007/1062773 A1 |00 00 000 O 0O 0

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
20 September 2007 (20.09.2007)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2007/106273 Al

(51)

21

(22)

(25)
(26)

(30)

(1)

(72)

(81)

International Patent Classification:
GOGF 15/163 (2006.01)

International Application Number:
PCT/US2007/003722

International Filing Date:
13 February 2007 (13.02.2007)

Filing Language: English
Publication Language: English
Priority Data:

11/276,536 3 March 2006 (03.03.2006) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: VON KOCH, Walter, V.; One Microsoft Way,
Redmond, Washington 98052-6399 (US). LYNDERSAY,
Sean, O.; One Microsoft Way, Redmond, Washington
98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(34)

AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report

[Continued on next page]

(54) Title: RSS DATA-PROCESSING OBJECT

200 —,
1 = 202

RSS HTTP Object
204

7206

Feed Retrieval]

Object Model Builder

216 T
Feed Subscription

220 ; - 222
ﬂ{ Parser l t Sanitizer

~ 201

l —_— 224 - 226
218 * Normalizer l Merger
Adhoc Retrieval I/I——’\

Application/
web page

210 Caching r~ 208
Component
Object Model

212 Aggregation
Component

214

Store

o (57) Abstract: Various embodiments utilize a special object referred to as an rsshttp object to acquire an RSS feed, process the

WO

feed and expose an object model to a web page or application. In at least some embodiments, the rsshttp object can parse through
the feed’s associated RSS data, normalize the feed data to a standard format, sanitize the feed data if necessary, and then present a
standardized object model for interaction with web pages and applications.

WO 2007/106273 A1 | NI DA 000 0T 000000 01000 0

— before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations” appearing at the begin-
amendments ning of each regular issue of the PCT Gagzette.

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

RSS DATA-PROCESSING OBJECT
BACKGROUND

RSS, which stands for Really Simple Syndication, is one type of web
content syndication format. RSS web feeds have become more and more popular
on the web and numerous software applications with RSS support are being
developed. Typically, whén web pages and other applications want to consume
RSS data, the web pages or applications use some type of script, such as Javascript,
to parse through the RSS feed and provide the data. What makes this scenario
particularly challenging is that RSS comes in a variety of versions and different
formats, e.g. RSS 0.91, 0.92, 1.0, 2.0 and Atom. This makes developing script or

code for RSS parsing non-trivial and error prone.

SUMMARY

Various embodiments utilize a special object referred to as an rsshttp object
to acquire an RSS feed, process the feed and expose an object model to a web page
or application. The rsshttp object can parse through the feed’s associated RSS data,
normalize the feed data to a standard format, e.g. RSS 2.0, sanitize the feed data if
necessary, and then present a standardized object model for interaction with web
pages and applications. In at least some embodiments, the rsshttp object can be
configured to work on an ad hoc basis, as by fetching and processing feeds when
requested by the user, or on a scheduléd basis in which feeds are fetched and
processed on a scheduled basis. By using the object rﬁodel, web pages and
applications can access and meaningfully use associated feed data without having

to understand the intricacies of the different feed formats.

-1-

10

12

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 illustrates an exemplary system in which the inventive techniques can
be employed in one embodiment.

Fig. 2 illustrates a system in accordance with one embodiment.

Fig. 3 illustrates individual objects of an object model in accordance with
one embodiment. |

Fig. 4 illustrates individual objects of an object model in éccordance with
one embodiment.

Figs. 5-7 are flow diagrams that describe steps in methods in accordance
with one embodiment.

Fig. 8 illustrates one exemplary specific implementation or system in

accordance with one embodiment.

DETAILED DESCRIPTION

Overview

Various embodiments utilize a special object to process RSS data. In this
document, this special object is referred to as an rsshttp object and is configured to
acquire an RSS feed, process the feed and expose an object model to a web page or
application. It is to be appreciated and understood that while this object is referred
to as an “rsshitp” object, such should not be construed to limit the object to
applications only in connection with hitp. In one embodiment, the object can be
implemented as a COM object.

