Title: CAMERA SYSTEM AND SELF-CALIBRATION METHOD THERFOR

Abstract: Provided are a camera system capable of performing self-calibration even when a camera's angle of view or orientation changes and a self-calibration method therefor. The camera system is characterized by comprising: a real image input unit for inputting an image captured by a camera; a feature point analysis unit for analyzing feature points acquired from the real image input unit; a parameter calculation unit that identifies the position of a corresponding feature point among the feature points in the image, calculates the parameters of the camera required for performing calibration.
発明の名称：カメラシステム及びその自己較正方法

技術分野

[0001] 本発明は、単眼カメラや複数のカメラを有するカメラシステム及びその自己較正方法に関するものである。

背景技術

[0002] 従来から単眼カメラや複数カメラを有するステレオカメラ等を利用しての画像と実際環境と合わせるため、カメラキャリブレーション（カメラ較正）を行っており、これにより画像の歪みを補正している。また、較正されたカメラを用いて、様々なセンシングや認識処理を行うことができる。そのため、単眼カメラや二つ以上のカメラを有するステレオカメラのような複数カメラでのセンシングや映像認識を実現するために、カメラキャリブレーションを行うに必要な、カメラのパラメータを推定する方法が用いられている。

[0003] カメラパラメータは、カメラの焦点距離や向き等を示すカメラ情報であり、大きく内部パラメータと外部パラメータの2つに分けられる。（1）式は内部パラメータである画像座標（u, v）と、外部パラメータである世界座標（X, Y, Z）の対応を表すものである。

[0004] [数1]

\[
\begin{bmatrix}
 u \\ v \\
 1
\end{bmatrix} = s \begin{bmatrix} R & T \end{bmatrix} \times \begin{bmatrix}
 f_u & 0 & u_0 \\
 0 & f_v & v_0 \\
 0 & 0 & 1
\end{bmatrix} \times \begin{bmatrix}
 X \\
 Y \\
 Z
\end{bmatrix}
\]

（1）

[0005] この（1）式では、内部パラメータとして、f は焦点距離、α はアスペクト比、s はスキー、（u_0, v_0）は座標の中心座標を示す。また外部パラメータとして、R はカメラの向きを示す回転行列、T はカメラ間の位置関係を示す並進行列である。カメラの向きを示す R は、3X3（r11, r12, ... r33）マトリックスにおいては、オイラー角により定義すると、カメラの設置角度であるパンθ、チルトφ、ロールψの3個のパラメータによって
て表される。それぞれ内部パラメータと外部パラメータを算出するために、
キャリプレーション技術が求められている。

一般的なキャリプレーションでは、例えば非特許文献1に記載されている
ように、キャリプレーションパターンの位置を様々な方向から撮影し、理想的な見え方と、実際に撮影した画像との比較演算、例えば最少2乗誤差をと
るように内部パラメータや外部パラメータの最適解を求めている。非特許文
献1の手法は、カメラ出荷時にパラメータを推定し、そのパラメータを前提
として所定の処理を実行することが多い。映像認識においてこれらのパラメ
ータの推定精度が、認識性能に影響を受ける。特にカメラのパラメータは変
更されたり、カメラ本体が変形したりする場合は、キャリプレーション精度
の影響が顕著となる。

また、自動でカメラキャリプレーションを行う自己校正方法も知られてい
る。多く利用されているのは、画像上から特徴点を抽出し、自己校正する方
法である。例えば特許文献1に記載したように、車にステレオカメラを搭載
し、走行中に撮影されたシーンの中から、特徴点に基づいて、カメラを校正
する方法である。

また、複数のカメラ姿勢を校正する場合には、特許文献2に記載したように
、オフラインで複数姿勢をそれぞれ校正し、その推定結果をデータベースに
蓄積し、オンラインの際には、データベースから読み込み、再度調整する方
法がある。それぞれの方法は、カメラの内部パラメータや外部パラメータを
推定する方法である。

