发明名称
用于钻孔感应的方法及设备

摘要
本发明提供了一种用于感应地下数据的设备及方法。本发明的一个实施例包括连接于输送装置(112)的梭子(204)，其中输送装置和梭子用于向井下推送用于检测地震数据的钻孔中。梭子包括传感器总成(308)，其优选与梭子声学隔离。传感器总成包括传感器阵列和磁体夹钳(306)。传感器部分可包括几个梭子，每个梭子包含至少一个传感器。在一个实施例中，传感器可以是光纤传感器。磁体夹钳可用于控制夹持，并且将传感器总成、梭子和作为典型钻孔套管的邻近结构声学耦接在一起。磁体夹钳适于从邻近结构上松脱并断开梭子，从而向井上收回而用于后续使用。
1. 一种钻孔地震感应设备，包括:
输送系统工具，具有传感器部分，并且在该输送装置中、在所述传感器部分下具有弱点，该工具构建为在回收期间若所述工具在该弱点以下被粘住则在输送装置中在该弱点处在所述传感器部分下脱开。

2. 如权利要求 1 所述的钻孔地震传感设备，还包括:
张力传感装置，可用于感应弱点处输送装置中的张力。

3. 如权利要求 1 所述的钻孔地震传感设备，还包括:
梳子，沿所述传感器部分连接于所述输送装置，用于布置在钻孔中从而感测地震数据，所述梳子本体具有地震传感器总成，所述传感器总成具有可选择性地将该电脉磁性夹持在相邻结构用于将该梳子与该相邻结构声学耦接在一起的磁体夹钳。

4. 如权利要求 3 所述的钻孔地震传感设备，其中所述输送装置可用于将梳子放入井下至钻孔中用于感测地下地震，而所述输送装置包括与传感器总成可通讯地连接的通讯线，用于将地震数据传达至地面。

5. 如权利要求 3 所述的钻孔地震传感设备，其中所述磁体夹钳还用于将传感器总成磁性夹于梳子，用于将传感器总成、梳子和相邻结构声学耦接在一起。

6. 如权利要求 3 所述的钻孔地震传感设备，其中所述梳子中的所述传感器总成由声学隔离系统悬挂，该声学隔离系统悬挂设置在所述梳子与所述传感器总成之间，并且可用于将通过梳子和输送装置传播的声波从所述传感器总成隔开。

7. 如权利要求 6 所述的钻孔地震传感设备，其中所述声学隔离体包括细金属线悬挂和悬簧。

8. 如权利要求 3 所述的钻孔地震传感设备，其中所述传感器总成还包括地震传感器阵列，该地震传感器阵列由从水中听音器、地震检波器、三轴地震传感器、光纤地震传感器或地震检波器加速计中选取的地震传感器构成。

9. 如权利要求 3 所述的钻孔地震传感设备，其中该传感器阵列为光纤地震检波器阵列。
10. 如权利要求9所述的钻孔地震传感器设备，其中所述光纤三轴地震检波器地震传感器阵列还包括与其声学耦接的换能器，而所述换能器可用于响应调制光波作为振动器的激励所述地震检波器，用于进行井下校准。

11. 如权利要求3所述的钻孔地震传感器设备，其中所述磁体夹钳包括：
 永久磁体，往复地安装在所述传感器总成中；以及
 作动器，可用于往复地使所述永久磁体重新取向，其中所述往复地重新取向相往复地夹持和松开梭子。

12. 如权利要求11所述的钻孔地震传感器设备，其中所述作动器为液压作动器，而所述磁体为沿径向极化并可旋转地安装在磁极片之间的圆柱形磁体，所述液压作动器可于关于其圆柱的轴往复旋转圆柱形磁体，用于选择性地磁性将所述梭子靠近邻近结构夹住和用于选择性地松脱。

13. 如权利要求11所述的钻孔地震传感器设备，其中所述作动器为电子作动器，而所述磁体为沿径向极化并可旋转地安装在磁极片之间的圆柱形磁体，所述电子作动器可于关于其圆柱的轴往复旋转圆柱形磁体，用于选择性地磁性将所述梭子靠近邻近结构夹住和用于选择性地松脱。

14. 如权利要求11所述的钻孔地震传感器设备，其中所述输送装置包括：
 传感器阵列通讯线，可通讯地连接于所述传感器总成与所述地震检波器传感器系统之间，用于载运通过传感器总成感测的地震数据并向井上传送至地震检波器传感器系统；以及
 作动器控制线，可通讯地连接于所述作动器与用于控制作动器的作动器控制系统之间，用于控制夹持和松脱。

15. 如权利要求1所述的钻孔地震传感器设备，其中所述输送装置为管道输送装置，而所述梭子通过弓形弹簧连接至所述管道输送装置外部，该弓形弹簧用于选择性地将所述梭子从所述管道输送装置伸出和相对于所述管道输送装置收回。

16. 如权利要求1所述的钻孔地震传感器设备，其中所述梭子嵌入该输送装置中，并且所述梭子还包括通过弓形弹簧连接至主传感器梭子的外支架部分，使得该弓形弹簧的压缩将该主传感器梭子收回支架中，而弓形弹簧张力的释放将梭子从输送装置和支架向外伸出。

17. 如权利要求1所述的钻孔地震传感器设备，其中该梭子还包括通过弓形弹簧连接至主传感器梭子的外支架部分，使得该弓形弹簧的压缩将该主传
传感器收回支架中，而弓形弹簧张力的释放将主传感器梭子从输送装置和支架向外伸展。

18. 如权利要求1所述的钻孔地震传感设备，其中所述梭子连接于可操作地连接于线轴机构的输送装置，所述线轴机构可用于选择性地向井下降低所述输送装置和连接于其上的梭子至钻孔中，并且还可用于选择性地收回所述输送装置。

