PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(1) International Patent Classification 6 : (11) International Publication Number: WO 00/31635
GOG6F 9/46, 12/00, 17/30 Al

’ ’ (43) International Publication Date: 2 June 2000 (02.06.00)

(21) International Application Number: PCT/US99/27835 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

(22) International Filing Date: 24 November 1999 (24.11.99)

(30) Priority Data:

09/200,254 25 November 1998 (25.11.98) US

(71) Applicant: COMPUTER ASSOCIATES THINK, INC.
[US/US]; One Computer Associates Plaza, Islandia, NY
11749 (US).

(72) Inventor: MIRZADEH, Rosita; 18440 Hatteras Street #37,
Tarzana, CA 91356 (US).

(74) Agents: FLIESLER, Martin, C. et al.; Fliesler, Dubb, Meyer
and Lovejoy LLP, Suite 400, Four Embarcadero Center, San
Fransisco, CA 94111-4156 (US).

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FlI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG,
UZ, VN, YU, ZA, ZW, ARTPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD AND APPARATUS FOR CONCURRENT DBMS TABLE OPERATIONS

(57) Abstract

Database tables are unloaded by launching a number
of threads (400) corresponding to a number of export
directories (320) located on separate storage devices (310)
that maintain the database tables. Each thread is assigned
a database table to unload (420). Data unloaded from each
database table is stored in a corresponding export directory
(320). The data is unloaded from each database table by
reading blocks of data from each table and storing the data
logs in the export directory (320). Each thread is handled
by a separate process in a Symmetric Multi-Processing
(SMP) environment. The process is repeated until each
database table has been unloaded. The data is then
loaded into database tables by first creating a number of
temporary tables corresponding to the number of threads
(600), reading a set of data stored in the export directory
(320) and storing the data in the temporary tables.

Begin Export

Determine No. of
Threads
(Limit by no. of EDS)

L~ 400

Next Process

<
<

Launch Thread/
Process

Assign Table

Unload to ED

Internal TS
Reorg

I

70

Export Other
Objects

ir-‘ 485
495
Concurrent
I Load Phase }_’

490

AL
AM
AT
AU
AZ
BA
BB

BE

BF

BG

BR
BY
CA
CF
CG
CH
CI
M
CN
Cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
Mw
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 00/31635

-1 -

Method and Apparatus for Concurrent
DBMS Table Operations

Background of the Invention
Field of the Invention

This invention relates to a process of unloading
and loading a database table. The invention is more
particularly related to the application of parallel
processing techniques to increase the speed at which
database tables are unloaded and loaded. The invention
igs still further related to parallel processing
techniques applied to unloading and loading database
tables in a Symmetrical Multi-Processing (SMP)

environment.
Discussion of the Background
Modern database management systems are

increasingly called upon to maintain larger stores of
data. In addition to the increased size of databases,
the structure within modern databases is increasingly
complex.

Typically, a database maintains data in the form
of tables, each table maintaining one or more rows of
related data. As an example, a basic database table
may maintain plural rows having, for example, name,
social security number, address and telephone number of
individuals belonging to an organization.

The database would be increased in size as the
organization adds new members, and would increase in
both size and complexity as additional information
about members is included. For example, a larger and
more complex database could maintain, in addition to
the above information, a map, perhaps in graphical
format, showing the club members' residence. The

PCT/US99/27835

10

15

20

25

30

WO 00/31635

-2 -

database could again be increased in size and
complexity by including a work address and an
additional graphical map showing the location of the
work place.

The database table may again be increased in
complexity by maintaining pointers to other tables or
rows of the database. For example, a pointer to a set
of coworkers maintained in another table, pointers to
nearby organization members, or a pointer(s) to any
number of items to where additional member data may be
maintained.

Conventional Database Management Systems (DBMS)
provide space for building database tables by
allocating blocks. Once a table is defined, the DBMS
will allocate blocks necessary for storing rows of the
related data. For example, if a table is to be built
to contain 100,000 rows, and the rows of the table were
defined such that 100 rows could fit per block, the
DBMS would allocate 1,000 blocks to build the table.

Generally, DBMS systems allocate blocks in sets of
contiguous blocks. A contiguous set of allocated
blocks is commonly referred to as an extent. As a
general rule, extents vary in size. Using the above
example, the DBMS may utilize a single extent of 1,000
blocks, 2 extents of 500 blocks, or any other
combination of extent sizes to allocate the required
1,000 blocks to build the table. Once the required
blocks are allocated, the data is then stored in rows
in the table utilizing the blocks allocated.

Over the course of time, additional data may be
added to the table and the DBMS will allocate
additional blocks as required. For example, if a user
adds 250 rows to the table, using the above parameters,
an additional 3 blocks would need to be allocated.

PCT/US99/27835

10

15

20

25

30

WO 00/31635

-3 -

Also over the course of time, information in the
database may be deleted. In this case, deletion of
rows occurs through the use of SQL to delete rows from
the table. For example, a user may delete fifty rows
from block 1, 40 rows from block 20, and 30 rows from
block 60. When this occurs, it causes there to be more
blocks in the table than required to maintain the data
present in the table.

In addition, data within the database will be
updated. For example, using the above-described
database tables, a organization member who has not yet
entered the workforce would have a row in the table
allocated that maintained his/her name, address, social
security and telephone number. Upon entering the
workforce, the row would be updated to include the work
address and related information. However, i1if a
substantial amount of information is added as a result
of the update, the original row may not have enough
blocks of data allocated to maintain the updated
information.

Row migration occurs when a row gets updated and
the original row does not have enough space to hold all
of the updated information. When this occurs, the row
is moved to a location with more space, and a pointer
is placed in the block where the original row resided,
the pointer being set to point to the location of the
moved (migrated) row. A large amount of row migration
is caused if there are substantial updates to a table
and an inadequate amount of space was allocated for the
original rows.

