wo 2017/109129 A1 |] NF 1 00O 00RO O

(43) International Publication Date

Organization
International Bureau

=
WIPO | P

\

29 June 2017 (29.06.2017)

CT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2017/109129 A1

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
GO6F 21/53 (2013.01) GO6F 21/56 (2013.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,
. . DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,
PCT/EP2016/082477 KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
(22) International Filing Date: MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
22 December 2016 (22.12.2016) NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
.) RU, RW, SA, SC, SD, SE, S@G, SK, SL, SM, ST, SV, SY,
(25) Filing Language: English TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
(26) Publication Language: English ZA,IM, ZW.
(30) Priority Data: (84) Designated States (uniess otherwise indicated, for every
EP15202731.4 24 December 2015 (24122015) EP kind Of regional p}"Ol@C’ﬁOI’Z available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(71) Applicant: BRITISH TELECOMMUNICATIONS TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
PUBLIC LIMITED COMPANY [GB/GB]; 81 Newgate TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
Street, London EC1A 7AJ (GB). DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(72) Inventor: EL-MOUSSA, Fadi; Ground Floor, Faraday IS“R]/[’ 1\1/,[}% 1\(/;12’1)1;/[(%;\1 IEJN(C){? PIC“’GP%IR(C)MRS(;:E&HS\II ? Csilé,
Building 1, Knightrider Street, London EC4V 5BT (GB). ; ’ R A ? ? ’ ?
GW, KM, ML, MR, NE, SN, TD, TG).
(74) Agent: ROBERTS, Scott; Ground Floor, Faraday Build- Published:
ing 1, Knightrider Street, London EC4V 5BT (GB). v :
— ith int ti [h t (Art. 21(3
(81) Designated States (unless otherwise indicated, for every with international search report (dr)
kind of national protection available). AE, AG, AL, AM,
(54) Title: SOFTWARE SECURITY
(57) Abstract: A computer implemented method
of detecting malicious code in a software applica-
FIGURE 2 tion executing with a runtime environment in a
computer system, the method comprising: receiv-
ing a definition of one or more runtime exception
202 Data Store 214 216 trigger conditions, each trigger condition detining
S S_ ________ g ===, criteria for the runtime environment to enter a soft-
. - ; -
| - - - L2086 ware exception state and having associated a
! Except.lon Trigger | .| Resulting i definition of a resulting state of the runtime envir-
: Cond't'onl Statel I onment having entered the exception state; monit-
: |) :# oring the runtime environment to detect the satis-
: Exception Trigger Resulting : faction of a detected trigger condition by the
| Condition ™ State | runtime environment and, in response to a determ-
N ; ination that the runtime environment fails to enter
Tt TTTTTTTTT T T T T T T - a resulting state associated with the detected trig-
204 A Operating System ger condition, identitying the software application
as including malicious code.
208 .| | Monitor <
A
210 .l -~ Runtime Environment
212] 11— Software Application

10

15

20

25

30

WO 2017/109129 PCT/EP2016/082477

1

Software Security

The present invention relates to software security. In particular it relates to identifying

malicious code executing in a runtime software environment.

Software for execution in a computer system is increasingly deployed to runtime
environments such as runtime engines or system software environments for the execution of
program code. Runtime environments can be employed to provide a hardware abstraction,
application portability, to offer common and/or centralised services such as operating system
and service interfaces, resource management, application programming interfaces, security
and the like. An example of a popular runtime environment is the Java runtime environment

provided by Oracle Corp.

Software for execution in a runtime environment can come from an unknown and/or
untrusted source, such as Java applets accessed via web pages. To preserve the security of
a runtime environment and the computer system on which the runtime environment
executes, such software can be executed in a mode of the runtime environment in which
security restrictions and/or controls are in place. For example, in the Java runtime
environment a Java applet originating outside a computer system will execute in a restricted
operating mode of a Java runtime environment known as a “sandbox”. A strict security policy
applies to software executing within the sandbox an enforced by security services of the
runtime environment. Where an application is able to escape the confines of the sandbox
then a computer system’s resources and data are at risk of misappropriation or misuse. This
challenge is particularly acute for software originating from an unknown and/or untrusted

source.

Accordingly it would be beneficial to address the aforementioned security challenges in

software runtime environments.

The present invention accordingly provides, in a first aspect, a computer implemented
method of detecting malicious code in a software application executing with a runtime
environment in a computer system, the method comprising: receiving a definition of one or
more runtime exception trigger conditions, each trigger condition defining criteria for the
runtime environment to enter a software exception state and having associated a definition of
a resulting state of the runtime environment having entered the exception state; monitoring
the runtime environment to detect the satisfaction of a detected trigger condition by the
runtime environment and, in response to a determination that the runtime environment fails
to enter a resulting state associated with the detected trigger condition, identifying the
software application as including malicious code.

