspection. Dry solid was analyzed by XRPD and TGA(MS). Analytical data are presented in Figures 5A - 5C.

Example 6

Preparation of Erlotinib isethionate polymorph ERIS ULT-4

Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Erlotinib free base was solid dosed in a 1.8 mL glass vial. To the free base 2-hydroxy-ethanesulfonic acid (isethionic acid) was added in a ratio of 1.2 with respect to the free base of Erlotinib. Subsequently, methylacetate was added to a final concentration of approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL) of Erlotinib free base. The vials were sealed and heated from rT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently vials were allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor and dried at 20-25 °C at 200 mbar for at least 1 day and up till 6 days. If remaining solid was still wet further drying was done at 20-25 °C at 5 mbar until sample was completely dry as judged by visual inspection. Subsequently, the solids were dispensed in water and the resulting slurry was stirred at room temperature for at least 1 day and up till 5 days. Solid material was separated from water, dried and analyzed by XRPD (Figure 6).

Example 7

Preparation of Erlotinib bromide polymorph ERBR ULT-1

Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.
About 1 g of Erlotinib free base was weighed in a 50 mL glass reactor in the Mettler Toledo MultiMax™ device equipped with mechanical stirring. Ethylacetate was added to a final concentration of approximately 50 mg/mL of Erlotinib free base. 48 % of hydrobromic acid in ACS reagent was added drop wise in a ratio of 1.1 with respect to the free base of Erlotinib to the above reaction mass under stirring with a speed of 200 rpm. The reactor was heated from RT to 60°C with a rate of 1°C/min and kept at 60X for 60 minutes. Subsequently the reactor was allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Stirring speed during the temperature profile was 300 rpm. Solid material was obtained by filtration under vacuum with a 5 µm filter. The solids were dried at 20 - 25 °C at 200 mbar for approximately 1 day and additionally at 40°C and 200 mbar for about 4 - 5 h. Dry solid was analyzed by XRPD and additional analytical methods. Analytical data are presented in Figures 7A - 7F.

Example 8

Preparation of Erlotinib bromide polymorph ERBR ULT-2

Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Erlotinib free base was solid dosed in a 1.8 mL glass vial. To the free base 48 % hydrobromic acid in ACS reagent was added together with acetone/water 50:50 in a ratio of 1.1 - 1.2 with respect to the free base of Erlotinib. The final concentration of Erlotinib free base in the solvent was approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL). The vials were sealed and heated from RT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently vials were allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor and dried at 20 - 25 °C at 200 mbar for at least 1 day and up till 6 days. If remaining solid was still wet further drying was done at 20-25 °C at 5 mbar until sample was completely dry as judged by visual inspection. Dry solid was analyzed by XRPD (Figure 8).

Example 9

Preparation of Erlotinib bromide polymorph ERBR ULT-3
Eriotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Eliotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Eliotinib free base was solid dosed in a 1.8 mL glass vial. To the free base 48 % hydrobromic acid in ACS reagent was added together with methanol/water 50:50 in a ratio of 1.1 with respect to the free base of Eliotinib. The final concentration of Eliotinib free base in the solvent was approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL). The vials were sealed and heated from rT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently vials were allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor and dried at 20-25 °C at 200 mbar for at least 1 day and up till 6 days. If remaining solid was still wet further drying was done at 20-25 °C at 5 mbar until sample was completely dry as judged by visual inspection. Dry solid was analyzed by XRPD (Figure 9A).

Example 10

Preparation of Eliotinib bromide polymorph ERBR ULT-4

Eriotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Eliotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Eliotinib free base was solid dosed in a 1.8 mL glass vial. To the free base 48 % hydrobromic acid in ACS reagent was added together with methanol in a ratio of 1.1 with respect to the free base of Eliotinib. The final concentration of Eliotinib free base in methanol was approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL). The vials were sealed and heated from rT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently vials were allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor. The solvent from the mother liquor was evaporated and the remaining solid was dried and analyzed by XRPD (Figure 10). Drying was carried out at 20-25 °C at 200 mbar for at least 1 day and up till 6 days. If remaining solid was still wet further drying was done at 20-25 °C at 5 mbar until sample was completely dry as judged by visual inspection.

Example 11

Preparation of Eliotinib bromide polymorph ERBR ULT-5
Eriotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Eliotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Eliotinib free base was solid dosed in a 1.8 mL glass vial. To the free base 48% hydrobromic acid in ACS reagent was added together with methanol in a ratio of 1:1 with respect to the free base of Eliotinib. The final concentration of Eliotinib free base in methanol was approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL). The vials were sealed and heated from rT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently, vials were allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor. The solvent from the mother liquor was evaporated and the remaining solid was dried at 20-25°C at 200 mbar for at least 1 day and up till 6 days. If remaining solid was still wet further drying was done at 20-25°C at 5 mbar until sample was completely dry as judged by visual inspection. Subsequently, the solids were exposed to 40°C and 75% relative humidity for 48 h and re-analyzed by XRPD (Figure 11).

Example 12

Preparation of Eliotinib malonate polymorph ERMO-ULT-1

Eriotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Eliotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 1 g of Eliotinib free base was weighted in a 50 mL glass reactor in the Mettler Toledo MultiMax device equipped with mechanical stirring. To the free base malonic acid was added in a ratio of 1:1 with respect to the free base of Eliotinib. Subsequently, ethanol/water 50:50 was added to a final concentration of approximately 50 mg/mL of Eliotinib free base. The reactor was heated from rT to 60°C with a rate of 1°C/min and kept at 60°C for 60 minutes. Subsequently the reactor was allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Stirring speed during the temperature profile was 300 rpm. Solid material was obtained by filtration under vacuum with a 5 μm filter. The solids were dried at 20-25°C at 200 mbar for approximately 1 day and additionally at 40°C and 200 mbar for about 4 - 5 h. Subsequently, the solids were dispensed in water and the resulting slurry was stirred at room temperature for at least 1 day and up till 5 days. Solid material was separated from water, dried as mentioned
above and analyzed by XRPD and additional analytical methods. Analytical data are presented in Figures 12A - 12F.

Example 13

Preparation of Erilinib malonate polymorph ERMO ULT-2

Eriotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Eriotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Eriotinib free base was solid dosed in a 1.8 mL glass vial. To the free base malonic acid was added in a ratio of 1.1 with respect to the free base of Eriotinib. Subsequently, methanol/water 50:50 was added to a final concentration of approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL) of Eriotinib free base. The vial was sealed and heated from rT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently the vial was allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor. The solvent from the mother liquor was evaporated and the remaining solid was dried and analyzed by XRPD. Drying was carried out at 20-25 °C at 200 mbar for at least 1 day and up till 6 days. If remaining solid was still wet further drying was done at 20-25 °C at 5 mbar until sample was completely dry as judged by visual inspection. The XRPD pattern is presented in Figure 13.

Example 14

Preparation of Eriotinib L-lactate polymorph ERLA ULT-1

Eriotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Eriotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Eriotinib free base was solid dosed in a 1.8 mL glass vial. To the free base Lactic acid was added in a ratio of 1.2 with respect to the free base of Eriotinib. Subsequently, methylacetate was added to a final concentration of approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL) of Eriotinib free base. The vial was sealed and heated from rT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently vials were allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-
38 hr. Solid material was separated from the mother liquor and dried at 20-25 °C at 200 mbar for at least 1 day and up till 6 days. The remaining solid was still wet further drying was done at 20-25 °C at 5 mbar until sample was completely dry as judged by visual inspection. The XRPD pattern is presented in Figure 14.

Example 15

Preparation of Eriotinib succinate polymorph ERSC ULT-1

Eriotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Eriotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 1 g of Eriotinib free base was weighted in a 50 mL glass reactor in the Mettler Toledo MultiMax™ device equipped with mechanical stirring. To the free base succinic acid was added in a ratio of 1:1 with respect to the free base of Eriotinib. Subsequently, ethanol/water 50:50 was added to a final concentration of approximately 50 mg/mL of Eriotinib free base. The reactor was heated from rT to 60°C with a rate of 1°C/min and kept at 60°C for 60 minutes. Subsequently the reactor was allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Stirring speed during the temperature profile was 300 rpm. Solid material was obtained by filtration under vacuum with a 3 μm filter. The solids were dried at 20-25 °C at 200 mbar for approximately 1 day and additionally at 40°C and 200 mbar for about 4-5 h. Dry solid was analyzed by XRPD and additional analytical methods. Analytical data are presented in Figures 15A - 15F.