先行技術文献

特許文献

[0009] 特許文献1:特開2009-276233号公報

特許文献2:特開2009-17480号公報

非特許文献

発明の概要
発明が解決しようとする課題

[001] 非特許文献1の手法では、カメラ出荷時にパラメータを推定し、そのパラメータを前提として所定の処理を実行することが多い。映像認識においてこれらのパラメータの推定精度が、認識性能に影響を受ける。特にカメラのパラメータは変更されたり、カメラ本体が変形したりする場合は、キャリブレーション精度の影響が顕著となる。カメラでターゲットを監視する場合には、カメラズームしたり、回転したりしながらセンシングしている。このように、ズーム、回転、並進の変化に応じて、センシング精度が低下するため、再度カメラを較正する必要がある。しかし、カメラ位置まで移動してからカメラの較正を行う場合は、較正完了するまで時間がかかり、ターゲットを見逃してしまうという課題がある。

[002] また、特許文献1記載した手法によれば、特徴点の量を計算し、一定分布以上であれば、精度よく較正することができるが、一般シーンの場合は、特徴点が不足している可能性があり、推定できないという課題がある。

[003] さらに、非特許文献2の手法は、事前にカメラ姿勢をオフラインで較正する場合は、複数の位置で利用した場合には、複数の位置で較正する必要があり、時間がかかり、現実的ではないというコスト面の課題がある。

[004] 以上のことから本発明においては、カメラの画角や向きの変更がされても、自己較正を行うことが可能なカメラ構成及びその自己較正方法を提供することを目的とするものである。

課題を解決するための手段

[005] 以上のことから本発明は、カメラの映像を入力する実映像入力部と、実映像入力部から得られた2つの映像の特徴点を解析する特徴点解析部と、映像の特徴点のうち対応する特徴点の位置を特定し、当該位置の特徴点の情報を
用いて、撮影現場内の複数位置における、カメラ較正を行うに必要なカメラのパラメータを算出し、位置情報と共にテーブルに保存するパラメータ算出部と、撮影現場内に設定されたターゲット位置の情報を入力し、前記テーブルに保存された撮影現場内の複数位置におけるパラメータから、カメラ較正を行うに有効な1つまたは複数の有効較正位置を推定する有効較正位置推定部と、1つまたは複数の有効較正位置とターゲット位置に基づいて、現在のカメラ位置から有効較正位置を経由してターゲット位置に至るカメラ制御経路を推定するカメラ制御経路推定部と、推定された経路に従って、カメラを制御するカメラ制御部と、カメラ制御値と有効較正位置を用いて、ターゲット位置のパラメータを推定するパラメータ推定部を備えたことを特徴とするカメラシステムである。

[001 6] また本発明は、カメラの映像の特徴点を解析し、映像の特徴点のうち対応する特徴点の位置を特定し、当該位置の特徴点の情報を用いて、撮影現場内の複数位置における、カメラ較正を行うに必要なカメラのパラメータを算出し、撮影現場内に設定されたターゲット位置の情報と、撮影現場内の複数位置におけるパラメータから、カメラ較正を行うに有効な1つまたは複数の有効較正位置を推定し、1つまたは複数の有効較正位置とターゲット位置に基づいて、現在のカメラ位置から有効較正位置を経由してターゲット位置に至るカメラ制御経路を推定し、推定された経路に従って、カメラを制御し、カメラ制御値と前記有効較正位置を用いて、ターゲット位置のパラメータを推定することを特徴とするカメラシステムの自己較正方法である。

発明の効果

[001 7] 本発明によれば、カメラの画角や向きの変更がされても、自己較正を行うことが可能なカメラシステムを提供することができる。これによって、カメラの自由度を高めることができる。

[001 8] さらに本発明の実施例によれば、特徴点が不足する自己較正が不可能な場合、また精度が低下する問題に対して、この装置は、自動的に入カメラパラメータを精度よく推定することが可能となる。また、一台の装置で複数な姿勢
や位置でセンシングする際には、動的にシーンに合わせてカメラパラメータを推定することを可能とし、設置コストや調整負担などを低減することが期待できる。さらには、現地での作業効率の向上と、工場出荷時や、運用時に発生するパラメータ推定の誤差を低減することが可能である。それによって、現地での設定誤差や経年変化が発生した場合であっても、作業員の負担を向上させることなく、カメラのパラメータが推定できるため、システムの性能を維持することに貢献する。

[0019] さらに、本発明において有効較正位置を経由して、ターゲット位置にカメラの向き等を変更する場合、ターゲット位置に向けて変更するまでの時間に、有効較正位置にて取得した情報によって自己較正を実行することができるため、効率的に処理を実行でき、ターゲット位置においては素早く所定の処理を実行することが可能となる。