The rsshttp object can parse-through the feed’s associated RSS data,
normalize the feed data to a standard format, e.g. RSS 2.0, sanitize the feed data if
necessary, and then present a standardized object model for interaction with web

pages and applications. In at least some embodiments, the rsshttp object can be

-2-

10

3

12

13

17

18

19

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

configured to work on an ad hoc basis, as by fetching and processing feeds when
requested by the user, or on a scheduled basis in which feeds are fetched and
processed on a scheduled basis. By using the object model, web pages and
applications can access and meaningfully use associated feed data without having
to understand the intricacies of the different feed formats, such as the XML that
describes the feed data. Of course, web pages and applications that wish to interact

with the RSS data outside of the object model can do so if they so choose.

Exemplary System Overview

Fig. 1 illustrates an exemplary system, generally at 100, in which the
inventive techniques can be employed in one embodiment. Here, system 100
includes one or more computing devices in the form of a client computing device
102 and one or more servers 104 that communicate with one another via a network
such as the Internet. In this example, client computing device comprises one or
more processors 106 and one or more computer-readable media 108 on which
executable, computer-readable instructions reside. In this example, computer-
readable media 108 includes code that implements a web browser 110.

In this example, the. web browser 110 is configured to display one or more
web pages 112 individual ones of which can support or contain Javascript, DHTML
and the like. In éddition, in at least some embodiments, browser 110 can comprise
or otherwise make use of one or more rsshttp objects 114 and, optionally, one or
more xmlhttp objects 116.

In this example, the rsshitp object is utilized to acquire RSS feeds, such as
feeds that are required on an adhoc basis or feeds that are subscribed to by a user.
In at least some embodiments, the rsshttp object can utilize xmlhttp object 116 as a

means to acquire the feeds using known xml/http techniques.

-3-

14

15

16

17

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

When the rsshttp object acquires an RSS feed from, for example, servers
104, it can operate on the feed to perform a number of functions that permit
applications and script to interact with the RSS data, without having to know
anything about the underlying RSS format or the XML that describes the RSS data.
More specifically, and as will be described in greater detail below, the rsshttp object
processes the RSS feed to build an object model that is then exposed to applications
and web pages.

As but one specific example of an rsshttp object, consider the section just

below.

Exemplary RSSHTTP Object

Fig. 2 illustrates a system, generally at 200, in accordance with one
embodiment. Here, system 200 includes one or more applications/web pages 201,
one or more rsshttp objects 202 and a store 214.

In one embodiment, rsshttp object 202 includes functionality or components
that include a feed retrieval component 204, an object model builder 206, an object
model 208, a caching component 210 and an aggregation component 212.

In one embodiment, feed retrieval component 204 includes a feed
subscription component 216 and an adhoc retrieval component 218. The feed
retrieval component 204 is configured to enable feeds to be acquired and processed
by the rsshttp object.

In this particular example, feed subscription component 216 enables a user
to subscribe to a particular RSS feed. This can typically be done by a user, web site
or application specifying an URL associated with the feed. Once the URL is
specified, the subscription component 216 can subscribe to the feed and ensure that

the most up-to-date information associated with that feed is available for

-4-

10

11

17

18

19

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

consumption by the user. It can do this by reguiarly checking the RSS feed for new
information on a scheduled basis. The schedule can be one that the rsshttp object
sets, or one that is negotiated with an entity, such as a server, that provides the RSS
feed.

In addition to feed subscription component 216, feeci retrieval component
204 also includes, in this example, an adhoc retrieval component 218. In this
embodiment, adhoc retrieval component 218 is operable to acquire RSS feeds on an
adhoc basis. For example, if a user sees a feed that is of particular interest, they
may click on an associated link at which time adhoc retrieval component 218 can
take steps to acquire the feed specified by the user.

In one embodiment, object model builder 206 includes a parser component
220, a sanitizer component 222, a normalizer component 224 and a merger
component 226.