19. 如权利要求18所述的钻孔地震传感设备，其中所述输送装置还包括：

压力/温度传感器，连接于其上并通过所述输送装置可通讯地连接至压力/温度监控系统；

分布式温度传感器，连接于其上并通过所述输送装置可通讯地连接至分布式温度传感器系统；以及

井下电池，连接于其上，用于提供井下电源。

20. 一种用于检测钻孔地震数据的方法，包括步骤：

提供输送系统，具有传感器部分，并且在该输送装置中、在所述传感器部分下具有弱点，该弱点用于在回收被粘住的工具期间在弱点处在传感器部分下断开输送装置；

在钻孔中向井下输送其中具有地震传感器总成的梭子，用于检测地震数据，其中所述梭子连接至输送装置，而其中所述地震传感器总成具有可用于选择性地将梭子磁性夹在邻近结构上的磁体夹钳；

利用所述磁体夹钳选择性地将所述梭子夹在邻近结构上，将传感器总成、梭子以及邻近结构声学耦接在一起；以及

利用所述传感器总成检测地震数据。

21. 一种用于检测钻孔地震数据的方法，包括步骤：

提供输送系统，具有传感器部分，在并且在该输送装置中、在所述传感器部分下具有弱点，该弱点用于在回收被粘住的工具期间脱开；

在钻孔中向井下输送其中具有地震传感器总成的梭子，用于检测地震数据，其中所述梭子连接至输送装置；

用所述传感器总成检测地震数据；

利用张力感应装置感应弱点处输送装置中的张力；以及

在完成地下地震数据检测时选择性地利用所述输送装置收回所述梭子。
22. 如权利要求 21 所述的用于检测钻孔地震数据的方法，还包括步骤：
若被粘住，则打捞输送系统工具。

23. 如权利要求 21 所述的用于检测钻孔地震数据的方法，还包括步骤：
若输送系统工具在传感器部分以下的部位被粘住，则在弱点处断开该输送装置。

24. 如权利要求 21 所述的用于检测钻孔地震数据的方法，其中在钻孔中设置其中具有地震传感器总成的步骤还包括步骤：
通过在轴承与传感器总成之间设置声学隔离体将通过轴承和输送装置传播的声波从所述传感器总成隔开。

25. 如权利要求 24 所述的用于检测钻孔地震数据的方法，其中所述声学隔离系统包括细金属线悬挂和悬簧。

26. 如权利要求 21 所述的用于检测钻孔地震数据的方法，其中所述传感器总成包括地震传感器阵列，该地震传感器阵列由从水中听音器、地震检波器、三轴地震传感器、光纤地震传感器或地震检波器加速计中选取的地震传感器构成。

27. 如权利要求 21 所述的用于检测钻孔地震数据的方法，其中所述地震传感器总成为光纤地震检波器地震传感器阵列。

28. 如权利要求 21 所述的用于检测钻孔地震数据的方法，其中所述磁体夹钳包括永久磁体，并且还包括步骤：
选择性地启动作动器，用于往返地使永久磁体重新取向并使永久磁体的磁力线改变方向，从而将螺子夹在邻近结构上，用于检测地震数据，以及
选择性地关闭所述作动器，往复地使永久磁体重新取向并使永久磁体的磁力线改变方向，从而在地震检测完毕后从邻近结构上松开螺子。

29. 如权利要求 28 所述的用于检测钻孔地震数据的方法，还包括步骤：
利用绞车机构向井下选择性地将其上连接有所述螺子的所述输送装置下放，其中所述输送装置连接于所述绞车机构；以及
利用连接于所述绞车机构的所述输送装置向井上选择性地收回所述螺子。

30. 如权利要求 28 所述的用于检测钻孔地震数据的方法，还包括步骤：
通过通讯地连接在所述传感器总成与钻孔传感器系统之间的传感器通讯线向井上将通过传感器总成检测到的地震数据传送至钻孔传感器系统；
以及

通过可通讯地连接在所述作动器与作动器控制系统之间的作动控制线控制所述作动器。

31. 一种用于获得地下地震数据的钻孔地震传感系统，包括：
输送装置，具有传感器部分，并且在该输送装置中、在所述传感器部分下具有弱点；
张力感应装置，可用于在该输送装置处于传感器部分以下的部分被粘住时感应弱点处输送装置中的张力；

32. 如权利要求 31 所述的用于获得地下地震数据的钻孔地震传感系统，其中所述输送装置包括一根传感器通讯线并还包括：
至少一个梭子，沿所述传感器部分连接于所述输送装置，每个梭子包括至少一个地震传感器总成，所述传感器总成可通讯地连接至所述至少一根传感器通讯线，用于向井上传送地震数据，所述至少一个传感器总成每个具有磁体夹钳，该磁体夹钳可用于将所述至少一个梭子磁性夹在近邻结构上和将其松脱；以及
绞车机构，连接于所述输送装置并可用于向井下将所述输送装置放下，并且还可用于向井上收回所述输送装置。

33. 如权利要求 32 所述的用于获得地下地震数据的钻孔地震传感系统，其中所述磁体夹钳包括永久磁体和有效连接于所述永久磁体的作动器，所述作动器可用于往复地使所述永磁体重新取向，用于夹住和松脱所述至少一个梭子。

34. 如权利要求 33 所述的用于获得地下地震数据的钻孔地震传感系统，其中所述至少一根传感器通讯线可通讯地连接于所述至少一个传感器总成与地震检波器传感器系统之间，用于传送由所述至少一个传感器总成检测的地震数据，并将其从所述至少一个传感器总成向井上传送至用于监视和控制的地震检波器传感器系统，而作动器控制线与所述缆线一体并可通讯地连接于所述作动器与用于控制所述作动器启动的作动器控制系统之间，用于控制夹持和松脱。

35. 如权利要求 32 所述的用于获得地下地震数据的钻孔地震传感系统，还包括：
声学隔离体，可连接在所述至少一个传感器总成与所述至少一个梭子之
间，所述至少一个传感器总成由所述声学隔离体悬挂，用于将通过梭子和线缆传播的声波从所述至少一个传感器总成隔开。