10

15

20

25

30

WO 2017/109129 PCT/EP2016/082477

2

Thus, in use at a runtime of the software application the runtime environment is monitored
for the identification of a state of operation of the runtime environment in which an exception
is triggered as determined with reference to the exception trigger conditions. Where an
exception trigger condition indicates such a state of operation the environment is monitored
to determine whether a resulting state of operation is entered. Where the method determines
that the runtime environment fails to enter the resulting state then malicious code is detected
since this failure indicates that the operation of an exception triggering and handling process
has been modified to exploit the runtime environment Accordingly embodiments of the
invention are suitable for identifying malicious code in a software application and upon such
identification protective and/or remedial measures can be adopted and/or the identification,
nature, structure and/or content of the application can be recorded, flagged and shared
within and outside the computer system to aid detection and intervention for the malicious
code in future. A benefit of embodiments of the present invention is that both the
identification of triggering conditions/resulting states and monitoring of the runtime
environment in execution are extrinsic to the runtime environment and are therefore relatively
protected from exploitation by malicious code itself. The parsing and recording steps could
be achieved outside the reach of an application executing in the runtime environment. The
approach is also particularly suited to identifying day zero attacks based on a frequently
exploited category of code relating to exception dispatch and handling.

Preferably one or more exception trigger conditions include a Boolean condition.

Preferably one or more definitions of a resulting state include an identification of an
exception dispatched by the runtime environment.

Preferably one or more definitions of a resulting state include an identification of a function

executed by the runtime environment.
Preferably the application is received via a computer network.

Preferably the method further comprises, in response to the identification that the software
application includes malicious code, terminating execution of the software application.

Preferably the method further comprises, in response to the identification that the software
application includes malicious code, generating an indication of the malicious code.

The present invention accordingly provides, in a second aspect, a computer system to
detect malicious code in a software application executing with a runtime environment
comprising a processor and a data store, wherein the processor is adapted to undertake the

steps of: receiving a definition of one or more runtime exception trigger conditions, each

10

15

20

25

30

WO 2017/109129 PCT/EP2016/082477

3

trigger condition defining criteria for the runtime environment to enter a software exception
state and having associated a definition of a resulting state of the runtime environment
having entered the exception state; monitoring the runtime environment to detect the
satisfaction of a detected trigger condition by the runtime environment and, in response to a
determination that the runtime environment fails to enter a resulting state associated with the

detected trigger condition, identifying the software application as including malicious code.

The present invention accordingly provides, in a third aspect, a computer system including
a software runtime environment for executing a software application, the computer system
comprising: a data store storing a definition of one or more runtime exception trigger
conditions, each trigger condition defining criteria for the runtime environment to enter a
software exception state and having associated a definition of a resulting state of the runtime
environment having entered the exception state, and a processor executing computer
program code to monitor the runtime environment in execution to detect the satisfaction of a
detected trigger condition by the runtime environment and, in response to a determination
that the runtime environment fails to enter a resulting state associated with the detected
trigger condition, identifying the software application as including malicious code.

The present invention accordingly provides, in a fourth aspect, a computer program
element comprising computer program code to, when loaded into a computer system and
executed thereon, cause the computer to perform the steps of a method as described above.

A preferred embodiment of the present invention will now be described, by way of
example only, with reference to the accompanying drawings, in which:

Figure 1 is a block diagram of a computer system suitable for the operation of

embodiments of the present invention;

Figure 2 is a component diagram of a data store of a computer system configured to
detect malicious code in a software application in accordance with embodiments of the

present invention;

Figure 3 is a flowchart of a method of detecting malicious code in a software application
executing with a runtime environment in a computer system in accordance with embodiments

of the present invention;

Figure 4 is a component diagram of a condition generator for generating runtime

exception trigger conditions in accordance with embodiments of the present invention;

Figure 5 is a flowchart of a method of the condition generator of Figure 4 in accordance

with embodiments of the present invention;

10

15

20

25

30

WO 2017/109129 PCT/EP2016/082477

4

Figure 6 is a depiction of a subset of exemplary runtime environment code in accordance

with embodiments of the present invention;

Figure 7 is an illustrative component diagram of an arrangement in accordance with an

exemplary embodiment of the present invention; and
Figure 8 is an illustrative flow diagram of the exemplary arrangement of Figure 7 in use.

Embodiments of the present invention address challenges identifying malicious code in a
software application executing within a runtime environment of a computer system. A
sandbox is a controlled portion of a runtime environment for permitting the execution of
software applications while restricting one or more of resource, data, service, facility,
interface and/or other features of a computer system and/or runtime environment in order to
protect the computing system. Thus a sandbox is intended to protect resources and data of a
computer system executing a runtime environment. Protection is required against, for
example, software applications from untrusted or unknown sources that may seek to attack
or exploit the computer system. While a sandbox is intended to restrict the privileges of an
executing application, an ability to elevate or change security privileges based on defined
security policies is available within a sandbox. For example, a runtime environment can
provide an escalated privilege level for authorised applications executing within a sandbox
such that otherwise protected resources are accessible to such authorised software. In some
environments it is possible to remove the constraints of a sandbox altogether for authorised
software applications. Mechanisms therefore exist for privilege escalation of authorised
software which introduces an inherent weakness in the sandbox model if malicious software

could enjoy such escalated privilege.

