
(19) United States
US 201402O1156A1

(12) Patent Application Publication (10) Pub. No.: US 2014/0201156A1
Rosikiewicz et al. (43) Pub. Date: Jul. 17, 2014

(54)

(71)

(72)

(73)

(21)

(22)

(63)

(60)

VIRTUAL MACHINE FILE-LEVEL
RESTORATION

Applicant: PHD Virtual Technologies,
Philadelphia, PA (US)

Inventors: James Rosikiewicz, Stockton, NJ (US);
Calab K. Shay, Bushkill, PA (US);
Ronald T. McKelvey, Morris Plains, NJ
(US); Alexander D. Mittell, Cedar
Knolls, NJ (US)

Assignee: PHD VIRTUAL TECHNOLOGIES,
Philadelphia, PA (US)

Appl. No.: 14/215,192

Filed: Mar 17, 2014

Related U.S. Application Data
Continuation of application No. 12/758.326, filed on
Apr. 12, 2010, now Pat. No. 8,682,862.
Provisional application No. 61/172,435, filed on Apr.
24, 2009, provisional application No. 61/168,315,
filed on Apr. 10, 2009, provisional application No.
61/168,318, filed on Apr. 10, 2009.

s
130

Processor -

5

rite-eye
Access
Module

150 A.
20 125

Publication Classification

(51) Int. Cl.
G06F II/4 (2006.01)

(52) U.S. Cl.
CPC G06F 1 1/1469 (2013.01)
USPC .. 707/651

(57) ABSTRACT

Disclosed is a method and system for selectively restoring
file-level data from a disk image backup. In embodiments, a
virtual machine backup may be performed by dividing a
virtual machine virtual disk file into a plurality of discrete
fixed-sized data blocks sharing a common index file that is
stored on a backup medium, Such as a hard drive, to form a
backup set. The index file is referenced to determine which
fixed-sized block contains Volume information, Such as a
partition table, of the backed-up virtual machine file. The
individual blocks are processed as a virtual filesystem which
is mounted and presented to an access module, which
traverses the filesystem and provide access to individual files
in the image backup to a client process. The restore files may
be delivered to the client in a container file, which may be
compressed to increase transfer speed. The container file may
include executable instructions for automatically restoring
the files to a desired location.

\ 16

US 2014/02O1156 A1 Jul. 17, 2014 Sheet 1 of 5 Patent Application Publication

| Josseoord

#So H W?A

Jul. 17, 2014 Sheet 2 of 5 Patent Application Publication

US 2014/02O1156 A1 Jul. 17, 2014 Sheet 3 of 5 Patent Application Publication

<!-- ETI- XEICINI NI VIVC?VLEW ERHOLS? (Ieuo?do) NOISSEYJdWOO (gW , ‘‘fire) EZISMOOT? CIEX|-

09:17

Patent Application Publication Jul. 17, 2014 Sheet 4 of 5 US 2014/02O1156 A1

200

210
Select Backup Set

identify Datablocks 215
Comprising
Backup Set

Mount Backup Set
Datablocks via 22O

Virtual Filesystem
Driver (e.g., FUSE)

Select Files Within 225
Backup Set to

Restore

Copy Selected Files 230
from Virtual
Filesystem

0. 235
Create Container

File

240
Deliver Selected

Files

245

US 2014/02O1156 A1 Jul. 17, 2014 Sheet 5 of 5 Patent Application Publication

009

G -61-I
997

079

029

977

US 2014/02O1156 A1

VIRTUAL MACHINE FILE-LEVEL
RESTORATION

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. The present application claims the benefit of and
priority to U.S. Provisional Application Ser. No. 61/168,315,
filed on Apr. 10, 2009, entitled “VIRTUAL MACHINE
DATA BACKUP'; U.S. Provisional Application Ser. No.
61/168,318, filed on Apr. 10, 2009, entitled "VIRTUAL
MACHINE FILE-LEVEL RESTORATION; and U.S. Pro
visional Application Ser. No. 61/172,435, filed on Apr. 24.
2009, entitled “VIRTUAL MACHINE DATA REPLICA
TION'; the entirety of each are hereby incorporated by ref
erence herein for all purposes.