36. 如权利要求 32 所述的用于获得地下地震数据的钻孔地震传感系统，其中所述至少一个传感器总成包括地震传感器阵列，该地震传感器阵列由从水中听音器、地震检波器、三轴地震传感器、光纤地震传感器或地震检波器加速计中选取的地震传感器构成。

37. 如权利要求 32 所述的用于获得地下地震数据的钻孔地震传感系统，其中所述传感器总成还包括光纤地震检波器阵列，该光纤地震检波器阵列具有与其声学耦接的换能器，所述换能器可用于响应井下校准信号作为振动器激励所述传感器阵列。

38. 一种用于收回井下感测设备的方法，包括步骤：
 设置连接于输送装置的传感器部分；
 在输送装置中传感器部分以下设置弱点；
 从邻近的钻孔结构上松脱传感器部分；
 在被粘住时向输送装置施加张力；
 在所述弱点处断开输送装置；以及
 通过绞动所述输送装置从井下回收传感器部分。

39. 一种用于感测钻孔数据的方法，包括以下步骤：
 在钻孔中输送装置上部署梭子，所述梭子包括可通过通地连接至用于向井上传送钻孔数据的至少一根传感器通讯线的至少一个传感器总成，所述至少一个传感器总成具有可以将所述至少一个传感器总成磁性夹在邻近结构上的磁体夹钳；
 在输送装置中所述传感器部分之下设置弱点；
 选择性地向井下连接于所述输送装置的所述梭子绞放下，其中所述输送装置连接于绞车机构；以及
 使用连接于所述绞车机构的所述输送装置选择性地向井上收回所述梭子。

40. 如权利要求 39 所述的用于感测钻孔数据的方法，还包括利用张力感应装置在弱点处感应输送装置中的张力，其中张力感应装置可通讯地连接至至少一根用于向井上输送张力感应数据的通讯线。

41. 如权利要求 39 所述的用于感测钻孔数据的方法，其中所述磁体夹
钳包括永久磁体和有效连接于所述永久磁体的作动器，并且操作所述作动器，从而往复地使所述永久磁体重新取向，用于夹住和松脱所述至少一个梭子。

42. 如权利要求 41 所述的用于感测钻孔数据的方法，还包括设置作动器控制线，与所述输送装置一体并且可通讯地连接所述作动器和用于控制所述作动器的启动的作动器控制系统从而控制夹持和松脱；以及还包括可以在所述至少一个传感器组成与所述至少一个梭子之间连接声学隔离体。

43. 一种用于感测钻孔地震数据的方法，包括步骤：

提供输送系统，具有传感器部分，并且在该输送装置中、在所述传感器部分下具有弱点，用于在回收期间如果输送系统工具在传感器部分下面的部分被粘住则在弱点处断开输送装置；

在钻孔中向井下输送其中具有地震传感器总成的梭子，用于感测地震数据，其中所述梭子连接至输送装置；

选择性地将所述梭子夹在邻近结构上；以及

利用所述传感器总成感测地震数据。
用于钻孔探测的方法及设备

技术领域
本发明涉及声学传感器构造及用于有效记录地下地震数据的方法的发展，并且更加特别地涉及用于记录钻孔地震数据的声学传感器的利用。

背景技术
钻孔地震数据可以用于在钻取生产井前详细地面地震数据。还可以在连续或循环的基础上集中钻孔地震数据，从而在井的生产期间监控地下岩层和油层。在连续的基础上集中数据将对优化气或油沉积物的抽取提供帮助。

钻孔地震测量通过在钻孔内设置接收器并操作表面处的震源产生声波来进行。通常，接收器布置在梭子（shuttle）内，并且在测量期间部署在井下，随后移除。钻孔地震测量可以获得的信息量可通过在井下部署梭子的安排来限制。

已知，将声学传感器或接收器永久布置于井下从而在井的生产期间连续监控地震数据。传感器通常配置有监控工具，该监控工具延伸于井下并一体化连接于钻孔套管。连接装置通常为机械表面力夹钳装置，而传感器通常通过生产管道安置于与传感器支架或从主流路横向设置的生产管道相连的侧过道或横向延伸部分中。例如，见于 2001 年 7 月 3 日授予 Reimers 等人的美国专利 No. 6,253,848。诸如 Reimers 等人教导的永久设置监控工具通常无法在不破坏井眼导致工具或传感器无法用于未来的钻孔地震操作的情况下取回或移除。

用于在井下永久性部署地震传感器阵列的多种监控工具为单级监控工具。然而，由于复杂的地下岩层和地层以及多生产区和油层，还需要多级监控工具用于同时监控各个层面。部署传感器阵列的监控工具通常包括多个传感器支架或梭子，每个梭子容纳至少一个传感器。虽然期望使用多个梭子，但过多的梭子数量可以导致非常庞大且难以部署的过分复杂的工具。梭子的总数量通常最终由井下传感器、遥测装置和夹钳系统的的综合功耗需求来限
定。通常，在试图增加梳子的数量时，上述基于一般工具体系的工具会迅速变得庞大且复杂，产生昂贵且难以部署的系统。由于系统的成本和较高的井内损失风险，将这种系统永久部署在井内是不实际的。梳子的数量也由于功耗要求、成本和部署的难易程度而受到限制。已知设计用于永久性部署传感器阵列的钻孔工具，包括利用光纤传感器的工具在内，通常包括用于将传感器阵列连接至钻孔套管的表面力夹钳连接装置。这种类型的连接装置在不同位置产生了无法收回或再利用监控工具。不易在钻孔中可移动地部署且无法收回并在其它钻孔中再利用的钻孔传感设备是问题的所在。