Example 16

Preparation of Eriotinib succinate polymorph ERSC ULT-2

Eriotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Eriotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 50 mg of Eriotinib free base was solid dosed in a stainless steel vial. To the free base succinic acid was added in a ratio of 1:1 with respect to the free base of Eriotinib. Subsequently, about 5 µL of water was added and the vial was sealed and
shaken for at least 20 minutes and up till 90 minutes at a frequency of 30 s⁻¹. Solid material was analyzed by XRPD (Figure 16).

Example 17

Preparation of Erlotinib succinate polymorph ERSC ULT-3

Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Erlotinib free base was solid dosed in a 1.8 mL glass vial. To the free base succinic acid was added in a ratio of 1.1 with respect to the free base of Erlotinib. Subsequently, ethanol was added to a final concentration of approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL) of Erlotinib free base. The vial was sealed and heated from rT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently vial was allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor and dried at 20 -25 °C at 200 mbar for at least 1 day and up till 6 days. If remaining solid was still wet further drying was done at 20-25 °C at 5 mbar until sample was completely dry as judged by visual inspection. The XRPD pattern is presented in Figure 17.

Example 18

Preparation of Erlotinib succinate polymorph ERSC ULT-4

Erlotinib hydrochloride salt was obtained from Jinan Sky-worth Pharmaceutical Group. The free base of Erlotinib was obtained from the hydrochloride salt by standard conversion known to a person skilled in the art.

About 40 mg of Erlotinib free base was solid dosed in a 1.8 mL glass vial. To the free base succinic acid was added in a ratio of 1.1 with respect to the free base of Erlotinib. Subsequently, 1,2-dimethoxyethane was added to a final concentration of approximately 50 mg/mL (range of 48.8 - 52.9 mg/mL) of Erlotinib free base. The vial was sealed and heated from rT to 60°C with a rate of 10°C/min and kept at 60°C for 60 minutes. Subsequently vial was allowed to cool to 5°C at rate of 1°C/hr and kept at 5°C for 35-38 hr. Solid material was separated from the mother liquor and dried at 20 -25 °C at 200 mbar for at least 1 day and up till 6 days. If remaining solid was still wet further
drying was done at 20-25 °C at 5 mbar until sample was completely dry as judged by visual inspection. The XRPD pattern is presented in Figure 18.

Example 19

Comparative pharmacokinetic study of erlotinib solid forms and erlotinib mesylate salt

Batches of the solid forms of erlotinib and erlotinib mesylate salt are prepared with comparable crystal size by sieving through a [mu]M sieve. Small cellulose capsules are filled with approximately 15 mg of the solid forms. Twelve Male wistar rats of approximately 300 grams each are dosed one capsule by oral gavage followed by 1 mL of tap water. At regular intervals a small quantity of blood is sampled from each rat by a tail vein puncture. Blood samples are immediately frozen in Liquid N2 for further processing. After all samples are collected, plasma preparations are made of each sample. The plasma samples are further worked up for analysis by LC-MS-MS for their content of erlotinib. Efficiency of extraction is determined by comparison by spiking rat plasma samples with known amounts of erlotinib. The concentration of erlotinib is quantified in each sample by means of LC-MS-MS against a calibration curve. The results of the comparative pharmacokinetic are presented. From the PK data bioequivalency of the erlotinib solid forms to the mesylate and/or chloride salt of erlotinib can be determined.

Example 20

Study of the food effect of erlotinib solid forms

The effects of food on the pharmacokinetics of erlotinib are investigated. In a single-dose study 150 mg of erlotinib, either the mesylate salt, the hydrochloride salt or the solid forms described herein are administered under either fasting or fed conditions. The area under the plasma concentration-time curve is determined by the geometric mean ratio (GMR) observed under fed or fasted conditions. In another study, identical doses of erlotinib, either the mesylate salt, the hydrochloride salt or the solid forms described herein are administered daily for 8 days, either 7 days of fasting followed by feeding on day 8, or the reverse sequence. The plasma concentration-time curve is determined to determine the food effect of the various erlotinib forms. These studies provide an indication that the solid forms described herein can play a role in controlling
the fact that food can substantially increase plasma exposure to eriotinib. As the clinical practice allows only for a maximum tolerated dose of eriotinib, the use of other forms of eriotinib may lower the food effect of eriotinib resulting in that eriotinib may be taken also under conditions of fed or reduced fasting thereby alleviating discomfort for patients.
CLAIMS

1. Salt of Ertotinib, wherein the salt is selected from the group consisting of ethanesulfonate, isethionate, bromide, malonate, L-lactate, succinate.

2. Salt of Eriotinib according to claim 1, wherein the salt is the ethanesulfonate salt.

3. Salt of Eriotinib according to claim 1, wherein the salt is the isethionate salt.

4. Salt of Eriotinib according to claim 1, wherein the salt is the bromide salt.

5. Salt of Eriotinib according to claim 1, wherein the salt is the malonate salt.

6. Salt of Eriotinib according to claim 1, wherein the salt is the L-lactate salt.

7. Salt of Eriotinib according to claim 1, wherein the salt is the succinate salt.

8. Salt of Eriotinib ETHANESULFONATE according to claim 2, wherein the salt is the Form ERET ULT-1, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 5.42, 6.94, 8.65, 10.78, 13.16, 16.17, 18.94, 20.62, 21.76, 23.82, 25.32 (2δ) +/- 0.3.

9. Salt of Eriotinib ETHANESULFONATE according to claim 2, wherein the salt is the Form ERET ULT2, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 5.9, 8.36, 10.18, 11.73, 13.02, 13.27, 16.8, 16.89, 17.09, 17.88, 18.81, 19.57, 19.87, 20.05, 20.44, 20.72, 21.57, 22.21, 23.62, 23.98, 24.72, 25.16, 25.38, 25.72, 26.01, 26.29, 26.73, 27.84, 28.15, 28.93, 29.56, 30.06, 30.49, 31.09, 31.72, 32.77, 33.94, 34.22, 34.62, 36.38 (2δ) +/- 0.3.

10. Salt of Eriotinib isethionate according to claim 3, wherein the salt is the Form ERIS ULT-1, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 7.31, 7.43, 7.65, 8.3, 11.37, 11.8, 12.61, 14.81, 15.06, 15.91, 16.09, 16.4, 16.66, 20.26, 20.58, 20.92, 21.84, 22.06, 22.24, 22.6, 22.8, 23.11, 23.37, 23.72, 24.47, 24.9, 25.78, 26.27, 27.11, 27.65, 28.55, 29.09, 29.58, 30.41, 30.94 (2δ) +/- 0.3.

11. Salt of Eriotinib isethionate according to claim 3, wherein the salt is the Form ERIS ULT2, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 5.7, 8.18, 12.26, 13.14, 16.34, 17.14, 17.7, 18.54, 19.1, 20.62, 21.39, 23.04, 24.58, 26.5, 29.15, 30.2, 31.26 (2δ) +/- 0.3.
12. Salt of Eriotinib isethionate according to claim 3, wherein the salt is the Form ERIS ULT3, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 5.38, 6.54, 7.3, 13.38, 14.48, 15.63, 17.86, 19.18, 19.58, 20.54, 21.35 (2Θ ± 0.3).

5 13. Salt of Eriotinib isethionate according to claim 3, wherein the salt is the Form ERIS ULT4, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 5.22, 6.38, 7.08, 10.43, 17.26, 18.16, 19.17, 20.42, 22.18, 24.62, 27.45 (2Θ ± 0.3).

14. Salt of Eriotinib bromide according to claim 4, wherein the salt is the Form ERBR ULT-1, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 6.23, 7.84, 9.55, 11.39, 12.47, 13.37, 14.76, 15.67, 16.95, 17.63, 20.19, 20.67, 20.93, 21.11, 21.85, 22.43, 22.96, 23.83, 23.94, 24.43, 24.65, 25.12, 25.90, 26.50, 26.75, 26.95, 28.60, 28.95, 29.70, 32.66, 34.72, 40.08 (2Θ ± 0.3).