Malicious software may seek to compromise the effectiveness of the sandbox by
exploiting weaknesses in the sandbox implementation. In particular, forcing a sandbox
implementation to enter an exception or error state can present many vulnerabilities. Error or
exception states in software are difficult to test exhaustively during development and the
numerous logic-routes to, and consequences of, an error or exception state can be difficult to
predict. Error or exception states usually invoke exception handling logic involving the
execution of code paths rarely traversed during normal operation. This is especially true
where such error or exception states arise due to a contrived unusual and/or unforeseen
state of operation of the sandbox. A simple example is the omission of arguments for API
calls causing null-pointer exceptions handled by exception handlers. The security of such
exception handlers may be sub-standard or not exhaustively considered/tested and therefore

presents potentially numerous new vulnerabilities for malicious software to exploit.

10

15

20

25

30

35

WO 2017/109129 PCT/EP2016/082477

5

As remedial and protective measures may be implemented in exception handling routines,
malicious software can go further to attempt to exploiting vulnerabilities to prevent or
preclude error or exception detection and handling. For example, internal method calls to
verification and validation methods may be coded-out of inline execution so bypassing error
handling logic. Alternatively, arguments for such methods may be modified or removed to
prevent error or exception handling and potentially permit access by malicious code to
protected resources.

Figure 1 is a block diagram of a computer system suitable for the operation of
components in embodiments of the present invention. A computer system such as is
illustrated in Figure 1 can be a physical or virtualised computing environment comprising one
or more of hardware, software and/or firmware such as a physical personal, micro, mini or
mainframe computer system, a network of connected computer systems, a virtualised
computer system and the like. Notably, mobile and pervasive devices such as smartphones,
tablet computers, navigation aids, mobile terminals, sensors and the like also constitute
computer systems. A central processor unit (CPU) 102 is communicatively connected to
storage 104 and an input/output (I/O) interface 106 via a data bus 108. The storage 104 can
be any read/write storage device such as a random access memory (RAM) or a non-volatile
storage device. An example of a non-volatile storage device includes a disk or tape storage
device. The I/O interface 106 is an interface to devices for the input or output of data, or for
both input and output of data. Examples of I/O devices connectable to I/O interface 106
include a keyboard, a mouse, a display (such as a monitor) and a network connection.

Figure 2 is a component diagram of a data store 202 of a computer system configured to
detect malicious code in a software application 212 in accordance with embodiments of the
present invention. The data store 202 is a storage 104 of a computer system and stores data
and instructions for execution by one or more physical or virtual CPUs 102. Notably, the data
store 202 may be an aggregate, distributed or consolidated storage mechanism or otherwise
arranged or configured from multiple physical or virtual data storage devices. The data store
202 stores an operating system 204 of the computer system providing operating system
services, facilities and functions including, for example, file handling, directory services, user
services, authentication services, security policies, user interfaces, network services,
application programming interfaces, memory management and the like as will be apparent to
those skilled in the relevant art.

Executing with the operating system 204 is a runtime environment 210 as a software
environment for the execution of software applications such as application 212. In one

example the runtime environment 210 is an application container environment for the

10

15

20

25

30

WO 2017/109129 PCT/EP2016/082477

6

execution of software applications. In an alternative example the runtime environment 210 is
a virtual machine execution environment providing virtual storage resources and one or more
virtual processors for the execution of application code. Preferably the runtime environment
210 includes libraries, classes, functions or services supporting the execution of software
applications and providing facilities to applications for their execution. Thus the runtime
environment 210 may provide application programming interfaces (APIs) for file handling,
inter alia: network communication; memory management; data structure instantiation and
handling; standard functions such as mathematical functions, string handling, data type
handling, data conversion, frequently used routines and the like; error handling; garbage
collection; compilation and/or interpretation; just-in-time compilation; synchronisation; native
interfaces; and the like. In such embodiments the runtime environment 210 can constitute all

or part of an intermediate

The runtime environment 210 receives and executes software code for an application 212.
The application 212 is provided in a form that can be executed by the runtime environment
210 such as a binary or object code representation. In some embodiments the application
212 is provided as an intermediate code representation for interpretation or subsequent
compilation, such intermediate representation corresponding to a conversion or compilation
of source code to a portable, platform neutral or common intermediate format for subsequent
interpretation or compilation for a native hardware or software environment. For example,
such an intermediate representation can be a bytecode representation. The application 212
could conceivably be provided in a source code or pre-processed source code form that
requires processing such as interpretation, conversion or translation prior to execution by the
runtime environment 210 and the runtime environment 210 may include or have associated a

relevant processing mechanism for effecting such processing.

Preferably the application 212 originates from an unknown or untrusted source such as a
website or internet server. Accordingly, in preferred embodiments of the present invention
the runtime environment 210 operates a mode of execution for the application 212 that
restricts the application 212 from access to one or more resources, services, interfaces,
facilities, subroutines, functions, classes, methods and/or the like in accordance with, for
example, a security policy such as by executing the application 212 in a sandbox
environment.