[0020] さらには、カメラなどのシステム構築時に、高精度な較正手段を持たずに、現地で自動的に調整することができるため、カメラの剛性やロバスト性、カメラを高精度に構築するための構成や仕組みに対するコストを低減させることが可能である。

図面の簡単な説明

[0021] [図1] 本発明の実施例1に係るカメラシステムのシステム構成を示す図。
 [図2] 特徴点解析部11の具体的構成例を示す図。
 [図3] 特徴点解析部11の処理結果を示す概念図。
 [図4] パラメータ最適化の処理プロセスを表すフロー図。
 [図5a] ステレオカメラ50と監視対象上の複数のターゲット位置の関係を示す図。
 [図5b] テーブル13に記憶されているパラメータ情報の例を示す図。
 [図6a] カメラ制御経路推定部16で求めた制御経路60の例を示す図。
 [図6b] カメラ制御経路推定部16における制御経路の選択過程を示した図。
 [図7] カメラ制御部の構成例を示す図。
図8] 本発明の実施例2に係るカメラ装置、カメラシステムのシステム構成を示す図。
図9] 本発明の実施例3に係る単眼カメラのパラメータの推定方法を説明するための図。
発明を実施するための形態
[0022] 以下、本発明の実施例について、図面を参照して詳細に説明する。
実施例1
[0023] ここでは、二つのカメラを用するステレオカメラを例として説明する。図1は、本発明の実施例1に係るカメラシステムのシステム構成を示す図である。
[0024] 実映像入力部10は、ステレオカメラの左右カメラから映像を入力する。画像センサは、CMOS（Complementary Metal Oxide Semiconductor）やCCD（Charge Coupled Device）などの撮像素子を含む機構である。実施例1では、撮影するシーンは特定しない。監視機能向けのステレオカメラであれば、移動物体や監視エリアなどを撮影シーンとする。車載ステレオカメラであれば、道路や前方車などを撮影シーンとする。様々な環境で操作できる。撮影シーンは、複雑なシーンや単純なシーンでも撮影可能とし、撮影された映像を入力する。また、実施例1のカメラは、焦点距離、回転角度、カメラ間の距離など変更することが可能なカメラとした構成でもよい。
[0025] 特徴点解析部11は、実映像入力部10から入力された映像を用いて、左右カメラ間にある対応した特徴点を抽出する。この特徴点は、予め設定されたパターンでもよい。監視用の人や移動物体の特徴点であってもよい。車両の車番など指定したものであってもよい。
図2は特徴点解析部11の具体的構成例を示す図である。20は特徴抽出部であり、入力された画像や映像から、特徴と定義したものを抽出する。ここで特徴とは、エージやコーナなど様々である。それらの特徴を抽出する方法も多数提案されている。特に、Hessian、Harris、SIFT
SURF、FAST、Cascaded FAST、MSERが、様々な特徴点抽出手法として、よく利用されている。シーンによって、特徴点の回転性は、処理速度や、抽出精度を考慮し、手法を選別することができる。先ほど紹介した手法の中、実施例1ではMSERを利用することとし、幅広くシーンの中から精度よく特徴を抽出する。

[0026] 特徴対応部2 1では、抽出された左右カメラからの特徴を対応付ける。対応付ける手法としてはSIFT、SURF、BR IEF、BRISK、K_ NN法が利用可能である。実施例1ではK_ NN手法を用いて、左右抽出された特徴の類似度を評価し、高い精度で類似している特徴点のみを対応点として選別する。特徴選別部2 2では、対応付けされた特徴点から、正しく対応しているものののみを選別する。2 3は、対応した特徴点である。

図3は特徴点解析部1 1の処理結果を示す概念図である。図3において上段の20R、20Lは特徴抽出部20に入力された左右画像を示している。左右画像20R、20Lは、三角形と四角形を撮影したものであるが、撮影した角度が相違している。なお3 2、3 3は、左右画像20R、20Lにおける三角形及び四角形のコーナ部であり、これが特徴抽出部20において、左右画像から抽出した特徴点の例である。