15. Salt of Eriotinib bromide according to claim 4, wherein the salt is the Form ERBR ULT2, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 5.66, 9.58, 12.74, 15.18, 16.99, 13.58, 18.7, 19.1, 20.42, 22.42, 23.38, 23.86, 24.54, 25.18, 25.62, 26.44, 27.29, 28.5, 29.22, 30.58, 31.06, 32.17, 37.57 (2Θ ± 0.3).

16. Salt of Eriotinib bromide according to claim 4, wherein the salt is the Form ERBR ULT3, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 6.26, 7.78, 9.3, 13.33, 15.5, 16.74, 18.17, 18.66, 19.7, 20.5, 21, 22.06, 22.94, 23.9, 24.34, 24.98, 26.34, 28.26, 28.87, 29.37, 30.49, 30.99, 32.04, 33.29, 34.1, 35.09, 36.77, 38.14, 40.15 (2Θ ± 0.3).

17. Salt of Eriotinib bromide according to claim 4, wherein the salt is the Form ERBR ULT4, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 5.9, 8.14, 11.3, 11.66, 12.68, 16.31, 17.9, 18.87, 21.1, 22.63, 23.34, 23.82, 25.98, 27.14, 28.42, 29.17, 31.84 (2Θ ± 0.3).

18. Salt of Eriotinib bromide according to claim 4, wherein the salt is the Form ERBR ULT5, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 6.22, 8.38, 11.78, 14.68, 16.85, 18.14, 18.7,
19. Salt of Eriotinib malonate according to claim 5, wherein the salt is the Form ERMO ULT-1, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 6.68, 8.85, 9.31, 12.07, 13.29, 15.98, 16.78, 17.43, 18.91, 19.36, 20.17, 20.44, 21.05, 21.67, 22.85, 23.09, 23.70, 24.70, 24.89, 26.68, 26.90, 27.69, 28.25, (2Θ) +/- 0.3.

20. Salt of Eriotinib malonate according to claim 5, wherein the salt is the Form ERMO ULT2, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 2.26, 5.42, 8.26, 10.82, 14.3, 16.5, 17.86, 20.81, 21.74, 22.46, 24.06, 25.14, 25.78, (2Θ) +/- 0.3.

21. Salt of Eriotinib L-lactate according to claim 6, wherein the salt is the Form ER ULTY, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 6.46, 7.83, 12.41, 12.81, 15.84, 16.66, 18.2, 19.48, 20.42, 21.03, 21.7, 22.58, 23.53, 24.64, 26.24, 25.66, 26.75, 27.2, 29.24, (2Θ) +/- 0.3.

22. Salt of Eriotinib succinate according to claim 7, wherein the salt is the Form ERSC ULT-1, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 7.34, 7.45, 8.04, 11.64, 12.05, 14.40, 14.71, 14.95, 15.15, 15.90, 16.35, 16.54, 19.91, 20.38, 20.84, 21.27, 21.50, 21.77, 22.15, 22.51, 22.69, 22.87, 23.27, 23.94, 24.26, 25.26, 25.67, 26.70, 27.51, 28.46, 29.08, (2Θ) +/- 0.3.

23. Salt of Eriotinib succinate according to claim 7, wherein the salt is the Form ERSC ULT2, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 6.54, 7.34, 9.82, 11.36, 12.88, 14.77, 18.74, 19.67, 20.46, 22.17, 22.78, 23.94, 25.18, 26.3, 27.02, 27.58, 28.62, 29.3, 31.29, (2Θ) +/- 0.3.

24. Salt of Eriotinib succinate according to claim 7, wherein the salt is the Form ERSC ULT3, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 6.62, 7.97, 13.04, 15.2, 16.31, 17.71, 19.21, 19.91, 21.07, 21.73, 22.63, 24.49, 25.49, 26.34, 27.45, 28.95, 30.31, (2Θ) +/- 0.3.
25. Salt of Eriotinib succinate according to claim 7, wherein the salt is the Form ERSC ULT4, characterized by one, two, three, four, five, six, seven or eight peaks selected from the group consisting of 3.7, 6.66, 7.46, 8.28, 13.05, 13.66, 14.54, 15.12, 18.5, 19.55, 20.33, 22.15, 22.61, 24.63, 25.29, 25.82, 26.52, 29.38, 31.36, (2θ) +/- 0.3.

26. Method for the preparation of Eriotinib salts and solid forms as defined in claims 1-25, comprising the steps of:

- combining eriotinib free base with about 1.1 - 1.2 equivalent of acid;
- adding solvent to a concentration of about 50 mg/ml;
- warming the mixture to about 60 degrees Celsius at a rate of about 1-10 degrees/minute;
- keeping the mixture at about 60 degrees Celsius for a period between about 30-90 minutes;
- allowing the mixture to cool to about 5 degrees Celsius at a rate of about 1-10 degrees/minute;
- keeping the mixture for about 10-50 hours;
- optionally evaporating the liquid;
- isolating the solid;
- drying the solid, optionally at reduced pressure;

wherein the acids and solvents are:

<table>
<thead>
<tr>
<th>Eriotinib Salt</th>
<th>Acid</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethanesulfonate</td>
<td>ethanesulfonic acid</td>
<td>ethylacetate, water</td>
</tr>
<tr>
<td>isethionate</td>
<td>isethionic acid</td>
<td>methanol, tetrahydrofuran, acetonitrile, 1,2-dimethoxyethane, 1,4-dioxane, 3-methyl-1-butanol, ethanol, ethylacetate, tert-butyl methyl ether, methanol/water, methylacetate</td>
</tr>
<tr>
<td>bromide</td>
<td>hydrobromic acid</td>
<td>methylacetate, methanol, tetrahydrofuran, acetonitrile, 1,2-</td>
</tr>
<tr>
<td>Ingredient</td>
<td>Molar Ratio</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Dimethoxyethane</td>
<td>1,4-dioxane, 3-methyl-1-butanol</td>
<td></td>
</tr>
<tr>
<td>,4-Dioxane</td>
<td>Ethanol, ethylacetate, water</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-1-Butanol</td>
<td>Acetone/water, 2,2,2-trifluoroethanol, tert-butyl methyl ether, ethanol/water, methanol/water</td>
<td></td>
</tr>
<tr>
<td>Malonate</td>
<td>Malonic acid</td>
<td></td>
</tr>
<tr>
<td>Malonic acid</td>
<td>Methylacetate, acetonitrile, ethanol/water, methanol/water, tetrahydrofuran/water, acetonitrile/water, methanol, acetone/water, 1,4-dioxane</td>
<td></td>
</tr>
<tr>
<td>L-Lactate</td>
<td>Lactic acid</td>
<td></td>
</tr>
<tr>
<td>Lactic acid</td>
<td>Methylacetate, 1,2-dimethoxyethane, 3-methyl-1-butanol, ethanol, ethylacetate</td>
<td></td>
</tr>
<tr>
<td>Succinate</td>
<td>Succinic acid</td>
<td></td>
</tr>
<tr>
<td>Succinic acid</td>
<td>2,2,2-trifluoroethanol, ethylacetate, water, ethanol/water, methanol/water, acetone/water, acetonitrile/water, tetrahydrofuran/water, methylacetate, methanol, tetrahydrofuran, acetonitrile, 1,4-dioxane, 3-methyl-1-butanol, ethanol, tert-butyl methyl ether</td>
<td></td>
</tr>
</tbody>
</table>

27. Pharmaceutical composition comprising any of the eriotinib salts of claims 1-25 together with a pharmaceutically acceptable carrier.