More often than not, there is insufficient space
within a block to hold an updated row. In this case,
the row is migrated to an entirely different block than
where the original row resided, and the pointer is

PCT/US99/27835

10

15

20

25

30

WO 00/31635

- 4 -

placed in the original row position points to the
updated row in the different block.

Anytime a row is migrated it causes what is known
as fragmentation. Fragmentation causes (greatly
increased retrieval time of database information
because in addition to reading a block, a pointer must
be read and interpreted. When a row is migrated to
another block, at least two Dblocks (the block
containing the pointer, and the block containing the
migrated/fragmented row) must be read to retrieve row
specific information. Other structural changes within
the database tables also cause fragmentation and
related efficiency problems (row chaining, for
example) .

From time to time, the Database Administrator
(DBA) will perform an analysis on the DBMS tables that
provides information regarding the condition of the
tables. For example, the database administrator may
look at information regarding the number of deleted
rows to ascertain efficiency information with respect
to how many blocks are holding deleted rows. As
another example, the Database Administrator may look to
see how many rows of a table have been migrated or
fragmented by other processes.

If a lot of fragmentation has occurred, it
indicates that block size and row space could be more
efficiently allocated and that table data is not being
retrieved efficiently. When this occurs, the database
administrator will likely decide to rebuild the tables.

When creating a table, the DBA makes a decision
regarding the structure of a database table by setting
a percentage of blocks free (PCTFREE) or percentage of
blocks used (PCTUSED). As the DBMS fills up each block
with row or table information, it will keep a

PCT/US99/27835

10

15

20

25

30

WO 00/31635

- 5 -

percentage of a Dblock free at least equal to the
percentage PCTFREE.

The DBA sets the PCTFREE variable depending on how
the database table is to be used. For example, if a
table is to have frequent updates, additional PCTFREE
would be established so that enough space is available
to allow any necessary row migration to occur within
the same block. As discussed above, row migration
within the same block does not cause a table to become
fragmented. Migrated, but non-fragmented rows are
retrieved with a single block read rather than the
cumbersome process of reading a block, interpreting a
pointer, and reading a second block (or more) as occurs
when migrated rows are fragmented. Therefore,
appropriate PCTFREE settings allow DBMS performance to
be maintained although the database tables may be
modified.

PCTUSED is another parameter that allows the DBA
to control the structure of a DBMS table. The DBMS
prevents additional rows to be placed in a block unless
the percentage of that block has fallen below PCTUSED.
PCTUSED is different from PCTFREE in the sense that
although a block may be used if there is an update, it
will not be used to insert a new row unless the
percentage used in the block is below PCTUSED.

A DBMS table involved in heavy OLTP activity
(inserts, updates and deletes) over time will likely
experience row migration, fragmentation, row chaining,
etc. Furthermore, various database tables may not
necessarily have appropriate settings (PCTFREE,
PCTUSED, for example) when first built, or the needs of
the database table may have changed, resulting in

additional migration, deletion or £fragmentation of

PCT/US99/27835

10

15

20

25

30

WO 00/31635

- 6 -

tables. This in turn results in a degradation of data
retrieval performance and space usage.

The DBA will perform an analysis to determine
whether the tables are storing data efficiently. As a
result, one or more of the DBMS‘utables may be
determined to being inefficient in storing and
retrieving data. Reorganization (rebuilding) of the
table is a solution to this problem. In order to
achieve maximum performance the table needs to be
rebuilt (i.e., the data unloaded into secondary space
and a fresh instance of the table rebuilt). This
process gets rid of many of the unwanted effects
mentioned above Dbecause the fragmented rows are
unloaded and stored without fragmentation in the
rebuilt table.

Structurally sound databases make efficient use of
disk space. They require less time to access data,
reduce the time required for normal transactions, and
provide better response time to the user. Even though
Oracle and other modern database systems use efficient
logic for data placement, normal activity over time
causes the physical layout of the data on disk to
degrade and space requirements to grow. This results
in excessive space usage and extra time needed to
perform table scans, database backups, and other
functions. Partial empty pages and unused extent space
contribute to the additional space usage. Also,
nonsequential rows and extent interleaving seriously
degrade performance if they are not resolved
periodically.

One method to ensure that databases stay efficient
(increasing productivity) is to regularly perform
reorganizations on the databases' data. Currently,
products are available to reorganize DBMS tables.

PCT/US99/27835

10

15

20

25

30

WO 00/31635

-7 -

However, even with automated reorganization tools,
reorganization of database tables can require
substantial amounts of time. The time required to
perform a reorganization can have substantial effects
on revenue or productivity of a shop that requires
database access. For example, some shops can incur
costs of approximately $100,000 an hour when a database
is off-line (See Dec. 1997 isgsue of Oracle magazine,
"Reorgs in a Non-Stop Shop," for example). Therefore,
any improvement in efficiency or speed at which a
reorganization is performed would increase

competitiveness and profitability.

Summary of the Invention
The present inventor has realized the need to

provide fully parallel operations supporting database
table unloading and loading which will increase the
speed of any database operations performing either one
or both of table unloading and table loading.

Accordingly, it 1is an object of the present
invention to provide a parallel processing technique
that allows for parallel database table unloads.

It is another object of this invention to provide
a method for unloading and loading database tables
utilizing parallel processing techniques in a Symmetric
Multi-Processing (SMP) environment.

It is yet another object of this invention to
provide a method for preventing bottlenecks in parallel
unloading and loading of database tables.

It is still yet another object of the present
invention to increase the speed at which a
reorganization of database tables is performed by
utilizing the parallel processing techniques of the
present invention.