BACKGROUND

0002 1. Technical Field
0003. The present disclosure relates to computer data
backup, and in particular, to a system and method for per
forming block-level backups of virtual machine, wherein
backed up data is stored in de-duplicated form in a hierarchi
cal directory structure.
0004 2. Background of Related Art
0005 Continuing advances in storage technology allow
vast amounts of digital data to be stored cheaply and effi
ciently. However, in the event of a failure or catastrophe,
equally vast amounts of data can be lost. Therefore, data
backup is a critical component of computer-based systems.
As used herein, the term “backup” may refer to the act of
creating copies of data, and may refer to the actual backed-up
copy of the original data. The original data typically resides
on a hard drive, or on an array of hard drives, but may also
reside on other forms of storage media, such as Solid State
memory. Data backups are necessary for several reasons,
including disaster recovery, restoring data lost due to storage
media failure, recovering accidentally deleted data, and
repairing corrupted data resulting from malfunctioning or
malicious Software.

0006 A virtual machine (VM) is a software abstraction of
an underlying physical (i.e., hardware) machine which
enables one or more instances of an operating system, or even
one or more operating systems, to run concurrently on a
physical host machine. Virtual machines have become popu
lar with administrators of data centers, which can contain
dozens, hundreds, or even thousands of physical machines.
The use of virtual servers greatly simplifies the task of con
figuring and administering servers in a large scale environ
ment, because a virtual machine may be quickly placed into
service without incurring the expense of provisioning a hard
ware machine at a data center. Virtualization is highly scal
able, enabling servers to be allocated or deallocated in
response to changes in demand. Support and administration
requirements may be reduced because virtual servers are
readily monitored and accessed using remote administration
tools and diagnostic Software.
0007. In one aspect, a virtual server consists of three com
ponents. The first component is virtualization software con
figured to run on the host machine which performs the hard
ware abstraction, often referred to as a hypervisor. The second
component is a data file which represents the filesystem of the
virtual machine, which typically contains the virtual
machine’s operating system, applications, data files, etc. A

Jul. 17, 2014

virtual machine data file may be a hard disk image file. Such
as, without limitation, a Virtual Machine Disk Format
(VMDK) format file. Thus, for each virtual machine, a sepa
rate virtual machine file is required. The third component is
the physical machine on which the virtualization software
executes. A physical machine may include a processor, ran
dom-access memory, internal or external disk storage, and
input/output interfaces, such as network, storage, and desktop
interfaces (e.g., keyboard, pointing device, and graphic dis
play interfaces.)
0008 Virtual machine files may be backed up as images,
or replications of the complete virtual machine file. Such
backup schemes may logically divide and store the virtual
machine file into a number of smaller logical blocks which,
taken together, constitute a 'snapshot of an entire filesystem
as it existed at the time the backup was performed. While such
systems are well-suited for restoring an entire filesystem,
Such systems may have drawbacks, for example, if it is
desired to restore a Subset of the filesystem, Such as an indi
vidual file, or a single directory, or an arbitrary collection of
files and/or directories, from the backup. A backup system
which performs virtual server backups with increased effi
ciency and effectiveness while permitting the restoration of
individual files, folders, and backup subsets would be a well
come advance.

SUMMARY

0009. The present disclosure is directed to a method of
performing file level restoration of a volume level backup set,
or archive. In one embodiment, the backup set includes a
plurality of fixed-sized blocks representative of a virtual
machine file (e.g., a virtual disk file and/or a VMDK file) and
an index file indicative, at least in part, of the positions of the
individual fixed-size blocks within the archive. Such a backup
is described in the commonly-owned, concurrently-filed U.S.
patent application Ser. No. 12/758,245 entitled “VIRTUAL
MACHINE DATABACKUP', the entirety of which is hereby
incorporated by reference herein for all purposes. The index
file is consulted to determine which fixed-sized datablock(s)
include filesystem information, e.g., a file allocation table
(FAT), a master file table (MFT), and the like, of the backed
up virtual machine file. An offset, or pointer, into the fixed
sized datablock(s) may be established to define a position
within the fixed-sized datablock(s) at which the filesystem
information resides.

0010. The disclosed method processes 1 MB fixed-length
blocks of data of a virtual machine file. AMD5 hash is created
for this block data. The 1 MB of data can be compressed, or
left uncompressed. The 1 MB of data is stored as a single file.
The file name is the MD5 hash value of the 1 MB data block.
The hash of this file is saved to a separate index file for later
use to retrieve, validate, and rebuild the backup data. The data
blocks, whether in compressed or uncompressed form, are
stored at a storage destination, in a unique directory structure
consisting of 256 first level directories designated as 00-FF,
each having 256 second level directories designated as 00-FF
within, comprising 65,536 directories in total. The 1 MB
compressed (or uncompressed) data files are stored in the
directory structure based on the first four bytes of the hash,
C.9.