28. Use of a pharmaceutical composition comprising any of the eriotinib salts of claims 1-25 as a medicament.

29. Use of any of the eriotinib salts of claims 1-25 in the preparation of a medicament for:

- the treatment of pancreatitis or kidney disease (including proliferative glomerulonephritis and diabetes-induced renal disease) in a mammal, including a human;

- the treatment of hyperproliferative disorder, specifically non-small cell lung cancer and bronchioalveolar cancer, in a mammal, including a human;

- the prevention of blastocyte implantation in a mammal, including a human;
- the treatment of a disease related to vasculogenesis or angiogenesis in a mammal, including a human;
- the treatment of a disease selected from the group consisting of tumor angiogenesis, chronic inflammatory disease such as rheumatoid arthritis, atherosclerosis, skin diseases such as psoriasis, eczema, and scleroderma, diabetes, diabetes retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, Kaposi sarcoma and ovarian, breast, lung, pancreatic, prostate, colon and epidermoid cancer in a mammal, including a human;
- the treatment of cancer selected from the group consisting of brain, lung, squamous cell, bladder, gastric, pancreatic, breast, neck, head, renal (kidney), ovarian, prostate, colorectal, oesophageal, gynaecological or thyroid cancer in a mammal, including a human;
- the treatment of non-cancerous hyperproliferative disorder selected from the group consisting of benign hyperplasia of the skin (psoriasis) or prostate (benign prostatic hypertrophy (BPH));
- the treatment of psoriasis, BPH, lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head and neck, cutaneous or intraocular melanoma, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, colon cancer, breast cancer, gynaecologic tumors (uterine sarcomas, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina or carcinoma of the vulva), Hodgkin's disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system (cancer of the thyroid, parathyroid or adrenal glands), sarcomas of soft tissues, cancer of the urethra, cancer of the penis, prostate cancer, chronic or acute leukemia, solid tumors of childhood, lymphatic lymphomas, cancer of the bladder, cancer of the kidney or urethra (renal call carcinoma, carcinoma of the renal pelvis), or neoplasms of the central nervous system (primary CNS lymphoma, spinal axis tumors, brainstem gliomas or pituitary adenomas).

30. Use of any of the erlotinib salts and solid forms of claims 1-25 in:
the treatment of pancreatitis or kidney disease (including proliferative glomerulonephritis and diabetes-induced renal disease) in a mammal, including a human;

- the treatment of hyperproliferative disorder, specifically non-small cell lung cancer and bronchioalveolar cancer, in a mammal, including a human;

- the prevention of blastocyte implantation in a mammal, including a human;

- the treatment of a disease related to vasculogenesis or angiogenesis in a mammal, including a human;

- the treatment of a disease selected from the group consisting of tumor angiogenesis, chronic inflammatory disease such as rheumatoid arthritis, atherosclerosis, skin diseases such as psoriasis, eczema, and scleroderma, diabetes, diabetes retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, Kaposi sarcoma and ovarian, breast, lung, pancreatic, prostate, colon and epidermoid cancer in a mammal, including a human;

- the treatment of cancer selected from the group consisting of brain, lung, squamous cell, bladder, gastric, pancreatic, breast, neck, head, renal (kidney), ovarian, prostate, colorectal, oesophageal, gynaecological or thyroid cancer in a mammal, including a human;

- the treatment of non-cancerous hyperproliferative disorder selected from the group consisting of benign hyperplasia of the skin (psoriasis) or prostate (benign prostatic hypertrophy (BPH));

- the treatment of psoriasis, BPH, lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head and neck, cutaneous or intraocular melanoma, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, colon cancer, breast cancer, gynaecologic tumors (uterine sarcomas, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina or carcinoma of the vulva), Hodgkin's disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system (cancer of the thyroid, parathyroid or adrenal glands), sarcomas of soft tissues, cancer of the urethra, cancer of the penis, prostate cancer, chronic or
acute leukemia, solid tumors of childhood, lymphatic lymphomas, cancer of the bladder, cancer of the kidney or urethra (renal cell carcinoma, carcinoma of the renal pelvis), or neoplasms of the central nervous system (primary CNS lymphoma, spinal axis tumors, brainstem gliomas or pituitary adenomas.
Figure 1A illustrates the X-Ray Powder Diffraction pattern of Erlotinib ethanesulfonate ERET ULT-1

Figure 1B illustrates the DSC thermogram of Erlotinib ethanesulfonate ERET ULT-1
SUD41.1R9_V1
TGA (10 °C/min)
Mass loss ~0.1% for T<170 °C

Figure 1C illustrates the TGA thermogram of Erlotinib ethanesulfonate ERET ULT-1

Figure 2A illustrates the high resolution X-Ray Powder Diffraction pattern of Erlotinib ethanesulfonate ERET ULT-2
Figure 2B illustrates the DSC thermogram of Erlotinib ethanesulfonate ERET ULT-2

Figure 2C illustrates the TGA thermogram of Erlotinib ethanesulfonate ERET ULT-2
Figure 2D illustrates the Raman spectrogram of Erlotinib ethanesulfonate ERET ULT-2

Table 2A Characteristic Raman peaks of Erlotinib ethanesulfonate ERET ULT-2

<table>
<thead>
<tr>
<th>Wavenumber (cm⁻¹)</th>
<th>Intensity</th>
<th>H>40000>M>30000>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>998.6</td>
<td>30678.303</td>
<td>M</td>
</tr>
<tr>
<td>1148.2</td>
<td>30613.902</td>
<td>M</td>
</tr>
<tr>
<td>1172.4</td>
<td>23244.225</td>
<td>L</td>
</tr>
<tr>
<td>1237.7</td>
<td>32137.625</td>
<td>M</td>
</tr>
<tr>
<td>1278.9</td>
<td>37342.883</td>
<td>M</td>
</tr>
<tr>
<td>1317.3</td>
<td>28240.537</td>
<td>L</td>
</tr>
<tr>
<td>1368.7</td>
<td>50723.551</td>
<td>H</td>
</tr>
<tr>
<td>1409.3</td>
<td>134891.5</td>
<td>H</td>
</tr>
<tr>
<td>1444.1</td>
<td>39543.156</td>
<td>M</td>
</tr>
<tr>
<td>1532.1</td>
<td>57675.109</td>
<td>H</td>
</tr>
<tr>
<td>1596.2</td>
<td>32048.08</td>
<td>M</td>
</tr>
<tr>
<td>2112.6</td>
<td>25545.547</td>
<td>L</td>
</tr>
</tbody>
</table>
Figure 2E illustrates the FT-IR spectrogram of Erlotinib ethanesulfonate ERET ULT-2.
Table 2B Characteristic FT-IR peaks of Erlotinib ethanesulfonate ERET ULT-2

<table>
<thead>
<tr>
<th>Wavenumber</th>
<th>%reflectance</th>
<th>L>75>M>60>H</th>
<th>Wavenumber</th>
<th>%reflectance</th>
<th>L>75>M>60>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>454.9</td>
<td>73.698</td>
<td>M</td>
<td>1099.7</td>
<td>61.124</td>
<td>M</td>
</tr>
<tr>
<td>473.6</td>
<td>72.177</td>
<td>M</td>
<td>1121.9</td>
<td>50.825</td>
<td>H</td>
</tr>
<tr>
<td>515</td>
<td>66.654</td>
<td>M</td>
<td>1148.5</td>
<td>54.863</td>
<td>H</td>
</tr>
<tr>
<td>528</td>
<td>66.863</td>
<td>M</td>
<td>1171</td>
<td>69.789</td>
<td>M</td>
</tr>
<tr>
<td>572</td>
<td>68.362</td>
<td>M</td>
<td>1183.7</td>
<td>74.181</td>
<td>M</td>
</tr>
<tr>
<td>603.6</td>
<td>75.186</td>
<td>L</td>
<td>1205.6</td>
<td>61.222</td>
<td>M</td>
</tr>
<tr>
<td>619.7</td>
<td>77.42</td>
<td>L</td>
<td>1244.9</td>
<td>65.928</td>
<td>M</td>
</tr>
<tr>
<td>651.5</td>
<td>79.627</td>
<td>L</td>
<td>1274.4</td>
<td>64.412</td>
<td>M</td>
</tr>
<tr>
<td>684.8</td>
<td>75.126</td>
<td>L</td>
<td>1291.9</td>
<td>76.784</td>
<td>L</td>
</tr>
<tr>
<td>695.8</td>
<td>77.429</td>
<td>L</td>
<td>1312.8</td>
<td>86.469</td>
<td>L</td>
</tr>
<tr>
<td>708.2</td>
<td>75.987</td>
<td>L</td>
<td>1331.4</td>
<td>81.774</td>
<td>L</td>
</tr>
<tr>
<td>735.7</td>
<td>78.522</td>
<td>L</td>
<td>1365.9</td>
<td>78.098</td>
<td>L</td>
</tr>
<tr>
<td>771.8</td>
<td>63.153</td>
<td>M</td>
<td>1408.5</td>
<td>69.876</td>
<td>M</td>
</tr>
<tr>
<td>791.7</td>
<td>80.151</td>
<td>L</td>
<td>1449</td>
<td>63.554</td>
<td>M</td>
</tr>
<tr>
<td>854.1</td>
<td>78.356</td>
<td>L</td>
<td>1478</td>
<td>75.659</td>
<td>L</td>
</tr>
<tr>
<td>891.3</td>
<td>76.252</td>
<td>L</td>
<td>1513.9</td>
<td>69.146</td>
<td>M</td>
</tr>
<tr>
<td>917.9</td>
<td>72.952</td>
<td>M</td>
<td>1535.1</td>
<td>78.112</td>
<td>L</td>
</tr>
<tr>
<td>928.4</td>
<td>76.861</td>
<td>L</td>
<td>1580.6</td>
<td>70.829</td>
<td>M</td>
</tr>
<tr>
<td>967.4</td>
<td>72.268</td>
<td>M</td>
<td>1639.4</td>
<td>75.677</td>
<td>L</td>
</tr>
<tr>
<td>1024.2</td>
<td>55.846</td>
<td>H</td>
<td>2654.9</td>
<td>85.63</td>
<td>L</td>
</tr>
<tr>
<td>1043.5</td>
<td>62.66</td>
<td>M</td>
<td>3271.3</td>
<td>87.207</td>
<td>L</td>
</tr>
<tr>
<td>1071.7</td>
<td>66.181</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3A illustrates the high resolution X-Ray Powder Diffraction pattern of Erlotinib isethionate ERIS ULT-1