[0027] 図3において上から2段目の3 4は、特徴対応部2 1の処理結果の例である。特徴点として抽出したコーナ部3 2、3 3同士を対応付けしている。但しここでの処理では、三角形のコーナ部、四角形のコーナ部と認識したのみであって、左画面の三角形の特定のコーナ部が、右画面の3個のコーナ部どのコーナ部に対応しているのかを、特定したものではない。

[0028] 図3において上から3段目の3 5は、特徴選別部2 2の処理結果の例である。ここでは、間違って対応された特徴点が削除され、正しく対応付けがされていることを示す。

[0029] 図3において上から4段目の3 6は、特徴点解析部1 1から出力された対応点リストの事例である。対応点リストでは、左画像20Lに存在する特徴点(u、v)と、右画像20Rの特徴点であって、左画像20Lの特徴点
対応している対応点リスト36は、図2の対応した特徴点23に相当している。

対応点リスト36は、図2の対応した特徴点23に相当している。

対応点リスト36は、図2の対応した特徴点23に相当している。

次に図1に戻り、パラメータ算出部12について説明する。パラメータ算出部12では、カメラの外部回転行列R、並進行列Tと内部パラメータの焦点距離Fを推定する。図4はパラメータ最適化の処理プロセスを表すフローチャートである。

図4を用いて、推定手法の一つを説明する。まず処理ステップS40において、式に基づいて、カメラ関係を表す基礎行列Fを特徴点解析部20から出力された特徴点リスト23を用いて推定する。ここでは、8点法などがよく利用されている。

次に図1に戻り、パラメータ算出部12においては、推定された基礎行列Fの精度を向上するために最適化を行う。最適化プロセスは、式に示した目的関数を最小値にするように基礎行列Fを調整する。ここでは、金谷健一ら、幾何学的
当てはめの厳密な最尤推定の統一的計算法E F N S」などの最適化手法により適応可能である。

[0036] [数4]

\[d = \sum_i \left(d(\tilde{x}_i, F^{-1}x_i^r) + d(x_i^r, F\tilde{x}_i^r) \right) \] \cdots (4)

[0037] 処理ステップS 4 2においては、焦点距離を推定する。ここでは、ステレオ左右カメラの焦点距離 \(f \), \(f' \) を推定する。実施例1では、山田健人たちが提案した手法を適応する。式5に示したように焦点距離 \(f \), \(f' \) を基
礎行列Fから算出する。

[0038] [数5]

\[
\begin{align*}
\epsilon &= \frac{||Fk||^2 - (k, FF^TFk)||e' \times k||^2/(k, Fk)}{||e' \times k||^2 ||F^TFk||^2 - (k, Fk)^2} \\
\tau &= \frac{||F^TFk||^2 - (k, FF^TFk)||e' \times k||^2/(k, Fk)}{||e' \times k||^2 ||F^TFk||^2 - (k, Fk)^2} \\
f &= \frac{f_0}{\sqrt{1 + \epsilon}} \quad f' = \frac{f_0}{\sqrt{1 + \tau}}
\end{align*}
\] \cdots (5)

[0039] 処理ステップS 4 3においては、基礎行列Fと焦点距離 \(f \), \(f' \) を用いて
（6）式により基本行列Eを推定する。

[0040] [数6]

\[o = A_\text{flight}^T \ A_{\text{eff}} \] \cdots (6)

[0041] 処理ステップS 4 4、処理ステップS 4 5においては、基本行列Eと基礎
行列Fを用いて、（7）式に基づいて、回転行列Rと並行列行Tを算出する。
処理ステップS 4 6では上記算出されたパラメータを最適化する。ここでは、Levenberg–Marquardt最適化手法でもよし、ステ
レオカメラよく行う、Bundle Adjustmentも考えられる。
これで算出されたカメラパラメータを図1に示したテーブル1 3に登録し
蓄積する。
図1における実映像入力部10から、テーブル13までの処理は、ステレオカメラの自己校正というプロセスである。カメラを自動的にキャリブレーションする処理となる。本発明においては、この自己校正処理を、監視対象の複数位置で実施することで、複数位置でのカメラパラメータが登録されたテーブル13を作成する。このテーブルはオフラインで構築してもよいし、オンラインで構築してもよい。テーブル13の構成事例を図5bに例示して後述する。

