GROUND ANCHOR WITH PIVOTING FLUKE

Inventor: Raymond H. Zubke, Route 1, 2625 Church Rd., Jackson, Wis. 53037

Filed: Feb. 21, 1974

App. No.: 444,453

U.S. Cl. 52/163; 52/166
Int. Cl. E02d 5/80
Field of Search 52/156, 160, 162, 163, 52/164, 155, 166, 165, 161, 158, 159

REFERENCES CITED

UNITED STATES PATENTS
762,710 6/1904 Hall 52/163
848,634 4/1907 Coghlann 52/163
1,052,700 2/1913 Warrick 52/163
1,133,496 3/1915 Noakes 52/155
1,566,846 12/1925 Fielding 52/163
1,955,902 4/1934 Bullard 52/160

FOREIGN PATENTS OR APPLICATIONS
1,336,507 7/1963 France 52/155

ABSTRACT

The shank portion of a movable fluke extends through a slot in a fixed fluke to pivotally attach the movable fluke to the fixed fluke. An eye is formed in the shank of the movable fluke and one end of a cable is secured to the eye. The movable fluke is moved by a pull on the cable from a position substantially parallel to the fixed fluke to a position transverse to fixed fluke. Abutment means on the fixed fluke limits the pivotal movement of the movable fluke in its position transverse to the fixed fluke, thereby causing the fixed fluke to rotate to a position transverse to the pull on the cable to anchor the same in the ground. The fixed fluke preferably has a stem portion that extends along the longitudinal axis of the fixed fluke and is shaped to receive a pneumatic hammer for driving the ground anchor into the ground.

10 Claims, 6 Drawing Figures
GROUND ANCHOR WITH PIVOTING FLUKE

BACKGROUND OF THE INVENTION

This invention relates to ground anchors of the type used for securing guy lines to tents, campers, portable buildings, poles, or other structures that require guy lines. Typical prior art ground anchors are disclosed in the following U.S. Pat. Nos. Wilcox 972,306; 1,002,350; Wooffrey 2,058,751; Schiff 2,633,947; Cordes 2,941,636; 2,973,065; Smith 3,279,136 and Watanabe 3,601,941. The typical prior art ground anchor has a stem portion with one or more movable flukes pivotally attached to the bottom of the stem portion and means for moving the flukes outwardly after the anchor has been driven into the ground so as to set the anchor and resist withdrawal from the ground. In these anchors, the stem portion of the anchor does not move when the flukes are pivoted outwardly but rather remains aligned with the anchor shaft formed when the anchor was driven or inserted into the ground. Other prior art ground anchors are known in which a cable is attached to the central region of a fluke which is adapted to be driven into the ground. After being driven into the ground, the fluke is turned crosswise to the cable by means of a separate rod which is thrust into the anchor hole to engage the fluke and turn it crosswise.

SUMMARY OF THE INVENTION

The physical structure of the preferred embodiment of the invention is summarized in the foregoing abstract of the disclosure. The invention can be very simply installed by driving the fixed fluke into the ground with a suitable hammer. The anchor is set by then pulling on the cable to first pull the movable fluke crosswise to the cable and then, through the combined section of the movable fluke and the cable, to turn the fixed fluke crossways to the cable to anchor the same in the ground. The need to use a separate turning rod is eliminated, thus simplifying the installation and setting of the anchor.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view showing one side of the preferred embodiment.

FIG. 2 is a perspective view showing the other side of the preferred embodiment.

FIG. 3 is a side view showing the preferred method of driving the ground anchor of FIGS. 1 and 2 into the ground.

FIG. 4 is a side view of the ground anchor of FIGS. 1-3 with the movable fluke thereof pivoted partially crosswise to the cable thereof.

FIG. 5 is a side view of the ground anchor of FIGS. 1-4 with the movable fluke thereof pivoted completely crosswise to the cable thereof.

FIG. 6 is a side view of the ground anchor of FIGS. 1-5 with the fixed fluke thereof pivoted completely crosswise to the cable thereof.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structure. The scope of the invention is defined in the claims appended hereto.

Referring to FIGS. 1 and 2, the ground anchor of this invention includes a fixed fluke 10 which is preferably pointed at its lower end 12 for easy penetration when the anchor is driven into the ground. A stem or shank 14 is welded to the top of fixed fluke 10 and a substantially conical, flat-topped shoulder 16 is formed around the bottom of shank 14 to adapt fluke 10 to be driven into the ground by a hollow drive rod 18 (FIG. 3) that receives shank 14 and bears against the top of shoulder 16. The shank 14 and point 12 define a longitudinal driving axis 20 for fixed fluke 10. A central slot 22 is formed in the central portion of fixed fluke 10 along longitudinal axis 20. Slot 22 receives the shank portion 24 of a movable fluke 26 to pivotally attach movable fluke 26 to fixed fluke 10. Shank portion 24 has an eye 28 to which one end of a steel cable 30 is attached.

The flat surfaces of movable fluke 26 and its shank portion 24 are perpendicular to each other as best shown in FIGS. 2 and 4. Slot 22 is wide enough to receive shank portion 24 loosely but yet is narrow enough so that the loop 32 of cable 30 cannot pass therethrough. Thus the shank portion 24 is loosely pivoted within slot 22 and is rotatable relative to fixed fluke 10, as shown in FIGS. 3, 4 and 5, from a position in which movable fluke 26 is substantially parallel to the longitudinal axis 20 of fixed fluke 10 (FIG. 3) to a position in which movable fluke 26 is completely transverse or crosswise to the longitudinal axis 20 of fixed fluke 10 (FIG. 5). When movable fluke 26 reaches the completely crosswise position shown in FIG. 5, further rotation of movable fluke 26 is blocked by an abutment 34 (FIG. 8) which is formed by a substantially pyramidal shaped shoulder 36 that leads to the pointed end 12. At the same time that movable fluke 26 contacts abutment 34, shank portion 24 contacts another abutment 38 (FIGS. 1 and 4) which is formed on one side of conical shoulder 16.