Figure 3B illustrates the DSC thermogram of Erlotinib isethionate ERIS ULT-1
SUD25.1R7_V1
TGA (10 °C/min) Mass loss ~6.7% for T<125 °C
Figure 3C illustrates the TGA thermogram of Erlotinib isethionate ERIS ULT-1

SUD26.1R9
TG-MS (10 °C/min)
Mass loss ~0.5% for T<170 °C
Solvents detected: Water

Figure 3D illustrates the TGA thermogram (top) and MS spectrum (bottom) of Erlotinib isethionate ERIS ULT-1
Figure 3E illustrates the Raman spectrogram of Erlotinib isethionate ERIS ULT-1

<table>
<thead>
<tr>
<th>Wavenumber (cm⁻¹)</th>
<th>Intensity</th>
<th>H>60000>M>50000>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>668.1</td>
<td>46196.469</td>
<td>L</td>
</tr>
<tr>
<td>997.8</td>
<td>62993.844</td>
<td>H</td>
</tr>
<tr>
<td>1151</td>
<td>54655.43</td>
<td>M</td>
</tr>
<tr>
<td>1245.1</td>
<td>57809.016</td>
<td>M</td>
</tr>
<tr>
<td>1281.3</td>
<td>56471.051</td>
<td>M</td>
</tr>
<tr>
<td>1336.3</td>
<td>59321.32</td>
<td>M</td>
</tr>
<tr>
<td>1357.9</td>
<td>62584.18</td>
<td>H</td>
</tr>
<tr>
<td>1410.7</td>
<td>64216.422</td>
<td>H</td>
</tr>
<tr>
<td>1532</td>
<td>61161.758</td>
<td>H</td>
</tr>
<tr>
<td>1593</td>
<td>59786.738</td>
<td>M</td>
</tr>
<tr>
<td>2103.6</td>
<td>42819.277</td>
<td>L</td>
</tr>
</tbody>
</table>
Figure 3F illustrates the FT-IR spectrogram of Erolitinib isethionate ERIS ULT-1.

Table 3B Characteristic FT-IR peaks of Erolitinib isethionate ERIS ULT-1

<table>
<thead>
<tr>
<th>Wavenumber</th>
<th>%reflectance</th>
<th>L>75>M>60>H</th>
<th>Wavenumber</th>
<th>%reflectance</th>
<th>L>75>M>60>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>452.5</td>
<td>73.698</td>
<td>L</td>
<td>1205.4</td>
<td>73.271</td>
<td>M</td>
</tr>
<tr>
<td>463.6</td>
<td>72.177</td>
<td>L</td>
<td>1241.6</td>
<td>74.597</td>
<td>M</td>
</tr>
<tr>
<td>525.7</td>
<td>66.654</td>
<td>M</td>
<td>1278.4</td>
<td>75.877</td>
<td>L</td>
</tr>
<tr>
<td>586.3</td>
<td>66.863</td>
<td>M</td>
<td>1299.2</td>
<td>87.098</td>
<td>L</td>
</tr>
<tr>
<td>603.9</td>
<td>68.362</td>
<td>M</td>
<td>1326.4</td>
<td>87.835</td>
<td>L</td>
</tr>
<tr>
<td>652.3</td>
<td>75.186</td>
<td>L</td>
<td>1357.6</td>
<td>84.877</td>
<td>L</td>
</tr>
<tr>
<td>686.1</td>
<td>72.033</td>
<td>M</td>
<td>1373.9</td>
<td>83.163</td>
<td>L</td>
</tr>
<tr>
<td>708</td>
<td>77.42</td>
<td>L</td>
<td>1449.9</td>
<td>74.498</td>
<td>M</td>
</tr>
<tr>
<td>772</td>
<td>79.627</td>
<td>L</td>
<td>1510.9</td>
<td>78.208</td>
<td>L</td>
</tr>
<tr>
<td>797.9</td>
<td>75.126</td>
<td>L</td>
<td>1530.1</td>
<td>82.502</td>
<td>L</td>
</tr>
<tr>
<td>867.5</td>
<td>77.429</td>
<td>L</td>
<td>1580.1</td>
<td>80.535</td>
<td>L</td>
</tr>
<tr>
<td>892.5</td>
<td>75.987</td>
<td>L</td>
<td>1638</td>
<td>84.724</td>
<td>L</td>
</tr>
<tr>
<td>946.5</td>
<td>78.522</td>
<td>L</td>
<td>2935.5</td>
<td>91.55</td>
<td>L</td>
</tr>
<tr>
<td>1024.5</td>
<td>63.153</td>
<td>M</td>
<td>3216</td>
<td>89.257</td>
<td>L</td>
</tr>
<tr>
<td>1050.6</td>
<td>80.151</td>
<td>L</td>
<td>3398.7</td>
<td>91.004</td>
<td>L</td>
</tr>
<tr>
<td>1071.1</td>
<td>78.356</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1094</td>
<td>76.252</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1122.5</td>
<td>72.952</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1150.7</td>
<td>76.861</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4A illustrates the X-Ray Powder Diffraction pattern of Erlotinib isethionate ERIS ULT-2

Figure 4B illustrates the TGA thermogram of Erlotinib isethionate ERIS ULT-2
Figure 4C illustrates the TGA thermogram (top) and MS spectrum (bottom) of Erlotinib isethionate ERIS ULT-2.
Figure 5A illustrates the X-Ray Powder Diffraction pattern of Erlotinib isethionate ERIS ULT-3

Figure 5B illustrates the TGA thermogram of Erlotinib isethionate ERIS ULT-3

CO137.3R4_V1
TGA (10 °C/min)
Mass loss ~4.5% for T<140 °C
CO137.3R4
TG-MS (10 °C/min)
Mass loss ~4.5% for T<140 °C
Solvents detected: Water

Figure 5C illustrates the TGA thermogram (top) and MS spectrum (bottom) of Erftinyl isethionate ERIS ULT-3
Figure 6 illustrates the X-Ray Powder Diffraction pattern of Erlotinib isethionate ERIS ULT-4.