PCT/US99/27835

10

15

20

25

30

WO 00/31635

-8 -

These and other objects are accomplished by a
method for performing parallel unloading of database
tables, including the steps of launching a number of
threads to process the database tables, assigning a
respective one of the database tables to a
corresponding of said threads and unloading each
respective database table by a process of the
corresponding thread. The method allows the table
unload process to take advantage of a Symmetric Multi-
Processing (SMP) environment to significantly improve
the speed of database table unloads.

The invention includes a method of parallel
loading of table data including the steps of loading
data into database tables, including the steps of
determining X threads for loading data into database
tables, creating X temporary tables, each temporary
table corresponding to a set of data stored in an
export directory, launching an SQL*LOADER™ process for
loading each temporary table, and 1loading each
temporary table with the data stored in the
corresponding export directory via the corresponding
SQL*LOADER™ process.

Brief Description of the Drawings

A more complete appreciation of the invention and
many of the attendant advantages thereof will be
readily obtained as the same becomes better understood
by reference to the following detailed description when
considered in connection with the accompanying
drawings, wherein:

Figure 1 is a flow chart illustrating a database
fast unload/load (PDL)procedure;

Figure 2 is a flowchart illustrating the iterative
nature of non-concurrent database unload procedure;

PCT/US99/27835

10

15

20

25

30

WO 00/31635

-9 -

Figure 3 is a flowchart illustrating high level
processes for concurrent load and unload of database
tables according to the present invention;

Figure 4 is an illustration of parallel processes
performed on a single export disk;

Figure 5 is an illustration of parallel processes
performed using multiple export disks according to the
present invention;

Figure 6 is an illustration of plural storage
devices maintaining database tables and export
directories according to the present invention;

Figure 7 is a flowchart illustrating export
(unload) process according to the present invention;

Figure 8 is an illustration of a Destination Tab
Property Page according to the present invention;

Figure 9 illustrates a Parallel Query Tab page
according to the present invention;

Figure 10 is a flowchart illustrating a parallel
load process according to the present invention;

Figure 11 illustrates a Concurrent Table
Reorganization with a parallel export phase and a
parallel direct load according to the present
invention;

Figure 12 is a flowchart illustrating a fail
safe/fault recovery system for the wunload/load
processes according to the present invention; and

Figure 13 is a flowchart illustrating high level
table name and loading processes according to the
present invention.

PCT/US99/27835

10

15

20

25

30

WO 00/31635

- 10 -

Detailed Description of the Invention

CONCURRENT UNLOAD/LOAD OPTION IN TS REORGANIZATION

The present inventor has developed a new
Concurrent Unload/Load methodology. This methodology
will be utilized in an Unload/Load option to be
introduced in Platinum TS reorg V2.1.0 to enhance the
speed of tablespace reorganization. Previously, the
fastest way to reorganize a tablespace in TS reorg was
to use Fast Unload in conjunction with the Parallel
Direct Load option.

Referring now to the drawings, wherein like
reference numerals designate identical or corresponding
parts throughout the several views, and more
particularly to Figure 1 thereof, is a £flowchart
illustrating a Fast Unload/Load process. At step 100,
a single Fast Unload process unloads each table, and
steps 100a . . 110n illustrate parallel direct loads
utilized to load tables.

Figure 2 is flow diagram detailing the Fast Unload
process. At step 200, a Fast Unload is performed on a
table. The Fast Unload reads and stores data from the
table. At step 210, it is determined whether a next
table in the database(s) 1is to be unloaded and the
process is repeated until each table is unloaded.

As illustrated by the process in Figures 1 and 2,
in Parallel Direct Load, the tables are unloaded
sequentially using one single process on the unload and
multiple SQL*LOADER™ (an ORACLE utility) processes on
the load, while working on only one table at a time.
For example, when unloading a tablespace containing a

large number of tables, TS reorg must wait for one

PCT/US99/27835

10

15

20

25

30

WO 00/31635

- 11 -

table to be completely unloaded before it can process
the next table.

Figure 3 illustrates the Concurrent Unload/Load
option of the present invention that enables a user to
take advantage of multi-CPU machines to unload (step
300) and load (step 305) multiple tables concurrently.
This method is particularly efficient when the
tablespace contains a combination of both large and
small tables. Then, while TS reorg unloads and loads
one large table, it can also unload and load several
small tables simultaneously. The principles of the
present invention are also extended to the concurrent
building of multiple indexes and/or constraints.

The Concurrent Unload/Load process of the present
invention are best practiced in a computing and
database environment having the following
characteristics:

(1) Symmetric Multi Processing (SMP) computing
environment - Appropriate computing hardware contains
multiple CPUs and must accommodate a symmetrical
multiprocessing environment. The higher the
symmetrical multiprocessing capacity of a host machine,
the higher performance potential.

One type of multiprocessor computer is a symmetric
multiprocessor (SMP) computer. An SMP computer usually
has between 2 and 16 processors, all of which share the
computer's single memory source and shared storage
devices. The SMP capacity depends on the number of
processors available. With more processors, the
present invention allows more queries and loads to be
performed in parallel.

(2) Datafiles partitioned across multiple disks -
The datafiles of the tablespace to unload
reorganization must be stored on different physical

PCT/US99/27835

10

15

20

25

30

WO 00/31635

- 12 -

disks. This requirement is needed to obtain £full
benefit from the Concurrent Unload/Load processes of
the present invention.

(3) Defined export directories on disks - A
number of threads used for the Concurrent Unload/Load
option processes will be less than or equal to the
number of export directories. These directories are
best utilized when residing on separate physical disks.

Even with a high SMP capacity and efficient
parallel operations, data movement can experience a
bottleneck, or a halting reduction in speed, because of
the limited bandwidth of physical storage disks. One
of the few limitations of SMP occurs when physical
disks cannot quickly accommodate the simultaneous read
and write requests made by the numerous CPUs.