US 2014/02O1156 A1

0012. The first four bytes of data for the file name are
“0022. The file is stored in directory “./00/22/. The gz
extension indicates the file is compressed.
0013 Subsequent backups are performed having as a des
tination the same storage location. Data blocks are generated
using the above unique hash. A file query is made to the
storage location to see if there is already a file existing with
the same hash. If the file does not exist, the source data is
written into the directory hierarchy with the hash as the file
name and an index file is updated. If the file exists, then only
the index file is updated for the current backup being run.
0014. Over time the directory structure will accumulate
data blocks from all backups sent thereto. A separate index
file is created for each backup, and is used to keep track of the
blocks of data for, e.g., re-assembling data block of the origi
nal source during restoration.
0015 The use of a hash also provides a self-checking
mechanism which enables self-validation of the data within
the stored file. A routine is scheduled to run on an ad-hoc or
periodic basis that reads the data within a stored file, and
validates the data in the file to verify a match to the hash file
name. If the data does not match, the block is considered
Suspect, and is slated to be deleted. All associated backups
that include this data block are flagged as “bad”. The index
file corresponding to backups so flagged may additionally or
alternatively include a “bad” flag.
0016. In an embodiment, the data blocks (e.g., the 1 MB
data blocks) may be evaluated to determine whether the data
contained therein exhibits a predefined (“special) data pat
tern. For example with limitation, a special data pattern may
include a particular or repeating pattern, e.g., a data block
consisting entirely of Zero (OOH) bytes. In this instance, a
special hashis generated that represents the special data block
containing the particular data pattern. The special hash may
be hard-coded, defined in a database, and/or defined in a
configuration file. Since the contents of a special data block is
predefined, it is only necessary to record the fact that the data
block is special. It is unnecessary to store the actual contents
of a special block. Thus, for each data block identified as
special, the index file is updated accordingly and the backup
proceeds. In this manner, resources are conserved since spe
cial blocks, e.g., null blocks, do not consume space on the
storage device, do not use communication bandwidth during
backup and restoration procedures, do not require as much
computational resources, and so forth. This provides a quick
and easy way to skip special (e.g., null) data in a given backup
Set

0017. During restoration, the fixed-sized datablock(s) are
piped through a virtual filesystem component, such as with
out limitation, a Filesystem in Userspace (FUSE) driver. The
virtual filesystem driverpresents the filesystem of the backup
set to an access module, which may traverse the filesystem
and provide access to the backed-up files to a client process.
It is envisioned that a client process may include a web (e.g.,
HTTP-based) interface, however, other client processes are
contemplated within the scope of the present disclosure,
including without limitation an automated agent, a command
line (shell) process, a remote procedure call (RPC), a remote
mounting client (NFS, SMB), and a database.
0018. In embodiments, the access module may provide
access to a plurality of available backup sets. For example,
multiple backup sets of a particular virtual machine, taken at
Successive points in time, may be accessed by the access
module. Access to backup sets of multiple virtual machines,

Jul. 17, 2014

clustered machines, and the like are also contemplated within
the scope of the present disclosure. The disclosed method
may sequentially, randomly, or concurrently process data
blocks to service more than one client request at a time.
0019. A user interface in accordance with the present dis
closure may include links to backup sets, directories, files,
and other logical groupings of restorable data. In an embodi
ment, the user interface is web-based (e.g., employs a web
browser capable of communicating using the hypertext trans
fer protocol, a.k.a. HTTP, and the like.) Activation of a link
may present hierarchical information, e.g., clicking on a
backup link may reveal the contents of the Subject backup;
clicking on a directory (folder) link may present the contents
thereof, and clicking on a file link may initiate a file transfer
of the subject file to the client machine. Additionally or alter
natively, clicking on a folder may initiate a file transfer of the
contents of the folder to the client machine. Other forms of
delivery are contemplated, for example, multiple selections
of backup data.
0020. In an embodiment, the file transfer may include an
aggregation step wherein the file(s) are aggregated in a single
container file for transfer, e.g., requested files may be
included in a ZIP file for efficient and convenient transfer to
the client. Also envisioned is a container file that includes
executable instructions for automatically moving files to their
original location within the target filesystem.
0021. In yet another aspect, a method of data restoration in
accordance with present disclosure includes retrieving a logi
cal data unit stored within a backup set represented by at least
one backup data block, and an index file. The disclosed
method includes the steps of identifying a backup data block
containing information indicative of the logical organization
of the backup set. At least one logical data unit stored within
the backup set is identified. At least one identified logical data
unit is selected, and the selected logical data unit is trans
ferred to a recipient.