Figure 7A illustrates the high resolution X-Ray Powder Diffraction pattern of Erlotinib bromide ERBR ULT-1.
SUD1.3
DSC (10 °C/min)
Onset 230.9 °C
Peak: 234.37 °C

Figure 7B illustrates the DSC thermogram of Erlotinib bromide ERBR ULT-1

SUD1.3
TGA (10 °C/min)
No weight loss for T<150 °C

Figure 7C illustrates the TGA thermogram of Erlotinib bromide ERBR ULT-1
Figure 7D illustrates the Raman spectrogram of Eriotinib bromide ERBR ULT-1
Table 7A Characteristic Raman peaks of Erlotinib bromide ERBR ULT-1

<table>
<thead>
<tr>
<th>Wavenumber (cm$^{-1}$)</th>
<th>Intensity</th>
<th>H>30000>M>20000>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.8</td>
<td>11786.69</td>
<td>L</td>
</tr>
<tr>
<td>269</td>
<td>11481.252</td>
<td>L</td>
</tr>
<tr>
<td>367.1</td>
<td>10341.108</td>
<td>L</td>
</tr>
<tr>
<td>463.6</td>
<td>12010.631</td>
<td>L</td>
</tr>
<tr>
<td>596.2</td>
<td>13151.49</td>
<td>L</td>
</tr>
<tr>
<td>650.5</td>
<td>17709.32</td>
<td>L</td>
</tr>
<tr>
<td>714.1</td>
<td>21894.457</td>
<td>M</td>
</tr>
<tr>
<td>729.4</td>
<td>21295.236</td>
<td>M</td>
</tr>
<tr>
<td>783.1</td>
<td>16289.318</td>
<td>L</td>
</tr>
<tr>
<td>856.9</td>
<td>16356.864</td>
<td>L</td>
</tr>
<tr>
<td>999.7</td>
<td>30453.729</td>
<td>H</td>
</tr>
<tr>
<td>1150.8</td>
<td>18687.803</td>
<td>L</td>
</tr>
<tr>
<td>1169.3</td>
<td>17347.271</td>
<td>L</td>
</tr>
<tr>
<td>1217.7</td>
<td>14564.681</td>
<td>L</td>
</tr>
<tr>
<td>1244.6</td>
<td>26389.281</td>
<td>M</td>
</tr>
<tr>
<td>1272.9</td>
<td>20292.301</td>
<td>M</td>
</tr>
<tr>
<td>1309.6</td>
<td>15670.643</td>
<td>L</td>
</tr>
<tr>
<td>1370.2</td>
<td>20205.088</td>
<td>M</td>
</tr>
<tr>
<td>1408.1</td>
<td>40430.117</td>
<td>H</td>
</tr>
<tr>
<td>1444</td>
<td>24533.781</td>
<td>M</td>
</tr>
<tr>
<td>1532.3</td>
<td>28141.391</td>
<td>M</td>
</tr>
<tr>
<td>1589.4</td>
<td>21686.898</td>
<td>M</td>
</tr>
<tr>
<td>1617.8</td>
<td>15057.992</td>
<td>L</td>
</tr>
<tr>
<td>2110.9</td>
<td>23073.127</td>
<td>M</td>
</tr>
</tbody>
</table>
Figure 7E illustrates the FT-IR spectrogram of Erlotinib bromide ERBR ULT-1

Table 7B Characteristic FT-IR peaks of Erlotinib bromide ERBR ULT-1

<table>
<thead>
<tr>
<th>Wavenumber (cm⁻¹)</th>
<th>%reflectance</th>
<th>L>85>M>75>H</th>
<th>Wavenumber</th>
<th>%reflectance</th>
<th>H>10000>M>4000>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>455.3</td>
<td>86.812</td>
<td>L</td>
<td>1084.9</td>
<td>83.74</td>
<td>M</td>
</tr>
<tr>
<td>462</td>
<td>87.705</td>
<td>L</td>
<td>1099.9</td>
<td>87.743</td>
<td>L</td>
</tr>
<tr>
<td>481.5</td>
<td>90.118</td>
<td>L</td>
<td>1127.8</td>
<td>80.136</td>
<td>M</td>
</tr>
<tr>
<td>540.1</td>
<td>88.588</td>
<td>L</td>
<td>1166.2</td>
<td>82.724</td>
<td>M</td>
</tr>
<tr>
<td>576.9</td>
<td>90.28</td>
<td>L</td>
<td>1193</td>
<td>85.513</td>
<td>L</td>
</tr>
<tr>
<td>585.7</td>
<td>87.546</td>
<td>L</td>
<td>1217.8</td>
<td>84.637</td>
<td>M</td>
</tr>
<tr>
<td>649.6</td>
<td>83.185</td>
<td>M</td>
<td>1230.5</td>
<td>84.219</td>
<td>M</td>
</tr>
<tr>
<td>659.1</td>
<td>81.489</td>
<td>M</td>
<td>1242.9</td>
<td>84.3</td>
<td>M</td>
</tr>
<tr>
<td>686.5</td>
<td>86.726</td>
<td>L</td>
<td>1278.3</td>
<td>77.49</td>
<td>M</td>
</tr>
<tr>
<td>702.5</td>
<td>80.278</td>
<td>M</td>
<td>1308.4</td>
<td>87.756</td>
<td>L</td>
</tr>
<tr>
<td>714.1</td>
<td>85.748</td>
<td>L</td>
<td>1325.2</td>
<td>85.645</td>
<td>L</td>
</tr>
<tr>
<td>779.6</td>
<td>79.06</td>
<td>M</td>
<td>1367.6</td>
<td>80.707</td>
<td>M</td>
</tr>
<tr>
<td>796.6</td>
<td>81.226</td>
<td>M</td>
<td>1404</td>
<td>81.294</td>
<td>M</td>
</tr>
<tr>
<td>856.8</td>
<td>82.946</td>
<td>M</td>
<td>1447</td>
<td>71.541</td>
<td>H</td>
</tr>
<tr>
<td>877.4</td>
<td>77.648</td>
<td>M</td>
<td>1471</td>
<td>89.635</td>
<td>L</td>
</tr>
<tr>
<td>908.2</td>
<td>87.239</td>
<td>L</td>
<td>1512.9</td>
<td>80.33</td>
<td>M</td>
</tr>
<tr>
<td>929.5</td>
<td>87.527</td>
<td>L</td>
<td>1533.1</td>
<td>83.595</td>
<td>M</td>
</tr>
<tr>
<td>941.7</td>
<td>87.673</td>
<td>L</td>
<td>1575.2</td>
<td>78.059</td>
<td>M</td>
</tr>
<tr>
<td>1021.5</td>
<td>81.684</td>
<td>M</td>
<td>1633</td>
<td>77.828</td>
<td>M</td>
</tr>
<tr>
<td>1030.9</td>
<td>84.653</td>
<td>M</td>
<td>2681.4</td>
<td>87.292</td>
<td>L</td>
</tr>
<tr>
<td>1048.1</td>
<td>87.984</td>
<td>L</td>
<td>3270.4</td>
<td>88.495</td>
<td>L</td>
</tr>
</tbody>
</table>
Figure 8 illustrates the X-Ray Powder Diffraction pattern of Erlotinib bromide ERBR ULT-2

Figure 9A illustrates the X-Ray Powder Diffraction pattern of Erlotinib bromide ERBR ULT-3
CO31.3R2
TGA (10 °C/min)
No weight loss for T<150 °C

Figure 9B illustrates the TGA thermogram of Erlotinib bromide ERBR ULT-3

Figure 10 illustrates the X-Ray Powder Diffraction pattern of Erlotinib bromide ERBR ULT-4
Figure 11 illustrates the X-Ray Powder Diffraction pattern of Erlotinib bromide EBRU ULT-5

Figure 12A illustrates the high resolution X-Ray Powder Diffraction pattern of Erlotinib malonate ERMO ULT-1
Figure 12B illustrates the DSC thermogram of Erlotinib malonate ERMO ULT-1.