In one embodiment the runtime environment 210 is the Java Runtime Environment (JRE)
provided by Oracle Corp and the software application 212 is a Java applet such as may be
referenced and/or provided via a web-page over a network such as the internet.

10

15

20

25

30

35

WO 2017/109129 PCT/EP2016/082477

7

A monitor 208 software component also operates with the operating system 204. The
monitor 208 is a software component for monitoring one or more of the execution state
and/or data state of the runtime environment 210 at a runtime of the software application
212. For example, the monitor 208 is configured to monitor which code such as functions,
methods, subroutines and/or interfaces are called, executed or invoked in the runtime
environment 210, such code being potentially code of the runtime environment 210 itself,
libraries of the runtime environment 210 or code of the software application 212. Further, the
monitor 208 can be configured to access data of the runtime environment 210 such as, inter
alia: data structure arrangement and contents; variables; arguments; state information; the
contents of data stores associated with the runtime environment 210; execution data
structures such as stacks, heaps or the like; debugging information such; and the like. For
example, in embodiments where the runtime environment 210 is a JRE, the monitor 208 can
be a tool, function or suite employing or working with the Java Virtual Machine Tool Interface
(JVM TI) as a native programming interface for inspecting and controlling the state of a JRE
and application executing with the JRE. Notably the Monitor 208 is a trusted software
component executing in a trusted mode of operation such that its access to the state
information of the runtime environment 210 is permitted. Accordingly the monitor 208 is most
preferably secured by a security means such as a firewall, operating system task or process
separation or other suitable security means.

The data store 202 further includes a set of one or more data items 206 storing exception
trigger conditions 214 and associated resulting states 216. An exception trigger condition 214
is a condition defining a state of execution of the runtime environment 210 that will cause the
triggering of an exception. Hereinafter the term exception shall be used to refer to any
exception, error, fault or abnormal state indication occurring within an executing software
program. An exception is triggered if it is occasioned by a state of the runtime environment
210 satisfying an exception trigger condition 214. Once triggered, an exception will manifest
in some way depending on the operation of the runtime environment 210. For example, in a
JRE exceptions are managed using a “throw’/"catch” model of exception generation and
handling whereby a software routine detecting an error state can “throw” a defined exception
which may be “caught” by a defined “catch” block in a call stack. Thus error states can be
communicated within an execution call stack by passing exception data structures using the
“throw”/”catch” mechanism, with code in the call stack being able to catch exceptions for
handling or propagation back through routines in a call stack. Java exceptions are all
subclasses of the Java class “Throwable” that includes a stack trace. Thus, in a Java
embodiment, the exceptions are first generated and then thrown, and the throwing of an
exception can be said to be “dispatching” the exception. In other embodiments, the detection

10

15

20

25

30

35

WO 2017/109129 PCT/EP2016/082477

8

of an error state is a trigger of an exception, the creation of an indication, reference,
message or other data item in respect of a triggered exception can be considered to be the
generation of an exception, and the communication of the exception can be considered to be
the dispatching of an exception.

Exceptions are generated in response to a detection of a trigger state of operation such as
an error or fault state. Accordingly exceptions are associated with a state of operation that
may relate to a particular function call, a particular data item, a particular argument or similar.
Exceptions therefore have associated a condition such as a Boolean condition for
determining the existence or otherwise of a trigger state for generating and dispatching an
exception. At least a subset of these trigger conditions are stored in the data store 202 as
exception trigger conditions 214.

Following the triggering of an exception the behaviour, actions, processing or other
response of the runtime environment 210 puts the runtime environment 210 into a new state
resulting from the dispatch of the exception. This new state is herein referred to as a
resulting state 216 that results from the dispatch of an exception. For example, a resulting
state 216 can be, inter alia: the generation and dispatch of a further exception; the invocation
and execution of a particular subroutine, function or method; the storage of a particular data
item or value; the generation of a particular output, display or similar; and the like. A resulting
state 216 is stored in the data store in association with an exception trigger condition 214
relating to an exception, the dispatch of which leads to the resulting state 216.

In use at a runtime of a software application 212 in the runtime environment 210 the
monitor 208 monitors the runtime environment 210 for the identification of a state of
operation of the runtime environment 210 in which an exception is triggered as determined
with reference to the exception trigger conditions 214 of the data items 206. Where an
exception trigger condition 214 indicates such a state of operation of the runtime
environment 210 the monitor 208 further monitors the runtime environment 210 to determine
if the environment 210 enters a new state of operation according to a resulting state 216
corresponding to the exception trigger condition 214. In normal operation, the runtime
environment 210 in an exception state will transition to a corresponding resulting state 216 at
some point in time following the exception state. Where the monitor 208 detects the resulting
state 216 then the operation of the runtime environment 210 (and, accordingly, the
application 212) is determined to be acceptable and execution continues. However, where
the monitor 208 fails to detect the runtime environment 210 entering the corresponding
resulting state 216 then the operation of the exception triggering, generation and dispatching
process has been modified to exploit the runtime environment 210 and the software

10

15

20

25

30

35

WO 2017/109129 PCT/EP2016/082477

9

application 212 can be identified as including malicious code. Accordingly, a monitor 208 in
accordance with embodiments of the present invention is suitable for identifying malicious
code in a software application 212. Upon such identification of malicious code protective
and/or remedial measures can be adopted and/or the identification, nature, structure and/or
content of the application 212 can be recorded, flagged and shared within and outside the

computer system to aid detection and intervention for the malicious code in future.