Another source of interrupted data, especially in
parallel processing, is disk contention. When multiple
processes attempt to access and change a database, the
disk head can serve the request of only one process at
a time, causing the other operations to wait. This
situation of two processes simultaneously trying to
access the same disk is called disk contention. The
result of disk contention is c¢logged data, or a
bottleneck.

Since parallel processes use multiple CPUs to move
data between memory and disks, it is important to have
multiple disks defined, so that the numerous CPUs can
quickly move the data without interruptions or waiting.

One way to eliminate Dbottlenecks is by
partitioning the data to multiple disks. Partitioning
data is the process of physically spreading the data
across multiple disk drives to reduce the limiting
effects of disk I/O bandwidths and disk contention.
The more disks you define (partition) for data export,

PCT/US99/27835

10

15

20

25

30

WO 00/31635

- 13 -

the more you reduce I/O bottlenecks, which results in
faster parallel operations.
Figure 4 illustrates parallel processes using only

"one export disk. Even though the server's query

coordinator Dbreaks the query into two separate
operations, the disk head can serve the request of only
one scan at a time, causing the other operations to
wait, or bottleneck. In this example, the single
disk's I/O0 limitations defeat the purpose of the
server's parallel process features. Resolving this
problem depends on proper disk allocation.

Figure 5 illustrates one embodiment of a proper
disk allocation, and parallel processes using numerous
export disks (partitioned data). The parallel
processes run simultaneously, rather than one process

waiting for the other.

Using Concurrent Threads in TS reorg

The Concurrent Load/Unload processes of the
present invention utilize a number of defined threads
that determines a number of tables to Dbe
unloaded/loaded at the same time. In other words, the
number of concurrent threads is equal to the number of
processes that TS reorg launches in the unload and load
phase. Each of these processes works on one table.

The number of defined threads is limited by a
number of export directories. Figure 6 illustrates an
SMP computing environment having three separate disks,
310a, 310b, and 310c, each disk storing datafiles and
each having an export directory 320a, 320b, and 320c.
In the illustrated environment the Concurrent
Load/Unload would define three threads (one per export
directory) for unloading tables.

PCT/US99/27835

10

15

20

25

30

WO 00/31635

Concurrent Unload Phase

Figure 7 is a flowchart illustrating the
Concurrent Unload phase of the present invention. At
step 400, a number of threads to be utilized in a
current computing environment is determined. The
number of threads to utilize is provided by a user via
a GUI or other input device. However, the number of
threads is also limited to a maximum equivalent to a
number of export directories residing on separate disk
drives.’ For example, TS reorg now utilizes a
destination Tab Property Page to enter, change or
delete the export directory paths designating the
location for the unloaded data and other export files
during a tablespace reorg (see Fig. 8).

During the export phase of a tablespace reorg, the
reorg utility unloads the Data Description Language
(DDL) and table data from the tablespace and exports it
to a specified directory. The Host Directory Path(s)
for Export is the directory path designating the
location for the unloaded DDL and data during a reorg.

The Destination tab property page is utilized to
do the following:

. Add a host export directory.
. Delete a host export directory.
. Modify a host export directory.

If insufficient space available in the export
directory or the export file size reaches the ulimit
while the reorg utility is unloading data, the reorg
utility exports the remaining data to the next
specified export directory. If another export
directory is not specified, the TS reorg will not
perform the reorganization.

This removes the 2-gigabyte limit common on most
UNIX platforms. Since a compressed file cannot be

PCT/US99/27835

10

15

20

25

30

WO 00/31635

- 15 -

split, this does not apply to a compressed export
method (described hereinafter).

At step 410, TS reorg launches a same number of
Fast Unload processes as the number of defined threads.
This is referred to as the first set of Fast Unload
processes.

At step 420, a table is assigned to each process.
Each Fast Unload process 1s executed by the
corresponding thread and unloads the assigned table
into one of the separate export directories (step 430).

To search for a directory on which to unload data,
each thread checks all of the export directories and
chooses the smallest available directory that can
accommodate the created export file. Such a method is
known as finding the best fit for the export
directories. Once a thread finds a best fit directory,
it claims that directory, so the next thread must
choose another.

In the event that other applications are using
space on the same file system, a thread might not load
all its data into its chosen best fit directory. If
this occurs, the reorg utility splits the export file
into multiple export files and attempts to write it on
another export directory. If there is no alternate
export directory, or if the disk is full, the thread
terminates and one of the remaining threads unloads the
remaining data.

A user may estimate the size of the user's export
files in order to assign enough space in an export
directory for those files. To estimate the size of an
export file, divide the current allocation of an object
by the number of threads to be utilized.

The reorg utility utilizes a Parallel Query tab
property page, as shown in Figure 9, to fill in fields

PCT/US99/27835

10

15

20

25

30

WO 00/31635

- 16 -

along with any existing parallel parameters for the
object. For example, a table's parallel parameters
might exist if that table was initially created or
revised using parallel parameters. Those parameters
are retained within the table's Data Description
Language (DDL) and the Data Dictionary. If parallel
parameters already exist for an object, the reorg
utility splits the data query automatically, and a user
need not specify values in the Parallel Query tab
property page. Otherwise, the reorg utility splits the
guery according to the parameters set in the Parallel
Query tab property page.

For full advantage of the present invention, the
number of export directories is equal to or greater
than the number of threads. Also, each export
directory should reside on a separate physical disk to
avoid disk I/O bottlenecks. As discussed above, I/O
bottlenecks will likely occur if more than one export
directory is located on a same disk because of the
possibility of more than one process writing
(unloading) to the same disk at the same time.

When the first Fast Unload process of the first
set of threads finishes, TS reorg checks if the process
was successfully terminated (step 440), if that was the
case, the next Fast Unload process to unload a next
table is launched (step 470).