Figure 12C illustrates the TGA thermogram of Erlotinib malonate ERMO ULT-1.
Figure 12D illustrates the Raman spectrogram of Erlotinib malonate ERMO ULT-1

Table 12A. Characteristic Raman peaks of Erlotinib malonate ERMO ULT-1

<table>
<thead>
<tr>
<th>Wavenumber (cm⁻¹)</th>
<th>Intensity</th>
<th>H>20000>M>10000>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>458.9</td>
<td>8147.705</td>
<td>L</td>
</tr>
<tr>
<td>586.3</td>
<td>8354.759</td>
<td>L</td>
</tr>
<tr>
<td>666.6</td>
<td>9312.834</td>
<td>L</td>
</tr>
<tr>
<td>702.3</td>
<td>9859.756</td>
<td>L</td>
</tr>
<tr>
<td>773</td>
<td>10100.338</td>
<td>M</td>
</tr>
<tr>
<td>842.1</td>
<td>10111.687</td>
<td>M</td>
</tr>
<tr>
<td>945.4</td>
<td>10412.782</td>
<td>M</td>
</tr>
<tr>
<td>999.6</td>
<td>16496.973</td>
<td>M</td>
</tr>
<tr>
<td>1146.7</td>
<td>15723.957</td>
<td>M</td>
</tr>
<tr>
<td>1172.7</td>
<td>11825.752</td>
<td>M</td>
</tr>
<tr>
<td>1234.5</td>
<td>14594.386</td>
<td>M</td>
</tr>
<tr>
<td>1257.4</td>
<td>12322.608</td>
<td>M</td>
</tr>
<tr>
<td>1278.9</td>
<td>16747.904</td>
<td>M</td>
</tr>
<tr>
<td>1312.3</td>
<td>14478.837</td>
<td>M</td>
</tr>
<tr>
<td>1360.9</td>
<td>22315.775</td>
<td>H</td>
</tr>
<tr>
<td>1408.5</td>
<td>20408.787</td>
<td>H</td>
</tr>
<tr>
<td>1449.1</td>
<td>17271.182</td>
<td>M</td>
</tr>
<tr>
<td>1529.2</td>
<td>19022.09</td>
<td>M</td>
</tr>
<tr>
<td>1592.9</td>
<td>21731.154</td>
<td>H</td>
</tr>
<tr>
<td>2102</td>
<td>11702.666</td>
<td>M</td>
</tr>
</tbody>
</table>
Figure 12E illustrates the FT-IR spectrogram of Erlotinib malonate ERMO ULT-1
Table 12B. Characteristic FT-IR peaks of Erlotinib malonate ERMO ULT-1

<table>
<thead>
<tr>
<th>Wavenumber</th>
<th>%reflectance</th>
<th>L>70</th>
<th>M>60</th>
<th>H</th>
<th>Wavenumber</th>
<th>%reflectance</th>
<th>L>70</th>
<th>M>60</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>401.1</td>
<td>76.588</td>
<td>L</td>
<td></td>
<td></td>
<td>1195.1</td>
<td>58.209</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>420.2</td>
<td>73.176</td>
<td>L</td>
<td></td>
<td></td>
<td>1222.4</td>
<td>58.923</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>446.4</td>
<td>47.688</td>
<td>H</td>
<td></td>
<td></td>
<td>1254.6</td>
<td>56.031</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>457.2</td>
<td>52.312</td>
<td>H</td>
<td></td>
<td></td>
<td>1269.6</td>
<td>50.589</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>528.6</td>
<td>69.847</td>
<td>M</td>
<td></td>
<td></td>
<td>1306.9</td>
<td>63.094</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>543.7</td>
<td>62.843</td>
<td>M</td>
<td></td>
<td></td>
<td>1329.1</td>
<td>61.199</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>569.6</td>
<td>70.716</td>
<td>L</td>
<td></td>
<td></td>
<td>1357.9</td>
<td>50.544</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>584.4</td>
<td>66.598</td>
<td>M</td>
<td></td>
<td></td>
<td>1391.5</td>
<td>50.04</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>608.2</td>
<td>65.817</td>
<td>M</td>
<td></td>
<td></td>
<td>1444.9</td>
<td>49.307</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>653.8</td>
<td>70.505</td>
<td>L</td>
<td></td>
<td></td>
<td>1462.7</td>
<td>58.936</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>679.4</td>
<td>59.852</td>
<td>H</td>
<td></td>
<td></td>
<td>1524.6</td>
<td>50.589</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>710.2</td>
<td>65.762</td>
<td>M</td>
<td></td>
<td></td>
<td>1580.4</td>
<td>59.916</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>746.4</td>
<td>42.999</td>
<td>H</td>
<td></td>
<td></td>
<td>1617.8</td>
<td>70.268</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>773.4</td>
<td>65.603</td>
<td>M</td>
<td></td>
<td></td>
<td>1644.1</td>
<td>70.694</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>792.1</td>
<td>56.036</td>
<td>H</td>
<td></td>
<td></td>
<td>1692.5</td>
<td>79.841</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>849.9</td>
<td>65.685</td>
<td>M</td>
<td></td>
<td></td>
<td>2458.1</td>
<td>86.606</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>864.7</td>
<td>59.537</td>
<td>H</td>
<td></td>
<td></td>
<td>2825.3</td>
<td>86.515</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>876.6</td>
<td>53.369</td>
<td>H</td>
<td></td>
<td></td>
<td>2927.8</td>
<td>85.095</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>890.2</td>
<td>52.674</td>
<td>H</td>
<td></td>
<td></td>
<td>3202.6</td>
<td>78.012</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>942.4</td>
<td>58.409</td>
<td>H</td>
<td></td>
<td></td>
<td>3346.4</td>
<td>84.451</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>994.7</td>
<td>65.204</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1033.9</td>
<td>46.998</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1071.6</td>
<td>55.882</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1096.2</td>
<td>60.184</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1119.6</td>
<td>47.188</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1171.1</td>
<td>55.663</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 13 illustrates the X-Ray Powder Diffraction pattern of Erlotinib malonate ERM O ULT-2

Figure 14 illustrates the X-Ray Powder Diffraction pattern of Erlotinib L-lactate ERLA ULT-1
Figure 15A illustrates the high resolution X-Ray Powder Diffraction pattern of Erlotinib succinate ERSC ULT-1.
Figure 15B illustrates the DSC thermogram of Erlotinib succinate ERSC ULT-1.

Figure 15C illustrates the TGA thermogram of Erlotinib succinate ERSC ULT-1.
SUD36.1R9_V1
TGA (10 °C/min)
Mass loss ~6.08% for T<150 °C
Solvents detected: Water

Figure 15D illustrates the TGA thermogram (top) and MS spectrum (bottom) of Erlotinib succinate ERSC ULT-1
Figure 15D illustrates the Raman spectrogram of Erlotinib succinate ERSC ULT-1.
Table 15A. Characteristic Raman peaks of Erlotinib succinate ERSCULT-1

<table>
<thead>
<tr>
<th>Wavenumber (cm⁻¹)</th>
<th>Intensity</th>
<th>H>30000>M>20000>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>468.1</td>
<td>10232.676</td>
<td>L</td>
</tr>
<tr>
<td>602</td>
<td>9226.509</td>
<td>L</td>
</tr>
<tr>
<td>671.1</td>
<td>10988.576</td>
<td>L</td>
</tr>
<tr>
<td>707.3</td>
<td>9281.651</td>
<td>L</td>
</tr>
<tr>
<td>777.1</td>
<td>13005.018</td>
<td>L</td>
</tr>
<tr>
<td>803.8</td>
<td>8400.065</td>
<td>L</td>
</tr>
<tr>
<td>839.5</td>
<td>9235.695</td>
<td>L</td>
</tr>
<tr>
<td>871.8</td>
<td>10897.597</td>
<td>L</td>
</tr>
<tr>
<td>997.9</td>
<td>61634.344</td>
<td>H</td>
</tr>
<tr>
<td>1122.7</td>
<td>7796.456</td>
<td>L</td>
</tr>
<tr>
<td>1151.4</td>
<td>9932.27</td>
<td>L</td>
</tr>
<tr>
<td>1233.5</td>
<td>32581.459</td>
<td>H</td>
</tr>
<tr>
<td>1252.9</td>
<td>27379.826</td>
<td>M</td>
</tr>
<tr>
<td>1283.3</td>
<td>26465.463</td>
<td>M</td>
</tr>
<tr>
<td>1315</td>
<td>11609.112</td>
<td>L</td>
</tr>
<tr>
<td>1339.3</td>
<td>54142.121</td>
<td>H</td>
</tr>
<tr>
<td>1355.1</td>
<td>28140.057</td>
<td>M</td>
</tr>
<tr>
<td>1376.3</td>
<td>20919.793</td>
<td>M</td>
</tr>
<tr>
<td>1402.9</td>
<td>60889.281</td>
<td>H</td>
</tr>
<tr>
<td>1420.3</td>
<td>48647.059</td>
<td>H</td>
</tr>
<tr>
<td>1433.2</td>
<td>39934.93</td>
<td>H</td>
</tr>
<tr>
<td>1515.7</td>
<td>21822.254</td>
<td>M</td>
</tr>
<tr>
<td>1571.2</td>
<td>21103.1</td>
<td>M</td>
</tr>
<tr>
<td>1595.7</td>
<td>26675.984</td>
<td>M</td>
</tr>
<tr>
<td>2105.6</td>
<td>53220.914</td>
<td>H</td>
</tr>
<tr>
<td>2945.5</td>
<td>6512.958</td>
<td>L</td>
</tr>
<tr>
<td>3061.4</td>
<td>4957.257</td>
<td>L</td>
</tr>
</tbody>
</table>
Figure 15E illustrates the FT-IR spectrogram of Erlotinib succinate ERSC ULT-1

