发明名称
乙烯类共聚树脂膨胀型防火涂料

摘要
乙烯类共聚树脂膨胀型防火涂料，按质量分数计由以下成分组成：乙烯－醋酸乙烯共聚物 50 ～ 100 份，轻质碳酸钙 5 ～ 10 份，硬脂酸 1 ～ 5 份，二氧化钛 5 ～ 10 份，甲基异丁酮 100 ～ 150 份，二氯戊四醇 10 ～ 15 份。本发明的乙烯类共聚树脂膨胀型防火涂料，当涂覆于可燃基材上时，平时可起一定的装饰作用；一旦火灾发生时，则具有阻止火势蔓延，从而达到保护可燃基材的目的，主要优点在于可以耐受长时间的高温烘烤，起防火隔热作用。
1. 乙烯类共聚树脂膨胀型防火涂料，其特征在于按质量分数计由以下成分组成：乙烯－醋酸乙烯共聚物 50～100 份，轻质碳酸钙 5～10 份，硬脂酸 1～5 份，二氧化钛 5～10 份，甲基异丁酮 100～150 份，二季戊四醇 10～15 份。

2. 根据权利要求 1 所述的乙烯类共聚树脂膨胀型防火涂料，其特征在于所述乙烯－醋酸乙烯共聚物 80 份。

3. 根据权利要求 1 所述的乙烯类共聚树脂膨胀型防火涂料，其特征在于所述轻质碳酸钙 10 份。

4. 根据权利要求 1 所述的乙烯类共聚树脂膨胀型防火涂料，其特征在于所述二季戊四醇 15 份。
乙烯类共聚树脂膨胀型防火涂料

[0001]

技术领域
[0002] 本发明属于防火涂料技术领域，尤其涉及一种用于塑料装饰阻燃的乙烯类共聚树脂膨胀型防火涂料。

[0003]

背景技术
[0004] 防面型膨胀防火涂料，可分为溶剂型和水性两者，两类涂料所选用的防火组分基本相同，因此很难说它们的防火性能有多大的差别。其选用的溶剂以采用的成膜物质而定。溶剂型防火涂料的成膜物质一般选用氯化橡胶、过氯乙烯、氯基树脂、酚醛树脂等，采用的溶剂为 200 号溶剂汽油、喷漆稀料、醇酸丁酯等。水性防火涂料的成膜物质一般选用氯乙烯-偏氯乙烯乳液、苯丙乳液、聚丙烯酸乳液、聚醋酸乙烯乳液等，这些材料均以水为溶剂。这两类涂料性能上的差异主要在于涂料的理化性能以及耐侯性能，溶剂型防火涂料这两方面的性能都优于水性防火涂料。透明防火涂料是近几年发展起来并趋于成熟的一类饰面型防火涂料，产品广泛地适用于宾馆、医院、剧场、计算机房等木结构的装修，各种高层建筑及古建筑的装饰和防火保护。然而，随着我国工业的迅速发展及市场上的需求，对透明防火涂料提出了更高的要求，不但要具有良好的防火性能，而且要求漆膜透明光亮，耐候性能好。

[0005]

发明内容
[0006] 解决的技术问题：本发明旨在提供一种乙烯类共聚树脂膨胀型防火涂料，可用于塑料装饰材料的防火，也可以用于木材、纸张和金属的阻燃。
[0007] 技术方案：乙烯类共聚树脂膨胀型防火涂料，按质量分数计由以下成分组成：乙烯-醋酸乙烯共聚物 50 ～ 100 份，轻质碳酸钙 5 ～ 10 份，硬脂酸 1 ～ 5 份，二氧化钛 5 ～ 10 份，甲基异丁酮 100 ～ 150 份，二乙四醇 10 ～ 15 份。
[0008] 所述乙烯-醋酸乙烯共聚物 80 份。
[0009] 所述轻质碳酸钙 10 份。
[0010] 所述二乙四醇 15 份。
[0011] 有益效果：本发明的乙烯类共聚树脂膨胀型防火涂料，当它涂覆于可燃基材上时，平时可起一定的装饰作用；一旦火灾发生时，则具有阻止火势蔓延，从而达到保护可燃基材的目的，主要特点在于可以耐受长时间的高温烘烤，起防火隔热作用。

[0012]

具体实施方式
实施例 1

乙烯类共聚树脂膨胀型防火涂料，按质量分数计由以下成分组成：乙烯－醋酸乙烯共
聚物 80 份，轻质碳酸钙 10 份，硬脂酸 5 份，二氧化钛 10 份，甲基异丁酮 150 份，二季戊四醇
10 份。

[0014] 将上述原料混合后加热至 150 度，搅拌即得成品。

[0015] 对比实验：

<table>
<thead>
<tr>
<th></th>
<th>耐冲击性 (MPa)</th>
<th>附着力 (级(画圈法))</th>
<th>耐水性 (浸泡 24h)</th>
<th>耐火性 (800°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>2.8</td>
<td>小于 1 级</td>
<td>不脱</td>
<td>33min</td>
</tr>
<tr>
<td>市售样品</td>
<td>2.1</td>
<td>小于 3 级</td>
<td>轻微脱落</td>
<td>20min</td>
</tr>
</tbody>
</table>

实施例 2

乙烯类共聚树脂膨胀型防火涂料，按质量分数计由以下成分组成：乙烯－醋酸乙烯共
聚物 100 份，轻质碳酸钙 10 份，硬脂酸 1 份，二氧化钛 5 份，甲基异丁酮 150 份，二季戊四醇
10 份。

[0016] 将上述原料混合后加热至 150 度，搅拌即得成品。

[0017] 对比实验：

<table>
<thead>
<tr>
<th></th>
<th>耐冲击性 (MPa)</th>
<th>附着力 (级(画圈法))</th>
<th>耐水性 (浸泡 24h)</th>
<th>耐火性 (800°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 2</td>
<td>2.2</td>
<td>小于 2 级</td>
<td>轻微脱落</td>
<td>40min</td>
</tr>
<tr>
<td>市售样品</td>
<td>2.0</td>
<td>小于 3 级</td>
<td>轻微脱落</td>
<td>20min</td>
</tr>
</tbody>
</table>

文中未涉及部分均与现有技术相同或可采用现有技术加以实现。以上所述便是本发明
的优选实施例，但本发明也不局限于以上仅有的实施例，在实施例上稍作改进也将视为本
发明的保护范围。