
US 2005OO 10557A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0010557 A1

Dettinger et al. (43) Pub. Date: Jan. 13, 2005

(54) ABSTRACT DATA LINKING AND JOINING (22) Filed: Jul. 11, 2003
INTERFACE

Publication Classification
(75) Inventors: Richard D. Dettinger, Rochester, MN

(US); Cale T. Rath, Byron, MN (US); (51) Int. Cl." ... G06F 17/30
Richard J. Stevens, Mantorville, MN (52) U.S. Cl. ...
(US)

Correspondence Address: (57) ABSTRACT
William J. McGinnis, Jr.
IBM Corporation, Dept. 917 A method, apparatus and article of manufacture provide a
3605 Highway 52 North user interface allowing user Selection and arrangement of
Rochester, MN 55901-7829 (US) result fields Selected, in one embodiment, from a logical

model. In one embodiment, the user interface is a graphical
(73) Assignee: INTERNATIONAL BUSINESS user interface and comprises input cells for user-Selected

MACHINES CORPORATION, logical result fields. The cells are arranged to define a
ARMONK, NY geometric relationship between logical result fields which

dictates the combinatorial Statement type by which the
(21) Appl. No.: 10/618,409 logical result fields in the cells are related in a query.

-200 <address>
grantee

<title> Mrs.</title>
<first-name>Mary</first-name>
<last-name>McGOOng/last-name>
CStreet 1401 Main StreetClstreet)

LOGICAL | ABSTRACT PHYSICAL RUNTIME
REPRESENTATION REPRESENTATION

APPLICATION - - - - - -----

214 'EIS T-city>Anytown Cicity>
P FICATION CstateXNCK?state)

SPECIFIC <zipcode>34829<lzipcode>

<Address>

title name name street city age
2142

Mary McGoon 1401 Any 67

RELATIONAL DATA
REPRESENTATION

OTHER DATA REPRESENTATION

ABSTRACT CRUERY XML OUERY

CUERY
EXECUTION RUNTIME

OTHEROUERY
LANGUAGE

DATA REPOSITORY
ABSTRACTION

US 2005/0010557 A1 Patent Application Publication Jan. 13, 2005 Sheet 1 of 16

VOL Z
0

JIXHOMEN -811 ÆT?T?T??õT|-?l? (=O)=O IndN – 911
| EÐwºols ||

Å>JOINE W

US 2005/0010557 A1 Patent Application Publication Jan. 13, 2005 Sheet 2 of 16

LLLLH-; iz
vz '914

Ny?z

NOLIVINES=&id=8 EWI LNT, TVO|SÄHd
| | | |

· ?

| } | | | | ? | | } | | | ?———————————+-----~
ZOZ

Patent Application Publication Jan. 13, 2005 Sheet 3 of 16 US 2005/0010557 A1

ABSTRACT QUERY 202

204 Selection:
FirstName = "Mary" AND
LastName = "McGoon"OR
State FNC

206 Result:
FirstName,
LastName,
Street

DATA ABSTRACTION MODEL 148

Field
210 Name = "First Name" 208
212 Access Method = "Simple" 1

Table = "contact"
Column = "f name"

Field
2102 Name = "Last Name"
2122 Access Method = "Simple" 2082

Table = "Contact"
Column = "l name"

Field
2103 Name = "AnytownLastName" 2083
2123 ACCeSS Method = "Filtered"

Table = "Contact"
Column = "I name"
Filter = "contact.city = Anytown"

Field
2104 Name= "Agelndecades" 2084
2124 Access Method = "Composed"

Expression = "Agelnyears / 10"

Field
2105 Name= "Agelnyears" 2085
2125 Access Method = "Simple"

Table = "Contact"
Column = "age"

FIG. 2B

Patent Application Publication Jan. 13, 2005 Sheet 4 of 16 US 2005/0010557 A1

302 START - 1. 300

304 - READ ABSTRACT
OUERY DEFINITION

322 Execute queRY
NO

314
FOREACH MORE
OUERY DONE RESULTS

SELECTION FIELDS
N ?

ET OUERY FIELD - GET OUERY FIEL GET RESULT FIELD
DEFINITION FROM DEFINITION FROM

REPOSITORY REPOSITORY
ABSTRACTION ABSTRACTION

310

BUILD CONCRETE QUERY
CONTRIBUTION FOR FIELD ||
312

ADD TO CONCRETE
OUERY STATEMENT

318

BUILD CONCRETE QUERY
CONTRIBUTION FOR FIELD

320

ADD TO CONCRETE.
OUERY STATEMENT

FIG. 3

Patent Application Publication Jan. 13, 2005 Sheet 6 of 16 US 2005/0010557 A1

NETWORKADDRESS - BROWSER - X
FILE EDIT VEW GO

<>C6GOEI(X)
BOOKMARK LOCATION

TUDY LIST PROTOTYPE IBM STU
Locations User: Cujo
Home Page Query: None
Logout

Add a Condition

Searches Choose a condition category and value:
Search info
My Searches 602-O Demographic
All Searches 612 New Searches Date of birth V

Additional Info 604 - O Tests and laboratory results
Databases
output formats 614 Endrocrine tests v
Reference
Security 8 AUDIT 606-O R t
Feedback eports

Site Map 616 cardiology v. Team Cardiology V
GCR Home page 608-O Diagnostic using ICD-9

value 618 622

610 - O Diagnostic using DRG

value Brist 620 624

FIG. 5 N-600

Patent Application Publication Jan. 13, 2005 Sheet 7 of 16 US 2005/0010557 A1

NETWORKADDRESS - BROWSER
FILE EDIT VIEW GO

Birth Date

= Iv-702
- 704

Enter date (yyyimm/dd) 6
706

NETWORKADDRESS - BROWSER X
FILE EDIT VIEW GO

<>C6GOEX)
BOOKMARK LOCATION v

Undo Group Conditions

Check the conditions you would like to simplify and click the OK button

1202 (Date of Birth <= 1942/01/01)-1102
((gender = male) AND (hemoglobin <= 5))-1104

Patent Application Publication Jan. 13, 2005 Sheet 8 of 16 US 2005/0010557 A1

NETWORKADDRESS - BROWSER X
FILE EDIT VIEW GO .

<>C6GO(X)
BOOKMARK LOCATION

Search Conditions
802

Edit Delete (Date of Birth < = 1942/01/01)

804

Add a Condition Group Conditions Undo Grouped Conditions

Refresh Search Summary

Search Summary

(Date of Birth < = 1942/01/01)

Change Output Data Change Output Format Patient List

FIG. 7 N-800

Patent Application Publication Jan. 13, 2005 Sheet 9 of 16 US 2005/0010557 A1

NETWORKADDRESS - BROWSER X
FILE EDIT VIEW GO

specialGOax
BOOKMARK LOCATION IV

Search Conditions
902 904 -802

-906 Edit Delete D (Date of Birth < = 1942/01/01)
Edit Delete ANDV (gender = male)
Edit Delete ANDv (hemoglobin <= 5)

908
804 910

Add a Condition Group Conditions Undo Grouped Conditions

Refresh Search Summary 922

- 920
Search Summary 1.

(Date of Birth < = 1942/01/01)
AND (gender = male)
AND (hemoglobin <= 5)

Change Output Data Change Output Format

924

FG. 8 Y-800

Patent Application Publication Jan. 13, 2005 Sheet 10 of 16 US 2005/0010557 A1

NETWORKADDRESS - BROWSER X
FILE EDT VIEW GO FILE EDIT VIEW Go
<>CaGOEI(X)
BOOKMARK | LOCATION

Group Conditions

Check the conditions you would like to group. The AND group button will
put an AND between all checked conditions. The Group button will put an
OR between all checked Conditions.

D (Date of Birth < = 1942/01/01)
1002 (gender = male)

V (hemoglobin <= 5)

AND Group OR Group
1004 1006

F.G. 9 Y-1000

Patent Application Publication Jan. 13, 2005 Sheet 11 of 16 US 2005/0010557 A1

D NETWORKADDRESS - BROWSER X
FILE EDIT VIEW GO

<>CaGOs (X)
BOOKMARK LOCATION

Search Conditions
902 904 802

O Edit Delete (Date of Birth < = 1942/01/01-1102 906

Edit Delete ANDv (gender = male) AND (hemoglobin <= 5
1104/

804 - 910 1106

Add a Condition Group Conditions Undo Grouped Conditions

Refresh Search Summary 922

920
Search Summary -

(Date of Birth < = 1942/01/01)
AND (gender = male)
AND (hemoglobin <= 5)

1108

casesOutput Data Change Output Format

924

FIG. 10 Y-800

US 2005/0010557 A1 Patent Application Publication Jan. 13, 2005 Sheet 12 of 16

SCITE!!-} |Tf^SE?! CJELOETES

Patent Application Publication Jan. 13, 2005 Sheet 13 of 16 US 2005/0010557 A1

1400 1.

Location -

1414
Clinical info

Add
Column 1406a 1406b 1406C 14060

Patient 1408

Address Clinical...