类似于钻孔测井的领域，发送器和接收器的数量以及发送器与接收器之间的距离也已经增加，从而改善探测更加远离钻孔的未受干扰的岩层中的岩层特性的能力。获得更深层感应程度的一种方法是增加源与接收器之间的距离，使得接收器可以探测到钻孔中更远距离返回的信号。增大源与接收器之间的距离的问题在于增大的工具尺寸可以导致部署困难程度的增大、用于测井的时间周期更长、井的停机时间更长、以及成本更高。因此，存在对于不增大工具尺寸而扩展声源与接收器之间的距离、或利用额外的接收器的需要。

使用磁体夹钳装置作为连接方法也可以用于用于连接传感器。然而，在井下或在井口磁性强的夹持或松开传感器的能力无法解决所有的回收问题，因为大多数时间，工具，尤其是重物或主电子设备盒粘在井下。磁体夹钳将无法单独解决被粘住的工具问题。

因此，本发明可能用于克服上述问题中的一种或多种。

发明内容

本发明的一个实施例为可移动地部署传感器阵列的设备及方法，包括将盘绕管或诸如缆线、金属线或滑线的其它适用的输送装置深入测量钻孔中的步骤，其中盘绕管或其它适用的输送装置包括多个连接于其上的梳子，且其中梳子包括地震传感器系统和处于非磁性夹持状态的磁体夹钳，随后将多个梳子磁性夹在钻孔套管上。该方法还可包括磁性松脱该多个梳子并从钻孔中收回移动梳子的部署机构的步骤。该方法还可包括磁性松脱该多个梳子、在钻孔中重新定位梳子，以及再次夹住梳子的步骤。部署、夹持、再定位、再夹持中的任何步骤可在地面控制执行。

另外，如上所述，磁体夹钳可用于将梳子连接至钻孔套管。磁体夹钳与
工业中应用的典型机械表面力夹持装置相比更加紧凑，因为其不包括暴露在
梭子外的机械部件的啮合和移动。另外，磁体夹钳不必位于离开油井的主流
道的侧道流中，由于使用消除了对机械装置的需要，由此进一步减小了尺
寸。磁体夹钳的一个实施例包括地面液压启动控制系统，用于液压控制井下
作动器，该作动器用于定位磁体从而结合或释放梭子。也可以使用电子启
动控制系统。磁体夹钳为对于典型机械表面力夹持的明显改善，因为可以回收
地震传感器系统并在不同的钻孔中使用。然而，上述磁体夹钳未解决工具被
粘住的问题。

另一实施例包括具有其中连接有各种传感器的传感器部分的输送装
置和小外径传感器部分下的输送装置的弱点，其中较大外径的主电子设备
盒、重量或其它较大部件在弱点下连接于输送装置。此实施例便于打捞被粘
住的工具，且如果需要可以在弱点处断开输送装置的上部分。

本发明的另一实施例将弓形弹簧结合于梭子，从而使方便结合和断开传
感器。弓形弹簧可用于将梭子从输送装置朝向钻孔套管伸出台，以及相对于输送
装置收回梭子。

一个实施例利用了液压力取代电力控制磁体夹钳的位置。在此实施例
中，来自地面的液压定位了控制磁体位置的作动器，从而进行夹持和松脱。
绞车的金属线和多个梭子可在松脱状态下或夹持状态下向井下放开。在永久监
控应用中，可激励磁体夹钳，因为在这种条件，液压启动或关闭将不再需
要。对于永久监控应用，磁体可以在启动状态下下放，并在形成井眼的同时
直接部署于井中。

本发明的一个实施例为一种设备及方法，其利用了光纤通讯和与沿盘绕
管或电缆、金属线、油线或其它适合的井下部署手段连接的多个梭子装置结
合的传感器系统。梭子提供了用于传感器的支架，每个梭子具有磁性结合夹
钳，其使得本发明能够在井下有效且可移动地部署地震传感器阵列或将的地
震传感器阵列放出至测量钻孔中，用于记录多级三维钻孔地震数据。钻孔监
视或部署工具包括盘绕管、电缆、金属线、油线或其它适合的输送装置，用
于将多个梭子装置伸出，该梭子装置包括光纤地震传感器，其中梭子装置具
有磁性结合夹钳，可以将梭子固定地结合至钻孔套管，并使其声学耦接。磁
体夹钳还可将梭子从钻孔套管上松脱和断开。

当本发明利用光纤传感器系统时，其受益于光纤系统提供的多个优点。
例如，光纤系统可以无源工作，由此无需井下电子设备和用于操作井下电子设备的来自地面的电源。消除井下电子设备的能力改善了井下传感器系统的可靠性，特别是在高的温度环境下。操作传感器阵列所必需的电子设备可位于地面处，由于地面电子设备可以相对较贵，因此可以由其它油井所共享，为多个井下光纤传感器系统所利用。另外，光纤技术允许外形更小且重量更轻的系统。另外，所有这些能力对于需要高性能传输能力的大传感器阵列的声学或地震成像应用十分有利。就此方面，光纤传感器还可以支持通过光纤线路进行多功能测量。此特性在金属线或缆线应用、以及生产和岩层监视传感器系统中具有很大的优点。

本发明的另一实施例包括校准钻孔传感器系统的方法，包括在输送系统上设置光纤传感器部分，该输送系统包括光纤通讯纤维，其中该传感器与换能器可通过其连接并与其声学耦合，输送系统包括至少一根光纤通讯纤维；将纤维通讯地连接至光电转换器，并将所述光电转换器通讯地连接至所述换能器，将光信号引入通讯光纤，通过利用所述光纤传感器探测试光信号启动所述换能器，通过换能器的启动激发所述光纤传感器，测量传感器的响应，确定基于输入光信号的传感器的期望响应；以及比较所述光纤传感器的侧得响应与期望响应。

本发明的上述特性及其它特性及优点将通过以下对附图的详细介绍而说明，并将由本领域技术人员所接受和理解。

附图说明
参照附图将使本发明得到更好的理解，附图中:

图 1 为描述典型油井场所的图示，示出了钻孔延伸于其中的地下岩层的截面；

图 2 为由钻孔的一部分切下的放大图示，示出了通过钻孔延伸的缆线和连接于其上的梭子；

图 3 为梭子的截面图，示出了钻孔传感器和磁体夹钳；

图 4A 为磁体夹钳的截面图，示出了处于夹紧位置的液压作动器和磁体元件；

图 4B 为磁体夹钳的截面图，示出了处于松开位置的液压作动器和磁体元件；
图 5 为井下布置的典型示意图，示出了纤维光学传感器的使用；
图 6 为钻孔地震传感系统的操作图；
图 7、7a 和 7b 为利用弓形弹簧将工具输送至梭子接口的管道；
图 8 和 8a 即示出了弓形弹簧梭子和金属线输送装置；
图 9 和 9a 即示出了利用弓形弹簧嵌在金属线中至传感器总成界面的梭子；
以及
图 10 为金属线系统视图，示出了打捞头。

具体实施方式

本发明提供了一种设备及方法，用于在钻孔下或在井下可移动地布置用于有效记录地下地震数据的地震传感器阵列。该设备设计为使得多个地震传感器或地震传感器阵列可以通过将连接于金属线(缆线)、滑线(slickline)、盘绕管(coiled tubing)或其它适合的部署机构的多个地震传感器下放而布置于井下。为本公开的目的，在使用术语金属线、缆线、滑线、盘绕管或输送装置(conveyance)时，应理解，可以在不脱离本发明的实质和范围的基础上使用任何上述部署装置或任何其它等效装置。该设备的一个实施例设计有多个梭子箱或单个梭子，每个梭子包括有传感器阵列，梭子沿着金属线、盘绕管或其它部署机构连接。采用该设备从而将绞车上的金属线向钻孔下降或放下，随后启动与梭子一体的磁体夹钳从而磁性地夹住传感器，并使其与钻孔套管声学耦接。该设备还用于停止磁体夹钳，由此从钻孔套管上松开梭子和传感器。该设备还用于收回金属线和与其连接的多个梭子及传感器。金属线或缆线的延伸或收回通过绞车机构来完成。

本发明的一个实施例使具有传感器阵列的多个梭子装置在井下部署在井壁中，随后启动磁体夹钳，或简单地将梭子磁性夹在钻孔套管上并与其声学耦接。

本发明的一个实施例包括一种传感器总成，其包括作为一个一体单元或传感器总成的钻孔传感器和磁体夹钳。利用此实施例，夹持的结果使得传感器总成背靠梭子壁夹住，且整个梭子随后背靠钻孔套管夹住。这使得传感器总成、梭子和钻孔套管之间产生声学耦接。然而，应注意，本发明的一个实施例可包括设计为已与梭子声学耦接而未磁性夹住的传感器总成，因此磁体夹钳仅需将梭子夹在钻孔套管或任何其它邻近的结构。该实施例未在附图
中示出，但应为本领域技术人员所明晰，且确实在本发明的范围之内。在收集了钻孔数据后，操作该设备使得磁体夹钳可以停止，由此可以进行传感器的收回。

输送工具的又一实施例包括作为输送方法的盘绕管和通过弓形弹簧连接于其上的梭子。在部署盘绕管时，弓形弹簧可以靠在盘绕管压缩，使得连接于其上的梭子保持在靠住盘绕管的外表面。连接于盘绕管外表面并与磁体夹钳对齐的磁体设计为便于保持梭子靠住盘绕管。在将盘绕管工具部署于合适的深度和位置的时候，弓形弹簧可以释放开，从而从盘绕管向外朝向钻孔套管延伸梭子。这种构造还用于便于梭子与钻孔套管的结合。

具有磁体夹钳装置的梭子的另一实施例包括具有与其连接的两部分梭子的金属线传输装置。该两部分梭子包括外支架梭子部分和通过弓形弹簧与其连接的主传感器梭子部分。主传感器梭子部分包括与图 2 至 4 所述的梭子类似的传感装置。当弓形弹簧压缩在外支架梭子部分中时，主传感器梭子部分支撑于其中。当弓形弹簧的张力释放时，主传感器梭子从外支架梭子部分向外伸展。此实施例还可便于梭子与钻孔套管的结合。

用于本发明的输送工具的另一实施例包括嵌于金属线输送装置中的梭子。该梭子设计为嵌于金属线中，使得梭子的外直径近似与金属线输送装置的直径相同。梭子仍为两部分装置，包括外支架梭子部分和通过弓形弹簧与其连接的主传感器梭子部分。如上所述，弓形弹簧的连接设计为收回和伸出该主传感器梭子部分。

另一实施例包括一种具有脱离系统的钻孔传感系统。该脱离系统设计为使得输送装置具有传感器与其连接的传感器段和在传感器段的基部具有最弱点的输送装置，使得该输送装置可以在该最弱点折断，从而回收该工具包括传感器段在内的上部分，同时为后面的回收保留该工具脱离点以下的下部分。另一实施例提供了一种张力感应装置，从而感应输送装置中的张力。这种脱离系统可与上述任何一个实施例相结合。

另一实施例包括一种用于获得有关的地下岩层的地球物理学信息的方法，包括部署具有在钻孔中用于感测数据的传感器总成的梭子，其中该传感器总成具有用于选择性地磁性将梭子夹在与输送装置连接的邻近结构上的磁体夹钳；选择性地将所述梭子利用与传感器总成、梭子和邻近结构声学耦接在一起的所述磁体夹钳在邻近结构上；在钻孔中部署声源；在钻孔中产
生声学信号；以及利用传感器总成感测钻孔数据。特定的实施例包括在钻孔中部署设置于声波工具中的声源。