BRIEF DESCRIPTION OF THE DRAWINGS

0022. The above and other aspects, features, and advan
tages of the present disclosure will become more apparent in
light of the following detailed description when taken in
conjunction with the accompanying drawings in which:
0023 FIG. 1 shows a block diagram of an embodiment of
a virtual machine backup system in accordance with the
present disclosure;
0024 FIG. 2 is a block diagram illustrating a directory
hierarchy of an embodiment of a virtual machine backup in
accordance with the present disclosure; and
0025 FIG. 3 is a flow diagram of an embodiment of a
virtual machine backup in accordance with the present dis
closure;
0026 FIG. 4 is a flowchart of an embodiment of a virtual
machine backup method in accordance with the present dis
closure; and
0027 FIG. 5 illustrates a block diagram of a virtual
machine backup system in accordance with the present dis
closure.

DETAILED DESCRIPTION

0028 Particular embodiments of the present disclosure
are described hereinbelow with reference to the accompany
ing drawings; however, it is to be understood that the dis
closed embodiments are merely examples of the disclosure,

US 2014/02O1156 A1

which may be embodied in various forms. Well-known func
tions or constructions are not described in detail to avoid
obscuring the present disclosure inunnecessary detail. There
fore, specific structural and functional details disclosed
herein are not to be interpreted as limiting, but merely as a
basis for the claims and as a representative basis for teaching
one skilled in the art to variously employ the present disclo
Sure in virtually any appropriately detailed structure. In the
discussion contained herein, the terms user interface element
and/or button are understood to be non-limiting, and include
other user interface elements such as, without limitation, a
hyperlink, clickable image, and the like.
0029. Additionally, the present invention may be
described herein in terms of functional block components,
code listings, optional selections, page displays, and various
processing steps. It should be appreciated that such functional
blocks may be realized by any number of hardware and/or
Software components configured to perform the specified
functions. For example, the present invention may employ
various integrated circuit components, e.g., memory ele
ments, processing elements, logic elements, look-up tables,
and the like, which may carry out a variety of functions under
the control of one or more microprocessors or other control
devices.
0030 Similarly, the software elements of the present
invention may be implemented with any programming or
Scripting language such as C, C++, C#, Java, COBOL, assem
bler, PERL, Python, PHP, or the like, with the various algo
rithms being implemented with any combination of data
structures, objects, processes, routines or other programming
elements. The object code created may be executed by any
computer having an Internet Web Browser, on a variety of
operating systems including Windows, Macintosh, and/or
Linux.

0031. Further, it should be noted that the present invention
may employ any number of conventional techniques for data
transmission, signaling, data processing, network control,
and the like.
0032. It should be appreciated that the particular imple
mentations shown and described herein are illustrative of the
invention and its best mode and are not intended to otherwise
limit the scope of the present invention in any way. Examples
are presented herein which may include sample data items
(e.g., names, dates, etc.) which are intended as examples and
are not to be construed as limiting. Indeed, for the sake of
brevity, conventional data networking, application develop
ment and other functional aspects of the systems (and com
ponents of the individual operating components of the sys
tems) may not be described in detail herein. Furthermore, the
connecting lines shown in the various figures contained
herein are intended to represent example functional relation
ships and/or physical or virtual couplings between the various
elements. It should be noted that many alternative or addi
tional functional relationships or physical or virtual connec
tions may be present in a practical electronic data communi
cations system.
0033. As will be appreciated by one of ordinary skill in the

art, the present invention may be embodied as a method, a
data processing system, a device for data processing, and/or a
computer program product. Accordingly, the present inven
tion may take the form of an entirely software embodiment,
an entirely hardware embodiment, or an embodiment com
bining aspects of both software and hardware. Furthermore,
the present invention may take the form of a computer pro

