
US008O18453B2 

(12) United States Patent (10) Patent No.: US 8,018,453 B2 
FOWler et al. (45) Date of Patent: Sep. 13, 2011 

(54) DEFERRED ACCELERATION DATA 2008.0043018 A1 2/2008 Keller et al. .................. 345.426 
STRUCTURE OPTIMIZATION FOR 2008/0231633 A1* 9, 2008 Keller et al. ....... ... 345.426 
IMPROVED PERFORMANCE 2009.0167763 A1* 7, 2009 Waechter et al. ...... ... 345.426 

2009,025.6845 A1 * 10, 2009 Sevastianov et al. ......... 345/426 
2009/0284523 A1* 11/2009 Peterson et al. ....... ... 345,419 

(75) Inventors: David Keith Fowler, Hastings, MN 2009,0289.939 A1* 11/2009 Peterson et al. .............. 345,421 
SS Robert Allen Shearer, Rochester, 2009/0322752 A1* 12/2009 Peterson et al. .............. 345.426 

OTHER PUBLICATIONS 

Wald et al. Rav Tracing Def ble S Using Bounding Vol 
(73) Assignee: International Business Machines i hi y systs fO cenes Sing sounding vo 

Corporation, Armonk, NY (US) ume 11erarcnies, ; pp. 1-U. 
s s Foley et al. “KD-Tree Acceleration Structures for a GPU Raytracer', 

- r Graphics Hardware (2005).* 
(*) Notice: Subject to any disclaimer, the term of this Carret al. “Fast GPU Ray Tracing of Dynamic Meshes using Geom 

patent is extended or adjusted under 35 etry images', published 2006.* 
U.S.C. 154(b) by 1037 days. 

* cited by examiner 
(21) Appl. No.: 11/673,042 

Primary Examiner — Kimbinh T. Nguyen 
(22) Filed: Feb. 9, 2007 (74) Attorney, Agent, or Firm — Patterson & Sheridan LLP: 

O O Robert R. Williams 
(65) Prior Publication Data 

US 2008/0192044 A1 Aug. 14, 2008 (57) ABSTRACT 
Embodiments of the invention provide methods and appara 

(51) E;5/00 2006.O1 tus to defer the optimization an acceleration data structure 
.01) (e.g., a kd-tree) in response to movements of objects within a 

(52) U.S. Cl. ........ 345/419; 345/420; 345/421: 345/426; three-dimensional scene. According to one embodiment of 
345/473; 34.5/522; 707/101 the invention, an image processing system may determine 

(58) Field of Classification Search .................. 345/419, portions of an acceleration data structure affected by the 
345/420, 421, 423,426, 427, 506, 440, 473, movement of an object within a three-dimensional scene. The 

345f522. 707/101 image processing system may store the affected portion of the 
See application file for complete search history. ADS in an optimization queue. If the image processing sys 

tem does not have sufficient processing bandwidth available 
(56) References Cited to optimize the ADS, the image processing system may defer 

the ADS optimization until sufficient processing bandwidth 
U.S. PATENT DOCUMENTS becomes available. Once sufficient processing bandwidth 

3S R. 3.58. try'real . . . . . . . . . . . . . . . is a becomes available, the image processing system may opti 
- J. CCC al. ............. 

7,012,604 B1* 3/2006 Christie et al. ................ 345.426 mize the ADS according to the information stored in the 
7,418.454 B2 * 8/2008 Chen et al. .................... 707/101 optimization queue. 
7.495,664 B2 * 2/2009 Keller et al. .................. 345.426 

2007/0182732 A1* 8/2007 Woop et al. ................... 345,420 12 Claims, 23 Drawing Sheets 

POSTION AT FRAMEN POSION AT FRAMEN 

1/ 605 

  



U.S. Patent Sep. 13, 2011 Sheet 1 of 23 US 8,018,453 B2 

BASC 
THROUGHPUT 
ENGINE (BTE) 

BTE BTE 
NBOXES 

FIG. 

  





U.S. Patent Sep. 13, 2011 Sheet 3 of 23 US 8,018,453 B2 

  



U.S. Patent Sep. 13, 2011 Sheet 4 of 23 US 8,018,453 B2 

SCENE KD-TREE 

Bv, 450 
410A AA AA 410s 
405 

Y A 410c .." A X 

FIG. 4A 

410A 

405 460 

FIG. 4B 

  



U.S. Patent Sep. 13, 2011 Sheet 5 of 23 US 8,018,453 B2 

SCENE KD-TREE 

455 

FIG. 4C 

  



U.S. Patent Sep. 13, 2011 Sheet 6 of 23 US 8,018,453 B2 

WORKLOAD PHYSICS 
MANAGER (WM) ENGINE (PE) 

OO 

VECTOR WECTOR 
THROUGHPUT THROUGHPUT 
ENGINE (VTE) INBOXES ENGINE (VTE) 

FIG. 5 

  



U.S. Patent Sep. 13, 2011 Sheet 7 of 23 US 8,018,453 B2 

  



US 8,018,453 B2 Sheet 8 of 23 Sep. 13, 2011 U.S. Patent 

EGION />CITHOMA 
00/. 

09/. 