In this manner, each table is unloaded by a
process executed in it's respective thread. Each
thread is independent, therefore if one thread has a
process assigned to a large table, the other processes
need not wait for the large process to finish before
launching the process for the next table.

Otherwise, if a problem occurred during the unload
of the table, TS reorg displays a reason why the

PCT/US99/27835

10

15

20

25

30

WO 00/31635

- 17 -

process failed (step 450), along with eventually the
Fast Unload logfile in the job logfile. The table that
a problem occurred is unloaded using an internal unload
program of TS reorg. This unload program is not
launched as a separate process and therefore it has to
be finished before TS reorg can continue with the
concurrent unload of the rest of the tables.

Once all the tables have been successfully
unloaded, the unload process 1is completed. A
performance meter (estimated, or interactive) may also
be implemented to display the speed of unload/load
operations and an amount of disk space being consumed.

Once the unload process 1s completed, TSreorg
continues with the next step of the tablespace
reorganization which is the export of other objects of
the tablespace (step 485).

Export of other objects includes the creation of
a files for storing the DDL of the tablespace including
all indexes, triggers, constraints, and primary or
unique keys (everything except the table and clusteré).

Finally, TS reorganization performs a drop on the
unloaded tables (step 490), and then performs a
concurrent load (step 495) loading the unloaded data
into fresh tablespace.

Concurrent Load Phase

After dropping all of the tablespace objects, TS
reorg begins the 1load (import) phase of the
reorganization. The concurrent load phase is
illustrated in the flowchart of Figure 10. At step
600, TS reorg begins the load phase by creating tables
to store the data. TS reorg sequentially creates as
many tables as the number of threads specified. The

PCT/US99/27835

WO 00/31635 PCT/US99/27835

- 18 -

specified number of threads is equivalent to the number
of threads in the unload phase.

After the first set of tables is created, TS reorg
simultaneously launches the SQL*LOADER™ processes used
to load the data of each corresponding table. The
number of processes launched is equal to the number of
threads. Each SQL*LOADER™ process loads data for one
corresponding table, reading table data from an export
directory and loading that data into the corresponding
table (step 610).

The reorg utility recreates the objects,
eliminating fragmentation and optimizing storage
parameters, using the DDL in the export files. The
reorg utility coordinates multiple CPUs in parallel
threads to load the data back into the objects,
resulting in a reorganized tablespace.

After one of these processes 1is completed, TS
reorg checks if the data was successfully loaded back
into the table and if the number of rows inserted was
correct (Step 620). If an error occurred during the
load or the number of rows inserted by SQL*LOADER™ was
not correct, TS reorg switches automatically to the
internal TS reorg load function to load sequentially
the data before continuing with the next table (step
630) . If there was no error with the SQL*LOADER™
process, or after the internal load terminated without
error, TS reorg creates the next table (step 650) and
launches concurrently still another SQL*LOADER™ process
to load this table's data (repeating step 610).

As illustrated in the concurrent Table
Reorganization diagram shown in Figure 11, a concurrent
direct load invokes multiple CPUs, each of which
executes a separate SQL*LOADER™ session to
synchronously load data from the export files back into

10

15

20

25

30

WO 00/31635

- 19 -

the object's datafiles. When SQL*LOADER™ writes to
these datafiles, the reorg utility uses the best fit
method, which selects those partitioning directories
that have enough space to accommodate the incoming
data. The reorg utility then continues using the best
fit method within that selected list of directories and
chooses the smallest datafile that can accommodate all
of the incoming data for the thread. Each thread loads
its data into as much free space in a datafile as it
can.

If a fatal error occurs during the load phase, or
if the reorganization job is canceled or killed for any
reason, the failed job becomes a Jjob that needs
recovery. As shown in Figure 12, after a job has
failed (step 1105), TS reorg automatically skips all
the tables that have been already successfully created
and loaded before the failure (step 1110) and only
loads concurrently the non-existing tables or the
tables that were not completely loaded (step 1115).

As shown in Figure 13, during the load phase, TS
reorg first creates the tables under a temporary name
(step 1300). After the data has been reloaded the temp
table is renamed to the original name of the table
(step 1320). Finally, the primary constraints and
indexes on the table are created (step 1330). This
allows TS reorg to recognize the tables that were not
completely imported before the failure and to drop all
temporary tables and restart the load for those tables
(see process 1115A, Fig. 11).

When using the Concurrent Unload/Load option, TS
reorg automatically selects the option: Create all
Indexes/Constraints after all of the Tables have been
Created. The indexes and constraints of this
tablespace are created after all of the tables are

PCT/US99/27835

10

15

20

25

30

WO 00/31635

- 20 -

successfully created and their data reloaded into the
tables.

CONCURRENT INDEX CREATION IN TS REORG

Concurrent index creation is an option can be used
in a table or a tablespace reorganization to increase
the speed of index creation during the reorganization.
In a regular table or tablespace reorganization, the
indexes are created one after another after the table
is created and the data loaded back into the table.

In a tablespace reorg, the user may select a
concurrent index creation option. In this case, TS
reorg will create the indexes concurrently (sequential
index creation is the default behavior). This will
allow TS reorg to gather all the indexes and
constraints in one export file and when all the tables
of the tablespace (in case of a tablespace
reorganization) or the table to reorganize (in case of
the table reorganization) has been created, it starts
to create these indexes and constraints concurrently.

When selecting this option, the user has to
specify a number of threads which would be used as the
number of process to launch concurrently during the
index/constraint creation phase.

When the import phase for indexes begins, TS reorg
launches the same number of Index creation processes as
the number of specified threads. When the first index
process of the first set of threads finishes, a next
index creation process is launched and subsequent index
creation processes are similarly launched wupon
completion of other threads until all the indexes and
constraints are created.