実施例1では、監視対象上のターゲット位置に対して、ステレオカメラの姿勢を表すカメラパラメータを推定することを目的としている。しかし、このターゲット位置には例えば、特徴点が存在しないとすると、自己校正ができないという問題がある。また、ターゲット位置で、存在する人や物体をセンシングしたい場合には、まずカメラ姿勢を制御し、校正完了後にセンシングするという流れになるが、その時には人や物体を見逃してしまう可能性があるという問題がある。

この問題を解決するために本発明の実施例1においては、図1の有効校正位置推定部14において、ターゲット情報を入力として、テーブル13に登録されたターゲット位置を評価する。

図5a、図5bは有効校正位置推定部14の処理概要を説明するための図である。このうち図5aは、ステレオカメラ50と監視対象上の複数のターゲット位置の関係を例示している。50は座標の原点位置におかれたステレオカメラであり、51〜55は自己校正を行い、パラメータを推定されたパラメータ推定位置である。これらの情報は既知情報である。ここではパラメータ...
タ推定位置51〜55は、3次元x、y、zの座標上に表現されている。

図5bは、テーブル13に記憶されているパラメータ情報の例を示している。パラメータ情報は、パラメータ推定位置51〜55ごとに、3次元x、y、z座標上の位置、パラメータ、および評価が記憶されている。ここでパラメータとは、このパラメータ推定位置51〜55に対応しているカメラの姿勢を表す焦点距離、回転行列、並列行列などカメラの内部パラメータや外部パラメータである。この評価事例でいうと、パラメータ推定位置51〜55のうち、51と54の位置の評価は「有効な位置：0」、53は「精度が低い位置：△」、52、55は「無効な位置：？」とされている。

図5aにおいて、56はターゲット位置である。本発明においては、カメラ50を現在位置59からターゲット位置56に移そうとしているが、ターゲット位置56におけるパラメータは未知であることから、ターゲット位置56におけるパラメータを推定する必要がある。

カメラをズームしたりする場合は、焦点距離fが変更される。カメラが自由に回転する場合は、パンθ、チルトφ、ロールψなどが変更される。その時カメラの姿勢に対して自己校正結果は、図1のテーブル13にパラメータ情報として登録されている。

これに対し、あるターゲット情報15（ターゲット位置56）が入力された場合、有効校正位置推定値14は、テーブル13を参照して、登録された位置51〜55が有効「0」か、無効「？」かを判断する。

図1のカメラ制御経路推定値16は、有効校正位置推定値14で得た有効な位置に基づいて、カメラ50の現在位置59からターゲット位置56までの制御経路を推定する。図6a、図6bはカメラ制御経路推定値16の処理要約を説明するための図である。このうち図6aは、カメラ制御経路推定値16で定めた制御経路60の例を示している。ここで制御経路とは、現在位置59からどうやってカメラをズームし、回転することによって、ターゲット位置56をセンシングできるように制御するのがよいかという目的で定めた経路である。図6aの例では、現在位置59からパラメータ推定位置53
54を経由してターゲット位置56に至る制御経路60を選択したことを示している。

図6 bは、カメラ制御部経路推定部16における制御経路の選択過程を示した図である。カメラ制御部経路推定部16では、まずテーブル13に記憶されているパラメータ情報の中から、評価結果を参照してパラメータ推定位置51〜55の評価が「有効な位置：□」、または「精度が低い位置：△」を抽出する。テーブル13の場合には、パラメータ推定位置51、53、54を選択する。図6 aには、選択したパラメータ推定位置51、53、54と現在位置59とターゲット位置56が表示されている。

次にカメラ制御部経路推定部16では、現在位置59からターゲット位置56に至る可能なルートを想定する。図6 bには、この場合に現在位置59からターゲット位置56に至る可能な想定ルートがすべて記述されている。径路1は59⇒51⇒54⇒56、径路2は59⇒53⇒54⇒56、径路3は59⇒54⇒56である。

またカメラ制御部経路推定部16では、各経路の場合に行うことになるズームや回転の処理を定める。ズームや回転の処理内容は、図6 bの2つの位置（例えば径路1なら最初に59と51）におけるパラメータ内容を比較することで、ズームや回転の区別とその操作量として求まる。図6 bでは処理内容について制御フローとしては、径路1では回転⇒ズーム⇒ズームの順に行い、径路2ではズーム⇒回転⇒ズームの順に行い、径路3ではズーム⇒回転の順に行うことを表している。なお図5 bには表記していないが各操作内容の時の操作量も併せて求められる。