ÅGO8 
| HVO 

STEEHAW 09/ 



US 8,018,453 B2 Sheet 9 of 23 Sep. 13, 2011 U.S. Patent 

  



US 8,018,453 B2 Sheet 10 of 23 Sep. 13, 2011 U.S. Patent 

098998 'A8 /-098 
006 



US 8,018,453 B2 

A8 

Sheet 11 of 23 Sep. 13, 2011 U.S. Patent 

(1+N EWVH-H) 0, '91-' 

N EWVH-|1\# NOLLISOd 

  





US 8,018,453 B2 Sheet 13 of 23 Sep. 13, 2011 U.S. Patent 

909 /> 

N = WVH-I.LV/ NOLLISOd 

  



8 | -50/-| 

US 8,018,453 B2 Sheet 14 of 23 Sep. 13, 2011 

909 /> 

U.S. Patent 

N EWVH-} L\; NOLLISOCH 

  



U.S. Patent Sep. 13, 2011 Sheet 15 Of 23 US 8,018,453 B2 

1405 DETERMINE DIMENSIONS OF VELOCITY 
BOX TO BE CAST 

CAST BOX INTONTEGRATED 
ACCELERATION DATASTRUCTURE, 
TRAVERSEVELOCITYBOX THROUGH 
INTEGRATED ACCELERATION DATA 
STRUCTURE UNTIL OBJECT NODES 

ARE REACHED 

1410 

PERFORM COLLISION DETECTION TESTS 
WITH THE OBJECTS DEFINED BY 

THE TRAVERSED TO OBJECT NODES 

1415 

FIG. 14 

  

    

    

    

  

    

  



LOETBO Z HVO 
··· LOEPEO ETOHIO 

CJELLSEL EIE OL} 

US 8,018,453 B2 

| ºwa RossºA8998 *S? 

U.S. Patent 

  

  



US 8,018,453 B2 Sheet 17 Of 23 Sep. 13, 2011 U.S. Patent 

  



U.S. Patent Sep. 13, 2011 Sheet 18 of 23 US 8,018,453 B2 

1700 

1705 BUILD ACCELERATION DATA 
STRUCTURE (ADS) 

1710 - PERFORMIMAGE PROCESSING FOR 
FRAME 

1715 MOVE OBJECT WHIN THREE 
DIMENSONAL SCENE 

1720. DETERMINE PORTION OF ADS AFFECTED 
BYMOVE (DETERMINE AREA INTO WHICH 

OBJECT MOVED 

1725 N STORE AFFECTED PORTION OF ADS IN 
OPTIMIZATION OUEUE 

1730 OPTIMIZE ADS 

1735 OPTIMIZE ADS ACCORDING TO 
NFORMATIONSTORED IN THE 

OPTIMIZATION GUEUE 

FIG. 17 

  

  

  



U.S. Patent Sep. 13, 2011 Sheet 19 Of 23 US 8,018,453 B2 

k 
8 

\ N1 
k 

O? 
- KNk 

1. 
K OO ? 

S O 
so l 

  



U.S. Patent Sep. 13, 2011 Sheet 20 of 23 US 8,018,453 B2 

O 
O 

O 
CN Y- S. y 

k1 N. M.H. 
o 
top 

K. 
K 9. 

S 9 
ye 

T. 
r 

      

    

  

    

  









US 8,018,453 B2 
1. 

DEFERRED ACCELERATION DATA 
STRUCTURE OPTIMIZATION FOR 
IMPROVED PERFORMANCE 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
Embodiments of the invention generally relate to the field 

of computer processing. 
2. Description of the Related Art 
The process of rendering two-dimensional images from 

three-dimensional scenes is commonly referred to as image 
processing. As the modern computer industry evolves image 
processing evolves as well. One particular goal in the evolu 
tion of image processing is to make two-dimensional simu 
lations or renditions of three-dimensional scenes as realistic 
as possible. One limitation of rendering realistic images is 
that modern monitors display images through the use of pix 
els. 
A pixel is the Smallest area of space which can be illumi 

nated on a monitor. Most modern computer monitors will use 
a combination of hundreds of thousands or millions of pixels 
to compose the entire display or rendered scene. The indi 
vidual pixels are arranged in a grid pattern and collectively 
cover the entire viewing area of the monitor. Each individual 
pixel may be illuminated to render a final picture for viewing. 
One technique for rendering a real world three-dimen 

sional scene onto a two-dimensional monitor using pixels is 
called rasterization. Rasterization is the process of taking a 
two-dimensional image represented in vector format (math 
ematical representations of geometric objects within a scene) 
and converting the image into individual pixels for display on 
the monitor. Rasterization is effective at rendering graphics 
quickly and using relatively low amounts of computational 
power; however, rasterization suffers from some drawbacks. 
For example, rasterization often suffers from a lack of realism 
because it is not based on the physical properties of light, 
rather rasterization is based on the shape of three-dimensional 
geometric objects in a scene projected onto a two-dimen 
sional plane. Furthermore, the computational power required 
to render a scene with rasterization scales directly with an 
increase in the complexity of the scene to be rendered. As 
image processing becomes more realistic, rendered scenes 
also become more complex. Therefore, rasterization suffers 
as image processing evolves, because rasterization scales 
directly with complexity. 

Another technique for rendering a real world three-dimen 
sional scene onto a two-dimensional monitor using pixels is 
called ray tracing. The ray tracing technique traces the propa 
gation of imaginary rays, rays which behave similar to rays of 
light, into a three-dimensional scene which is to be rendered 
onto a computer screen. The rays originate from the eye(s) of 
a viewer sitting behind the computer Screen and traverse 
through pixels, which make up the computer screen, towards 
the three-dimensional scene. Each traced ray proceeds into 
the scene and may intersect with objects within the scene. If 
a ray intersects an object within the scene, properties of the 
object and several other contributing factors are used to cal 
culate the amount of color and light, or lack thereof, the ray is 
exposed to. These calculations are then used to determine the 
final color of the pixel through which the traced ray passed. 
The process of tracing rays is carried out many times for a 

single scene. For example, a single ray may be traced for each 
pixel in the display. Once a sufficient number of rays have 
been traced to determine the color of all of the pixels which 
make up the two-dimensional display of the computer screen, 
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2 
the two-dimensional synthesis of the three-dimensional scene 
can be displayed on the computer screen to the viewer. 
Ray tracing typically renders real world three-dimensional 

scenes with more realism than rasterization. This is partially 
due to the fact that ray tracing simulates how light travels and 
behaves in a real world environment, rather than simply pro 
jecting a three-dimensional shape onto a two-dimensional 
plane as is done with rasterization. Therefore, graphics ren 
dered using ray tracing more accurately depict on a monitor 
what our eyes are accustomed to seeing in the real world. 