1408 1414
Add

Column

Add
ROW

1410

FIG. 14

Patent Application Publication Jan. 13, 2005 Sheet 14 of 16 US 2005/0010557 A1

14 / 00

Patent Application Publication Jan. 13, 2005 Sheet 15 of 16 US 2005/0010557 A1

NETWORKADDRESS - BROWSER X
FILE EDT VIEW GO

of SEGS to LoCATION Iv BOOKMARK LOCATION

Search Conditions
902 -904 802

906 Edit Delete (Date of Birth < = 1942/01/01)-1102
Edit Delete ANDiv (gender = male) AND (hemoglobin <= 5).

1104/

804 910 1106

Add a condition Group Conditions || Undo Grouped Conditions

Refresh Search Summary 922

Search Summary ? 1604

User Address Clinical info

Change Output Data Change Output Format

924

(Date of Birth <= 1942/01/01)
AND (gender = male)
AND (hemoglobin <= 5)

FIG. 16 Y-800

Patent Application Publication Jan. 13, 2005 Sheet 16 of 16 US 2005/0010557 A1

1700

D FIG. 17
1702

DONE
FOREACH CELL O

IN 1st ROW

1704 CELL
CONTAINS
DATA2

ADDRESULT - 1706
FIELD

1708

FOREACH
EXIT REMAINING ROW

FOREACH CELL IN
CURRENT ROW

1710

POPULATED

YES

UNION THE
CELLS 1716

US 2005/0010557 A1

ABSTRACT DATA LINKING AND JOINING
INTERFACE

CROSS-RELATED APPLICATIONS

0001 One approach for accessing a multiplicity of data
Sources is described in more detail in U.S. patent application
Ser. No. 10/131,984, entitled “REMOTE DATA ACCESS
AND INTEGRATION OF DISTRIBUTED DATA
SOURCES THROUGH DATA SCHEMA AND QUERY
ABSTRACTION” and assigned to International Business
Machines, Inc.

BACKGROUND OF THE INVENTION

0002) 1. Field of the Invention
0003. The present invention generally relates to data
processing, and more particularly, to the accessing data
through a logical framework.
0004 2. Description of the Related Art
0005 Databases are computerized information storage
and retrieval Systems. The most prevalent type of database
is the relational database, a tabular database in which data is
defined So that it can be reorganized and accessed in a
number of different ways. A relational database management
System (DBMS) is a database management System that uses
relational techniques for Storing and retrieving data.
0006 Regardless of the particular architecture, in a
DBMS, a requesting entity (e.g., an application, the operat
ing System or a user) demands access to a specified database
by issuing a database acceSS request. Such requests may
include, for instance, Simple catalog lookup requests or
transactions and combinations of transactions that operate to
read, change and add Specified records in the database.
These requests are made using high-level query languages
Such as the Structured Query Language (SQL). Illustratively,
SQL is used to make interactive queries for getting infor
mation from and updating a database Such as International
Business Machines’ (IBM) DB2, Microsoft's SQL Server,
and database products from Oracle, Sybase, and Computer
ASSociates. The term "query' denominates a set of com
mands for retrieving data from a stored database. More
generally, queries take the form of a command language that
lets programmerS and programs Select, insert, update, find
out the location of data, and So forth.
0007 Often, a query may need to be run against multiple
tables to return the desired data. This is the case, for
example, when data resides in more than one database (i.e.,
located on more than one database server). For example, a
patient's records (diagnosis, treatment, etc.) may be stored in
one database, while clinical trial information relating to a
drug used to treat the patient may be Stored in another
database. Therefore, to access the data, a federated query
may be generated that targets each of these distinct data
bases. AS used herein, the term federated query generally
refers to any query that requires combining results of queries
run against distinct databases. The operation by which this
is accomplished is referred to herein as a combinatorial
Statement. By way of example, combinatorial Statements
include such statements as the family of JOIN statements
(including INNER, OUTER, LEFT and RIGHT), the family
of UNION statements. The JOIN pairs up data from two
different tables or from the same table. UNION can operate

Jan. 13, 2005

on two identical tables or be used to concatenate data from
Similar fields of interest. For example, a field names
ADDRESS can be UNIONED with a field named LOCA
TION. These fields are not identical and may be or may not
be from the same table, but they contain Similar information.
By way of illustration, Tables I and II shows an example of
SOL statements in which tables are JOINed and UNIONed
respectively.

TABLE I

SELECT T1ADDRESS, T1.CITY, T1...STATE, T1.ZIP, T2. LOCATION
FROM ADDRESSEST1, NEIGHBORHOODT2 WHERE
T1ADDRESSID = T2ADDRESSID AND T17P = 55901

O008)

TABLE II

SELECT ADDRESS, CITY, STATE, ZIP FROM ADDRESSES
WHERE ZIP = 55901
UNION
SELECT LOCATION, NULL, NULL, NULL FROM NEIGHBORHOOD
WHERE ZIP = 55901

0009. The UNION example (Table II) appends location
after ADDRESS, and the JOIN (Table I) example links the
location with the address that it belongs to.
0010. It is noted that JOINS and UNIONS are but two
examples of combinatorial Statements. Another example of
a combinatorial statement is the family of ACCEPT state
ments. Further, corresponding Statements exist or may be yet
be developed for query languages other than SQL (e.g.,
XQuery).
0011 Conventionally, users are required to create query
Statements with an understanding of the underlying physical
data in order to apply the proper combinatorial Statements in
a manner that returns the desired results. However, this
places a significant burden on the user and limits access to
as users having Sufficient expertise.
0012. Therefore, what is needed is a query building
interface providing flexibility, in particular, where data may
need to be linked or combined to return the desired results.

SUMMARY OF THE INVENTION

0013 The present invention provides a method, system
and article of manufacture for accessing abstractly described
physical data using combinatorial Statements Such as JOINS
and UNIONs. In one embodiment, data is defined by an
abstraction model which includes metadata describing and
defining a plurality of logical fields. A user interface tool is
provided for creating abstract queries. One aspect of the tool
provides users a means of mapping those fields (columns)
which must be combined by a first statement type (e.g.,
UNION) and those fields that must be combined by a second
Statement type (e.g., JOIN).
0014. In one embodiment a method provides a logical
representation of physical fields of physical data entities to
facilitate querying the physical fields. The method com
prises providing a logical model to logically describe the
physical fields, the logical model comprising logical fields
corresponding to respective physical fields, and providing a

US 2005/0010557 A1

runtime component configured to transform an abstract
query into an executable query containing at least one
combinatorial Statement, the abstract query comprising a
condition and at least two result fields selected from the
logical fields of the logical model, each result field having
executable counterparts in the at least one combinatorial
Statement of the executable query.
0.015. Another method provides a logical representation
of physical fields of physical data entities to facilitate
querying the physical fields. The method comprises provid
ing a logical model to logically describe the physical fields,
the logical model comprising logical fields corresponding to
respective physical fields, receiving an abstract query
defined with respect to a logical model comprising logical
fields corresponding to respective physical fields, the
abstract query comprising a condition and at least two
combined result fields selected from the logical fields of the
logical model; and transforming the abstract query into an
executable query containing at least one combinatorial State
ment, the abstract query comprising a condition and at least
two combined result fields selected from the logical fields of
the logical model, each result field having executable coun
terparts in the combinatorial Statement of the executable
query.

0016. In another embodiment, a method allows for query
building. The method comprises providing a graphical user
interface allowing user Selection and arrangement of logical
result fields Selected from a logical model which logically
defines data, wherein a predetermined relative geometric
arrangement between user-Selected logical result fields
defines a combinatorial relationship between the user-Se
lected logical result fields.
0.017. In another embodiment, a method allowing for
query building comprises providing a graphical user inter
face allowing user Selection and arrangement of logical
result fields Selected from a logical model which logically
defines data, wherein a first predetermined relative geomet
ric arrangement between user-Selected logical result fields
defines a combinatorial relationship of a first type between
the user-Selected logical result fields and wherein a Second
predetermined relative geometric relationship between user
Selected logical result fields defines a combinatorial rela
tionship of a Second type between the user-Selected logical
result fields.

0.018. In another embodiment, a method allowing for
query building comprises providing a graphical user inter
face allowing user Selection and arrangement of logical
result fields Selected from a logical model which logically
defines data, the graphical user interface comprising a table
comprising a plurality of cells, wherein a predetermined
relative geometric arrangement between user-Selected logi
cal result fields in adjacent cells defines a combinatorial
relationship between the user-Selected logical result fields.
0019. In another embodiment, a method for building
queries comprises providing a logical model to logically
describe the physical fields, the logical model comprising
logical fields corresponding to respective physical fields;
providing a graphical user interface allowing user Selection
and arrangement of logical result fields Selected from the
logical model; receiving user input Specifying a Selection
and a location, in the graphical user interface, of a first
logical result field; receiving user input Specifying a Selec

Jan. 13, 2005

tion and a location, in the graphical user interface, of a
Second logical result field, wherein the first and Second
logical result fields have a relative geometric relationship
and define at least a portion of an abstract query; and
transforming the abstract query into an executable query
containing at least one combinatorial Statement containing
representations of the first and Second logical result fields,
and being generated as a result of the relative geometric
relationship.