In this particular example, parser component 220 is configured to parse the
XML associated with RSS feeds that are acquired. Any suitable parsing
component can be utilized, as will be appreciated by the skilled artisan. When the
parser component operates on a feed, it parses through the XML elements
identifying the particular elements that comprise the feed. Recall that RSS feeds
can have many different formats. Accordingly, the parser is able to identify all of
the different elements that comprise the feed. Note also that some of these
elements may be elements that have been used to extend a feed’s basic schema.

In this particular example, sanitizer component 222 is configured to sanitize
the feed of any undesirable features or characteristics that the feed may have. For
example, a feed may contain certain active or executable content that is undesirable
to have. In this case, sanitizer component 222 sanitizes or removes the active or

executable content.

10

]

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

Normalizer component 224 operates on the RSS data to normalize it to a
standard or common format. In this example, the common or standard format is
RSS 2.0. Accordingly, those other formats that vary from the RSS 2.0 format are
operated upon to remove or map elements to the RSS 2.0 elements. As such,
having the RSS data in a standardized format leads to predictability in handling and
processing.

In this example, merger component 226 processes the RSS data and does
such things as register and store new content.in data store 214, along with other
relevant state data. This can enable the object model to provide or fire events to
entities that register for them. For example, an application may register for a
notification when new content is received from a particular feed. In this instance,
the merger component can look for any such new content so that object 202 can fire
an event to the application. |

The output of the object model builder 206, in at least some embodiments, is
a normalized, sanitized object model 208 that can be exposed to application/web
page 201. These entities can interact with the object model in lieu of the XML that
defines the RSS feed thus alleviating the entities from having to understand the
intricacies of the different RSS feeds. Of course, for those entities that wish to
interact directly with the XML, they are free to do so. An exemplary object model
is described below under the heading “Object Model™.

In one embodiment, caching component 210 is configured to perform
caching duties that are designed to reduce the load that is experienced by servers
that provide the RSS feeds. More specifically, the caching component can be
configured to utilize conditional GET requests so that a request is not made unless
it is necessary. For example, when requesting the feed data, the rsshitp object can

send a timestamp of the last time it received data for the feed to the server. The

-6-

10

11

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

server can then respond with new data or quick respond with “no new data”. In
addition, the caching component can be configured to ensure that requests are small
so that the cache can be quickly updated.

In one embodiment, aggregation component 212 is configured to aggregate
content. That is, typically RSS feeds provide only the most recent items. Yet,
there are instances when having a complete set of items is desirable. Aggregation
component 212 is configured to acciuire these different and sometimes dated items
and aggregate the items in data store 214 so that an application or web page can

access all of the items.

Object Model

Fig. 3 illustrates individual objects of an object model 300 in accordance
with one embodiment. The object model about to be described constitutes but one
example of an object model that can be utilized and is not intended to limit
application of the claimed subject matter to only the object model that is described
below. In at least some embodiments, the object model is exposed by an API that
is callable by an application or web page.

In this particular object model, a top level object feeds 302 is of the type
feed. Underneath the feeds object 302 is an item object 304 of the type item, and
underneath the item object 304 is an enclosure object 306 of the type object.

The individual objects of the object model have properties, methods and, in
some instances, events that can be utilized to manage received web content. The
above-described object model permits a hierarchical structure to be utilized to
manage and interact with feeds without necessarily having to be knowledgeable of

the underlying XML that describes the RSS feed.

10

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

Considering the object model further, consider item and enclosure objects
304, 306 respectively. Here, these objects very much reflect how RSS is structured
itself. That is, each RSS feed has individual items inside of which can optionally
appear an enclosure. Thus, the structure of the object model is configured to reflect
the structure of the syndication format.

From an object model perspective, there are basically two different types of
methods and properties on an item. A first type of method/property pertains to data
which is read only, and a second type of method/property pertains to data which
can be both read and written.

As an example of the first type of method property, consider the following.
Each feed can have data associated with it that is represented in an XML structure.
This data includes such things as the title, author, language and the like. Data such
as this is treated by the object model as read only. This prevents applications from
manipulating this data.