Furthermore, ray tracing also handles increases in scene 
complexity better than rasterization as scenes become more 
complex. Ray tracing scales logarithmically with scene com 
plexity. This is due to the fact that the same number of rays 
may be cast into a scene, even if the scene becomes more 
complex. Therefore, ray tracing does not suffer in terms of 
computational power requirements as Scenes become more 
complex as rasterization does. 

Image processing Systems (such as ray-tracing image pro 
cessing systems) may be used in combination with a physics 
engine to provide animation in a three-dimensional Scene. 
The physics engine may simulate real world physical phe 
nomena as applied to objects within the three-dimensional 
scene. For example, the physics engine may perform position 
updates for a moving object, and may perform collision 
detection tests to determine if the object collides with any 
other objects within the three-dimensional scene. 
One major drawback of game system using ray tracing 

image processing is the large number of calculations, and thus 
processing power, required to simulate the physics involved 
with a three-dimensional scene and to perform ray tracing to 
render the scene. This leads to problems when fast rendering 
is needed. For example, fast rendering may be necessary 
when a physics engine and an image processing system are to 
render graphics for animation in a game console. Due to the 
increased computational requirements for performing the 
physics calculations and to perform ray tracing it is difficult to 
render animation quickly enough to seem realistic (realistic 
animation is approximately twenty to twenty-four frames per 
second). 

Therefore, there exists a need for more efficient techniques 
and devices to perform ray tracing and to perform physics 
simulation. 

SUMMARY OF THE INVENTION 

Embodiments of the present invention generally provide 
methods and apparatus for physics simulation and image 
processing. 

According to one embodiment of the invention a method of 
updating an acceleration data structure is provided. The 
method generally comprising: determining a portion of the 
acceleration data structure affected by a movement of an 
object within a three-dimensional scene; adding an indication 
of the affected portion to an optimization queue; and when the 
processing element has free bandwidth, updating the accel 
eration data structure based on information in the optimiza 
tion queue. 

According to another embodiment of the invention a com 
puter readable medium is provided. The computer readable 
medium containing a program which, when executed, per 
forms operations generally comprising: determining a por 
tion of an acceleration data structure affected by a movement 
of an object within a three-dimensional Scene; adding an 
indication of the affected portion to an optimization queue; 
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and when the processing element has free bandwidth, updat 
ing the acceleration data structure based on information in the 
optimization queue. 

According to another embodiment of the invention a sys 
tem is provided. The system generally comprising: an accel- 5 
eration data structure having nodes defining bounding Vol 
umes within a three-dimensional Scene; an optimization 
queue; and a first processing element configured to determine 
a portion of the acceleration data structure affected by a 
movement of an object within a three-dimensional scene, add 10 
the affected portion to the optimization queue, and update the 
acceleration data structure based on information in the opti 
mization queue. 

BRIEF DESCRIPTION OF THE DRAWINGS 15 

FIGS. 1 and 5 illustrate multiple core processing elements, 
according to embodiments of the invention. 

FIG. 2 illustrates multiple core processing element net 
works, according to embodiments of the invention. 2O 

FIG. 3 is an exemplary three-dimensional scene to be ren 
dered by an image processing system, according to one 
embodiment of the invention. 

FIGS. 4A-4C illustrate a two-dimensional space to be ren 
dered by an image processing system and a corresponding 25 
spatial index created by an image processing system, accord 
ing to embodiments of the invention. 

FIG. 6 illustrates an exemplary three-dimensional scene to 
be rendered by an image processing system, according to 
embodiments of the invention. 30 

FIG. 7 illustrates a scene graph, according to one embodi 
ment of the invention. 

FIG. 8 illustrates a three-dimensional scene to be rendered 
by an image processing system and a corresponding spatial 
index, according to one embodiment of the invention. 35 

FIGS. 9, 11 and 15 illustrate integrated acceleration data 
structures, according to embodiments of the invention. 

FIG. 10 illustrates a three-dimensional scene to be ren 
dered by an image processing system, according to one 
embodiment of the invention. 40 

FIGS. 12, 13, and 16 illustrate exemplary three-dimen 
sional scenes, according to embodiments of the invention. 

FIG. 14 is a flowchart illustrating an exemplary method of 
performing box casting, according to one embodiment of the 
invention. 45 

FIG. 17 is a flowchart illustrating an exemplary method of 
deferring optimization of an acceleration data structure, 
according to one embodiment of the invention. 

FIGS. 18, 19, and 22 illustrate exemplary three-dimen 
sional scenes and corresponding acceleration data structures, 50 
according to embodiments of the invention. 

FIGS. 20 and 21 illustrate exemplary acceleration data 
structure optimization queues and corresponding accelera 
tion data structures, according to embodiments of the inven 
tion. 55 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

Embodiments of the invention provide methods and appa- 60 
ratus to defer the optimization an acceleration data structure 
(e.g., a kd-tree) in response to movements of objects within a 
three-dimensional scene. According to one embodiment of 
the invention, an image processing system may determine 
portions of an acceleration data structure (hereinafter ADS) 65 
affected by the movement of an object within a three-dimen 
sional Scene. The image processing system may store the 

4 
affected portion of the ADS in an optimization queue. If the 
image processing system does not have Sufficient processing 
bandwidth available to optimize the ADS, the image process 
ing system may defer the ADS optimization until sufficient 
processing bandwidth becomes available. Once sufficient 
processing bandwidth becomes available, the image process 
ing system may optimize the ADS according to the informa 
tion stored in the optimization queue. 
By only using objects which are in the same area as the 

Velocity box during intersection tests, the physics engine may 
reduce the number of intersection tests which are necessary to 
determine which objects intersect the velocity box. A reduc 
tion in the number of intersection tests which may need to be 
performed by the physics engine may reduce the amount of 
time necessary to determine if a moving object collides with 
any other objects within the three-dimensional scene. 