Figure 3 is a flowchart of a method of detecting malicious code in a software application
212 executing with a runtime environment 210 in a computer system in accordance with
embodiments of the present invention. Initially, at step 302, the method receives a definition
of one or more runtime exception trigger conditions 214 each defining criteria for the runtime
environment 210 to enter a software exception state. Associated with each trigger condition
214 is a definition of a resulting state 216 of the runtime environment. Subsequently, at step
304, the monitor 208 monitors to execution of the runtime environment 304 to identify
satisfaction of an exception trigger condition 214 to indicate a state of operation of the
runtime environment 210 that triggers an exception. Where an exception state is detected at
step 306 the method further monitors, at step 308, the runtime environment 210 for a
resulting state 216 corresponding to the exception trigger condition 214. If the resulting state
216 is detected at step 310 the method returns to monitoring at step 304. If the runtime
environment 210 fails to enter a state corresponding to the resulting state 216 the method
continues to monitor at steps 312 and 308 for a predetermined time period. Where the
predetermined time period has passed (“timeout”) then the method concludes the
identification of malicious code in the application 212 at step 314.

Figure 4 is a component diagram of a condition generator 402 for generating runtime
exception trigger conditions 214 in accordance with embodiments of the present invention.
The condition generator 402 is a hardware, software, firmware or combination component
operating in association with, or contained within, the data store 202 of Figure 2. The
condition generator 402 is configured to parse, via a parser component 406, code 404 for the
runtime environment 210 to identify one or more conditions, the satisfaction of which lead to
the triggering of an exception in the runtime environment 210. The condition generator 402
further identifies resulting states 216 corresponding to each of the identified conditions 214.
The condition generator 402 subsequently records, via the recorder component 408,
exception trigger conditions 214 and corresponding resulting states 216 for subsequent use
by the monitor 208 of Figure 2.

Figure 5 is a flowchart of a method of the condition generator of Figure 4 in accordance
with embodiments of the present invention. Initially, at step 502, the parser 406 parses

10

15

20

25

30

35

WO 2017/109129 PCT/EP2016/082477

10

runtime environment code 404. The runtime environment code 404 may be in a source code
form, a debug-binary or debug-object code form (in which references to a source code form
are provided), an intermediate code form (such as bytecode or the like), or an object code
form. The parsing of the runtime environment code 404 identifies occurrences of exception
dispatch such as the throwing of an exception in a Java runtime environment. Where an
exception dispatch is detected at step 504 the method identifies and records execution state
information leading to the exception at state 506 as an exception trigger condition 214. The
exception trigger condition 214 defines the conditions in which the exception is triggered and
thus can be constituted as a Boolean condition based on features of the runtime environment
210 such as variable values, data item contents, function calls, method invocations and the
like. Subsequently, at step 508, the method identifies a resulting state 216 corresponding to
the exception trigger condition 214 as a state of operation of the runtime environment 210
following the trigger of the exception. The identification of a resulting state 216 may involve
waiting for a period to identify any new exceptions thrown, error indications or identifiers
generated and/or communicated, the execution of particular functions, methods or
subroutines and the like. The identified resulting state 216 is also recorded at step 508.

The arrangement of Figure 4 and the method of Figure 5 will now be considered with
reference to an exemplary subset of runtime environment code 404. Figure 6 is a depiction of
a subset of exemplary runtime environment code 404 in accordance with embodiments of the
present invention. The runtime environment code 404 includes four separate code blocks
620, 624, 626 and 628 that may or may not be within the same module, class, function,
procedure routine or library. A first code block 620 includes a function FUNCTION_A
receiving two parameters arg1 and arg2. FUNCTION_A includes a test of a condition 602
based on arg1 the result of which can trigger the dispatch of a new exception EXCEPTION_1
at 604. Second code block 624 includes a function FUNCTION_B at 606 that triggers the
dispatch of a new exception EXCEPTION_2 at 608. Code block 626 us configured to catch
EXCEPTION_1 and in response to catching EXCEPTION_1 calls a function
ERROR_HANDLER at 610. Code block 628 is configured to catch EXCEPTION_2 and in
response to catching EXCEPTION_2 throws a further exception EXCEPTION_3 at 612.