Jul. 17, 2014

gram product on a computer-readable storage medium having
computer-readable program code means embodied in the
storage medium. Any suitable computer-readable storage
medium may be utilized, including hard disks, CD-ROM,
DVD-ROM, optical storage devices, magnetic storage
devices, semiconductor Storage devices (e.g., USB thumb
drives) and/or the like.
0034. The present invention is described below with ref
erence to block diagrams and flowchart illustrations of meth
ods, apparatus (e.g., Systems), and computer program prod
ucts according to various aspects of the invention. It will be
understood that each functional block of the block diagrams
and the flowchart illustrations, and combinations of func
tional blocks in the block diagrams and flowchart illustra
tions, respectively, can be implemented by computer program
instructions. These computer program instructions may be
loaded onto a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine. Such that the instructions that execute
on the computer or other programmable data processing
apparatus create means for implementing the functions speci
fied in the flowchart block or blocks.
0035. These computer program instructions may also be
stored in a computer-readable memory that can direct a com
puter or other programmable data processing apparatus to
function in a particular manner, such that the instructions
stored in the computer-readable memory produce an article of
manufacture including instruction means that implement the
function specified in the flowchart block or blocks. The com
puter program instructions may also be loaded onto a com
puter or other programmable data processing apparatus to
cause a series of operational steps to be performed on the
computer or other programmable apparatus to produce a
computer-implemented process Such that the instructions that
execute on the computer or other programmable apparatus
provide steps for implementing the functions specified in the
flowchart block or blocks.
0036. Accordingly, functional blocks of the block dia
grams and flowchart illustrations Support combinations of
means for performing the specified functions, combinations
of steps for performing the specified functions, and program
instruction means for performing the specified functions. It
will also be understood that each functional block of the block
diagrams and flowchart illustrations, and combinations of
functional blocks in the block diagrams and flowchart illus
trations, can be implemented by either special purpose hard
ware-based computer systems that perform the specified
functions or steps, or Suitable combinations of special pur
pose hardware and computer instructions.
0037. One skilled in the art will also appreciate that, for
security reasons, any databases, systems, or components of
the present invention may consist of any combination of
databases or components at a single location or at multiple
locations, wherein each database or system includes any of
various Suitable security features, such as firewalls, access
codes, encryption, de-encryption, compression, decompres
Sion, and/or the like.
0038. The scope of the invention should be determined by
the appended claims and their legal equivalents, rather than
by the examples given herein. For example, the steps recited
in any method claims may be executed in any order and are
not limited to the order presented in the claims. Moreover, no
element is essential to the practice of the invention unless
specifically described herein as “critical' or “essential.”

US 2014/02O1156 A1

0039 FIG. 1 illustrates a representative operating environ
ment 100 for an example embodiment of a virtual machine
backup system 105 having the capability to perform a file
level restoration in accordance with the present disclosure.
Representative operating environment 100 includes virtual
machine backup system 105 which can be a personal com
puter (PC) or a server, which further includes at least one
system bus 150 which couples system components, including
at least one processor 110; a system memory 115 which may
include random-access memory (RAM); at least one storage
device 130, such as without limitation one or more hard disks,
CD-ROMs or DVD-ROMs, or other non-volatile storage
devices. Such as without limitation flash memory devices; and
a data network interface 140. System bus 150 may include
any type of data communication structure, including without
limitation a memory bus or memory controller, a peripheral
bus, a virtual bus, a software bus, and/or a local bus using any
bus architecture such as without limitation PCI, USB or IEEE
1394 (Firewire). Data network interface 140 may be a wired
network interface such as a 100Base-T Fast Ethernet inter
face, or a wireless network interface Such as without limita
tion a wireless network interface compliant with the IEEE
802.11 (i.e., WiFi), GSM, or CDMA standard.
0040 Virtual machine backup system 105 may be oper
ated in a networked environment via data network interface
140, wherein system 105 is connected to one or more virtual
machine hosts 160 by a data network 180, such as a local area
network or the Internet, for the transmission and reception of
data, such as without limitation backing up and restoring
virtual machine data files as will be further described herein.
Each of the one or more virtual machine hosts 160 may
include one or more virtual machines 170 operating therein,
as will be appreciated by the skilled artisan.
0041 Virtual machine backup system 105 includes a vir
tual machine file-level access module 120 that is configured
to perform a method of file restoration as described herein.
The access module 120 includes a virtual filesystem driver
module 125 having the capability to logically access a set of
datablocks, such as without limitation a backup set, via the
native filesystem of source virtual machine from which the
backup set is derived. In an embodiment, virtual filesystem
driver module 125 includes a filesystem in userspace (FUSE)
Software component. In an embodiment, access module 120
includes a set of programmable instructions adapted to
execute on processor 100 for performing the method of vir
tual machine file-level restoration disclosed herein.