In the following, reference is made to embodiments of the 
invention. However, it should be understood that the inven 
tion is not limited to specific described embodiments. Instead, 
any combination of the following features and elements, 
whether related to different embodiments or not, is contem 
plated to implement and practice the invention. Furthermore, 
in various embodiments the invention provides numerous 
advantages over the prior art. However, although embodi 
ments of the invention may achieve advantages over other 
possible solutions and/or over the prior art, whether or not a 
particular advantage is achieved by a given embodiment is not 
limiting of the invention. Thus, the following aspects, fea 
tures, embodiments and advantages are merely illustrative 
and are not considered elements or limitations of the 
appended claims except where explicitly recited in a claim(s). 
Likewise, reference to “the invention' shall not be construed 
as a generalization of any inventive subject matter disclosed 
herein and shall not be considered to be an element or limi 
tation of the appended claims except where explicitly recited 
in a claim(s). 
One embodiment of the invention is implemented as a 

program product for use with a computer system. The pro 
gram(s) of the program product defines functions of the 
embodiments (including the methods described herein) and 
can be contained on a variety of computer-readable media. 
Illustrative computer-readable media include, but are not lim 
ited to: (i) information permanently stored on non-writable 
storage media (e.g., read-only memory devices within a com 
puter such as CD-ROM disks readable by a CD-ROM drive): 
(ii) alterable information stored on writable storage media 
(e.g., floppy disks within a diskette drive or hard-disk drive); 
and (iii) information conveyed to a computer by a communi 
cations medium, Such as through a computer or telephone 
network, including wireless communications. The latter 
embodiment specifically includes information downloaded 
from the Internet and other networks. Such computer-read 
able media, when carrying computer-readable instructions 
that direct the functions of the present invention, represent 
embodiments of the present invention. 

In general, the routines executed to implement the embodi 
ments of the invention, may be part of an operating system or 
a specific application, component, program, module, object, 
or sequence of instructions. The computer program of the 
present invention typically is comprised of a multitude of 
instructions that will be translated by the native computer into 
a machine-readable format and hence executable instruc 
tions. Also, programs are comprised of variables and data 
structures that either reside locally to the program or are 
found in memory or on Storage devices. In addition, various 
programs described hereinafter may be identified based upon 
the application for which they are implemented in a specific 
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embodiment of the invention. However, it should be appreci 
ated that any particular program nomenclature that follows is 
used merely for convenience, and thus the invention should 
not be limited to use solely in any specific application iden 
tified and/or implied by such nomenclature. 

An Exemplary Processor Layout and 
Communications Network 

FIG. 1 illustrates a multiple core processing element 100, 
according to one embodiment of the invention. The multiple 
core processing element 100 includes a plurality of basic 
throughput engines 105 (BTEs). A BTE 105 may contain a 
plurality of processing threads and a core cache (e.g., an L1 
cache). The processing threads located within each BTE may 
have access to a shared multiple core processing element 
cache 110 (e.g., an L2 cache). 
The BTEs 105 may also have access to a plurality of 

inboxes 115. The inboxes 115 may be memory mapped 
address space. The inboxes 115 may be mapped to the pro 
cessing threads located within each of the BTEs 105. Each 
thread located within the BTEs may have a memory mapped 
inbox and access to all of the other memory mapped inboxes 
115. The inboxes 115 make up a low latency and high band 
width communications network used by the BTEs 105. 

The BTEs may use the inboxes 115 as a network to com 
municate with each other and redistribute data processing 
work amongst the BTEs. For Some embodiments, separate 
outboxes may be used in the communications network, for 
example, to receive the results of processing by BTEs 105. 
For other embodiments, inboxes 115 may also serve as out 
boxes, for example, with one BTE 105 writing the results of 
a processing function directly to the inbox of another BTE 
105 that will use the results. 
The aggregate performance of an image processing system 

may be tied to how well the BTEs can partition and redistrib 
ute work. The network of inboxes 115 may be used to collect 
and distribute work to other BTEs without corrupting the 
shared multiple core processing element cache 110 with BTE 
communication data packets that have no frame to frame 
coherency. An image processing system which can render 
many millions of triangles perframe may include many BTES 
105 connected in this manner. 

In one embodiment of the invention, the threads of one 
BTE 105 may be assigned to a workload manager. An image 
processing system may use various software and hardware 
components to render a two-dimensional image from a three 
dimensional scene. According to one embodiment of the 
invention, an image processing system may use a workload 
manager to traverse a spatial index with a ray issued by the 
image processing system. A spatial index, as described fur 
ther below with regards to FIG.4, may be implemented as a 
tree type data structure used to partition a relatively large 
three-dimensional Scene into Smaller bounding Volumes. An 
image processing system using a ray tracing methodology for 
image processing may use a spatial index to quickly deter 
mine ray-bounding Volume intersections. In one embodiment 
of the invention, the workload manager may perform ray 
bounding Volume intersection tests by using the spatial index. 

In one embodiment of the invention, other threads of the 
multiple core processing element BTEs 105 on the multiple 
core processing element 100 may be vector throughput 
engines. After a workload manager determines a ray-bound 
ing Volume intersection, the workload manager may issue 
(send), via the inboxes 115, the ray to one of a plurality of 
vector throughput engines. The vector throughput engines 
may then determine if the ray intersects a primitive contained 
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6 
within the bounding Volume. The vector throughput engines 
may also perform operations relating to determining the color 
of the pixel through which the ray passed. 