参照图 1，其中示出了钻孔延伸于其中的地下岩层的截面的示意表示的典型油井场所的图示。图示 100 表出地面的油井设备 102，包括所有相关仪器和监控系统。表面处还示出了示为振动车辆的地面源 104。多条线 106 用于表示通过地下岩层行进产生可以由井下传感器阵列感测的地震数据的刺激或地震震动。本发明可以用于记录地震数据从而进行地下岩层 108 的地震勘测。本发明还可用于在生产期间通过监控来自各种地下岩层、区域、及地带的地震数据控制并监视工作情况。就监控能力而言，本发明可用于优化油井的生产。井孔 110 的设置可策略地基于可以预先获得的已知地震勘测的数据定位。期望井孔设置，使得可以获得对于所关心的地下岩层的地震数据的优化记录。

建立井后，可以将金属线(缆线)112、盘绕管或其它输送装置从线轴放出从而通过井孔向下延伸，而多个传感器阵列沿着金属线 112 设置。另外，需注意，其上连接有地震传感器的金属线可以随着井孔的形成而向下延伸。本发明可以为连续生产油井监控和永久性的部署，或者可以为进行地下地震勘测而暂时性的部署并随后收回。若暂时性地部署本发明，则在收回后可以重新用在随后的井孔操作中。这种特性提供了胜于现有其它系统的优点。若永久性地部署本发明，其可以连续监测生产油井的工作情况。布置了金属线和多个传感器阵列后，就可以开始收集地震数据。若油井生产停止或由于其它原因不再需要地震监控，可以收回该系统并在其它地方再利用。注意，此处示出用于说明本发明的图示用于说明目的并方便理解本发明的设备及方法。所示并在此处介绍的图示并不对本发明的范围构成任何限制。

参照图 2，其示出了由钻孔套管的一部分切开的图示，通过钻孔延伸的缆线其上连接有梭子。在此图中，示出了钻孔套管 202 的一部分，截面图示出金属线 112 和连接于其上的梭子架 202。可以将绞车的其上连接有梭子的金属线放出，使其如箭头 206 所指地通过钻孔向下延伸。梭子 204 装有钻孔传感器阵列和用于将梭子和传感器与钻孔套管声学耦接的磁体夹钳装置。金属线 112 可以包括至少一根通讯线，并且可以包括至少一根液压线。通讯线的一个实施例可以是光纤，从而与光纤声学传感器装置接驳用于往井上传送地震数据。液压线可以是任何适合的致动线、电子的或其它用于启动磁体夹
钳的设备。

参照图 3，示出了展示钻孔传感器和磁体夹钳的梭子截面图。梭子架 204 连接于金属线 112。梭子壳内为作为使传感器总成 308 与梭子 204 声学隔离的声学隔离体 304 的一部分的细金属线悬挂 302。梭子和传感器总成设计为机械可靠且声学耐久的，从而使传感器总成与金属线或缆线 112 的运动隔离，并用于确保在每个梭子和传感器总成处进行独立的地震记录。声学隔离系统包括与声学隔离体一体并在载体(梭子)与传感器总成 308 之间起高阻尼系数的悬簧作用的细金属线悬挂 302。在一个实施例中，声学隔离体 304 可以为与细金属线悬挂连接、一同起悬簧作用的三个密封圈。细金属线悬挂的一个实例为细金属线。然而，声学隔离体可以是任何适合的悬簧型结构。声学隔离系统设计为使得每个传感器总成的运动变得独立，且免受通过金属线 112 传来的噪音的影响。这使得可以不受梭子架 204 和金属线 112 任何运动的干扰而获得地震信号。另外，通过将梭子的较重部分与传感器部分分开，夹持力与活动质量之间的比例增大。这样提供了传感器总成和梭子的组合与套管之间较好的耦合条件。另外，在向上拖拽金属线和梭子时，细金属线悬挂向上拉住传感器总成。通过启动磁体夹钳 306，细金属线悬挂允许传感器总成与钻孔套管对齐，并同时于其充分接触，由此在拖拽操作期间形成良好的耦合条件。可以在发生不需要的摇动时利用拖拽操作。摇动发生在传感器总成未形成良好接触时。这种条件下的传感器总成将开始摆动。解决此问题的方法为进行向上拖拽操作，从而形成稳定的接触。尽管一般情况下优选使用上述声学隔离系统，也应认识并预见到，传感器总成可以通过各种其它手段与梭子声学耦接，包括在部署于井下前永久性地固定于梭子的内部。

本发明的一个实施例利用光纤地震检波器作为用于将本地震波转变为可以通过光纤通讯线传送的光电信号的钻孔传感器。对于本发明的此实施例，将在缆线内采用光纤通讯线，用于向井上传送地震数据。

可以对图 2 至 4 所示的非弓形弹簧构造和下述图 7 至 9 所示的弓形弹簧构造使用相同的传感器总成装置。另外，本发明的一个实施例可以设计为使得传感器提供空间性或三维性，由此使得每个梭子包括与传感器总成的几何形状相对固定的至少三个相互正交的地震检波器的传感器阵列。在另一实施例中，每个梭子包括水中听音器。沿着金属线安装的每个梭子和传感器总成将在其各自的深度监控并记录地震活动。
参照图 4A 和 4B，示出夹钳的示意图。包括图 4A 所示的其启动夹钳开启位置和图 4B 所示的其关闭夹钳停止位置。图 4A 和 4B 还示出了传感器 414 的示意图。另外还示出了用于定位永久磁体的作动器装置 410。粒子架 204 中的磁体夹钳和传感器总成包括沿径向极化的圆柱形永久磁体 402。永久磁体可往复地安装在磁极片 406 上，使得其可以关于其圆柱轴线往复旋转。图 4A 所示的磁体位置为磁体夹钳启动位置或箭头 408 所示的声学夹持位置的表示。图 4B 示出反映磁体夹钳停止位置或箭头 409 所示的松脱位置的磁体位置。磁体夹钳在作动器从图 4B 所示的位置起旋转永久磁体 90 度时启动。在磁体夹钳处于图 4B 所示的释放位置时，磁力线 404 方向改变而闭合或包容在磁极片 406 之中，从而防止磁力线泄漏。当磁体夹钳处于图 4A 所示的夹持位置时，磁力线 403 方向改变，从而到达磁极片之外，使得磁力线跑出两磁极片，并通过套管返回至另一磁极片，产生强大的夹持力。夹持力垂直于套管，如箭头 408 所示。与传感器总成 308 一体的磁体夹钳重量很轻，使得有效夹持质量较小。用于旋转圆柱磁体 90 度的作动器示为液压作动器 410。液压线 412 允许远程控制用于旋转圆柱磁体 90 度的液压作动器 410 的启动。作动器 410 可通过任何其它适合的作动器装置启动，例如电作动器或电-机械作动器，并使用适合的相应信号线取代液压线。相同的上述磁性传感器装置可用于图 7 至 9 中介绍的弓形弹簧梭子。