On the other hand, there is data that is treated as read/write data, such as the
name of a particular feed. That is, the user may wish to personalize a particular
feed for their particular user interface. In this case, the object model has properties
that are read/write. For example, a user may wish to change the name of a feed
from “New York Times” to “NYT”. In this situation, the name property may be
readable and writable. The object model can also be extensible with “expando”
properties which allow an application to add data/state to the feed dynamically.
One example of this is storing foreign keys along side the rss items for easy
matching of items with data in another database/store.

Fig. 4 illustrates a top level object or interface IFeed, along with objects or
interfaces Iltem and IEnclosure objects, along with their properties and methods in

accordance with one embodiment. = Other objects, interfaces, methods and

-8-

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

properties can be utilized without departing from the spirit and scope of the claimed
subject matter.

Starting first with the IFeed object, consider the following. Many of the
properties associated with this object come from the RSS feed itself, e.g., Title, Url,
Webmaster, SkipHours, SkipDays, ManagingEditor, Homepage, ImageURIL and
the like, as will be appreciated by the skilled artisan. In addition, there is another
set of properties of interest, i.e. the Items property which is a collection that has all
of the items that are part of a feed and the LocalEnclosurePath property which
provides the actual directory to which all of the enclosures are written. Thus, for an
application, the latter property makes it very easy to access the enclosures.

In addition, this object supports a small set of methods such as Download()
which are used to manage particular feeds. Further, this object supports a method
XMLY), which returns a feed’s XML in a standard format. The XML data can be
used for such things as creating a newspaper view of a feed.

Moving to the Item object, this object has a set of properties that represent
regular RSS elements, e.g. Description, Url, Title, Author and the like. In addition,
there is a Parent property that points back to the‘ associated actual feed, and an Id
property so that an application can identify items versus having to iterate over all
items. In addition, there is an Enclosures property which is the collection of the
item’s enclosures of the type IEnclosure. Further, an IsRead property enables an
application to indicate whether a particular item has been read.

Moving to the Enclosure object, consider the following. This object has
properties that include a Type property (e.g. mp3) and Length property that
describes the length of a particular enclosure for example in bytes. There is also
the LocalAbsolutePath to a particular enclosure. The Download() method allows

individual enclosures to be downloaded and used by applications.

-9-

10

11

16

17

18

19

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

By exposing the object model described above to applications and web
pages, the applications arld web pages can interact with the objects and hence data
of the feed, without having to be knowledgeable of or deal with any of the
underlying XML that describes the feed. Of course, applications and web pages

that wish to deal with the underlying XML are still free to do so.

Exemplary Methods

Figs. 5-7 are flow diagrams that illustrate steps in a method in accordance
with one embodiment. The method can be implemented in connection with any
suitable hardware, software, firmware or combination thereof. In at least some
embodiments, the methods can be implemented in connection with systems such as
those shown and described above and below. It is to be appreciated and understood
that systems different from the ones described in this document can be utilized to
implement the described methods without departing from the spirit and scope of the
claimed subject matter.

In the illustrated methods, the flow diagrams are organized to illustrate
which entities can perform the various acts. Accordingly, those acts that can be
performed by an application or web page are designated as such. Similarly, those
acts that can be performed by an rsshttp object or RSS source (server) are
designated as such.

Fig. 5 illustrates an exemplary method for building an object model in
accordance with one embodiment.

At step 500, an application or web page makes a request on the rsshttp
object for an RSS feed. This request can be made via a call to a suitably exposed
application program interface and can constitute any suitable type of request, such

as an adhoc request, subscription request and the like.

-10-

19

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

The rsshttp object receives the request at 502 and makes a corresponding
request, at 504, on an associated RSS source such as a server. The server receives
the request at 506 and provides or sends RSS feed data to the rsshttp object at S08.

The rssﬁttp object then normalizes, sanitizes and merges the data into the
store if it’s not an ad-hoc feed.