FIG. 2 illustrates a network of multiple core processing 
elements 200, according to one embodiment of the invention. 
FIG. 2 also illustrates one embodiment of the invention where 
the threads of one of the BTEs of the multiple core processing 
element 100 is a workload manager 205. Each multiple core 
processing element 220 in the network of multiple core 
processing elements 200 may contain one workload manager 
205, according to one embodiment of the invention. Each 
multiple core processing element 220 in the network of 
multiple core processing elements 200 may also contain a 
plurality of vector throughput engines 210, according to one 
embodiment of the invention. 
The workload managers 205 may use a high speed bus 

225 to communicate with other workload managers 205 
and/or vector throughput engines 210 of other multiple core 
processing elements 220x, according to one embodiment of 
the invention. Each of the vector throughput engines 210 may 
use the high speed bus 225 to communicate with other vector 
throughput engines 210 or the workload managers 205. 
The workload manager processors 205 may use the high 
speed bus 225 to collect and distribute image processing 
related tasks to other workload managers 205, and/or dis 
tribute tasks to other vector throughput engines 210. The use 
of a high speed bus 225 may allow the workload managers 
205 to communicate without affecting the caches 230 with 
data packets related to workload manager communications. 

An Exemplary Three-Dimensional Scene 

FIG. 3 is an exemplary three-dimensional scene 305 to be 
rendered by an image processing system. Within the three 
dimensional scene 305 may be objects 320. The objects 320 
in FIG. 3 are of different geometric shapes. Although only 
four objects 320 are illustrated in FIG. 3, the number of 
objects in a typical three-dimensional scene may be more or 
less. Commonly, three-dimensional Scenes will have many 
more objects than illustrated in FIG. 3. 
As can be seen in FIG. 3 the objects are of varying geo 

metric shape and size. For example, one object in FIG. 3 is a 
pyramid 320. Other objects in FIG. 3 are boxes 320. In 
many modern image processing systems objects are often 
broken up into Smaller geometric shapes (e.g., squares, 
circles, triangles, etc.). The larger objects are then represented 
by a number of the Smaller simple geometric shapes. These 
Smaller geometric shapes are often referred to as primitives. 
Also illustrated in the scene 305 are light sources 325. 

The light sources may illuminate the objects 320 located 
within the scene 305. Furthermore, depending on the location 
of the light sources 325 and the objects 320 within the scene 
305, the light sources may cause shadows to be cast onto 
objects within the scene 305. 
The three-dimensional scene 305 may be rendered into a 

two-dimensional picture by an image processing system. The 
image processing system may also cause the two-dimen 
sional picture to be displayed on a monitor 310. The monitor 
310 may use many pixels 330 of different colors to render the 
final two-dimensional picture. 
One method used by image processing systems to render a 

three-dimensional scene 305 into a two-dimensional picture 
is called ray tracing. Ray tracing is accomplished by the 
image processing system "issuing or 'shooting rays from 
the perspective of a viewer 315 into the three-dimensional 
scene 320. The rays have properties and behavior similar to 
light rays. 
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One ray 340, that originates at the position of the viewer 
315 and traverses through the three-dimensional scene 305, 
can be seen in FIG.3. As the ray 340 traverses from the viewer 
315 to the three-dimensional scene 305, the ray 340 passes 
through a plane where the final two-dimensional picture will 
be rendered by the image processing system. In FIG. 3 this 
plane is represented by the monitor 310. The point the ray 340 
passes through the plane, or monitor 310, is represented by a 
pixel 335. 
AS briefly discussed earlier, most image processing sys 

tems use a grid 330 of thousands (if not millions) of pixels to 
render the final scene on the monitor 310. The grid 330 may 
be referred to as a frame. Each individual pixel may display a 
different color to render the final composite two-dimensional 
picture on the monitor 310. An image processing system 
using a ray tracing image processing methodology to render a 
two-dimensional picture from a three-dimensional scene will 
calculate the colors that the issued ray or rays encounters in 
the three-dimensional scene. The image processing scene will 
then assign the colors encountered by the ray to the pixel 
through which the ray passed on its way from the viewer to the 
three-dimensional Scene. 

The number of rays issued per pixel may vary. Some pixels 
may have many rays issued for a particular scene to be ren 
dered. In which case the final color of the pixel is determined 
by the each color contribution from all of the rays that were 
issued for the pixel. Other pixels may only have a single ray 
issued to determine the resulting color of the pixel in the 
two-dimensional picture. Some pixels may not have any rays 
issued by the image processing system, in which case their 
color may be determined, approximated or assigned by algo 
rithms within the image processing system. 

To determine the final color of the pixel 335 in the two 
dimensional picture, the image processing system must deter 
mine if the ray 340 intersects an object within the scene. If the 
ray does not intersect an object within the scene it may be 
assigned a default background color (e.g., blue or black, 
representing the day or night sky). Conversely, as the ray 340 
traverses through the three-dimensional scene 305the ray340 
may strike objects. As the rays strike objects within the scene, 
the color of the object may be assigned to the pixel through 
which the ray passes. However, the color of the object must be 
determined before it is assigned to the pixel. 
Many factors may contribute to the color of the object 

struck by the original ray 340. For example, light sources 
within the three-dimensional scene may illuminate the object. 
Furthermore, physical properties of the object may contribute 
to the color of the object. For example, if the object is reflec 
tive or transparent, other non-light source objects may then 
contribute to the color of the object. 

In order to determine the effects from other objects within 
the three-dimensional scene, secondary rays may be issued 
from the point where the original ray 340 intersected the 
object. For example, shadow rays 341 may be issued to deter 
mine the contribution of light to the point where the original 
ray 340 intersected the object. If the object has translucent 
properties, the image processing system may issue a trans 
mitted or a refracted ray344 to determine what color or light 
to be transmitted through the body of the object. If the object 
has reflective properties, the image processing system may 
issue a reflected ray to determine what color or light is 
reflected onto the object 320. 
One type of secondary ray may be a shadow ray. Each 

shadow ray may be traced from the point of intersection of the 
original ray and the object, to a light source within the three 
dimensional scene 305. If the ray reaches the light source 
without encountering another object before the ray reaches 
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8 
the light source, then the light source will illuminate the 
object struck by the original ray at the point where the original 
ray struck the object. 