图 4A 和 4B 还示出了地震传感器 414。该地震传感器为用于感测地震波并将其转变为光电信号的装置。地震传感器的示例包括水中听音器、地震检波器、三轴地震传感器、或地震检波器加速计。

参照图 5，示出了具有井下校准能力的井下光纤传感器的示意图。图 5 示出了与光电转换器 504 可通讯连接的光纤通讯纤维 502，光电转换器 504 还与用于校准的光纤地震传感器 506 和换能器 508 可通讯连接。变频器的类型包括压电换能器和电磁换能器。一个特殊的实施例提供了压电换能器。校准技术的一个实施例示出为可以井下电源或其它复杂的井下电子设备的情况下进行校准。井下校准有利于量化传感器响应。光电转换器 504 和换能器 508 的组合使得可以利用最小限度的井下电子设备在原处执行光纤地震检波器的井下校准。一种方法是通过光纤提供光源。光纤地震检波器的光探测器将产生调制光，该调制光流将激励压电换能器。换能器与光纤地震检波器声学耦接，并作为振动器刺激地震检波器。由于已知的输入信号和预期
响应使得可以进行校准。测量和校准信号可以共享相同的光纤通讯线。另一实施例包括设置与换能器 508 连通的电容，从而提供用于激励换能器 508 的能力。在电容器内存储能量的一种方法为提供与电容器连接的光电转换器，并利用提供至光纤的光为电容器充电。

参照图 6，示出了钻孔传感器设备 600 的一个实施例的操作图。设备 600 沿缆线 112 包括具有传感器和夹钳总成的多个梭子 204。另一传感器 602 也可以沿着金属线连接，如图 6 所示的压力/温度(P/T)传感器。金属线 112 可以用于承载各种通讯线，包括用于光纤系统的光纤传感器阵列通讯线。金属线 112 还可用于承载启动磁体夹钳的液压线或电线作动器控制。图 6 还示出可以用于支持各种能量需要的井下电池 640。各种监视和控制系统可位于地面，诸如可操作用来控制磁体夹钳启动的作动器控制系统 606。钻孔传感器系统 608 可以监视、存储、及解释由传感器输出的数据。另外，P/T 传感器系统 610 可以位于地面，并与井下传感器可通讯连接，从而监视井下的压强和温度。另外，示出分布式温度传感器 616，其可通讯连接于分布式温度传感器(DTS)系统 612，用于提供连续的温度剖面。另外，可使用如地面所示的诸如光时域反射计(OTDR)的缆线长度测量系统 614。电子设备盒 618 示与传感器段下的输送装置上。在另一实施例中，钻孔传感器为地震传感器。

参照图 7、7a 和 7b，示出了作为可选实施例的通过弓形弹簧与梭子接驳的管道输送工具。管道工具 700 为包括其上通过弓形弹簧装置 706 连接有槽子的盘绕管 702。梭子可类似于图 2、3 和 4 中所述的梭子构造，包括磁体夹钳和传感器总成。图 7 示出了弓形弹簧 706 的张力释放时，以及当梭子向外伸展时和离开管道时梭子的位置。弓形弹簧 706 和梭子 704 可以保持为靠住管道。图 7、7a 和 7b 示出了如何利用连接于梭子的弓形弹簧机构将梭子用于盘绕管。在部署盘绕管时，弓形弹簧可以靠向管道压紧。可以设置比梭子 704 大的保护衬、盖或其它这种装置，从而在部署期间保持弓形弹簧 706 靠住管道，保护梭子 704 在部署期间免受损伤。连接于盘绕管外的磁体 708 和梭子可构造为彼此磁性相吸，从而进一步保持梭子靠住管道。达到期望的深度后，传感器总成上的磁体可以经作动器控制线 712 启动，从而反转其极性，通过结合相对的磁性力并释放弓形弹簧上的张力使得梭子移动离开盘绕管。或者，连接于输送装置的磁体 708 可以经作动器控制线启动，从而反转其极性，为收回梭子，磁体可再次反转。磁体的力比压缩弓形弹簧所必需的
力大。图 7a 示出弓形弹簧位于其压缩位置，使得梭子 704 靠近磁体 708 压缩。图 7b 示出弓形弹簧的张力释放，由此使梭子向外伸展并离开管道，从而与钻孔套管 710 连接。弓形弹簧构造便于梭子与钻孔套管的连接，使得耦接关系的形成不完全依赖于磁体夹钳。

参照图 8 和 8a，示出了用于输送装置的弓形弹簧两部分梭子。两部分梭子 800 包括外支架梭子部分 802 和通过弓形弹簧机构 806 与其连接的主传感器梭子部分 804。图 8 示出了弓形弹簧压缩在外支架梭子部分内的两部分梭子，使得传感器梭子部分架在外支架梭子部分内。弓形弹簧的压缩将主传感器梭子部分推向内部，通过传感器梭子部分 804 磁体夹钳 808 与连接于外支架梭子部分 802 内部的磁体 810 之间的磁性力进一步便于这一点。导向装置 812 和滑块 814 机构可进一步便于弓形弹簧的压缩。外支架梭子部分可连接于金属线，而主传感器梭子部分可通过弓形弹簧结合磁体夹钳 808 与磁体 810 的磁性力伸展或收回。主传感器梭子部分由外支架梭子部分向外的伸展，如图 8a 所示，进一步便于梭子与钻孔套管的接合，类似于图 7 所示的梭子构造。弓形弹簧仍然有利于梭子与钻孔套管的接合。