The rsshttp object receives the RSS feed data at 510 and builds an object
mode'l at 512. Examples of how an object model as well as a specific instance of an
object model are provided above. Once the object model is built, the rsshttp object
exposes the object model to the application/web page at 514.

Once the object model is exposed, an application/web page can interact with
and consume the RSS data. This can be done by making calls to various methods
exposed by the object model. In this manner, an application or web page does not
need to be concerned with the underlying XML that describes the feed. This is
because the XML was abstracted away when the object model was built. In
addition to the object model, in at least some embodiments, various error messages
can be generated for the application or web .page in the event of an error. Errors
can include, for example, failed download, failed to normalize, failed to sanitize,
invalid feed format and the like. Further, various statuses can be updated or saved
in a suitgble data store. For example, statuses associated with items such as “not
updated”, “new”, “updated” and “removed” can be recorded.

Fig. 6 illustrates ‘an exemplary method for making scheduling requests in
accordance with one embodiment.

At step 600, an application or web page makes a scheduling request on the
rsshitp object. This request can be made via a call to a suitably exposed application
program interface. In this example, an application or web page may wish to

periodically receive feed updates. Thus, according to a schedule provided by the

-11-

1t

12

13

14

15

16

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

application or web page, or negotiated with the server, regular checks can be made.
In at least some embodiments, the application or web page does not make the
request every time. It simply sets up the request/schedule initially, then the rsshttp
object will automatically, in the background, make the requests.

The rsshitp object tﬁus receives the request at 602 and makes a
corresponding request, at 604, on an associated RSS source such as a server,
according to the schedule. The server receives the request at 606 and provides or
sends RSS feed data to the rsshttp object at 608 if there is any data that meets the'
request.

The rsshitp object receives the RSS feed data at 610 and makes the RSS feed
data available at 612. This step can be performed in a number of ways. For
example, when new feed data is received responsive to the request, an event can be
fired and the user can be notified. Notification can take place in any suitable way.
For example, a user interface element in the user’s browser may be activated to
indicate that a new item has been received. Alternately or additionally, a
notification can be sent to the user, such as an email or instant message, popup
window or application/web page Ul can update itself with the new item.

Fig. 7 illustrates an exemplary method for registering for events in
accordance with one embodiment.

At step 700, an application or web page registers for an event with the
rsshttp object. Any suitable event or type of event can be the subject of
registration. For example, an application or web page may be interested in
receiving notifications when new feed items are added or feed items are changed,
deleted or read.

The rsshttp object receives the registration request at 702 and listens for the

particular event at 704. This step can be implemented in any suitable way. For

-12-

1t

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

example, the rsshttp object may poll the RSS source or server at regular intervals to
ascertain whether a particular event has occurred. Alternately or additionally, an
RSS source or server may notify subscribers when certain events occur.

If an event occurs at step 706, the rsshttp object notifies the application or
web page at step 708. Any suitable notification can be provided examples of which
are described above. If an event does not occur, then step 706 returns to step 704

and listens for the event of interest.

Exemplary Implementation

Fig. 8 illustrates one exemplary specific implementation or system in
accordance with one embodiment generally at 800. It is to be appreciated and
understood that the example about to be described constitutes but one example of
how one can implement the above-described functionality. As such, other different
implementations can be utilized without departing from the spirit and scope of the
claimed subject ﬁatter.

In this example, a web page/user interface 802 allows a user to interact with
the system. This interface can be provided by any suitable application. For
example, in some embodiments, a browser interface can be used. System 800 also
includes an rsshttp object 804, an optional xmlhttp object 806, an optional RSS
platform component 808, a WinINET component 810 and a store database 812.

Here, rsshttp object 804 can use xmlhttp object 806 to access XML data in a
manner which will be understood by the skilled artisan. Additionally, in this
particular implementation, these objects can leverage an RSS platform 808 to
acquire RSS feed data. An exemplary platform is described in U.S. Patent
Publication No. US-2007-0011665-A1, published on January 11, 2007.

-13-

19

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

WinINET component 810 is utilized to make the network requests, as will
be appreciated by the skilled artisan, and store database 812 is used to store all of
the individual items and state information.