Considering now the method of Figure 5 for the exemplary runtime environment code 404
of Figure 6. Initially at step 502 the method parses the runtime environment code 404
identifies the dispatch of an exception EXCEPTION_1 at 604 in the function FUNCTION_A
and a corresponding catch of EXCEPTION_1 in code block 626. At step 506 the method
identifies the condition “arg1 = null” at 602 as an exception trigger condition 214 and records
this to a data store. This condition is readily identified since it directly leads to the generation
of the exception at 604. At step 508 the method identifies the function call to function

10

15

20

25

30

35

WO 2017/109129 PCT/EP2016/082477

11

ERROR_HANDLER at 610 as a resulting state 216 corresponding to the exception trigger
condition 214 for EXCEPTOIN 1 and records this to the data store.

The method of Figure 5 further identifies, by parsing at step 502, the dispatch of an
exception EXCEPTION_2 at 608 in the function FUNCTION_B and a corresponding catch of
EXCEPTION_2 in code block 628. At step 506 the method identifies the execution of
FUNCTION_B as directly leading to the trigger of EXCEPTION_2 and accordingly identifies a
condition of the execution of FUNCTION_B as an exception trigger condition 214 and
records this to the data store. At step 508 the method identifies the dispatch of a further
exception EXCEPTION_3 at 612 as a resulting state 216 corresponding to the exception
trigger condition 214 for EXCEPTION_2 and records this to the data store.

Thus it can be seen that the exemplary method of the condition generator 402 is suitable
for identifying exception trigger conditions 214 and corresponding resulting states 216 for
defining the data items 206 of Figure 2. In a preferred embodiment the method of Figure 5 of
the condition generator 402 is used to parse substantially all code for a runtime environment
210 though a subset of the code may be sufficient. In this way the conditions for triggering
and dispatching exceptions by the runtime environment 210 are defined extrinsic to the
runtime environment 210 itself such that any modification of, misuse of, tampering with or
manipulation of the runtime environment 210 can be detected extrinsic to the environment

based on an analysis of the environment beforehand.

The operation of an exemplary embodiment of the invention will now be considered in
detail. Figure 7 is an illustrative component diagram of an arrangement in accordance with
an exemplary embodiment of the present invention. A network 750 such as a wired, wireless
communication means provides a web page 752 for receipt by a computer system executing
a JRE 754. The JRE 754 includes a logical sandbox 756 for the execution of a java applet
766 received and/or referred to by the web page 752. The applet 766 is thus untrusted
and/or from an unknown source and its operation is restricted to the functions, facilities and
resources made available to it via the sandbox 756. Restrictions can include restrictions on
access to a file system of the computer system, restrictions on access to network facilities,
restrictions on access to libraries and the like.

The JRE 754 includes a security manager 758 for providing security facilities for the JRE
754. For example, the security manager 758 performs a permission check for actions
requested by the applet 766 to determine if the actions are permitted by a security policy 760
applicable for the applet 766 in the sandbox 756. The arrangement further includes a monitor
764 substantially as hereinbefore described and implemented to access state information of
the JRE 754 via a Java Virtual Machine Tools Interface 762.

10

15

20

25

30

35

WO 2017/109129 PCT/EP2016/082477

12

In the exemplary arrangement of Figure 7 the applet 766 includes malicious code for
elevating the security privileges of the applet in the sandbox 766 by calling a
setSecurityManager method of the JRE 754 with a null argument. Such a method call would
result in the elevation of security privileges by replacing the security manager 758 with a new
security manager implementing a more liberal security policy 760 except that such an
outcome is prevented by the JRE due to the null argument. The null argument is detected by
the JRE 754 resulting in an exception such as a NullPointerException which itself results in a
Java.Security.AccessControlException. However, in the exemplary arrangement of Figure 7
the applet 766 is further configured to exploit a weakness in the JRE 754, the security
manager 758, an operating system of the computer system or any other aspect of the
computer system to modify the operation of the JRE 754 to prevent the throwing of a
NullPointerException. The exact nature of the exploit and weakness are not relevant here
except that they may include a day-zero vulnerability being a vulnerability as yet unknown to
the developers of the runtime environment and therefore representing a security exposure. In
the arrangement of Figure 7 the monitor 764 has access to a definition of an exception
trigger condition 214 identifying that a call to the setSecurityManager method with a null
argument is a condition for triggering an exception. Further, the exception trigger condition
214 has associated a resulting state 216 identifying the dispatch of a
Java.Security.AccessControlException as a result of the triggered exception. The operation
of the monitor 764 in accordance with an embodiment of the present invention to detect the
exploitation of the JRE 754 will now be described with reference to Figure 8.

Figure 8 is an illustrative flow diagram of the exemplary arrangement of Figure 7 in use.
Initially, at step 800, the monitor 764 receives exception trigger condition 214 definitions
including corresponding resulting states 216 as defined above. At step 812 the monitor 764
commences monitoring of the JRE 754 via the JVM Tl for the identification of an exception
trigger condition.