Table 15B: Characteristic FT-IR peaks of Erlotinib succinate ERSC ULT-1

<table>
<thead>
<tr>
<th>Wavenumber (cm⁻¹)</th>
<th>%Reflectance</th>
<th>L>70>M>60>H</th>
<th>Wavenumber</th>
<th>%Reflectance</th>
<th>L>70>M>60>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>445.3</td>
<td>64.297</td>
<td>M</td>
<td>1216.2</td>
<td>70.418</td>
<td>L</td>
</tr>
<tr>
<td>463.3</td>
<td>64.935</td>
<td>M</td>
<td>1251.5</td>
<td>68.639</td>
<td>M</td>
</tr>
<tr>
<td>547.4</td>
<td>65.461</td>
<td>M</td>
<td>1312.5</td>
<td>81.341</td>
<td>L</td>
</tr>
<tr>
<td>590.3</td>
<td>63.071</td>
<td>M</td>
<td>1335</td>
<td>79.682</td>
<td>L</td>
</tr>
<tr>
<td>623.6</td>
<td>66.098</td>
<td>M</td>
<td>1372.9</td>
<td>80.935</td>
<td>L</td>
</tr>
<tr>
<td>656.7</td>
<td>64.122</td>
<td>M</td>
<td>1435.6</td>
<td>70.346</td>
<td>L</td>
</tr>
<tr>
<td>683</td>
<td>62.076</td>
<td>M</td>
<td>1472.1</td>
<td>81.758</td>
<td>L</td>
</tr>
<tr>
<td>775.9</td>
<td>69.688</td>
<td>M</td>
<td>1511.8</td>
<td>76.123</td>
<td>L</td>
</tr>
<tr>
<td>800.9</td>
<td>68.084</td>
<td>M</td>
<td>1583.9</td>
<td>84.603</td>
<td>L</td>
</tr>
<tr>
<td>859.2</td>
<td>72.23</td>
<td>L</td>
<td>1626.6</td>
<td>78.287</td>
<td>L</td>
</tr>
<tr>
<td>869.2</td>
<td>73.821</td>
<td>L</td>
<td>1680.3</td>
<td>87.551</td>
<td>L</td>
</tr>
<tr>
<td>895.3</td>
<td>74.137</td>
<td>L</td>
<td>2889.6</td>
<td>91.618</td>
<td>L</td>
</tr>
<tr>
<td>947.4</td>
<td>69.805</td>
<td>M</td>
<td>2930.8</td>
<td>91.806</td>
<td>L</td>
</tr>
<tr>
<td>965.9</td>
<td>73.484</td>
<td>L</td>
<td>3244.2</td>
<td>88.872</td>
<td>L</td>
</tr>
<tr>
<td>1028.8</td>
<td>69.317</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1048.1</td>
<td>75.761</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1057.1</td>
<td>73.668</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1072.6</td>
<td>76.693</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1094.5</td>
<td>73.25</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1107.2</td>
<td>75.391</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1124</td>
<td>72.004</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1166.1</td>
<td>79.265</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 16 illustrates the X-Ray Powder Diffraction pattern of Erlotinib succinate ERSC ULT-2
Figure 17 illustrates the X-Ray Powder Diffraction pattern of Erlotinib succinate ERSC ULT-3

![XRPD Pattern](image1)

Figure 18 illustrates the X-Ray Powder Diffraction pattern of Erlotinib succinate ERSC ULT-4

![XRPD Pattern](image2)

Figure 19A illustrates the X-Ray Powder Diffraction pattern of Erlotinib free base

![XRPD Pattern](image3)
Figure 19B illustrates the DSC thermogram of Erlotinib free base.
TGA (10 °C/min)
Mass loss ~0.86% for T<175 °C

Figure 19C illustrates the TGA thermogram of Erlotinib free base

![TGA Thermogram](image)

Figure 19D illustrates the FT-IR spectrogram of Erlotinib free base
Table 19A Characteristic FT-IR peaks of Erlotinib free base

<table>
<thead>
<tr>
<th>Wavenumber (cm(^{-1}))</th>
<th>% reflectance</th>
<th>L>75>M>60>H</th>
<th>Wavenumber (cm(^{-1}))</th>
<th>% reflectance</th>
<th>L>75>M>60>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>455.8</td>
<td>77.776</td>
<td>L</td>
<td>1051.4</td>
<td>72.936</td>
<td>M</td>
</tr>
<tr>
<td>466</td>
<td>78.37</td>
<td>L</td>
<td>1067.2</td>
<td>64.968</td>
<td>M</td>
</tr>
<tr>
<td>533</td>
<td>78.857</td>
<td>L</td>
<td>1098.5</td>
<td>68.206</td>
<td>M</td>
</tr>
<tr>
<td>547.8</td>
<td>72.18</td>
<td>M</td>
<td>1129.7</td>
<td>53.531</td>
<td>H</td>
</tr>
<tr>
<td>556.5</td>
<td>70.714</td>
<td>M</td>
<td>1153.8</td>
<td>64.356</td>
<td>M</td>
</tr>
<tr>
<td>589.5</td>
<td>58.87</td>
<td>H</td>
<td>1197.2</td>
<td>66.816</td>
<td>M</td>
</tr>
<tr>
<td>613.8</td>
<td>73.759</td>
<td>M</td>
<td>1217.3</td>
<td>54.678</td>
<td>H</td>
</tr>
<tr>
<td>663.6</td>
<td>59.492</td>
<td>H</td>
<td>1254.6</td>
<td>53.473</td>
<td>H</td>
</tr>
<tr>
<td>685.7</td>
<td>70.372</td>
<td>M</td>
<td>1283.1</td>
<td>74.24</td>
<td>M</td>
</tr>
<tr>
<td>702.8</td>
<td>72.944</td>
<td>M</td>
<td>1332.8</td>
<td>58.989</td>
<td>H</td>
</tr>
<tr>
<td>720.9</td>
<td>71.452</td>
<td>M</td>
<td>1352.5</td>
<td>71.845</td>
<td>M</td>
</tr>
<tr>
<td>770.5</td>
<td>68.989</td>
<td>M</td>
<td>1366.4</td>
<td>70.8</td>
<td>M</td>
</tr>
<tr>
<td>787</td>
<td>69.873</td>
<td>M</td>
<td>1390</td>
<td>68.819</td>
<td>M</td>
</tr>
<tr>
<td>812.6</td>
<td>79.624</td>
<td>L</td>
<td>1427</td>
<td>46.466</td>
<td>H</td>
</tr>
<tr>
<td>850.4</td>
<td>58.997</td>
<td>H</td>
<td>1447.6</td>
<td>60.889</td>
<td>M</td>
</tr>
<tr>
<td>870.3</td>
<td>65.029</td>
<td>M</td>
<td>1464</td>
<td>61.154</td>
<td>M</td>
</tr>
<tr>
<td>900.7</td>
<td>71.288</td>
<td>M</td>
<td>1498.7</td>
<td>53.079</td>
<td>H</td>
</tr>
<tr>
<td>917.6</td>
<td>77.467</td>
<td>L</td>
<td>1574.1</td>
<td>63.363</td>
<td>M</td>
</tr>
<tr>
<td>938.2</td>
<td>66.882</td>
<td>M</td>
<td>1618.3</td>
<td>74.265</td>
<td>M</td>
</tr>
<tr>
<td>947.2</td>
<td>65.793</td>
<td>M</td>
<td>2932.5</td>
<td>82.131</td>
<td>L</td>
</tr>
<tr>
<td>962.4</td>
<td>83.625</td>
<td>L</td>
<td>3249.1</td>
<td>79.692</td>
<td>L</td>
</tr>
<tr>
<td>979.9</td>
<td>75.845</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1032</td>
<td>62.672</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>