0042. The present disclosure provides a method for restor
ing files from a virtual machine image backup. The virtual
machine image backup may include a plurality of fixed-size
data blocks representative of corresponding blocks of the
Source virtual machine file, and an index file that may include,
without limitation, a list of data blocks, a unique identifier
(e.g., a hash value) that uniquely identify a data block, date
and time of backup, and source and destination locations.
0043. Referring to FIGS. 2 and 3, a virtual machine file
420 slated for backup may be stored on a storage device. Such
as without limitation, hard disk 410. While it is contemplated
that hard disk 410 may be included within a virtual machine
host, is it to be understood that a virtual machine file 420 may
be stored on a hard disk array, Such as a storage-area network
(SAN), a redundant array of independent disks (RAID), net
work-attached storage (NAS) and/or on any storage medium
now or in the future known.

Jul. 17, 2014

0044) The virtual machine file 420 is logically divided into
a number of fixed-length blocks 430 of like size. In one
embodiment, a blocksize of 1 MB is used, however, it is to be
understood that a blocksize of less than 1 MB, or greater than
1 MB, may be used within the scope of the disclosed method.
In one aspect, the blocksize is determined at least in part by a
correlation between performance and blocksize. Other
parameters affecting blocksize may include, without limita
tion, a data bus speed, a data bus width, a virtual machine file
size, a processor speed, a storage device bandwidth, and a
network throughput. If a virtual machine does not precisely
equal a multiple of a chosen fixed blocksize, the remainder
may be padded with e.g., Zeros, nulls, or any other fill pattern,
to achieve a set of equal-sized blocks.
0045 An individual backup data file 445 is created from
each fixed-length block 430 of the virtual machine file 420. In
an embodiment, individual backup data file 445 may be given
a temporary filename, and/or stored in a temporary location,
e.g., /var/tmp/block000001.dat. A hash is generated accord
ing to the contents of each individual backup data file. In an
embodiment, a 4,096 bit MD5 hash is used to create the hash
value from the contents thereof. The resultant hash value is
stored in an index file corresponding to the current backup
session which store for later use during, e.g., data restoration.
The index file may include, without limitation, a list of data
blocks comprising the backup set, hash values corresponding
thereto, a date and time of backup, a source location, and a
destination location. A collection of hash values representa
tive of a backup of virtual machine file, and data associated
therewith, may be stored in an index file 455. Such a collec
tion, together with the individual backup data files compris
ing the backed-up virtual machine file 420 is known as a
“backup set.”
0046 Additionally or alternatively, the data block 430
may be compressed during a compression step 432 using any
Suitable manner of data compression, including without limi
tation, LZW, Zip, gzip, rar, and/or bzip. Preferably, lossless
data compression is used however in certain embodiments
lossy data compression may advantageously be used.
0047. The hash value may be regarded as a unique block
identifier, or a unique identifier of a backup data file 455. A
non-temporary (“archival) filename of the backup data file
may be generated, at least in part, from the hash value, as
illustrated in step 434. For example, the filename of a backup
data file 455 may be created by appending a hexadecimal
representation of the hash value to a file prefix and/or to an
appropriate file extension. Each backup data file 455 com
prising the virtual machine file therefore has a unique file
name based upon the hash value.
0048. A hierarchical directory structure 300 is provided on
a backup storage device, e.g., storage device 130, for storing
the backup data files. The disclosed structure has at a first
level thereof a plurality of directories 320 et seq. (e.g., fold
ers). Each first level directory contains therein a plurality of
second level directories 330. In an embodiment, the hierarchy
includes 256 first level directories, wherein each first level
directory includes 256 second level directories, for a total
number of 65,536 directories. The first level and second level
directories may be named in accordance with a sixteen bit
hexadecimal value, e.g., 00-FF. Thus, for example, a plurality
of first level directories may be named in accordance with the
series /00, /O1, 102..../FF while a second level of directo
ries may be named./00/01, /00/02/.../00/FF. Other direc
tory mapping schemes are envisioned within the scope of the