PCT/US99/27835

10

15

20

25

30

WO 00/31635

- 21 -

If an error occurs on the creation of one index or
constraint, TS reorg logs the error and writes the DDL
of the failed index into a file. The user can then
manually edit and fix the problem.

The present invention has been described with
reference and in terms consistent with an
implementation in conjunction with a Oracle database.
However, the processes described are equally applicable
to other known database products and custom database
installations. For example, instead of utilizing the
Oracle utility, SQL*LOADER™, another program capable of
reading table data stored in an export directory and
loading the data into £fresh table space may be
utilized.

The present invention may be conveniently
implemented using a conventional general purpose or a
specialized digital computer or microprocessor
programmed according to the teachings of the present
disclosure, as will be apparent to those skilled in the
computer art.

Appropriate software coding can readily be
prepared by skilled programmers based on the teachings
of the present disclosure, as will be apparent to those
skilled in the software art. The invention may also be
implemented by the preparation of application specific
integrated circuits or by interconnecting an
appropriate network of conventional component circuits,
as will be readily apparent to those skilled in the
art.

The present invention includes a computer program
product which is a storage medium (media) having
instructions stored thereon/in which can be used to
program a computer to perform any of the processes of
the present invention. The storage medium can include,

PCT/US99/27835

10

15

20

25

30

WO 00/31635

- 22 -

but is not limited to, any type of disk including
floppy disks, optical discs, DVD, CD-ROMs, microdrive,
and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs,
DRAMs, VRAMs, flash memory devices, magnetic or optical
cards, nanosystems (including molecular memory ICs), or
any type of media or device suitable for storing
instructions and/or data.

Stored on any one of the computer readable medium
(media), the present invention includes software for
controlling both the hardware of the general
purpose/specialized computer or microprocessor, and for
enabling the computer or microprocessor to interact
with a human user or other mechanism utilizing the
results of the present invention. Such software may
include, but is not 1limited to, device drivers,
operating systems, database engines and products, and
user applications. Ultimately, such computer readable
media further includes software for performing the
present invention, as described above.

Included in the programming (software) of the
general/specialized computer or microprocessor are
software modules for implementing the teachings of the
present invention, including, but not limited to,
retrieval of user inputs and the determination of a
number of threads for parallel processing, launching
threads, unloading database tables, determining
success, initiating internal reorganization processes,
exporting database objects, compressing unloaded data,
monitoring the processes of the present invention, and
setting up a concurrent load environment utilizing a
table load utility, and the display, storage, or
communication of results according to the processes of

the present invention.

PCT/US99/27835

WO 00/31635 PCT/US99/27835

- 23 -

Obviously, numerous modifications and variations
of the present invention are possible in light of the
above teachings. It is therefore to be understood that
within the scope of the appended claims, the invention
may be practiced otherwise than as specifically
described herein.

10

15

20

25

30

WO 00/31635 PCT/US99/27835

- 24 -
CLATIMS
What is claimed is:
1. A method for unloading database tables,

comprising the steps of:

launching a number of threads to process the database
tables; '

assigning a respective one of said database tables to
a corresponding of said threads; and

unloading each respective database table by a process

of the corresponding thread.

2. The method according to Claim 1, wherein said
step of launching includes the steps of:

retrieving a number X of threads input by a user;

identifying a number of export directories located on
separate storage devices that maintain said database
tables;

limiting X to the number of export directories
identified; and

utilizing X as said number of threads.

3. The method according to Claim 2, wherein said
storage devices are disk drives.

4. The method according to Claim 1, wherein said
step of unloading comprises the steps of:

reading blocks of data from a respective database
table, and storing the data blocks read in an export
directory.

5. The method according to Claim 4, wherein said
step of unloading further comprises the steps of:

10

15

20

25

30

WO 00/31635 PCT/US99/27835

- 25 -

determining success of completion said steps of
reading and storing; and
(1) stopping each of said threads, if said
determining success step indicates non-completion,
(2) performing an internal TS Reorganization on
the table.

6. The method according to Claim 1, further
comprising the step of:

repeating said steps of assigning and unloading until
each of the database tables is unloaded.

7. The method according to Claim 1, further
comprising the steps of:

exporting other objects related to each of said
tables; and

dropping said tables.

8. A method of loading data into database tables,
comprising the steps of:

determining X threads for loading data into database
tables;

creating X temporary tables, each temporary table
corresponding to a set of data stored in an export
directory;

launching an SQL* Loader process in conjunction with
each thread for loading each temporary table;

loading each temporary table with the data stored in
the corresponding export directory via the corresponding
SQL* Loader process.

9. The method according to Claim 8, further
comprising the steps of:

10

15

20

25

30

WO 00/31635 PCT/US99/27835

- 26 -

determining success of the loading step for a
respective database table; and
if said step of loading was unsuccessful, performing
the steps of:
(1) stopping each of said threads, if said
determining success step indicates non-completion,
(2) performing an internal TS Reorganization on
the table.

10. The method according to Claim 8, further
comprising the steps of creating, launching and loading

until each table is loaded.

11. The method according to Claim 8, further
comprising the steps of:
recognizing a fault in said step of loading, and
performing the steps of:
(1) recognizing unsuccessfully loaded tables;
and
(2) performing an internal TS Reorganization on

the unsuccessfully loaded tables.

12. The method according to Claim 8, wherein said
step of determining includes the steps of:

retrieving a number of threads input by a user;

determining a number of export directories; and

establishing a number of threads equal to the lesser
of the number of threads retrieved and the number of
export directories.

13. A computer readable medium having computer
instructions stored thereon that, when loaded into a
computer, cause the computer to perform the steps of:

10

15

20

25

30

WO 00/31635 PCT/US99/27835

- 27 -

launching a number of threads to process the database
tables;

assigning a respective one of said database tables to
a corresponding of said threads;

unloading each respective database table by a process
of the corresponding thread.