0020 Yet another embodiment provides a computer read
able medium containing a graphical user interface program
which, when executed, performs an operation for building
abstract queries defined with respect to a logical model
comprising a plurality of logical field definitions mapping to
physical fields of physical entities of the data. The operation
compriseS receiving user input Specifying a Selection and a
location, in the graphical user interface, of a first logical
result field; wherein the graphical user interface allows user
Selection of logical result fields from the logical model and
Supports relationships between user Selected logical result
fields, and receiving user input Specifying a Selection and a
location, in the graphical user interface, of a Second logical
result field, wherein the first and Second logical result fields
define at least a portion of an abstract query, which is
transformed into an executable query containing at least one
combinatorial Statement containing counterparts of the first
and Second logical result fields.
0021. Yet another embodiment provides a computer read
able medium containing a program which, when executed,
performs an operation for building abstract queries defined
with respect to a logical model comprising a plurality of
logical field definitions mapping to physical fields of physi
cal entities of the data. The operation comprises receiving
user input Specifying a Selection and a location, in a graphi
cal user interface, of a first logical result field; wherein the
graphical user interface allows user Selection and arrange
ment of logical result fields Selected from the logical model;
receiving user input Specifying a Selection and a location, in
the graphical user interface, of a Second logical result field,
wherein the first and Second logical result fields have a
relative geometric relationship and define at least a portion
of an abstract query; and transforming the abstract query
into an executable query containing at least one combina
torial Statement containing counterparts of the first and
Second logical result fields, and being generated as a result
of the relative geometric relationship.
0022. Still another embodiment provides a computer sys
tem, comprising memory and at least one processor, and
further comprising a logical model comprising a plurality of
logical field definitions mapping to physical fields of physi
cal entities of data, whereby the logical model provides a
logical view of the data; and a graphical user interface
allowing user Selection and arrangement of logical result
fields Selected from the logical model; wherein the graphical
user interface comprises input cells for user-Selected logical
result fields and wherein a predefined geometric relationship
between cells specifies which of two or more combinatorial
Statement types user-Selected logical result fields in the cells
are related according to.

BRIEF DESCRIPTION OF THE DRAWINGS

0023. So that the manner in which the above recited
features, advantages and objects of the present invention are

US 2005/0010557 A1

attained and can be understood in detail, a more particular
description of the invention, briefly Summarized above, may
be had by reference to the embodiments thereof which are
illustrated in the appended drawings.
0024. It is to be noted, however, that the appended
drawings illustrate only typical embodiments of this inven
tion and are therefore not to be considered limiting of its
Scope, for the invention may admit to other equally effective
embodiments.

0.025 FIG. 1 is a block diagram of an illustrative com
puter architecture;
0.026 FIG. 2 is a relational view of software components
of one embodiment of the invention configured to proceSS
queries against a physical data Source through an abstract
representation of the physical data Source;
0.027 FIG. 3 is a flow chart illustrating the operation of
a runtime component;
0028 FIG. 4 is a flow chart illustrating the operation of
a runtime component;
0029 FIG. 5 is a graphical user interface screen for
initiating the process of adding a condition to a query;
0030 FIG. 6 is a graphical user interface screen for
adding a birth date as a condition to a query;
0.031 FIG. 7 is a graphical user interface screen display
ing existing conditions to a query and from which a user may
add additional conditions to the query and execute the query;
0.032 FIG. 8 is the graphical user interface screen of
FIG. 4 after being updated with additional conditions;
0.033 FIG. 9 is a graphical user interface screen from
which a user may group conditions to form a complex
condition;
0034 FIG. 10 is the graphical user interface screen of
FIG. 4 after having been updated to reflect grouped condi
tions,
0.035 FIG. 11 is a graphical user interface screen from
which a user may ungroup conditions of a complex condi
tion;
0.036 FIG. 12 is a graphical user interface screen from
which a user may select result fields to include in a query.
0037 FIGS. 13-15 are graphical user interface screens in
which a user UNIONS and/or JOINS selected result fields.

0.038 FIG. 16 is the graphical user interface screen of
FIG. 11 after being updated with result field selections; and
0039 FIG. 17 it is a flow chart illustrating generation of
an abstract query including a UNION statement.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS INTRODUCTION

0040. One embodiment of the invention is implemented
as a program product for use with a computer System and
described below. The program(s) of the program product
defines functions of the embodiments (including the meth
ods described herein) and can be contained on a variety of
Signal-bearing media. Illustrative signal-bearing media
include, but are not limited to: (i) information permanently
Stored on non-writable storage media (e.g., read-only

Jan. 13, 2005

memory devices within a computer such as CD-ROM disks
readable by a CD-ROM drive); (ii) alterable information
Stored on Writable storage media (e.g., floppy disks within a
diskette drive or hard-disk drive); or (iii) information con
veyed to a computer by a communications medium, Such as
through a computer or telephone network, including wire
leSS communications. The latter embodiment Specifically
includes information downloaded from the Internet and
other networkS. Such signal-bearing media, when carrying
computer-readable instructions that direct the functions of
the present invention, represent embodiments of the present
invention.

0041. In general, the routines executed to implement the
embodiments of the invention, may be part of an operating
System or a specific application, component, program, mod
ule, object, or Sequence of instructions. The Software of the
present invention typically is comprised of a multitude of
instructions that will be translated by the native computer
into a machine-readable format and hence executable
instructions. Also, programs are comprised of variables and
data Structures that either reside locally to the program or are
found in memory or on Storage devices. In addition, various
programs described hereinafter may be identified based
upon the application for which they are implemented in a
specific embodiment of the invention. However, it should be
appreciated that any particular nomenclature that follows is
used merely for convenience, and thus the invention should
not be limited to use Solely in any specific application
identified and/or implied by Such nomenclature.
0042 Embodiments of the invention provide for query
building. In one embodiment, a user Specifies a condition or
conditions (e.g., as in a WHERE clause of an SQL query) as
well as result criteria (e.g., as in a SELECT clause). Com
binatorial Statements relate the components of the result
criteria according to the results Sought. For example, com
binatorial statements include JOIN, UNION, ACCEPT and
their respective family members (e.g., INNER, OUTER,
LEFT and RIGHT in the case of JOINs). For convenience
and for purpose of illustration, JOINs and UNIONs will be
emphasized. However, it is understood that the invention is
not limited to particular types of combinatorial Statements,
nor is the invention related to a particular query language.
Thus, references to SQL are merely for purposes of illus
tration and are not limiting of the invention, which is equally
applicable to any query language, known or unknown.
0043. In one embodiment, a particular data definition
framework, also referred to herein as a data abstraction
model (DAM), is provided for querying data independent of
the particular manner in which the data is physically repre
Sented. The DAM includes metadata describing and defining
a plurality of logical fields which map to physical data.
However, although embodiments of the invention are
described with respect to queries built and executed with
respect to a logical model, the invention is not limited to any
particular logical model. Accordingly, the embodiments
disclosed herein are merely illustrative.
0044) Physical View of Environment
004.5 FIG. 1 depicts a block diagram of a networked
system 100 in which embodiments of the present invention
may be implemented. In general, the networked system 100
includes a client (i.e., generally any requesting entity Such as
a user or application) computer 102 (three Such client

US 2005/0010557 A1

computers 102 are shown) and at least one server computer
104 (one such server computer 104 is shown). The client
computer 102 and the server computer 104 are connected via
a network 126. In general, the network 126 may be a local
area network (LAN) and/or a wide area network (WAN). In
a particular embodiment, the network 126 is the Internet.
However, it is noted that aspects of the invention need not
be implemented in a distributed environment. AS Such, the
client computers 102 and the server computer 104 are more
generally representative of any requesting entity (Such as a
user or application) issuing queries and a receiving entity
configured to handle the queries, respectively.

0046) The client computer 102 includes a Central Pro
cessing Unit (CPU) 110 connected via a bus 130 to a
memory 112, Storage 114, an input device 116, an output
device 119, and a network interface device 118. The input
device 116 can be any device to give input to the client
computer 102. For example, a keyboard, keypad, light-pen,
touch-Screen, track-ball, or Speech recognition unit, audio/
Video player, and the like could be used. The output device
119 can be any device to give output to the user, e.g., any
conventional display Screen. Although shown Separately
from the input device 116, the output device 119 and input
device 116 could be combined. For example, a display
Screen with an integrated touch-Screen, a display with an
integrated keyboard, or a speech recognition unit combined
with a text speech converter could be used.

0047. The network interface device 118 may be any
entry/exit device configured to allow network communica
tions between the client computer 102 and the server com
puter 104 via the network 126. For example, the network
interface device 118 may be a network adapter or other
network interface card (NIC).
0.048 Storage 114 is preferably a Direct Access Storage
Device (DASD). Although it is shown as a single unit, it
could be a combination of fixed and/or removable Storage
devices, Such as fixed disc drives, floppy disc drives, tape
drives, removable memory cards, or optical Storage. The
memory 112 and storage 114 could be part of one virtual
address Space Spanning multiple primary and Secondary
Storage devices.
0049. The memory 112 is preferably a random access
memory Sufficiently large to hold the necessary program
ming and data structures of the invention. While the memory
112 is shown as a Single entity, it should be understood that
the memory 112 may in fact comprise a plurality of modules,
and that the memory 112 may exist at multiple levels, from
high Speed registers and caches to lower Speed but larger
DAMM chips.
0050 Illustratively, the memory 112 contains an operat
ing System 124. Illustrative operating Systems, which may
be used to advantage, include Linux and Microsoft's Win
dowS(R). More generally, any operating System Supporting
the functions disclosed herein may be used.
0051. The memory 112 is also shown containing a
browser program 122 that, when executed on CPU 110,
provides Support for navigating between the various Servers
104 and locating network addresses at one or more of the
servers 104. In one embodiment, the browser program 122
includes a web-based Graphical User Interface (GUI), which
allows the user to display Hyper Text Markup Language

Jan. 13, 2005

(HTML) information. More generally, however, the browser
program 122 may be any GUI-based program capable of
rendering the information transmitted from the Server com
puter 104.