カメラ制御部経路推定部16では、径路ごとの制御フローを参照して、この場合に移動並びに較正に要する時間（速度）と較正精度を求め、この中から最も早くかつ精度が良い経路を選別する。図6 bの例では、径路1では速度は中程度、精度は〇、径路2では速度は中程度、精度は△、径路3では速度は速く、精度は〇であるという評価結果が得られ、最終的に径路1を選択する。図6 aの経路60が、最終的に選択された図6 bの経路1である。
図1に戻り、17はカメラ制御部であり、選別した経路1に従ってカメラを制御する。図7はカメラ制御部の構成例を示す図である。カメラ制御部17は、ズーム制御部70、チルト制御部71、パン制御部72で構成されており、チルト制御部71とパン制御部72は、それぞれ画角と水平方向、画角と垂直方向のカメラ向きを制御する。ズーム制御部70はレンズ機構を制御するもので、レンズの移動によって焦点距離を変更しカメラの撮像範囲である画角を変更する。チルト制御部71、パン制御部72は、カメラを回転しながらから姿勢を変えることができる。

図1のパラメータ推定部18は、ターゲット位置情報、カメラ制御した移動量と選別した経路での有効な較正位置でのカメラパラメータ情報を用いて、ターゲット位置をセンシングする場合のカメラパラメータを推定する。ここでは、既知の有効情報からオフセット計算することで、ズームした焦点距離や、回転された角度を推定することが可能である。精度を維持するため、最適化することで、推定値の精度を向上する。一方、すべて既知な有効情報に誤差が発生する場合は、パラメータ算出部12に記載する手法を用いて、ターゲット位置を自己較正することも考えられる。

ここでは、ターゲット位置に特徴点情報がなくても、既知の有効情報およびターゲットまで制御した移動量を算出することで、ターゲット位置でのパラメータを推定することも可能である。

パラメータ推定部18は、カメラ制御部17と並行処理を行うことで時間を減少することができる。また、既知の情報に基づいて、パラメータ推定部18は短期間で推定することもできる。その二つの工夫で、ターゲット位置でのカメラパラメータ推定は早く精度よく推定することを実現できる。推定したパラメータ19をテーブル13へ登録したり、出力したりすることができる。

以上説明した実施例1によれば、ターゲット位置をセンシングする場合は、特徴点が存在しなくても、既知の有効な較正位置に基づいて、パラメータを推定することが可能である。また、ターゲット位置まで制御しなから、パ
ラーメータを推定することで、速やかに自己較正が実現できる。それによって、早くターゲット位置の人や物をセンシングできるようになる。本実施例は二つのカメラによる例として明示したが、単眼のカメラや複数台のカメラから任意のカメラによる較正においても、本発明を適用することができる。

実施例 2

次に図8を用いて実施例2について説明する。実施例2では、図1に示す構成10から19の機能は実施例1と同じであるため、説明を省略する。実施例2では、ターゲット検知部80が追加されている点で実施例1と相違する。

ターゲット検知部80は、撮影装置（実映像入力部10）から入力された画像を用いて、自動的にターゲット情報を抽出する。例えば、監視カメラ装置で人や物体をセンシングしたい場合（ここでは人を例にする）、画像を用いて、動体検知、人認識や検知などが利用できる。また検知された人の領域、大きさや画像上の位置によって、ターゲットの位置、カメラとの距離などを推定することができる。それにより、カメラをズームしたり、回転したりを制御することができる。

なお、前述の実施例1については、それぞれの組合せによっても実行することが可能であり、組み合わせることによって、処理を自動化することがで、装置の利用自由度を高めることができる。

実施例 3

次に図9を用いて実施例3について説明する。実施例3は、単眼カメラのパラメータの推定方法に関する実施例である。図9に示したように、単眼カメラは複数の位置に移動しながら較正することができる。例えば、位置90で撮影した映像と位置91で撮影した映像を用いて、単眼カメラのパラメータを推定することができる。推定方法は、図4に示すステップである。ここでは、位置90と位置91で撮影した映像から対応した特徴点を抽出し、内部や外部パラメータを推定することができる。位置90から位置91まで移動した経路は、カメラの回転行列や並進行列を算出することで推定することが
できる。同じくで、更にカメラを9 1から9 2に移動させると、カメラの内部パラメータおよび回転行列、並進行列を推定することができる。