14. The computer readable medium according to
Claim 13, wherein said step of launching comprises the
steps of:

identifying a number X of export directories located
on separate storage devices that maintain said database
tables; and

utilizing X as said number of threads.

15. The computer readable medium according to
Claim 14, wherein said storage devices are disk drives.

16. The computer readable medium according to
Claim 13, wherein said step of unloading comprises the
steps of:

reading blocks of data from a respective database
table, and storing the data blocks read in an export
directory.

17. The computer readable medium according to
Claim 16, wherein said step of unloading further comprises
the steps of:

determining success of completion said steps of
reading and storing; and

(1) stopping each of said threads, if said
determining success step indicates non-completion,

(2) performing an internal TS Reorganization on
the table.

10

15

20

25

30

WO 00/31635 PCT/US99/27835

- 28 -

18. The method according to Claim 13, further
comprising the step of:

repeating said steps of assigning and unloading until
each of the database tables is unloaded.

19. The method according to Claim 13, further
comprising the steps of:

exporting other objects related to each of said
tables; and

dropping said tables.

20. A computer readable medium having computer
instructions stored thereon that, when loaded into a
computer, cause the computer to perform the steps of:

determining X threads for loading data into database
tables; ,

creating X temporary tables, each temporary table
corresponding to a set of data stored in an export
directory;

launching an SQL* Loader process for loading each
temporary table;

loading each temporary table with the data stored in
the corresponding export directory via the corresponding
SQL* Loader process.

21. The computer readable medium according to
Claim 20, wherein said instructions stored thereon, when
loaded into a computer, further cause the computer to
perform the steps of:

determining success of the loading step for a
respective database table; and

if said step of loading was unsuccessful, performing
the steps of:

10

15

20

25

30

WO 00/31635 PCT/US99/27835

- 29 -

(1) stopping each of said threads, if said
determining success step indicates non-completion,

(2) performing an internal TS Reorganization on
the table.

22. The computer readable medium according to
Claim 20, wherein said instructions stored thereon, when
loaded into a computer, further cause the computer to
perform the step of repeating said steps of creating,
launching and loading until each table is loaded.

23. The computer readable medium according to
Claim 20, wherein said instructions stored thereon, when
loaded into a computer, further cause the computer to
perform the step of:

recognizing a fault in said step of loading, and
performing the steps of:

(1) recognizing unsuccessfully loaded tables;
and
(2) performing an internal TS Reorganization on

the unsuccessfully loaded tables.

24, The computer readable medium according to
Claim 20, wherein said step of determining includes the
steps of:

retrieving a number of threads input by a user;

determining a number of export directories; and

establishing a number of threads equal to the lesser
of the number of threads retrieved and the number of
export directories.

25. An apparatus for unloading database tables
maintained in a system, comprising:

10

15

20

25

30

WO 00/31635 PCT/US99/27835

- 30 -

means for launching a number of threads to process
the database tables;

means for assigning a respective one of said database
tables to a corresponding of said threads; and

means for unloading each respective database table by
a process of the corresponding thread.

26. The apparatus according to Claim 25, wherein
said means for launching further includes means for
retrieving a number of threads to launch from a user.

27. The apparatus according to Claim 25, wherein
said means for launching includes means for limiting the
number of threads launched to a number of export
directories located on separate storage devices of said
system.

28. The apparatus according to Claim 25, wherein
said means for unloading comprises:

means for reading blocks of data from a respective
database table, and storing the data blocks read in an
export directory associated with the corresponding thread.

29. The apparatus according to Claim 25, further
comprising means for repeatedly assigning respective
database tables to corresponding threads and unloading
each respective table until all of said database tables
have been unloaded.

30. An apparatus for unloading database tables,
comprising:
a launching device configured to initiate a number of

threads to process said database tables;

10

15

20

25

30

WO 00/31635 PCT/US99/27835

- 31 -

an assignor configured to assign each of said
database tables to corresponding of said threads launched;
and

an unloader installed on each corresponding thread,
each respective unloader configured to unload database
tables assigned to the corresponding thread of the
unloader. '

31. The apparatus according to Claim 30, wherein
said launching device includes:

a user interface configured to retrieve a number of
threads to launch from a user; and

a limit device configured to limit the number of
threads to launch to a number of export directories
located on separate storage devices of said system.

32. The apparatus according to Claim 30, wherein
each respective unloader comprises:

a read device configured to read blocks of data
maintained within tables assigned to a same thread as the
respective unloader is installed; and

a write device configured to store the data blocks
read into an export directory corresponding to the same

thread as the respective unloader is installed.

33. The apparatus according to Claim 30, wherein
said assignor assigns a database table to each of said
threads, and, upon completion of one of said threads,
assigns another of said database tables to the completed
thread until each database table has been assigned.

34. The apparatus according to Claim 32, further
comprising:

5

WO 00/31635 PCT/US99/27835

- 32 -

a loader, loaded and executed on each of said threads
after each database table has been unloaded, each loader
configured to,

read data blocks stored in an export directory
corresponding to the thread executing the loader, and

save the datablocks in fresh tablespace.