US 2014/0201156 A1

present disclosure, such as without limitation, a directory
hierarchy having fewer than two levels, a directory hierarchy
having greater than two levels, a directory hierarchy having a
directory naming convention that includes fewer than a six
teen bit hexadecimal value, a directory hierarchy having a
directory naming convention that includes greater than a six
teen bit hexadecimal value, and/or a directory hierarchy hav
ing a directory naming convention that includes an alternative
naming encoding, such as octal, ASCII85, and the like.
0049. With reference to FIGS. 4 and 5, the disclosed
method of performing a file-level restoration 200 starts with
the step 205, which may include initialization, housekeeping,
resource allocation (e.g., memory allocation, opening I/O
channels), and the like. In the step 210, a desired backup set is
selected from one or more previously-created backup sets. In
one non-limiting example, a user may choose a desired
backup set based upon selection criteria such as date and time
of backup (e.g., a timestamp), a source virtual machine (e.g.,
the machine from which the backup was created), a file con
tained therein, contents of a file contained therein, and the
like. In step 215, a set of data blocks 445 which comprise a
selected backup set are identified. In an embodiment, an index
file 455 may be consulted to perform the identification of data
blocks stored within a directory hierarchy 300 that comprise
a desired backup set. At least one datablock 445 that includes,
for example, Volume information, such as a partition table,
file allocation table, a master boot record, and the like, may be
identified in step 215. In the step 220 the identified datablocks
are mounted as a virtual filesystem, using, for example, a
Filesystem in Userspace (FUSE) driver 510 or the like. The
virtual filesystem driver 510 processes volume information
contained within the data block, and/or processes block iden
tification information stored within the index file, to obtain
information relating to the content of the backup set. In par
ticular, available logical units of data, such as directories and
files that are contained within the backed-up filesystem are
identified. In the step 225, the available files are presented to
a client, which may be e.g., a user via a user interface and/or
a client process via an application programming interface
(API). At least one backed-up file contained within the
backup set is selected by the client process for restoration.
Advantageously, the virtual filesystem driver 510 enables the
client (user) to browse the filesystem of the backup set to
facilitate the selection of backed-up filed for restoration. In
the step 230, the virtual filesystem driver reads the backup
data blocks corresponding to the selected file(s) to reconstruct
the selected file(s) for restoration. By way of non-limiting
example only, the reconstructed files are represented by

Jul. 17, 2014

“file1.dat 520, “file2.exe 530, and/or “file3.txt 540. The
reconstructed file(s) for restoration are delivered to the client
in the step 240.
10050. Optionally or alternatively, in the step 235 the
reconstructed files “file1.dat 520, “file2.exe’530, and “file3.
tXt. 540 etc. may be aggregated (e.g., combined into a con
tainer file) and/or compressed (e.g., into a .zip file.) In an
envisioned embodiment, a container file may be a self-restor
ing file 550 that includes a set of executable instructions
configured to perform at least one of decompressing the files
contained within the container file, and copying the files
contained within the container file to a predetermined desti
nation. The self-restoring file may provide a user interface
configured to accept at least one user input indicative of a
destination location, and to cause the self-restoring file to
perform the indicated restoration with further input from the
user, and/or without requiring additional software compo
nents. For example, and without limitation, a destination
location other than the original source location of the file(s) to
be restored may be specified.
0051. The present disclosure is also directed to a com
puter-based apparatus and a computing system configured to
perform a method of data restoration as described herein.
Also disclosed is computer-readable media comprising a set
of instructions of performing a method of data restoration as
described herein.
0052 While several embodiments of the disclosure have
been shown in the drawings and/or discussed herein, it is not
intended that the disclosure be limited thereto, as it is
intended that the disclosure beas broad in scope as the art will
allow and that the specification be read likewise. Therefore,
the above description should not be construed as limiting, but
merely as exemplifications of particular embodiments. The
claims can encompass embodiments in hardware, software.
or a combination thereof. Those skilled in the art will envision
other modifications within the scope and spirit of the claims
appended hereto.
What is claimed is:
1. A method for retrieving a logical data unit stored within

a backup set represented by at least one backup data block,
and an index file, comprising the steps of:

identifying a backup data block containing information
indicative of the logical organization of the backup set;

identifying at least one logical data unit stored within the
backup set;

Selecting at least one identified logical data unit; and
transferring the selected logical data unit to a recipient.

ck ck ck ck ck