0052 The server computer 104 may be physically
arranged in a manner Similar to the client computer 102.
Accordingly, the Server computer 104 is shown generally
comprising a CPU 130, a memory 132, and a storage device
134, coupled to one another by a bus 136. Memory 132 may
be a random acceSS memory Sufficiently large to hold the
necessary programming and data Structures that are located
on the server computer 104.

0053. The server computer 104 is generally under the
control of an operating System 138 shown residing in
memory 132. Examples of the operating system 138 include
IBM OS/4000R, UNIX, Microsoft Windows.(R), and the like.
More generally, any operating System capable of Supporting
the functions described herein may be used.

0054 The memory 132 further includes one or more
applications 140 and an abstract query interface 146. The
applications 140 and the abstract query interface 146 are
Software products comprising a plurality of instructions that
are resident at various times in various memory and Storage
devices in the computer system 100. When read and
executed by one or more processors 130 in the server 104,
the applications 140 and the abstract query interface 146
cause the computer System 100 to perform the Steps neces
Sary to execute Steps or elements embodying the various
aspects of the invention. The applications 140 (and more
generally, any requesting entity, including the operating
System 138 and, at the highest level, users) issue queries
against a database. Illustrative Sources against which queries
may be issued include local databases 156 . . . 156, and
remote databases 157 . . . 157, collectively referred to as
database(s) 156-157). Illustratively, the databases 156 are
shown as part of a database management System (DBMS)
154 in storage 134. More generally, as used herein, the term
"databases” refers to any collection of data regardless of the
particular physical representation. By way of illustration, the
databases 156-157 may be organized according to a rela
tional Schema (accessible by SQL queries) or according to
an XML schema (accessible by XML queries). However, the
invention is not limited to a particular Schema and contem
plates extension to Schemas presently unknown. AS used
herein, the term "schema' generically refers to a particular
arrangement of data which is described by a data repository
abstraction 148.

0055. In one embodiment, the queries issued by the
applications 140 are defined according to an application
query specification 142 included with each application 140.
The queries issued by the applications 140 may be pre
defined (i.e., hard coded as part of the applications 140) or
may be generated in response to input (e.g., user input). In
either case, the queries (referred to herein as “abstract
queries”) are composed using logical fields defined by the
abstract query interface 146. In particular, the logical fields
used in the abstract queries are defined by the data abstrac
tion model (DAM) 148 of the abstract query interface 146.
The abstract queries are processed by a runtime component
150 which transforms the abstract queries into a form
(referred to herein as a concrete query) consistent with the
physical representation of the data contained in one or more

US 2005/0010557 A1

of the databases 156-157. In particular, this processing is
performed by a physical query builder 161 of the runtime
component 150. The runtime component 150 also includes
an analysis tool 162, So-called because it enables a data
analysis feature described herein. Illustratively, the analysis
tool 162 includes a DAM generator 164, a query augmenter
166 and a table builder 168. It is noted that the functions of
the runtime component 150 are merely illustrative. Persons
skilled in the art will recognize that these functions may be
implemented elsewhere (e.g., in the database management
system 154 itself). Each of the components/functions of the
abstract query interface 146 is further described below.
0056. The abstract queries processed by the runtime
component 150 may be configured to access the data and
return results, or to modify (i.e., insert, delete or update) the
data. In one embodiment, elements of a query are Specified
by a user through a graphical user interface (GUI). The
content of the GUIs is generated by the application(s) 140,
and in particular by a graphical user interface (GUI) builder
144. In a particular embodiment, the GUI content is hyper
text markup language (HTML) content which may be ren
dered on the client computer systems 102 with the browser
program 122. Accordingly, the memory 132 includes a
Hypertext Transfer Protocol (http) server process 138 (e.g.,
a web server) adapted to Service requests from the client
computer 102. For example, the process 138 may respond to
requests to access a database(s) 156, which illustratively
resides on the Server 104. Incoming client requests for data
from a database 156-157 invoke an application 140. When
executed by the processor 130, the application 140 causes
the server computer 104 to perform the steps or elements
embodying the various aspects of the invention, including
accessing the database(s) 156-157. In one embodiment, the
application 140 comprises a plurality of Servlets configured
to build GUI elements, which are then rendered by the
browser program 122. Where the remote databases 157 are
accessed via the application 140, the data abstraction model
148 is configured with a location Specification identifying
the database containing the data to be retrieved. This latter
embodiment will be described in more detail below.

0057 FIG. 1 is merely one hardware/software configu
ration for the networked client computer 102 and server
computer 104. Embodiments of the present invention can
apply to any comparable hardware configuration, regardless
of whether the computer Systems are complicated, multi
user computing apparatus, Single-user WorkStations, or net
work appliances that do not have non-volatile Storage of
their own. Further, it is understood that while reference is
made to particular markup languages, including HTML, the
invention is not limited to a particular language, Standard or
version. Accordingly, perSons Skilled in the art will recog
nize that the invention is adaptable to other markup lan
guages as well as non-markup languages and that the
invention is also adaptable future changes in a particular
markup language as well as to other languages presently
unknown. Likewise, the http server process 138 shown in
FIG. 1 is merely illustrative and other embodiments adapted
to Support any known and unknown protocols are contem
plated.

0.058 Logical/Runtime View of Environment

0059 FIGS. 2A-B show a plurality of interrelated com
ponents of the invention. The requesting entity (e.g., one of

Jan. 13, 2005

the applications 140) issues a query 202 as defined by the
respective application query Specification 142 of the request
ing entity. The resulting query 202 is generally referred to
herein as an “abstract query' because the query is composed
according to abstract (i.e., logical) fields rather than by direct
reference to the underlying physical data entities in the
databases 156-157. As a result, abstract queries may be
defined that are independent of the particular underlying
data representation used. In one embodiment, the application
query specification 142 may include both criteria used for
data Selection (Selection criteria 204) and an explicit speci
fication of the fields to be returned (return data specification
206) based on the selection criteria 204.
0060. The logical fields specified by the application query
Specification 142 and used to compose the abstract query
202 are defined by the data abstraction model 148. In
general, the data abstraction model 148 exposes information
as a set of logical fields that may be used within a query (e.g.,
the abstract query 202) issued by the application 140 to
Specify criteria for data Selection and Specify the form of
result data returned from a query operation. The logical
fields are defined independently of the underlying data
representation being used in the databases 156-157, thereby
allowing queries to be formed that are loosely coupled to the
underlying data representation. The data to which logical
fields of the DAM 148 are mapped may be located in a single
repository (i.e., Source) of data or a plurality of different data
repositories. Thus, the DAM 148 may provide a logical view
of one or more underlying data repositories. By using an
abstract representation of a data repository, the underlying
physical representation can be more easily changed or
replaced without affecting the application making the
changes. Instead, the abstract representation is changed with
no changes required by the application. In addition, multiple
abstract data representations can be defined to Support
different applications against the Same underlying database
Schema that may have different default values or required
fields.

0061. In general, the data abstraction model 148 com
prises a plurality of field specifications 208, 208, 208,
208, and 208 (five shown by way of example), collectively
referred to as the field specifications 208. Specifically, a field
Specification is provided for each logical field available for
composition of an abstract query. Each field Specification
comprises a logical field name 210, 210, 210, 210, 210s
(collectively, field name 210) and an associated access
method 212, 212, 212, 212, 212s (collectively, access
method 212). The access methods associate (i.e., map) the
logical field names to a particular physical data representa
tion 214, 214. . . . 214 in a database (e.g., one of the
databases 156) according to parameters referred to herein as
physical location parameters. By way of illustration, two
data representations are shown, an XML data representation
214 and a relational data representation 214. However, the
physical data representation 214 indicates that any other
data representation, known or unknown, is contemplated.
0062) Any number of access methods are contemplated
depending upon the number of different types of logical
fields to be Supported. In one embodiment, access methods
for simple fields, filtered fields and composed fields are
provided. The field specifications 208,208 and 208s exem
plify Simple field access methods 212, 212, and 212s,
respectively. Simple fields are mapped directly to a particu

US 2005/0010557 A1

lar entity in the underlying physical data representation (e.g.,
a field mapped to a given database table and column). By
way of illustration, the Simple field access method 212
shown in FIG. 2B maps the logical field name 210 (“First
Name”) to a column named “f name” in a table named
“contact”, where the table name and the column name are
the physical location parameters of the acceSS method 212.
The field specification 208 exemplifies a filtered field
access method 212. Filtered fields identify an associated
physical entity and provide rules used to define a particular
Subset of items within the physical data representation. An
example is provided in FIG. 2B in which the filtered field
access method 2123 maps the logical field name 210
(“Anytown LastName”) to a physical entity in a column
named "I name' in a table named “contact” and defines a
filter for individuals in the city of Anytown. Another
example of a filtered field is a New York ZIP code field that
maps to the physical representation of ZIP codes and
restricts the data only to those ZIP codes defined for the state
of New York. The field specification 208 exemplifies a
composed field acceSS method 212. Composed acceSS
methods compute a logical field from one or more physical
fields using an expression Supplied as part of the acceSS
method definition. In this way, information which does not
exist in the underlying data representation may computed. In
the example illustrated in FIG.2B the composed field access
method 2123 maps the logical field name 210 “Age InDe
cades” to “AgeInYears/10”. Another example is a sales tax
field that is composed by multiplying a Sales price field by
a Sales tax rate.