参照图 9 和 9a，示出了具有弓形弹簧接口、嵌在金属线中的梭子。图 9 和 9a 中所示的两部分梭子设计具有与图 8 和 8a 所示的梭子类似的功能。然而，对于本实施例，梭子嵌入在金属线输送装置中。梭子通过模塑部分 902 嵌入并固定在输送装置中。梭子还通过应力芯 904 和型钢 906 固定并嵌入在线缆内。线缆外壳 908 具有近似与梭子装置相同的外径。梭子包括其中具有磁体 912 的外支架梭子部分 910。梭子的主传感器梭子部分 914 通过弓形弹簧机构 916 连接于外支架梭子部分 910。图 9 示出弓形弹簧位于其压缩位置，使得梭子的传感器总成部分 914 压缩并架在外支架梭子部分 910 内。通过磁体 912 与主传感器总成部分 914 内容纳的磁体夹钳之间的引力帮助弓形弹簧 916 的压缩。图 9a 示出传感器总成部分由梭子的支架部分向外伸出，从而形成梭子与钻孔套管 920 之间的耦合结合。

本发明的钻孔测井设备的一个实施例，作为金属线系统在图 10 中示出。图 10 为金属线系统的视图，示出了用于回收被粘住的工具的打捞头 (fishing head)。金属线系统工具 1000 示为包括主线缆或输送装置 1002、传感器部分 1004、活动打捞头 1006 和主电子设备及重量部分 1008。该工具的传感器部分具有比活动打捞头小的外径，使得打捞头的突起能够通过传感器部分。具
有传感器总成的每个子沿着输送工具的传感器部分连接。主电子设备和重量部分 1008 可以具有比该突起更小的总直径。重量部分 1008 还可具有突出的端部，以配合至该突起中。突起端部还可以磁性吸引该突起。活动打捞头可以选择性地具有传感器，从而探测该突起的闭塞，以确定工具被粘住的位置。或者，诸如张力计的传感器可以安装在打捞头中，或者可选的，可以在输送装置的传感器部分中安装分布式张力测量线，用于感测指示被粘住的工具、诸如电子和质量部分 1008 下部的输送装置中的张力。可以设置通讯线，用于将此张力感应数据传送至地面。该金属线系统工具可以设计为使得传感器部分底部的输送装置部分具有弱点，使得其可以切断并收回传感器部分，并且然后在其上打捞主电子设备和质量。此金属线系统工具设计提高了回收用于再利用的工具的能力。若工具被粘住，输送装置的较大部件易于成为被粘住的部件。配置输送工具使较大的电子设备和质量部分位于传感器部分下面，使得输送装置中的弱点位于其间，便于在较大的部件被粘住时通过施加张力切断输送装置。切断输送装置后，传感器部分可以收回，而保留被粘住的部件在井下以后打捞。

另一实施例包括在地面的输送装置上设置至少一个张力感应装置。在弱点处确定的输送装置中的张力可以与地面处确定的输送装置中的张力比较。这种比较可以指示出设备被粘在弱点之上或之下，并且可以用于确定诸如打捞或折断输送装置的动作。

工业应用

本发明可应用于为计划井下钻取和生产执行钻孔测量，以及在实际油井生产期间监控钻孔数据。这种钻孔测量包括钻孔地震测量，而这种钻孔数据监控包括暂时或永久性的监控。本发明的一个实施例包括多个梭子，该些梭子包括沿缆线连接并盘绕至钻孔下用于永久性或暂时监控地震数据的钻孔传感器。沿金属线连接的本发明的多个钻孔传感器阵列使得系统能够同时记录多级获取的地震数据。本发明的一个实施例采用了多个这些地震传感器阵列，每个传感器阵列装载于具有声学隔离和磁性夹持能力的多个梭子内。本发明的一个实施例采用光纤地震检波器技术。光纤技术具有以很高的数据速度复合多个通道的能力，由此满足对于需要高数据传输能力的较大传感器阵列的声学和地震成像应用的要求。在本发明实施例中光纤技术的使用还允许了更大数量的梭子，因为外形更小、重量更轻，并允许无需井下电子设备或
来自地面的电源。

本发明的一个实施例可以在井下将具有沿线缆隔开的多个梭子传感器总成的金属线或盘绕管输送装置放出。梭子可以选择性地嵌入图 7 至 9 所示的输送装置中。传感器可以选择性地全部连接于输送装置传感器部分中，如图 10 所示。较大部件可以位于传感器部分以下，诸如电子单元、电池单元和质量部分。将较大部件设置在较小直径的传感器部分之下，有利于如 10 所示的传感器部分的打捞。如上所述，输送装置中的弱点可以位于传感器部分与较大部件之间，使得若较大的部件在回收工具期间被粘住，则绞车机构可以向输送装置施加足够大的张力，使得输送装置在弱点处切断，保留较大部件在井下以后打捞。

本领域技术人员可理解，本发明的方法在钻孔布置领域同样有吸引力，因为可以使用本发明的钻孔感测设备和方法，结合井下源(诸如设置在发声工具中的声源)，来探测比利用装载在源内的工具中的接收器所能获得或实现的更加远离源处的响应信号。可以理解，是用具有诸如本发明的接收器阵列的发源工具可以扩展声学数据获取系统的能力，而没有扩大发生工具本身的困难和所蕴含的成本。

以上已经介绍并示出了根据本发明的用于井下地震数据记录的装置和设备的各种实施例。虽然已介绍了本发明的特定实施例，但不应由此而对本发明构成限制。因此，本领域技术人员应明瞭，可以在不脱离所附权利要求的实质和范围的基础上对所介绍的本发明进行各种改动和调整。
图 1