For example, shadow ray 341 may be issued from the 
point where original ray 340 intersected the object 320, and 
may traverse in a direction towards the light source 325. The 
shadow ray 341 reaches the light source 325 without 
encountering any other objects 320 within the scene 305. 
Therefore, the light source 325 will illuminate the object 
320 at the point where the original ray 340 intersected the 
object 320. 

Other shadow rays may have their path between the point 
where the original ray struck the object and the light Source 
blocked by another object within the three-dimensional 
scene. If the object obstructing the path between the point on 
the object the original ray struck and the light Source is 
opaque, then the light source will not illuminate the object at 
the point where the original ray struck the object. Thus, the 
light source may not contribute to the color of the original ray 
and consequently neither to the color of the pixel to be ren 
dered in the two-dimensional picture. However, if the object 
is translucent or transparent, then the light Source may illu 
minate the object at the point where the original ray struck the 
object. 

For example, shadow ray 341 may be issued from the 
point where the original ray 340 intersected with the object 
320, and may traverse in a direction towards the light Source 
325. In this example, the path of the shadow ray 341 is 
blocked by an object 320. If the object 320, is opaque, then 
the light source 325, will not illuminate the object 320 at the 
point where the original ray 340 intersected the object 320. 
However, if the object 320, which the shadow ray is translu 
cent or transparent the light source 325 may illuminate the 
object 320 at the point where the original ray 340 intersected 
the object 320. 

Another type of secondary ray is a transmitted or refracted 
ray. A refracted ray may be issued by the image processing 
system if the object with which the original ray intersected 
has transparent or translucent properties (e.g., glass). A 
refracted ray traverses through the object at an angle relative 
to the angle at which the original ray struck the object. For 
example, refracted ray 344 is seen traversing through the 
object 320 which the original ray 340 intersected. 

Another type of secondary ray is a transmitted or a 
refracted ray. If the object with which the original ray inter 
sected has reflective properties (e.g. a metal finish), then a 
reflected ray will be issued by the image processing system to 
determine what color or light may be reflected onto the object. 
Reflected rays traverse away from the object at an angle 
relative to the angle at which the original ray intersected the 
object. For example, reflected ray 343 may be issued by the 
image processing system to determine what color or light 
may be reflected onto the object 320 which the original ray 
340 intersected. 
The total contribution of color and light of all secondary 

rays (e.g., shadow rays, transmitted rays, reflected rays, etc.) 
will result in the final color of the pixel through which the 
original ray passed. 

An Exemplary kd-Tree 

One problem encountered when performing ray tracing is 
determining quickly and efficiently if an issued ray intersects 
any objects within the scene to be rendered. One methodol 
ogy known by those of ordinary skill in the art to make the ray 
intersection determination more efficient is to use a spatial 
index. A spatial index divides a three-dimensional scene or 
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world into smaller volumes (smaller relative to the entire 
three-dimensional Scene) which may or may not contain 
primitives. An image processing system can then use the 
known boundaries of these smaller volumes to determine if a 
ray may intersect primitives contained within the Smaller 
Volumes. If a ray does intersect a Volume containing primi 
tives, then a ray intersection test can be run using the trajec 
tory of the ray against the known location and dimensions of 
the primitives contained within that volume. If a ray does not 
intersect a particular volume, then there is no need to run 
ray-primitive intersection tests against the primitives con 
tained within that volume. Furthermore, if a ray intersects a 
bounding Volume which does not contain primitives then 
there is no need to run ray-primitive intersections tests against 
that bounding Volume. Thus, by reducing the number of ray 
primitive intersection tests which may be necessary, the use of 
a spatial index greatly increases the performance of a ray 
tracing image processing system. Some examples of different 
spatial index acceleration data structures are octrees, k 
dimensional Trees (kd-Trees), and binary space partitioning 
trees (BSP trees). While several different spatial index struc 
tures exist, for ease of describing embodiments of the present 
invention, a kd-Tree will be used in the examples to follow. 
However, those skilled in the art will readily recognize that 
embodiments of the invention may be applied to any of the 
different types of spatial indexes. 
A kd-Tree uses axis aligned bounding Volumes to partition 

the entire Scene or space into Smaller Volumes. That is, the 
kd-Tree may divide a three-dimensional space encompassed 
by a scene through the use of splitting planes which are 
parallel to known axes. The splitting planes partition a larger 
space into Smaller bounding Volumes. Together the Smaller 
bounding Volumes make up the entire space in the scene. The 
determination to partition (divide) a larger bounding Volume 
into two smaller bounding Volumes may be made by the 
image processing system through the use of a kd-tree con 
struction algorithm. 
One criterion for determining when to partition a bounding 

volume into smaller volumes may be the number of primitives 
contained within the bounding Volume. That is, as long as a 
bounding Volume contains more primitives than a predeter 
mined threshold, the tree construction algorithm may con 
tinue to divide Volumes by drawing more splitting planes. 
Another criterion for determining when to partition a bound 
ing Volume into Smaller Volumes may be the amount of space 
contained within the bounding volume. Furthermore, a deci 
sion to continue partitioning the bounding Volume may also 
be based on how many primitives may be intersected by the 
plane which creates the bounding Volume. 
The partitioning of the scene may be represented by a 

binary tree structure made up of nodes, branches and leaves. 
Each internal node within the tree may represent a relatively 
large bounding Volume, while the node may contain branches 
to Sub-nodes which may represent two relatively smaller par 
titioned Volumes resulting after a partitioning of the relatively 
large bounding Volume by a splitting plane. In an axis-aligned 
kd-Tree, each internal node may contain only two branches to 
other nodes. The internal node may contain branches (i.e., 
pointers) to one or two leafnodes. A leaf node is a node which 
is not further sub-divided into smaller volumes and contains 
pointers to primitives. An internal node may also contain 
branches to other internal nodes which are further sub-di 
vided. An internal node may also contain the information 
needed to determine along what axis the splitting plane was 
drawn and where along the axis the splitting plane was drawn. 