0.063. It is noted that the data abstraction model 148
shown in FIG. 2B is merely illustrative of selected logical
field Specifications and is not intended to be comprehensive.
As such, the abstract query 202 shown in FIG. 2B includes
Some logical fields for which Specifications are not shown in
the data abstraction model 148, Such as "State' and “Street'.

0064. It is contemplated that the formats for any given
data type (e.g., dates, decimal numbers, etc.) of the under
lying data may vary. Accordingly, in one embodiment, the
field specifications 208 include a type attribute which
reflects the format of the underlying data. However, in
another embodiment, the data format of the field Specifica
tions 208 is different from the associated underlying physi
cal data, in which case an access method is responsible for
returning data in the proper format assumed by the request
ing entity. Thus, the access method must know what format
of data is assumed (i.e., according to the logical field) as well
as the actual format of the underlying physical data. The
access method can then convert the underlying physical data
into the format of the logical field.
0065. By way of example, the field specifications 208 of
the data abstraction model 148 shown in FIG. 2A are
representative of logical fields mapped to data represented in
the relational data representation 214. However, other
instances of the data abstraction model 148 map logical
fields to other physical data representations, Such as XML.
Further, in one embodiment, a data abstraction model 148 is
configured with access methods for procedural data repre
Sentations.

0.066 An illustrative abstract query corresponding to the
abstract query 202 shown in FIG. 2 is shown in Table I
below. By way of illustration, the data repository abstraction

Jan. 13, 2005

148 is defined using XML. However, any other language
may be used to advantage.

TABLE I

OUERY EXAMPLE

001 <xml version="1.O's
002 <!--Query string representation: (FirstName = “Mary AND
003 LastName = “McGoon”) OR State = "NC"-->
004 <Query Abstraction>
O05 <Selections
OO6 <Condition internalID="4">
OO7 <Condition field="FirstName” operator="EQ value="Mary”
O08 internalID="1/>
O09 <Condition field="LastName operator="EQ value=
010 “McGoon” internalID="3" relOperator="AND"></Condition>
O11 <f Condition>
O12 <Condition field="State” operator="EQ value="NC"
013 internalID="2" relOperator="OR"></Condition>
O14 </Selection>
O15 <Results
O16 &Field name="FirstName/s.
O17 <Field name="LastName/>
O18 <Field name="State/>
O19 </Results
020 </Query Abstraction>

0067 Illustratively, the abstract query shown in Table I
includes a selection specification (lines 005-014) containing
selection criteria and a results specification (lines 015-019).
In one embodiment, a Selection criterion consists of a field
name (for a logical field), a comparison operator (=, >, <,
etc) and a value expression (what is the field being compared
to). In one embodiment, result specification is a list of
abstract fields that are to be returned as a result of query
execution. A result Specification in the abstract query may
consist of a field name and Sort criteria.

0068 An illustrative instance of a data abstraction model
148 corresponding to the abstract query in Table I is shown
in Table II below. By way of illustration, the data abstraction
model 148 is defined using XML. However, any other
language may be used to advantage.

TABLE II

DATA ABSTRACTION MODELEXAMPLE

001 <xml version="1.O's
002 <DataRepository>
003 <Category name="Demographic'>
004 <Field queryable="Yes" name="FirstName” displayable="Yes">
O05 <AccessMethods
OO6 <Simple columnName="f name

ableName="contacts.</Simple>
OO7 </AccessMethods
O08 <Type baseType="char's </Types
O09 &/Fields
010 <Field queryable="Yes' name="LastName displayable="Yes'>
O11 <AccessMethods
O12 <Simple columnName="I name

ableName="contacts.</Simple>
O13 </AccessMethods
O14 <Type baseType="char's </Types
O15 &/Fields
O16 <Field queryable="Yes" name="State” displayable="Yes">
O17 <AccessMethods
O18 <Simple columnName="state'

ableName="contacts.</Simple>
O19 </AccessMethods
O2O <Type baseType="char's </Types
O21 </Fields

US 2005/0010557 A1

TABLE II-continued

DATA ABSTRACTION MODELEXAMPLE

022 </Category>
023 </DataRepository>

0069. Note that lines 004-009 correspond to the first field
specification 208 of the DAM 148 shown in FIG. 2B and
lines 010-015 correspond to the second field specification
208. For brevity, the other field specifications defined in
Table I have not been shown in FIG. 2B. Note also that
Table I illustrates a category, in this case “Demographic''. A
category is a grouping of one or more logical fields. In the
present example, “First Name”, “Last Name” and “State'
are logical fields belonging to the common category,
“Demographic''.
0070. In any case, a data abstraction model 148 contains
(or refers to) at least one access method that maps a logical
field to physical data. However, the foregoing embodiments
are merely illustrative and the logical field Specifications
may include a variety of other metadata. In one embodiment,
the acceSS methods are further configured with a location
Specification defining a location of the data associated with
the logical field. In this way, the data abstraction model 148
is extended to include description of a multiplicity of data
Sources that can be local and/or distributed acroSS a network
environment. The data Sources can be using a multitude of
different data representations and data access techniques. In
this manner, an infrastructure is provided which is capable
of capitalizing on the distributed environments prevalent
today. One approach for accessing a multiplicity of data
Sources is described in more detail in U.S. patent application
Ser. No. 10/131,984, entitled “REMOTE DATA ACCESS
AND INTEGRATION OF DISTRIBUTED DATA
SOURCES THROUGH DATA SCHEMA AND QUERY
ABSTRACTION” and assigned to International Business
Machines, Inc.
0071 FIG. 3 shows an illustrative runtime method 300
exemplifying one embodiment of the operation of the runt
ime component 150. The method 300 is entered at step 302
when the runtime component 150 receives as input an
instance of an abstract query (Such as the abstract query 202
shown in FIG. 2). At step 304, the runtime component 150
reads and parses the instance of the abstract query and
locates individual Selection criteria and desired result fields.
At step 306, the runtime component 150 enters a loop
(comprising steps 306, 308, 310 and 312) for processing
each query Selection criteria Statement present in the abstract
query, thereby building a data Selection portion of a Con
crete Query. In one embodiment, a Selection criterion con
Sists of a field name (for a logical field), a comparison
operator (=, >, <, etc) and a value expression (what is the
field being compared to). At step 308, the runtime compo
nent 150 uses the field name from a selection criterion of the
abstract query to look up the definition of the field in the data
repository abstraction 148. As noted above, the field defi
nition includes a definition of the acceSS method used to
access the physical data associated with the field. The
runtime component 150 then builds (step 310) a Concrete
Query Contribution for the logical field being processed. AS
defined herein, a Concrete Query Contribution is a portion
of a concrete query that is used to perform data Selection

Jan. 13, 2005

based on the current logical field. A concrete query is a query
represented in languages like SQL and XML Query and is
consistent with the data of a given physical data repository
(e.g., a relational database or XML repository). Accordingly,
the concrete query is used to locate and retrieve data from a
physical data repository, represented by the databases 156
157 shown in FIG. 1. The Concrete Query Contribution
generated for the current field is then added to a Concrete
Query Statement. The method 300 then returns to step 306
to begin processing for the next field of the abstract query.
Accordingly, the process entered at Step 306 is iterated for
each data Selection field in the abstract query, thereby
contributing additional content to the eventual query to be
performed.
0072 After building the data selection portion of the
concrete query, the runtime component 150 identifies the
information to be returned as a result of query execution. AS
described above, in one embodiment, the abstract query
defines a list of abstract fields that are to be returned as a
result of query execution, referred to herein as a result
Specification. A result Specification in the abstract query may
consist of a field name and Sort criteria. Accordingly, the
method 300 enters a loop at step 314 (defined by steps 314,
316, 318 and 320) to add result field definitions to the
concrete query being generated. At Step 316, the runtime
component 150 looks up a result field name (from the result
Specification of the abstract query) in the data repository
abstraction 148 and then retrieves a Result Field Definition
from the data repository abstraction 148 to identify the
physical location of data to be returned for the current
logical result field. The runtime component 150 then builds
(as step 318) a Concrete Query Contribution (of the concrete
query that identifies physical location of data to be returned)
for the logical result field. At step 320, Concrete Query
Contribution is then added to the Concrete Query Statement.
Once each of the result Specifications in the abstract query
has been processed, the query is executed at Step 322.
0073) One embodiment of a method 400 for building a
Concrete Query Contribution for a logical field according to
steps 310 and 318 is described with reference to FIG. 4. At
step 402, the method 400 queries whether the access method
asSociated with the current logical field is a simple access
method. If so, the Concrete Query Contribution is built (step
404) based on physical data location information and pro
cessing then continues according to method 300 described
above. Otherwise, processing continues to Step 406 to query
whether the acceSS method associated with the current
logical field is a filtered access method. If So, the Concrete
Query Contribution is built (step 408) based on physical data
location information for Some physical data entity. At Step
410, the Concrete Query Contribution is extended with
additional logic (filter Selection) used to Subset data associ
ated with the physical data entity. Processing then continues
according to method 300 described above.
0074. If the access method is not a filtered access method,
processing proceeds from step 406 to step 412 where the
method 400 queries whether the access method is a com
posed acceSS method. If the acceSS method is a composed
acceSS method, the physical data location for each Sub-field
reference in the composed field expression is located and
retrieved at step 414. At step 416, the physical field location
information of the composed field expression is Substituted
for the logical field references of the composed field expres

US 2005/0010557 A1

Sion, whereby the Concrete Query Contribution is generated.
Processing then continues according to method 300
described above.