At step 802, the web page 752 is loaded and applet 766 is instantiated in the JRE 754 for
commencement of execution at 804 in the sandbox 756. At step 806 the applet 766 calls
setSecurityManager with a NULL argument. At step 808 the JRE 754 invokes the
setSecurityManager method with a NULL argument which results in a checkPermission
method call. The checkPermission method call includes arguments for checking if the applet
766 has the required privileges to change the security manager to a new security manager
identified by a NULL argument. At step 814 the security manager 758 executes the
checkPermission method which, due to the NULL argument, would normally result in a
NullPointerException. In the exemplary embodiment of Figure 8 no such

10

15

20

25

30

WO 2017/109129 PCT/EP2016/082477

13

NullPointerException is generated because the JRE 754 has been exploited by the applet
previously and the NullPointerException has been prevented by the exploit.

However, at step 816 the monitor 756, monitoring the JRE 754 via the JVM TI, identifies
that an exception trigger condition 214 has been satisfied: the setSecurityManager call with a
NULL argument is expected to trigger a NullPointerException with the resulting state of the
dispatching of a Java.Security.AccessControlException. Accordingly, the monitor 764
continues to monitor the JRE 754 at step 818 for a predetermined time period to detect the
resulting state 216 (i.e. the throwing of a Java.Security.AccessControlException). At step 820
the monitor 764 concludes its monitoring with a determination that the resulting state 216
was not detected (no Java.Security.AccessControlException was thrown) and accordingly at
step 822 the monitor 764 identifies that the applet 766 includes malicious code. Optionally, at
step 824, the monitor 764 retrieves details of the applet 766 with reference to the originating
web page 752. In other embodiments the applet 766 can be isolated, terminated, further
monitored or otherwise processed for the purpose of intrusion detection, prevention and/or

remediation.

Insofar as embodiments of the invention described are implementable, at least in part,
using a software-controlled programmable processing device, such as a microprocessor,
digital signal processor or other processing device, data processing apparatus or system, it
will be appreciated that a computer program for configuring a programmable device,
apparatus or system to implement the foregoing described methods is envisaged as an
aspect of the present invention. The computer program may be embodied as source code or
undergo compilation for implementation on a processing device, apparatus or system or may

be embodied as object code, for example.

Suitably, the computer program is stored on a carrier medium in machine or device
readable form, for example in solid-state memory, magnetic memory such as disk or tape,
optically or magneto-optically readable memory such as compact disk or digital versatile disk
etc., and the processing device utilises the program or a part thereof to configure it for
operation. The computer program may be supplied from a remote source embodied in a
communications medium such as an electronic signal, radio frequency carrier wave or optical

carrier wave. Such carrier media are also envisaged as aspects of the present invention.

It will be understood by those skilled in the art that, although the present invention has
been described in relation to the above described example embodiments, the invention is not
limited thereto and that there are many possible variations and modifications which fall within
the scope of the invention.

WO 2017/109129 PCT/EP2016/082477

14

The scope of the present invention includes any novel features or combination of features
disclosed herein. The applicant hereby gives notice that new claims may be formulated to
such features or combination of features during prosecution of this application or of any such
further applications derived therefrom. In particular, with reference to the appended claims,

5 features from dependent claims may be combined with those of the independent claims and
features from respective independent claims may be combined in any appropriate manner

and not merely in the specific combinations enumerated in the claims.

10

15

20

25

30

35

WO 2017/109129 PCT/EP2016/082477
15

CLAIMS

1. A computer implemented method of detecting malicious code in a software
application executing with a runtime environment in a computer system, the method
comprising:

receiving a definition of one or more runtime exception trigger conditions, each trigger
condition defining criteria for the runtime environment to enter a software exception state and
having associated a definition of a resulting state of the runtime environment having entered
the exception state;

monitoring the runtime environment to detect the satisfaction of a detected trigger
condition by the runtime environment and, in response to a determination that the runtime
environment fails to enter a resulting state associated with the detected trigger condition,
identifying the software application as including malicious code.

2. The method of claim 1 wherein one or more exception trigger conditions include a
Boolean condition.
3. The method of any preceding claim wherein one or more definitions of a resulting

state include an identification of an exception dispatched by the runtime environment.

4, The method of any preceding claim wherein one or more definitions of a resulting

state include an identification of a function executed by the runtime environment.

5. The method of any preceding claim wherein the application is received via a

computer network.

6. The method of any preceding claim further comprising, in response to the
identification that the software application includes malicious code, terminating execution of
the software application.

7. The method of any preceding claim further comprising, in response to the
identification that the software application includes malicious code, generating an indication
of the malicious code.

10

15

20

25

WO 2017/109129 PCT/EP2016/082477

16

8. A computer system to detect malicious code in a software application executing with
a runtime environment comprising a processor and a data store, wherein the processor is
adapted to undertake the steps of:

receiving a definition of one or more runtime exception trigger conditions, each trigger
condition defining criteria for the runtime environment to enter a software exception state and
having associated a definition of a resulting state of the runtime environment having entered
the exception state;

monitoring the runtime environment to detect the satisfaction of a detected trigger
condition by the runtime environment and, in response to a determination that the runtime
environment fails to enter a resulting state associated with the detected trigger condition,
identifying the software application as including malicious code.