Exemplary Bounding Volumes 

FIGS. 4A-4C illustrate a two-dimensional space to be ren 
dered by an image processing system and a corresponding 
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10 
kd-tree. For simplicity, a two-dimensional scene is used to 
illustrate the building of a kd-Tree, however kd-Trees may 
also be used to represent three-dimensional Scenes. In the 
two-dimensional illustration of FIGS. 4A-4C splitting lines 
are illustrated instead of splitting planes, and bounding areas 
are illustrated instead of bounding volumes as would be used 
in a three-dimensional structure. However, one skilled in the 
art will quickly recognize that the concepts may easily be 
applied to a three-dimensional scene containing objects. 

FIG. 4A illustrates a two-dimensional scene 405 contain 
ing primitives 410 to be rendered in the final picture to be 
displayed on a monitor 310. The largest volume which rep 
resents the entire Volume of the scene is encompassed by 
bounding volume 1 (BV). In the corresponding kd-Tree this 
may be represented by the top level node 450, also known as 
the root or world node. In one embodiment of an image 
processing System, an image processing System may continue 
to partition bounding Volumes into Smaller bounding Vol 
umes when the bounding Volume contains, for example, more 
than two primitives. As noted earlier the decision to continue 
partitioning a bounding Volume into Smaller bounding Vol 
umes may be based on many factors, however for ease of 
explanation in this example the decision to continue partition 
ing a bounding Volume is based only on the number of primi 
tives. As can be seen in FIG. 4A, BV contains six primitives, 
therefore kd-Tree construction algorithm may partition BV 
into Smaller bounding Volumes. 

FIG. 4B illustrates the same two-dimensional scene 405 as 
illustrated in FIG. 4A. However, in FIG. 4B the tree construc 
tion algorithm has partitioned BV into two smaller bounding 
volumes BV and BV. The partitioning of BV, was accom 
plished, by drawing a splitting plane SP 415 along the X-axis 
at point x. This partitioning of BV is also reflected in the 
kd-Tree as the two nodes 455 and 460, corresponding to BV, 
and BV respectively, under the internal or parent node BV 
450. The internal node representing BV may now store infor 
mation Such as, but not limited to, pointers to the two nodes 
beneath BV (e.g., BV and BV), along which axis the split 
ting plane was drawn (e.g., X-axis), and where along the axis 
the splitting plane was drawn (e.g., at point X). 
The kd-Tree construction algorithm may continue to par 

tition bounding Volume BV because it contains more than 
the predetermined threshold of primitives (e.g., more than 
two primitives). However, the kd-Tree construction algorithm 
may not continue to partition bounding Volume BV, because 
bounding Volume BV contains less than or equal to the 
number of primitives (e.g., only two primitives 410). Nodes 
which are not partitioned or sub-divided any further, such as 
BV, are referred to as leaf nodes. 
FIG.4C illustrates the same two-dimensional scene 405 as 

illustrated in FIG. 4B. However, in FIG. 4C the kd-Tree 
construction algorithm has partitioned BV. into two smaller 
bounding volumes BV and BVs. The kd-construction algo 
rithm has partitioned BV using a partitioning plane along the 
y-axis at pointy. Since BV has been partitioned into two 
sub-nodes it may now be referred to as an internal node. The 
partitioning of BV is also reflected in the kd-Tree as the two 
leaf nodes 465 and 470, corresponding to BV and BVs 
respectively. BV and BVs are leaf nodes because the vol 
umes they represent are not further divided into smaller 
bounding volumes. The two leaf nodes, BV and BVs are 
located under the internal node BV, which represents the 
bounding volume which was partitioned in the kd-Tree. 
The internal node representing BV may store information 

Such as, but not limited to, pointers to the two leaf nodes (i.e., 
BV and BVs), along which axis the splitting plane was 
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drawn (i.e., y-axis), and where along the axis the splitting 
plane was drawn (i.e., at pointy). 
The kd-Tree construction algorithm may now stop parti 

tioning the bounding Volumes because all bounding Volumes 
located within the scene contain less than or equal to the 
maximum predetermined number of primitives which may be 
enclosed within a bounding Volume. The leaf nodes may 
contain pointers to the primitives which are enclosed within 
the bounding Volumes each leaf represents. For example, leaf 
node BV may contain pointers to primitives 410, leaf node 
BV may contain pointers to primitives 410, and leaf node 
BVs may contain pointers to primitives 410. 
A ray tracing image processing system may use the work 

load manager 205 to traverse the spatial index (kd-Tree). 
Traversing the kd-Tree may include selecting a branch to a 
node on a lower level (sub-node) of the kd-Tree to take or 
proceed to in order to determine if the ray intersects any 
primitives contained within the Sub-node. A workload man 
ager 205 may use the coordinates and trajectory of an issued 
ray to traverse or navigate through the kd-Tree. By executing 
ray-bounding Volume intersection tests, the workload man 
ager 205 may determine if the ray intersects a plane of the 
bounding volumes represented by nodes within the kd-Tree 
structure. If the ray intersects a bounding Volume which con 
tains only primitives (i.e., a leaf node), then the workload 
manager 205 may send the ray and associated information to 
a vector throughput engine 210 for ray-primitive intersection 
tests. A ray-primitive intersection test may be executed to 
determine if the ray intersects the primitives within the 
bounding Volume. This methodology results in fewer ray 
primitive intersection tests needed to determine ifa ray inter 
sects an object within the scene, in comparison to running 
ray-primitive intersection tests for a ray against each primi 
tive contained within the scene. 