0075). If the access method is not a composed access
method, processing proceeds from Step 412 to Step 418. Step
418 is representative of any other acceSS methods types
contemplated as embodiments of the present invention.
However, it should be understood that embodiments are
contemplated in which less then all the available acceSS
methods are implemented. For example, in a particular
embodiment only simple acceSS methods are used. In
another embodiment, only simple acceSS methods and fil
tered acceSS methods are used.

0.076 AS described above, it may be necessary to perform
a data conversion if a logical field Specifies a data format
different from the underlying physical data. In one embodi
ment, an initial conversion is performed for each respective
access method when building a Concrete Query Contribu
tion for a logical field according to the method 400. For
example, the conversion may be performed as part of, or
immediately following, the steps 404, 408 and 416. A
Subsequent conversion from the format of the physical data
to the format of the logical field is performed after the query
is executed at step 322. Of course, if the format of the logical
field definition is the same as the underlying physical data,
no conversion is necessary.
0077 Graphical User Interfaces
0078. As noted above, one embodiment provides the user
with a GUI through which queries may be composed and
executed. The GUI screens (e.g., built by the GUI builder
144 of the application 140) generally provide search criteria
and associated values from which a user may select. The
Selections of the user are used to build the application query
Specification 142. The query may then be executed in the
manner described above.

0079 For purposes of the present description it will be
helpful to define some terms. As is evident from the above
description, to perform a Search for a Set of desired database
records within the repository 154, a requesting entity (e.g.,
application 140) builds a query by combining one or more
“operands' and "logic operators' to form a Search expres
Sion. The operands and operators together identify the
desired Search. Each operand may be a comparison opera
tion (defined by a comparison operator, e.g., >, <, =) which
defines a value for a parameter of an element in the reposi
tory 154. For instance, an operand may be “(DateOfBirth=
1942/01/01)” which represents a request for search results
having a “Date Of Birth” parameter equal to a date value of
1942/01/01. Another illustrative operand is “(DateOf
Birthd' 1942/01/01)” which represents a request for search
results having a “Date Of Birth” parameter greater than 1942/
01/01. Two or more operands can be related by a logic
operator representing a logical relationship between oper
ands. Logic operators are logical connectors, Such as logical
AND, OR, and NOT. Each operand, or operand with a logic
operator, defines a Single Search criterion.
0080 For purposes of the present description, a singular
operand is referred to herein as a “simple condition” or just
“condition”. Two or more operands/conditions related by a
logic operator form a “complex condition' or “compound
condition'. A simple condition or complex condition may

Jan. 13, 2005

make up a portion of a search expression (i.e., a query)
which is executed by the application 140.
0081 Referring now to FIGS. 5-16, a series of graphical
user interfaces are shown illustrating the user interfaces
defined by the application 140. By way of illustration, the
graphical user interfaces shown in FIGS. 5-16 are specific
to accessing medical data. However, embodiments of the
invention may be used to advantage with any type of
information including, for example, financial information,
employment information, etc. In general, the graphical user
interfaces shown in FIGS. 5-16 allow a user to build queries
comprising conditions added by the user. Recall that, as
defined herein, a simple condition is a comparison operation.
An illustrative simple condition is (Date Of Birth="1942/01/
01). Thus, adding a simple condition to a query generally
involves allowing the user to Select operands and a com
parison operator (e.g., >, <, =). In one embodiment, when a
user initially invokes the application 140 via the browser
program 122, the application 140 (specifically, the GUI
builder 144) returns HTML content which is rendered by the
browser program 122 in the form of a first GUI 600, shown
in FIG. 5. The GUI 600 is the first of a series of Screens
which a user uses to add a condition to a query. In general,
the GUI 600 includes a plurality of condition categories
602-610 (each having an associated radio button) from
which a user may select. The condition categories shown
include “demographics'602, “tests and laboratory
results'604, “reports'606, “diagnostic using ICD-9' 608,
and “diagnostic using DRG'610. Each of the condition
categories has an associated field 612-620 from/into which
a value may be selected/input. Some fields (e.g., fields
612-616) are drop-down menus, while others are text boxes
(e.g., fields 618-620) for receiving user input. In the latter
case, the fields may have associated Browse buttons 622
624 to facilitate user selection of valid values.

0082 Once a condition category and value have been
selected, the user clicks on the Next button 626. Clicking the
Next button 626 causes the browser program 622 to render
(according to information provided by the application 640)
the next appropriate graphical user interface necessary to
continue the process of adding a condition. In this manner,
the user may be presented with a Series of graphical user
interfaces necessary to add a condition. By way of example,
assume that the user has Selected the demographic condition
category 602 and the “date of birth value from the drop
down menu 612. Upon pressing the Next button 626, the
user is presented with a second GUI 700 shown in FIG. 6.
The GUI 700 comprises a comparison operator drop-down
menu 702 from which a user may select a comparison
operator (e.g., >, <, =) and a date field 704 into which a user
may input a date according to a prescribed format (e.g.,
“yyyy/mm/dd”). The process of adding the date of birth
condition is completed when the user clicks on the OK
button 706.

0083. When the user has completed the process of adding
a condition (e.g., such as after clicking the OK button 706),
the user is presented with the GUI 800 shown in FIG. 7. The
resulting conditions are shown in a condition column 802. In
the present example, a first row of the condition column 802
shows the date of birth condition added using the GUIs 600
and 700 described above. The user may add another condi
tion by clicking the “Add a Condition” button 804. By
repeating Similar Steps for each of the other available

US 2005/0010557 A1

condition categories and values, any number of conditions
may be added to a query. By way of illustration, the
refreshed/updated GUI 800 shown in FIG. 8 shows a total
of three conditions (including the date of birth condition
described above), each of which were added by Stepping
through the graphical user interfaces for adding a condition
(e.g., the GUIs 600 and 700). Further, although not shown,
adding a condition may require any number of other graphi
cal user interfaces. In particular, a plurality of additional
graphical user interfaces may be required for more compli
cated conditions, Such as ranges. The particular number,
content, design and elements of Such graphical user inter
faces may be determined by perSons skilled in the art
according to aspects of the invention.

0084. After the first condition has been added, each of the
Subsequent conditions are related to one another to the first
condition by a Boolean logic value/operator, referred to
herein as a first level Boolean logic value. Referring to FIG.
8, the first level Boolean logic values are shown in a pair of
columns 902,904. The first level Boolean logic values AND
and OR are selected from drop-down menus 906, 908 in the
first column 902. An AND/OR drop-down menu is located
between each condition. Accordingly, in the illustration
shown in FIG. 8, a first drop-down menu 906 is located
between the “date of birth” condition and the “gender'
condition and a second drop-down menu 908 is located
between the “gender” condition and a “hemoglobin' condi
tion. In one embodiment, the first level Boolean logic value
defaults to AND for each condition added after the first
condition. A user may then change the default value to OR
using the drop-down menu. Alternatively, the user may
negate the condition by checking the appropriate NOT
checkbox in the second column 904.

0085. Once two or more conditions have been added to a
query, two or more conditions may then be grouped together
by Boolean logic values, referred to herein as Second level
Boolean logic values, to produce complex (or grouped)
conditions. An example of a complex condition is (employ
eeName=" Rich) OR (employeeName="John)). Further,
Simple conditions and complex conditions may be connected
by Boolean logic values to produce a hierarchy of condi
tions. In one embodiment, the first graphical element used to
group conditions together is a “Group Conditions' button
910.

0.086. In one embodiment, pressing the “Group Condi
tions” button 910 causes the application 140 to generate the
GUI 1000 shown in FIG. 9. The GUI 1000 displays each of
the available conditions and an associated checkbox 1002
for each condition. The user Selects which conditions are to
be grouped together by checking the appropriate checkbox
1002. Illustratively, the “gender” and the “hemoglobin'
conditions are selected. The GUI 1000 further provides and
“AND Group” button 1004 and an “OR Group” button 1006,
for ANDing or ORing the Selected groups. ASSume, by way
of illustration, that a user clicks the “AND Group” button
1004. The result of this action is shown by the updated GUI
800 in FIG. 10. Specifically, only two conditions 1102,1104
remain, with the second condition 1104 being a complex
condition comprising to Sub conditions related by a Boolean
AND. Further, the two conditions 1102,704 are themselves
related by a Boolean AND, shown in the drop-down menu
906.