また、カメラ位置9 0から離れたターゲット位置9 3でのカメラ内部と外部パラメータを推定する場合では、位置9 0と位置9 3の間に複数の位置の情報を利用して推定することが可能である。

符号の説明

請求の範囲

[請求項1] カメラから映像した映像を入力する実映像入力部と、該実映像入力部から得られた特徴点を解析する特徴点解析部と、前記映像の特徴点のうち対応する特徴点の位置を特定し、当該位置の特徴点の情報を用いて、前記撮影現場内の複数位置における、カメラ較正を行うに必要なカメラのパラメータを算出し、位置情報と共にテーブルに保存するパラメータ算出部と、前記撮影現場内に設定されたターゲット位置の情報を入力し、前記テーブルに保存された前記撮影現場内の複数位置におけるパラメータから、カメラ較正を行うに有効な 1 つまたは複数の有効較正位置を推定する有効較正位置推定部と、前記 1 つまたは複数の有効較正位置と前記ターゲット位置に基づいて、現在のカメラ位置から前記有効較正位置を経由して前記ターゲット位置に至るカメラ制御経路を推定するカメラ制御経路推定部と、推定された経路に従って、カメラを制御するカメラ制御部と、カメラ制御値と前記有効較正位置を用いて、前記ターゲット位置のパラメータを推定するパラメータ推定部を備えたことを特徴とするカメラシステム。

[請求項2] 請求項 1 に記載のカメラシステムであって、

前記実映像入力部は、単眼カメラや複数台のカメラから映像を入力し、任意のカメラによる較正を行うことを特徴とするカメラシステム。

[請求項3] 請求項 1 に記載のカメラシステムであって、

前記カメラは、パラメータ可変カメラであり、ズームで焦点距離を変更し、回転で回転角度を変更することを特徴とするカメラシステム。

[請求項4] 請求項 1 から請求項 3 のいずれか 1 項に記載のカメラシステムであって、

有効較正位置推定部は、前記ターゲット位置の情報と、前記保存されたテーブル情報を比較し、登録した情報の有効や無効を判断するこ
とを特徴とするカメラシステム。

[請求項5] 請求項1から請求項4のいずれか1項に記載のカメラシステムであって、
ターゲット位置の情報は、センシングしたい場所の空間位置や、カメラ姿勢、ズーム値や回転角度などであることを特徴とするカメラシステム。

[請求項6] 請求項1から請求項5のいずれか1項に記載のカメラシステムであって、
前記カメラ制御経路推定部は、前記有効校正位置推定部で得た有効な位置に基づいて、カメラがターゲット位置に至るまでのカメラを制御する経路やフローを推定することを特徴とするカメラシステム。

[請求項7] 請求項1から請求項6のいずれか1項に記載のカメラシステムであって、
前記カメラ制御部は、カメラ制御経路推定部で推定した制御経路に従ってカメラをズームし、回転する制御を行うことを特徴とするカメラシステム。

[請求項8] 請求項1から請求項7のいずれか1項に記載のカメラシステムであって、
前記パラメータ推定部は、ターゲット位置の情報や前記カメラ制御の情報と選別した経路での有効な校正位置でのカメラパラメータ位置の情報を用いて、ターゲット位置をセンシングする場合のカメラパラメータを推定することを特徴とするカメラシステム。

[請求項9] カメラから入力された映像の特徴点を解析し、2つの映像の特徴点のうち対応する特徴点の位置を特定し、当該位置の特徴点の情報を利用して、前記撮影現場内の複数位置における、カメラ校正を行うに必要なカメラのパラメータを算出し、前記撮影現場内に設定されたターゲット位置の情報と、前記撮影現場内の複数位置におけるパラメータから、カメラ校正を行うに有効な1つまたは複数の有効校正位置を推定
し、前記 1つまたは複数の有効較正位置と前記ターゲット位置に基づいて、現在のカメラ位置から前記有効較正位置を経由して前記ターゲット位置に至るカメラ制御経路を推定し、推定された経路に従って、カメラを制御し、カメラ制御値と前記有効較正位置を用いて、前記ターゲット位置のパラメータを推定することを特徴とするカメラシステムの自己較正方法。