9. A computer system including a software runtime environment for executing a
software application, the computer system comprising:

a data store storing a definition of one or more runtime exception trigger conditions,
each trigger condition defining criteria for the runtime environment to enter a software
exception state and having associated a definition of a resulting state of the runtime
environment having entered the exception state, and

a processor executing computer program code to monitor the runtime environment in
execution to detect the satisfaction of a detected trigger condition by the runtime environment
and, in response to a determination that the runtime environment fails to enter a resulting
state associated with the detected trigger condition, identifying the software application as

including malicious code.

10. A computer program element comprising computer program code to, when loaded
into a computer system and executed thereon, cause the computer to perform the steps of a
method as claimed in any of claims 1 to 7.

WO 2017/109129 PCT/EP2016/082477

116

FIGURE 1
CPU STORAGE lle;
102 104 106

BUS 108 * f

FIGURE 2
Data Store 214 216
202~ S’ ________ g L

i N

: Exception Trigger <> Resulting | 206

| Condition State :

| : : >

: Exception Trigger < Resulting [

I |Condition State :

l_ ________________________ //
204 (4~ Operating System
208 .|_{~] Monitor <

-

| Runtime Environment

|§
o
/

\

S
/
\
\

— Software Application

WO 2017/109129 PCT/EP2016/082477

2/6

FIGURE 3

START

Receive exception
trigger condition
definition(s)

l

Monitor Runtime
—»| Environment for

Trigger Condition

|oo
o
N

(@8]
o
=

I

06

Trigger
condition
detected?

v

Monitor Runtime [
Environment for
Resulting State

308
N

08
310 O 312
Resulting state 5>/_ . .
detected? Noa%meout :

YES YES

Malicious Code L~
Identified

STOP

(¢8)
—
S

WO 2017/109129 PCT/EP2016/082477

3/6

FIGURE 4

402 .~ Condition Generator

Runtime Parser
Environment Code

2
)
L]
(
.

v

Recorder

Exception Trigger
206 Conditions &
Resulting States
FIGURE 5

(START)

A 4

Parse runtime
environment code

-
o
N

Dispatch of
exception?

NO

YES 204
v
Record execution
state information
leading to the
exception

v

Define and record
resulting state for
exception

STOP

o
(]
(&)

o
]
(03]

WO 2017/109129

4/6

FIGURE 6

PCT/EP2016/082477

404~ Runtime Environment Code
FUNCTION A (argl, arg2)
= If argl = null T 620
604 Throw EXCEPTION 1
e N
606 I, s BN
FUNCTION B ()
Throw EXCEPTION 2 T 624
608 — =
N
Catch EXCEPTION 1
Call ERROR HANDLER 1T~ 626
610 — | — S
Catch EXCEPTION 2
612 Throw EXCEPTION 3 ~ |~ 628

WO 2017/109129 PCT/EP2016/082477

5/6

FIGURE 7

750

—

752 Web Page

162 764

S S
754._~ Java Runtime w1 Monitor

Environment Tl
Sandbox 4
756 4~ 766~ Java Applet
v < >
758 I~ Security Manager
Security
Policy

/
760

PCT/EP2016/082477

WO 2017/109129

6/6

728~ Sliejep jo|ddy sAsleY <

778~ Paljjuspl apod snoidle

8"

[c0)
—
0|

pa1091ep
J0U 91B1S BuIjNsay

Burioluo

uondeox3|0JU0DHSSa0Y
<- uo1daox3.4a3uI0d|INN

:paoslep
uonIpuoo Jabbu |

uonIpuod
¢8> Jebbuy Jop JuswuodiAnue <
awinunJt JOJUON

(---)uoissiwiagnooyo

1

SUOIIUISP UOIIPUOD

19661} uondeoxe aaleosy Y008

Y9.~"

JOLUOIN

8G/.

_ v|ww ("r)uoissiwiagyoayo
_ (JInu)seBeueAlinoagIes «
_ | S
808
| |
! 1
sebeuepy | __ | wswuoldaug
funoes |94 swnuny
8 34NOId

(lInu)sebeuenAiinoegies ~gpg

1
UOIIND8X8 92UBLIWOYD «—

“v~018

S

708

1o|ddy

peo abed gop
_ S

¢08
abed gop

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2016/082477

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/53 GO6F21/56
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

AL) 19 May 2005 (2005-05-19)
the whole document

A US 8 713 631 B1 (PAVLYUSHCHIK MIKHAIL A 1-10
[RU]) 29 April 2014 (2014-04-29)
column 4, Tine 21 - column 6, line 3

A US 2005/108562 Al (KHAZAN ROGER I [US] ET 1-10

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

13 February 2017

Date of mailing of the international search report

22/02/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Meis, Marc

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2016/082477
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 8713631 Bl 29-04-2014 (N 103593608 A 19-02-2014
DE 202013102179 Ul 01-08-2013
FR 3000249 A3 27-06-2014
RU 2012156443 A 27-06-2014
US 8713631 B1 29-04-2014
US 2005108562 Al 19-05-2005 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - wo-search-report
	Page 25 - wo-search-report