Jan. 13, 2005

0087 Assume now that a user desires to ungroup the
second condition 1104. To facilitate this task, the GUI 900
(shown in FIG.10) includes an “Undo Grouped Conditions”
button 1106. Pressing the “Undo Grouped Conditions” but
ton 1106 causes the application 140 to generate the GUI
1200 shown in FIG. 11. The GUI 1200 displays each of the
existing conditions and an associated checkbox 1202. In
alternative embodiment, only the complex conditions (Such
as the second condition 1104 in this case) are shown in the
GUI 1200. In any event, to ungroup a complex condition, the
user checks the appropriate checkbox 1202 and then clickS
the OK button 1204. In this case, the result of ungrouping
the second condition 1104 is shown by the GUI 900 and
FIG.8. That is, the conditions are returned to their original
ungrouped States.

0088. The current structure of a given query may be
viewed by a user in a search Summary section 920 of the
GUI 900 shown in FIG. 8 and FIG. 10. In one embodiment,
the query displayed in a Search Summary Section 920 is
updated by clicking a “Refresh Search Summary” button
922.

0089. Once the desired conditions have been defined, or
even prior to defining the conditions, the user may define
result fields (i.e., the fields the user wants to have returned
and which satisfy the condition criteria). In one embodi
ment, the user clicks a “Change Output Data” button 1108
(shown for example in FIG. 10). In response, the GUI
builder 144 renders the Result Field Selection GUI 1300 of
FIG. 12. The GUI 1300 includes an Available Result Fields
window 1302 and a Selected Result Fields window 1304.
The window 1302 displays all available result fields from
which a user may select. The window 1304 displays the
fields Selected by the user. In the present example, the user
has selected Location, Address, Patient ID, Clinical Infor
mation and User. In one embodiment, the GUI 1300 is
drag-and-drop enabled to facilitate Selection of result fields.
After making the desired Selections, the user presses the
Next button 1306 and is presented with a Result Field
Linking GUI 1400 of FIG. 13.

0090 The Result Field Linking GUI 1400 generally
includes a list 1402 of the result fields selected by the user
in the Result Field Selection GUI 1300. The GUI 1400 also
includes a table 1404 having a plurality of columns
1406A-D (four shown). Each column has a number of cells
(three per column shown). For purposes of illustration only,
the table 1404 includes four columns, each having three
cells. However, the dimensions of the table 1404 may be
manipulated by the user as desired. In one embodiment, the
user adds another column by clicking the Add Column
button 1408, and adds another row to each column by
clicking the Add Row button 1410.

0091. The user determines the structure of the resulting
query by Selecting the relative position of the available result
fields (in the list 1402) in the table 1404. In one embodiment,
the user populates the cells of table 1404 by highlighting a
Selected cell, then highlighting one of the result fields in the
list 1402 and then clicking the Add button 1412. Populated
cells may be de-populated by clicking the Remove button
1414. In another embodiment, the user simply drags (from
the list 1402) and drops a selected result field into a cell of
the table 1404. Illustratively, the user populates the first three
cells of the first row with User, Address, Clinical info, as

US 2005/0010557 A1

shown in FIG. 14. Accordingly, the remaining result fields
in the list 1402 are Location and Patient. In one embodiment,
fields in adjacent cells on the same row (i.e., horizontally
arranged) are JOINed, assuming the fields are in Separate
tables. Accordingly, and SQL Statement corresponding to the
table 1404 shown in FIG. 14 is as follows:

Corresponding SQL Statement

0092) SELECT T1. USER, T1ADDRESS,
T2.CLINICAL INFO FROM TABLE1 T1, TABLE2 T2
0093. In one embodiment, fields arranged in a vertical
manner are UNIONed. For example, FIG. 15 shows an
arrangement in which Patient and Location have been added
to the corresponding cells in the next row directly below
User and Address, respectively. Accordingly, Patient and
User have been UNIONed and Location and Address have
been UNIONed. Note that the cell directly below Clinical
Info is empty. In an SQL statement this empty cell will be
accounted for with a NULL value. Accordingly, the corre
sponding SQL Statement for this arrangement is as follows:

Corresponding SQL Statement

0094) SELECT USER, ADDRESS, CLINICAL INFO
FROM TABLE1 UNION SELECT PATIENT AS USER,
LOCATION AS ADDRESS, NULL, FROM TABLE2.
0.095 Accordingly, one embodiment of the user interface
of the present invention gives a user control over which
fields to JOIN and which to UNION in a graphical envi
ronment where data is abstractly represented. In general,
JOINs would be preferable over UNION where there is
correspondence between instances of data between the two
data sources. On the other hand, UNION would be preferred
when the same data item was defined for two data Sources,
but with little or no overlap in the instance values. In the
foregoing example, the user may have UNIONed the
selected fields thinking that the fields of each UNION are
Similar and, therefore, the results of the query should return
both fields of each UNION. Although both fields are
returned, the fields are appended to each other in one column
and, therefore, returned as one viewable field. Duplicate data
will be removed.

0096. In addition to giving a user the flexibility to JOIN
or UNION fields, it is contemplated that the user is also able
to sort the order of the results. That is, the order of the results
is Sorted according to the order (i.e., left to right) of the fields
in the various cells of the table 1404. In this way, the user
may manipulate the relative positioning of each of the
available result fields to return the desired results and control
the order in which the results are returned.

0097. It should be noted that the above embodiments are
merely illustrative and not limiting. Persons skilled in the art
will recognize other embodiments with the Scope of the
invention. For example, in one embodiment, the table 1404
may be “pre-populated” with selected fields. Thus, an
administrator may specify a particular arrangement of user
Selected fields. Alternatively, a user may Save a particular
arrangement of fields. AS an example, after clicking the Next
button 1306 of the GUI 1300 (FIG. 12), the user may be
presented with the GUI 1400 of FIG. 14, in which User,
Address and Clinical Info are already assigned default cells
of the first row. Although not shown, more than one row may

Jan. 13, 2005

be pre-populated, and some cells may be UNIONed by
default. The user may then arrange the relative position of
remaining available result fields in the list 1402 (i.e., Loca
tion and Patient), or may even change the default layout (i.e.,
User, Address and Clinical Info). In this regard is noted that
administrators may not be in the best position to determine
which fields can be UNIONed, given that they likely do not
have Sufficient understanding of the underlying data.
Accordingly, it is contemplated that best-guess estimates can
be made on whether certain fields should be UNIONed (i.e.,
vertically related in the query creation table 1404) or
JOINed horizontally. For example, a best-guess estimates
can be accomplished by running DAMS through an algo
rithm to determine which logical fields are Similar to one
another, either by virtue of being Synonyms or having the
Same data type and length. For example, two tables con
taining patient information are likely to have very similar
Schemas, excepting Sub-table/Super-table definitions where
one table Simply has more information than the other. In
contrast, a patient table and an employee table will have
Some common information (e.g., name, address) but each
will have a Significant amount of different information
relative to the other (e.g., job description, manager, patient
ID). A best-guess estimate algorithm would recognize that
the patient and employee tables should be JOINed, but the
two patient tables should be UNIONed.

0098. Once the result fields have been arranged to return
the desired result, the user clicks on an OK button 1502,
shown in FIG. 15. Upon clicking the OK button 1502, any
empty columns and/or rows are removed from the query
creation table 1404. The user is then returned to a refreshed
instance of the GUI 800, as shown in FIG. 16. Note that the
summary section 920 now includes a result field specifica
tion 1604 as defined in the table 1404 of FIG. 15. If the user
is Satisfied with query has been built, the user may execute
the query by pressing the “Run Search” button 924. In
particular, pressing the “Run Search” button 924 invokes the
runtime component 150, which performs the execution.

0099. In one embodiment, pressing the “Run Search”
button 924 first causes the query as Specified in the Summary
section 920 to be rendered in an abstract form. The resulting
abstract query is then executed in the manner described
above with respect to FIGS. 3 and 4.

0100. One embodiment of a method 1700 for rendering
the abstract query based on a user-specified result field
layout (e.g., as specified by the table 1404 of FIG. 15) is
described with reference to FIG. 17. For purposes of the
present illustration it is assumed that the query creation table
1404 does not include any empty columns or rows, although
individual cells may be empty. The method 1700 begins
processing with the first row in the query creation table
1404. In particular, the method 1700 enters a loop (at step
1702) which iterates for each cell in the first row in the query
creation table 1404. The cell is examined to determine
whether it contains data, i.e., a result field (step 1704). If not,
the method 1700 returns to step 1702 to start processing the
next cell for the first row. For a cell that does contain a result
field, however, the result field name is added as a component
of the abstract query (step 1706), and processing then returns
to step 1702. Once each of the cells in the first row have been
processed according to the loop entered at Step 1702, the
method 1700 proceeds to step 1708.

US 2005/0010557 A1
11

0101. At step 1708, the method 1700 enters a loop for
each cell of each remaining row in the query creation table
1404 (loops entered at step 1708 and step 1710). For a given
cell of a given row, the method 1700 determines whether the
cell contains a result field (step 1712). If not, the method
returns to step 1710 to begin processing the next cell. For a
given cell that does contain a result field, however, the
method 1700 determines whether the adjacent cell directly
above the given cell contains data (step 1714). If so, the two
cells are UNIONed (step 1716). Once each of the cells of
each of the remaining rows has been processed, the method
1700 exits. In this way, each of the vertically related cells
(i.e., adjacent cells in a column) are UNIONed.
0102) The result of method 1700 is an abstract query. By
way of illustration only, a representative abstract query
corresponding to the query creation table 1404 of FIG. 15
is shown below.