A typical operation utilizing this implementation example will occur as
follows. In some instances, a piece -of jscript code executing as part of an
application will instantiate rsshttp object 804. The jscript code can then make a
request on the rsshttp object using an URL associated with a particular RSS feed.
The rsshttp object 804 can then make a request on the server. If xmlhttp object 806
and/or RSS platform are present, the rsshttp object can leverage these components
to acquire the RSS feed data.

The server. then gives back the RSS feed data to the rsshttp object 804.
Now, the rsshttp object can do things such as sanitize the data, normalize the data,
and merge the data in store database 812. This can include, by way of example and
not limitation, updating state information associated with the RSS data. Once this
is done, the rsshttp object can build an object model and expose the object model to
the application or web page. In this example, store database 812 stores not only the
state of individual feed items, but various subscription lists as well. This allows the
rsshttp object to keep feed items fresh even when an application or web page 802 is
not loaded.

For example, a web application can, per domain (url domain), subscribe to N
number of feeds. This allows a web application to always have up-to-date data

when it is launched.

Security

In at least some embodiments, the rsshttp object enforces a per domain RSS

feed security model which means that a web page from a specific domain can only

N

-14-

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

access a subset of the user’s feed subscription for which it has received permission
from the user. This makes it possible, for example, for a user to a}low access to his
family picture feed subscription to a new slideshow web page that di'splays images
in a new and engaging way, while at the same time limit the access of this page to a

feed of the user’s recent credit card transactions.

Conclusion

Various embodiments utilize a special object referred to as an rsshitp object
to acquire an RSS feed, process the feed and expose an object model to a web page
or application. The rsshttp object can parse through the feed’s associated RSS data,
normalize the feed data to a standard format, e.g. RSS 2.0, sanitize the feed data if
necessary, and then present a standardized object model for interaction with web
pages and applications. In at least some embodiments, the rsshttp object can be
configured to work on an ad hoc basis, as by fetching and processing feeds when
requested by the user, or on a scheduled basis in which feeds are fetched and
processed on a scheduled basis. By using the object model, web pages and
applications can access and meaningfully use associated feed data without having
to understand the ir)ltricacieS of the different feed formats.

Although the invention has been described in language specific to structural
features and/or methodological steps, it is to be understood that the invention
defined in the appended claims is not necessarily limited to the specific features or
steps described. Rather, the specific features and steps are disclosed as preferred

forms of implementing the claimed invention.

-15-

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

CLAIMS

1. A system comprising:
one or more computer-readable media;
computer-readable instructions on the one or more computer-readable media
which, when executed, implement an object configured to:

acquire (510) an RSS feed;

process the RSS feed to provide an object model (512) associated
with the feed;

expose (514) the object model to entities so that such entities can
interact with associated feed data without having to understand XML that

describes the feed data.

2. The system of claim 1, wherein the object is configured to fetch feeds

on an ad hoc basis.

3. The system of claim 1, wherein the object is configured to fetch feeds

on a scheduled basis.

4. The system of claim 1, wherein the object is configured to enable a

user to subscribe to an RSS feed.

-16-

10

11

12

17

18

19

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

5. The system of claim 1, wherein the object is configured to parse XML
associated with RSS feeds that are acquired by the object and normalize the feed’s
format to a standard format, wherein the object model represents the standard

format.

6. The system of claim 1, wherein the object is configured to cache RSS

feed data.

7. The system of claim 1, wherein the object is configured to aggregate
RSS feed data.

8. The system of claim 1, wherein the object model comprises:

a feeds object associated with a particular RSS feed;
an items object associated with particular items of a feed; and
an enclosure object associated with particular enclosures of a feed, wherein

individual object of the object model have associated methods and properties.

9. The system of claim 1, wherein said object comprises part of a

browser.