PCT/US99/27835

WO 00/31635

113

l Ol

(1ad) peo
1dd 1dad 1dd %e_mm_
lo|esed
T a 204~ a qoh) - q O A
peojun
Jse4
0oL —

1ad/avOoINN LSV4

SUBSTITUTE SHEET (RULE 26)

WO 00/31635

PCT/US99/27835

2113

1st Table

Fast
Unload [~ 200

PDL

210
Next Table
?

No

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 00/31635

3/13

PCT/US99/27835

Concurrent
Unload n 300
Corﬂggréent |~ 305

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 00/31635 PCT/US99/27835

4/13

SELECT * FROM Table 1

- Query
Coordinator

Litat ittty

L > Scan &
Retrieve

7\:11“
R AR NEREEA)

Scan &
Retrieve »

"<

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 00/31635 PCT/US99/27835

5113
SELECT * FROM Table 1
Query
Coordinator
E Scan & e Scan &
Retrieve Retrieve
=20 =2

FIG. 5

SUBSTITUTE SHEET (RULE 26)

PCT/US99/27835

WO 00/31635

6/13

9Ol

€Xsld ¢¥sld H38Id
B0IE -
W~ qoie /\) N
9 olleled olekeq 2 OlyEIEq
S olereq g olered | oljereq
\\‘I/ \n\l’/
~_ ~
A A A
900k qoce B0cE
£ad ¢dd A=
v Y y

00€ —

diNS

SUBSTITUTE SHEET (RULE 26)

WO 00/31635 PCT/US99/27835

Next Process

7113
C Begin Export)

Determine No. of
Threads L — 400
(Limit by no. of EDS)

Y

Define Threads | 405

Yes

F ']

Launch Thread/
Process — 410

v

Assign Table — 420

v

Unloadto ED |~—430

440
Successful MSG |~ 450
Process
Y
Internal TS
Reorg | 460
Next Process
I)
' 470 T . . A

v

Export Other]
Objects 485

* /495
; Concurrent —
490— Drop Load Phase _')

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 00/31635 PCT/US99/27835

Reorg Oracle Tablespace - [QA]
HOST: snowcar Size (MB): 609,984 Used (MB): 314,578
ORACLE SID: ora73 No. of Objects: 74 Free (MB): 295,406
[Method | Destination [Storage | Parallel Query | Recovery | Miscellaneous | Job Scheduling]
~ Host Directory Path(s) for Export
Path for Export
= %DMC_TMP
=
=
=
=
=
=
=l
=
=l
< | | D 2
[<Back || Next> [Finish.. | [Close |

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 00/31635 PCT/US99/27835

Reorg Oracle Tablespace - [QA]
HOST: snowcar Size (MB): 609,984 Used (MB): 314,578
ORACLE SID: ora73 No. of Objects: 74 Free (MB): 295,406

[Method | Destination | Storage | Parallel Query | Recovery | Miscellaneous | Job Scheduiing)

— Parameter Options

[¥] Use Exiting Parallel Parameters (if available)

~ Degree of Parallelism ————— — Number of Instances
QO Default O Default

@® Other = ® Other EE

<Back || Next> Finish.. | | Close |

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 00/31635

10/13

PCT/US99/27835

Create Tables =
of Threads

Launch SQL*
Loader

Successful # of
Rows Correct

No

(630

Internal

> TSREORG

Next Table

640

Create Next
Table

Ve 650

SUBSTITUTE SHEET (RULE 26)

FIG. 10

WO 00/31635 PCT/US99/27835

Export
Phase

Import
Phase

physical disks

11/13
S S ——
6 GB Table |
Fragmented : A 6-gigabyte table
| in a database is
| located on three
|
I

Three CPUs
simultaneously
read (unload)
DDL and data

The reorg utility
coordinates the
multiple queries
on another CPU
and moves the
data to a separate

export disk
3 CPU 1 CPU CPU B~ SQL’Loader
A B C_p.onCPUAB&C
T TheeCPUsthen
~—— ——A simultaneously write

On | (load) the export
I files into the recreated,

I reorganized object

6 GB Table
Reorganized

— —— i
A — — a— ——— s— — — S——

SUBSTITUTE SHEET (RULE 26)

WO 00/31635 PCT/US99/27835

12/13
1105 1115A
Fatal Error e - \(\
ancelled Job / N
Kllled Job \
Drop All Temp \
Tables \
1110 \
(l |
TS Reorg | |
Skip Successfully \ /
Loaded Tables \ Load All Non- /
Existent Tables /

N /
%
Concurrent TS Reorg |

of Non-Existing Tables,

and giﬂelsei\je%t Yt "~ _— Recognizes Temp Names
P as Not Yet Complete Tables

End

FIG. 12

SUBSTITUTE SHEET (RULE 26)

WO 00/31635

PCT/US99/27835
13/13
TS REORG LOAD PROCESS
Temp Name ~— 1300
Load Data — 1310
Rename Table —— 1320
1330

Create Indexes

FIG. 13

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inteiaational application No.
PCT/US99/27835

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) : GO6F 9/46, 12/00, 17/30
US CL : 707/200, 202, 205, 206

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.s. : 707,200, 202, 205, 206

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

EAST, WEST
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,754,771 A (EPPERSON ET AL) 19 May 1998, Figure 2. 1
Y US 5,437,032 A (WOLF ET AL) 25 July 1995, column 1, lines 24-| 1-34

33

AP US 5,884,310 A (BRICHTA ET AL) 16 March 1999, Figure 1. 1-34
AP US 5,860,070 A (TOW ET AL) 12 January 1999. 1-34

D Further documents are listed in the continuation of Box C.

D See patent family annex.

- Special categories of cited documents:

"A* document defining the general state of the art which is not considered
to be of particular relevance

o earlier document published on or after the international filing date

"L document which may throw doubts on priority claim(s) or which is
cited to blish the publication date of her citation or other
spacisl reason (as specified)

0 document referring to an oral disclosure, use, exhibition or other

means

Pt document published prior to the international filing date but later than

the priority date claimed

ope

later do published after the i | filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

‘& document member of the same patent family

Date of the actual completion of the intemational search

19 FEBRUARY 2000

Date of mailing of the intemnational search report

i

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

20 MAR 2000

T:lephone No.

(703) 3054134

Form PCT/ISA/210 (second sheet)(July 1992)x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