Example of Abstract Query Having Union
0103)

<Query Abstraction version="1.0
xmlins:xsi="http://www.w3.org/2001/XMLSchema-instance'

xsi:noNamespaceSchemaLocation="Query Abstraction.xsd'>
<Selection>

<Condition relOperator="AND field="data://patient/User's
<Value val="John'?s

</Condition>
</Selection>
<Results format="HTML distinct=“Yes' s

<Unions
<Field name="data://patient/User fieldType="char/>
<Field name="data://patient/Patient fieldType="char/>

</Unions
<Unions

<Field name="data://patient/Address' fieldType="char/>
<Field name="data://patient/Location fieldType="char/>

</Unions
<Field name="data://patient/Clinial Info' fieldType="char/>

</Results
</Query Abstraction>

0104. The above abstract query may then the transformed
into a concrete query in a manner Substantially conforming
to that described with respect to FIGS. 3-4. The runtime
component 150 would implement the appropriate UNIONS
and JOINs that are needed to return the data back to the
end-user as expected. An SOL representation of the result
field portion of the abstract query (i.e., that portion corre
sponding to the SELECT statement of the SQL statement)
was provided above.
0105 While the foregoing is directed to embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
Scope thereof, and the Scope thereof is determined by the
claims that follow.

What is claimed is:
1. A method for providing a logical representation of

physical fields of physical data entities to facilitate querying
the physical fields, the method comprising:

providing a logical model to logically describe the physi
cal fields, the logical model comprising logical fields
corresponding to respective physical fields, and

Jan. 13, 2005

providing a runtime component configured to transform
an abstract query into an executable query containing at
least one combinatorial Statement, the abstract query
comprising a condition and at least two result fields
Selected from the logical fields of the logical model,
each result field having executable counterparts in the
combinatorial Statement of the executable query.

2. The method of claim 1, wherein the combinatorial
statement is a UNION statement and wherein the at least two
result fields are related by UNION information which causes
the runtime component to produce the UNION statement.

3. The method of claim 1, wherein the abstract query is
user-defined.

4. The method of claim 1, wherein the executable query
is an SQL Statement.

5. The method of claim 1, wherein the executable query
is an XOuery Statement.

6. The method of claim 1, wherein the physical data
entities comprise a plurality of tables in a database.

7. The method of claim 1, further comprising providing a
graphical user interface wherein the at least two result fields
are specified in a graphical user interface.

8. A method for providing a logical representation of
physical fields of physical data entities to facilitate querying
the physical fields, the method comprising:

providing a logical model to logically describe the physi
cal fields, the logical model comprising logical fields
corresponding to respective physical fields;

receiving an abstract query defined with respect to a
logical model comprising logical fields corresponding
to respective physical fields, the abstract query com
prising a condition and at least two result fields Selected
from the logical fields of the logical model; and

transforming the abstract query into an executable query
containing at least one combinatorial Statement, the
abstract query comprising a condition and at least two
result fields selected from the logical fields of the
logical model, each result field having executable coun
terparts in the combinatorial Statement of the execut
able query.

9. The method of claim 8, wherein the physical data
entities comprise a plurality of tables in a database.

10. The method of claim 8, further comprising providing
a graphical user interface wherein the at least two result
fields are specified in a graphical user interface.

11. A method for allowing query building, comprising:

providing a graphical user interface allowing user Selec
tion and arrangement of logical result fields Selected
from a logical model which logically defines data,
wherein a predetermined relative geometric arrange
ment between user-Selected logical result fields defines
a combinatorial relationship between the user-Selected
logical result fields.

12. The method of claim 11, wherein the predetermined
relative geometric arrangement comprises a vertical
arrangement of the user-Selected logical result fields.

13. The method of claim 11, wherein the combinatorial
relationship is expressed as a UNION statement in a query
containing representations of the user-Selected logical result
fields.

US 2005/0010557 A1

14. A method for allowing query building, comprising:
providing a graphical user interface allowing user Selec

tion and arrangement of logical result fields Selected
from a logical model which logically defines data,
wherein a first predetermined relative geometric
arrangement between user-Selected logical result fields
defines a first type of combinatorial relationship
between the user-Selected logical result fields and
wherein a Second predetermined relative geometric
relationship between user-Selected logical result fields
defines a Second type of combinatorial relationship
between the user-Selected logical result fields.

15. The method of claim 14, wherein the first predeter
mined relative geometric arrangement comprises a vertical
arrangement of the Selected logical result fields and the
Second predetermined relative geometric arrangement com
prises a horizontal arrangement of the Selected logical result
fields.

16. The method of claim 14, wherein the first type of
combinatorial relationship is a JOIN and the second type of
combinatorial relationship is a UNION.

17. A method for allowing query building, comprising:
providing a graphical user interface allowing user Selec

tion and arrangement of logical result fields Selected
from a logical model which logically defines data, the
graphical user interface comprising a table comprising
a plurality of cells, wherein a predetermined relative
geometric arrangement between user-Selected logical
result fields in adjacent cells defines a combinatorial
relationship between the user-Selected logical result
fields, the combinatorial relationship being Selected
from at least two different type of combinatorial rela
tionships.

18. The method of claim 17, wherein the predetermined
relative geometric arrangement comprises a vertical
arrangement of the user-Selected logical result fields.

19. The method of claim 17, wherein the combinatorial
relationship is a UNION.

20. The method of claim 17, wherein the combinatorial
relationships are selected from a UNION and a JOIN.

21. A method for building queries, comprising:
providing a logical model to logically describe the physi

cal fields, the logical model comprising logical fields
corresponding to respective physical fields;

providing a graphical user interface allowing user Selec
tion and arrangement of logical result fields Selected
from the logical model;

receiving user input Specifying a Selection and a location,
in the graphical user interface, of a first logical result
field;

receiving user input Specifying a Selection and a location,
in the graphical user interface, of a Second logical result
field, wherein the first and Second logical result fields
have a relative geometric relationship and define at
least a portion of an abstract query; and

transforming the abstract query into an executable query
containing at least one combinatorial Statement con
taining representations of the first and Second logical
result fields, and being generated as a result of the
relative geometric relationship.

12
Jan. 13, 2005

22. The method of claim 21, wherein the combinatorial
Statement is a UNION.

23. The method of claim 21, further comprising display
ing each of the logical fields of the logical model as
Selectable logical result fields in the graphical user interface.

24. A computer readable medium containing a graphical
user interface program which, when executed, performs an
operation for building abstract queries defined with respect
to a logical model comprising a plurality of logical field
definitions mapping to physical fields of physical entities of
the data, the operation comprising:

receiving user input Specifying a Selection and a location,
in the graphical user interface, of a first logical result
field; wherein the graphical user interface allows user
Selection of logical result fields from the logical model
and Supports combinatorial relations between user
Selected logical result fields, and

receiving user input Specifying a Selection and a location,
in the graphical user interface, of a Second logical result
field, wherein the first and Second logical result fields
define at least a portion of an abstract query, which is
transformed into an executable query containing at
least one combinatorial Statement containing counter
parts of the first and Second logical result fields.

25. The method of claim 24, wherein the combinatorial
Statement is a UNION.

26. A computer readable medium containing a program
which, when executed, performs an operation for building
abstract queries defined with respect to a logical model
comprising a plurality of logical field definitions mapping to
physical fields of physical entities of the data, the operation
comprising:

receiving user input Specifying a Selection and a location,
in a graphical user interface, of a first logical result
field; wherein the graphical user interface allows user
Selection and arrangement of logical result fields
Selected from the logical model;

receiving user input Specifying a Selection and a location,
in the graphical user interface, of a Second logical result
field, wherein the first and Second logical result fields
have a relative geometric relationship and define at
least a portion of an abstract query; and

transforming the abstract query into an executable query
containing at least one combinatorial Statement con
taining counterparts of the first and Second logical
result fields, and being generated as a result of the
relative geometric relationship.

27. The computer readable medium of claim 26, wherein
the combinatorial statement is a UNION.

28. The computer readable medium of claim 26, wherein
the relative geometric relationship is vertical.

29. A computer System, comprising memory and at least
one processor, and further comprising:

a logical model comprising a plurality of logical field
definitions mapping to physical fields of physical enti
ties of data, whereby the logical model provides a
logical view of the data; and

a graphical user interface allowing user Selection and
arrangement of logical result fields Selected from the
logical model; wherein the graphical user interface
comprises input cells for user-Selected logical result

US 2005/0010557 A1 Jan. 13, 2005
13

fields and wherein a predefined geometric relationship 31. The system of claim 29, wherein the predefined
between cells Specifies whether user-Selected logical geometric relationship is vertical.
result fields in the cells are related by a first combina- 32. The system of claim 29, wherein user-selected logical
torial Statement type or a Second combinatorial State- result fields in horizonally adjacent cells are JOINed.
ment type. 33. The system of claim 29, further comprising a rela

30. The system of claim 29, wherein the first combina- tional database containing the physical entities of data.
torial statement type is a UNION and the second combina
torial statement type is a JOIN. k