[請求項10] 請求項 9 に記載のカメラシステムの自己較正方法であって、
前記カメラは単眼カメラや複数台のカメラで映像を入力し、任意のカメラによる較正を行うことを特徴とするカメラシステムの自己較正方法。

[請求項11] 請求項 9 または請求項 10 に記載のカメラシステムの自己較正方法であって、
前記カメラ制御の処理と前記パラメータ推定の処理を平行して実施し、処理速度を短縮することを特徴とするカメラシステムの自己較正方法。

[請求項12] 請求項 9 から請求項 11 のいずれか 1 項に記載のカメラシステムの自己較正方法であって、
複数のカメラによる撮影現場の 2つの映像の特徴点を解析し、前記 2つの映像の特徴点のうち対応する特徴点の位置を特定し、当該位置の特徴点の情報を用いて、前記撮影現場内の複数位置における、カメラ較正を行うに必要なカメラのパラメータを算出する処理は、事前にオフラインで行うこと可能と特徴するカメラシステムの自己較正方法。
図 4

対応した特徴点

S40 基礎行列 F の推定

S41 基礎行列 F の最適化

S42 焦点距離 f, f' の算出

S43 基本行列 E の算出

S44 カメラの回転行列 R の算出

S45 カメラの並行行列 T の算出

S46 パラメータ最適化
図 5a

図 5b

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>パラメータ</th>
<th>評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>焦点距離: 1.0</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>回転角度: 15, 20, 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>並行列: 75.0, 0, 0</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>No.</td>
<td>経路フロー</td>
<td>制御フロー</td>
<td>速度</td>
<td>精度</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>経路1</td>
<td>59→51→54→56</td>
<td>回転 → ズーム → ズーム</td>
<td>中</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>経路2</td>
<td>59→53→54→56</td>
<td>ズーム → 回転 → ズーム</td>
<td>中</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>経路3</td>
<td>59→54→56</td>
<td>ズーム → 回転</td>
<td>早</td>
<td>○</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A WO 2015/15542 A1 (Hitachi , Ltd -),
entire text; all drawings
(Family: none)

A JP 2010-156669 A (Industrial Technology Research Institute),
15 July 2010 (15.07.2010),
entire text; all drawings
6 US 2010/0165116 A1
where document; where figure
& TW 201024899 A

Date of the actual completion of the international search 21 July 2016 (21.07.16)

Date of mailing of the international search report 02 August 2016 (02.08.16)

Name and mailing address of the ISA/Authorized officer

Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, Authorized officer
Tokyo 100-8915, Japan Telephone No.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"Z" document member of the same patent family

Further documents are listed in the continuation of Box C.

See patent family annex.
A. 発明の属する分野の分類（国際特許分類（I P C））
Int.Cl. G02B7/08 (2006. 01) i, G03B15/00 (2006. 01) i, G03B17/56 (2006. 01) i, H04N13/02 (2006. 01) i

B. — 調査を行った分野
調査を行った最小限資料（国際特許分類（I P C））
Int.Cl. G02B7/08, G03B15/00, G03B17/56, H04N13/02

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1922-19
日本国開発実用新案公報 1971-20
日本国実用新案登録公報 1996-20
日本国登録実用新案公報 1994-20

国際調査で使用した電子データベース（データベースの名前、調査に使用した方法）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリーエ</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A wo 2015/15542 AI (株式会社日立製作所) 2015. 02. 05, 全文、全図 (ファミリーなし)</td>
<td>1-12</td>
<td></td>
</tr>
</tbody>
</table>

*: 引用文献のカテゴリーエ
**: 特に関連のある文献ではなく、一般的技術水準を示すもの
**: 国際出願 日前の出願または特許であるが、国際出願 日以後に公表されたもの
**: 優先権主張に基づき提出する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
**: 口頭による開示、使用、展示等に言及する文献
**: 国際出願 日前の、かつ優先権の主張の基礎となる出願

国際調査を完了した日
21. 07. 2016

国際調査報告の発送日
02. 08. 2016

特許庁審査官 (権限のある職員)
井亀 諭

電話番号 03-3581-1101 内線 3271

様式 PCT/ISA/WO (第2ページ) (2015年1月)