-17-

10

11

12

13

14

15

16

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

10. A system comprising:
one or more computer-readable media;
computer-readable instructions on the one or more computer-readable media
which, when executed, implement a web browser configured to:
receive (502) a request for an RSS feed;
make (504) a corresponding request on an associated RSS source;
receive (510) RSS feed data associated with the request;
parse XML associated with the RSS feed data and build (512) a
normalized object model, wherein the normalized object model comprises
individual objects at least some of which have callable methods and
properties associated with the RSS feed data; and

.expose (514) the object model to applications or web pages.

11. The system of claim 10, wherein the object model comprises:
a feeds object associated with a particular RSS feed;
an items object associated with particular items of a feed; and

an enclosure object associated with particular enclosures of a feed.

12. The system of claim 10, wherein the web browser is configured to
receive a scheduling request for an RSS feed or item and make requests on an RSS

source according to an associated schedule.

13. The system of claim 10, wherein the web browser is configured to

receive registration requests and listen for associated events.

-18-

17

18

19

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

14. The system of claim 10, wherein the web browser is configured to

receive registration requests and listen for associated events, and wherein the web

browser is configured to generate notifications associated with events that occur.

15. A computer-implemented method comprising:

rccei\}ing (502) a request for an RSS feed;

making (504) a corresponding request on an associated RSS source;
receiving (510) RSS feed data associated with the request;

parsing XML associated with the RSS feed data;

building (512) a normalized object model, wherein the normalized object

model comprises individual objects at least some of which have callable methods

and properties associated with the RSS feed data; and

exposing (514) the object model to applications or web pages.

16. The method of claim 15, wherein the object model comprises:
a feeds object associated with a particular RSS feed;
an items object associated with particular items of a feed; and

an enclosure object associated with particular enclosures of a feed.
17. The method of claim 15 further comprising;:

receiving a scheduling request for an RSS feed or item; and

making requests on an RSS source according to an associated schedule.

-19-

10

1

16

17

18

20

21

22

23

24

25

WO 2007/106273 PCT/US2007/003722

18. The method of claim 15 further comprising:
receiving registration requests; and

listening for associated events.

19. The method of claim 15 further comprising:
receiving registration requests;
listening for associated events; and

generating notifications associated with events that occur.

20. The method of claim 15, wherein said acts are performed by a web

browser.

-20-

PCT/US2007/003722

WO 2007/106273

1/8

E

108[q0
oLl _A dLl1H TNX
109(00
y11 —1 dllH SSY |
abed qop
rAR
JETNELS
\= o1 //
JEINEIS

I

\— v01

~
N
* Josmolg _
7/
Vd

/] eipsip sjqepesy
’/ leindwio):

10S88001d

ao1neq Bunndwio)

0Ll

801

90}

PCT/US2007/003722

WO 2007/106273

2/8

Juaucdwon
uonebaibby N_ 712
lepop 308[q0
suodwon
80z — bued gz
abed gem |
juonjedliddy
[BASLISY doupy
102 _J 1ebispy JoZRUION | N- g1z
9¢¢ {44
uonduosgng pasy
iazijlues Jesied T NE
222 - _ \—|ozz Sle
18p|ing [epo 108lq0 [eAsLOY poed
o0z — voz —/
100ld0 d11H SSY
_/
A4 h 002

2I01S

¢ bi4

PCT/US2007/003722

WO 2007/106273

3/8

¢ D4

ﬁ $2INS0joUT 4_

" 0og

WO 2007/106273

- itertage o1

4/8

& Properties’

)

Copyright : string

Description : string

Docs : Uri

Generator : string

Homepage : Uri

Id : Guid

ImageUrl : Uri

IsDeleted : bool

IsList : bool

Tterns @ IList<Item>

Language : string
LastBuildDate : DateTime
LastDownloadError : IErrorinfo
LastDownloadTime : DateTime
LastWriteTime : DateTime

i

ilii

i

L R

li

ii

ManagingEditor : string
Name : string

Parent : IreedFolder
Path : string
PublicationDate : DateTime
SkipDays : string
SkipHours : int