Abutments 34 and 38 are formed on opposite sides of fixed fluke 10, and therefore when movable fluke 26 contacts abutment 34 and shank portion 24 contacts abutment 38, a counterclockwise turning moment or torque is applied to fixed fluke 10 as cable 30 is pulled as shown in FIGS. 5 and 6, causing the anchor to rotate counterclockwise from its position shown in FIG. 6. This counterclockwise moment is caused by both the pulling force applied to cable 30 and by the resisting force due to earth pressure against movable fluke 26, and the torque resulting from the forces.

In using this embodiment of the invention, the ground anchor is preferably driven into the ground by a pneumatic hammer 40 (FIG. 3) which terminates in a drive rod 18 that has a central opening large enough to admit shank 14 and long enough to allow the bottom of drive rod 18 to bear against the flat top of shoulder 16. Alternately, the drive rod 18 may be driven in manually with a suitable hammer. After the ground anchor has been driven into the ground a suitable distance, e.g. two or three feet for tent anchors, the cable 30 is pulled to first rotate movable fluke 26 until it is crosswise of cable 30, as shown in FIG. 5, and then to rotate fixed fluke 10 and shank 14 until they are crosswise of cable 30 as shown in FIG. 6. Then the upper end of cable 30 can be attached to the structure that is to be guyed as indicated at 42 in FIG. 6. The earth anchor will then strongly resist pulls on cable 30.
I claim:

1. In a ground anchor having a fixed fluke adapted to be driven into the ground along a longitudinal axis, a driving tool having a releasable connection with the fixed fluke to leave the fixed fluke free to turn laterally to said axis when the driving tool is withdrawn, a movable fluke pivotally attached to said fixed fluke and movable between a first position in which said movable fluke is substantially parallel to said longitudinal axis and a second position in which said movable fluke is transverse to said longitudinal axis, a cable coupled to said movable fluke and operable to move said movable fluke from said first position thereof toward said second position thereof in response to a pull on said cable, abutment means on said fixed fluke engageable with said movable fluke to limit its movement in said second position thereof, means including said cable and said abutment means for exerting turning torque between the movable fluke and the fixed fluke when said movable fluke is in its second position and turn said fixed fluke transverse to said axis to set the anchor in the ground.

2. A ground anchor as defined in claim 1 wherein said fixed fluke has a slot formed therein and wherein said movable fluke has a shank portion which extends through said slot.

3. A ground anchor as defined in claim 2 wherein said cable is attached to the shank portion of said movable fluke.

4. A ground anchor as defined in claim 2 wherein an eye is formed in the shank portion of said movable fluke and said cable passes through said eye and prevents the shank portion of said movable fluke from falling out of the slot in said fixed fluke.

5. In a ground anchor having a fixed fluke adapted to be driven into the ground along a longitudinal axis, the improvement comprising a movable fluke pivotally attached to said fixed fluke and movable between a first position in which said movable fluke is substantially parallel to said longitudinal axis and a second position in which said movable fluke is transverse to said longitudinal axis, a cable coupled to said movable fluke and operable to move said movable fluke from said first position thereof toward said second position thereof in response to a pull on said cable, and abutment means on said fixed fluke engageable with said movable fluke to limit its movement in said second position thereof, whereby pressure applied to said cable when said movable fluke is in its second position tends to turn said fixed fluke transverse to the pull on said cable to set the anchor in the ground, said fixed fluke having a slot formed therein, said movable fluke having a shank portion which extends through said slot, an eye formed in the shank portion of said movable fluke, said cable passing through said eye to prevent the shank portion of said movable fluke from falling out of the slot in said fixed fluke, the shank portion of said movable fluke being approximately perpendicular to the fluke portion thereof.

6. A ground anchor as defined in claim 1 wherein said fixed fluke has a shank portion aligned with said longitudinal axis and projecting from the upper end of said fixed fluke.

7. A ground anchor as defined in claim 6 and further comprising a shoulder on the top of said fixed fluke near the base of said shank portion thereof, the top of said shoulder being flattened to receive blows from a hammering tool for driving said anchor into the ground.

8. In a ground anchor having a fixed fluke adapted to be driven into the ground along a longitudinal axis, the improvement comprising a movable fluke pivotally attached to said fixed fluke and movable between a first position in which said movable fluke is substantially parallel to said longitudinal axis any a second position in which said movable fluke is transverse to said longitudinal axis, a cable coupled to said movable fluke and operable to move said movable fluke from said first position thereof toward said second position thereof in response to a pull on said cable, and abutment means on said fixed fluke engageable with said movable fluke to limit its movement in said second position thereof, whereby pressure applied to said cable when said movable fluke is in its second position tends to turn said fixed fluke transverse to the pull on said cable to set the anchor in the ground, said abutment means comprising a first abutment on the bottom portion of said fixed fluke for limiting the downward movement of said movable fluke and a second abutment on the top portion of said fixed fluke for limiting the upward movement of the shank portion of said movable fluke.

9. A ground anchor as defined in claim 8 wherein said first and second abutments are on opposite sides of said fixed fluke, whereby a pull on said cable when said movable fluke is against said abutments produces a turning moment on said fixed fluke tending to rotate the fixed fluke crosswise to said cable.

10. A ground anchor as defined in claim 1 wherein said fixed fluke and said movable fluke are both triangular in shape.

* * * * *