Title : string

TY : TimeSpan

url : Ui

' WebMaster : string

4 P

gl

@
=
0
g
<]
&

=@ Clone() : IFeed

=8 Delete() : vold

=@ Download() : vold

=§ Rename() : void

=y Xml() : Istream
& Events ’ ‘

LocalEnclosurePath : Directorylnfo

L Z ItemNotification : EventHandler

Categories ; IList<ICategory>

PCT/US2007/003722

& Properties

I Author.: string

7N Desaiption : string
Bdosures : IList<Ifndosure>
Id: Gid
Isthread ; bool
Parent ; IFeed
Title : string
R UM o L
B Methods
'\ 2 Delete() : void

I T

P T v s T e T I ST Y it

@LastDownloadErmr: IErrorinfo
A Length : long

5 LocalAbsolutePath : Directoryl
33 parent : Irern
BF Sats : Eum
A Tipe: sting
&l W

@ Methods

g

L =y Download() : vold

Fig. 4

PCT/US2007/003722

WO 2007/106273

G @_ u_ h jopow 198(qo piing

sbed gamjuonesijdde
0} [9pow 10a[go asodxg

?———”

145"

—

43

5/8

Ejep pagj SSY puss

806

1senbal aAis08y

L

ejep pos) SSY SAI808Y

‘7—‘

01§

22In0Ss

?—4

SSY uo 1senbas axep pOS

 No0g

92In0S SSYH

peey

1senbay aAleosy

a4

0S

300lqo
dLIH SsH

| SSy 10} Jsenbai axen

\— 00g

abed qsp
juonesiiddy

PCT/US2007/003722

WO 2007/106273

6/8

9 614

a|qe|iene
ElEp P9} SSYH M [\ 7,9

Ejep pad} SSYH PUSS
809

ejep pes) SSY SnisaeY WF
0L9

\.

1sonbal aneoaY W 909

92in0g SSH

s|npsyos o} Buiploooe
22In0s §SY U0 jsenbal axeN 09

\.

Wwia)l/pasy) SSY 10}

}sanbay oAl208Yy FA(
¢09

199[q0
dL1H SSY

@mw:um_ Buinpayos axen

\— 009

abed qapm
juonediddy

PCT/US2007/003722

WO 2007/106273

7/8

/ "Dl

obed
qemyuotjealidde AloN _ g/

SOA

ON
904

JUaAS 1o} usisi
4{VA

Jsanbai

uoijesibal sngay 20/

399[90
dllH SSY

JuaA® o} JajsiBay

\— 00z

obed qom
Juoyedyddy

PCT/US2007/003722

WO 2007/106273

8/8

8

14

z18

808 —

aseqgeje(210]g LJANIUM __ 01
wuofield SSY | 198[40 dLLHTNX _ 908
10800 dLIHSSY _ »0g

o0euaI
Jesnyebed gepn N\ 208

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2007/003722

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 15/163(20006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC8 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models since 1975
Japanese Utility models and applications for Utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS(KIPO internal) "RSS feed object"”

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2004/0225749 A1 (GREGORY PAVLIK et al.) 11 November 2004 1-20
See abstract & Fig. 2

A US 2005/0165615 A1 (NELSON MINAR) 28 July 2005 1-20
See abstract

A DE SUTTER R. et al. 'Enhancing RSS Feeds: Eliminating Overhead through Binary Encoding' In: 1-20
Information Technology and Applications, 2005. ICITA 2005. Third International Conference on
Volume 1, 4-7 July 2005 Page(s): 520-525 vol.1

See the whole document

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
24 JULY 2007 (24.07.2007) 24 JULY 2007 (24.07.2007)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, YEO, Won Hyeon
. Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5696

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2007/003722
Patent document Publication Patent family Publication
cited in search report date member(s) date
US2004/0225749A1 11.11.2004 JP2004334866A2 25.11.2004
US2005/0165615A1 28.07.2005 AU2004311794AA 21.07.2005
BR200418271A 02.05.2007
CA2552183A1 21.07.2005
EPO1716512A2 02.11.2006
KR2006130157A 18.12.2006
W02005065237A2 21.07.2005

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report