The resulting kd-Tree structure, or other spatial index 
structure, may be stored in a processor cache 230. The kd 
Tree and the size of corresponding data which comprises the 
kd-Tree may be optimized for storage in a processor cache 
230. The storage of the kd-Tree in a processor cache 230 may 
allow a workload manager 205 to traverse the kd-Tree with a 
ray that has been issued by the image processing system 
without having to retrieve the kd-Tree from memory every 
time a ray is issued by the image processing system. 

Physics Engine 

A physics engine is an application which may simulate real 
world physical phenomena as applied to objects within a 
three-dimensional scene. A physics engine may be used to 
simulate and predict the effects of physical phenomena on a 
frame to frame basis. For example, the physics engine may 
perform position updates for an object if the object is moving, 
and may perform collision detection tests to determine if an 
object collides with any other objects within the three-dimen 
sional scene. 
An image processing system may be used in conjunction 

with a physics engine to render the simulated physical inter 
actions and objects within a three-dimensional scene to a 
two-dimensional Screen. For example, a video game engine 
may use both a physics engine and an image processing 
system to simulate object movements or interactions within a 
three-dimensional scene and to display the objects and the 
environment on a monitor. 

According to one embodiment of the invention, a physics 
engine may use multiple threads on a multiple core process 
ing element to perform physics related calculations. For 
example, FIG. 5 illustrates a multiple core processing ele 
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12 
ment 100 wherein the threads of one of the cores are allocated 
to a physics engine 505. Other cores within the multiple-core 
processing element may perform image processing related 
tasks, according to embodiments of the invention. For 
example, one core within the multiple-core processing ele 
ment 100 may be allocated to a workload manager 205 and 
other cores within the multiple-core processing element 100 
may be allocated to Vector throughput engines 210, according 
to one embodiment of the invention. 
The multiple-core processing element 100 may have a 

memory cache 110 shared between all of the cores located on 
the multiple-core processing element 100. Furthermore, each 
core may have its own cache (e.g., an L1 cache). The mul 
tiple-core processing element 100 may also contain inboxes 
115. The inboxes 115 may be memory mapped address space 
used by the cores as a communications network. 

FIG. 6 illustrates an exemplary three-dimensional scene 
605. The three-dimensional scene 605 contains several 
objects including a first car object 610, a second car object 
610, a circle object 615, and a triangle object 620. A physics 
engine may simulate real world physical phenomena as 
applied to the objects (i.e., 610, 610, 615, and 620) within 
the three-dimensional scene 605 illustrated in FIG. 6. 
One structure a physics engine may use to keep track of 

objects in a three-dimensional scene is a scene graph or a 
scene index. On a frame to frame basis, the physics engine 
505 may use a scene graph to store and access information 
which defines the objects located within the three-dimen 
sional scene. The scene graph may use a hierarchical structure 
(e.g., a tree) to index or order the objects. 

For example, FIG. 7 illustrates an exemplary scene graph 
700, according to one embodiment of the invention. As illus 
trated, the scene graph 700 may contain a world node 750 
which represents the entire three-dimensional scene 605. The 
world node 750 may branch to nodes which represent objects 
within the three-dimensional scene. For example, the world 
node 750 may branch to four object nodes. Each of the four 
object nodes in the scene graph 700 may correspond to one of 
the four objects within the three-dimensional scene 605 of 
FIG. 6 (i.e., a node 760 corresponding to the first car object 
610, a node 770 corresponding to the second car object 610, 
a node 780 corresponding to the circle object 615, and a node 
790 corresponding to the triangle object 620). 
The object nodes may branch to other nodes on a lower 

level of the scene graph 700. The branched to nodes may 
represent objects which make up part of the larger object or 
may be nodes which define the object (position, color, mass, 
etc.). For example, the node 760 representing the first car 
object branches to a node 762 representing a wheels object 
and to a node 764 representing a body object. Thus, the scene 
graph is a hierarchical acceleration data structure based on 
objects located within a three-dimensional scene. 
The scene graph may be stored, for example, in a memory 

cache (e.g., cache 110) of a processing element to enable the 
physics engine 505 fast access to the information contained 
within the scene graph 700. Because a scene graph 700 is an 
object oriented structure and a physics engine performs cal 
culations on an object by object basis, a scene graph is an 
efficient structure to use with a physics engine. 

In contrast to a physics engine using a scene graph, an 
image processing system may use a spatial index (e.g., a 
kd-tree) to render a two-dimensional image from a three 
dimensional scene. As described previously with respect to 
FIG. 4, a spatial index partitions a three-dimensional scene 
based on a spatial or bounding Volume hierarchy. Because a 
scene graph is a spatial based structure and a ray tracing 
image processing system performs calculations based on 
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where a ray traverses through a three-dimensional scene, a 
spatial index is an efficient structure to use with a ray tracing 
image processing system. 

FIG. 8 illustrates a spatial index 800 which may be used by 
an image processing system to render a two-dimensional 
image from the three-dimensional scene 605. The three-di 
mensional scene 605 illustrated in FIG. 7 may be the same 
three-dimensional scene 605 to which the scene graph 700 
corresponds. 
The spatial index 800 may contain a world node 850 which 

defines bounding volume 1 (BV) which encompasses the 
entire volume of the three-dimensional scene 605. BV may 
be partitioned into two smaller bounding volumes BV and 
BV through the use of a splitting plane 815. The partitioning 
of BV is reflected in the kd-Tree as the two nodes 855 and 
860, corresponding to BV and BV respectively, under the 
internal or parent node BV 850. The internal node 850 rep 
resenting BV may now store information Such as, but not 
limited to, pointers to the two nodes beneath BV (e.g., BV, 
and BV), along which axis the splitting plane 815 was drawn 
(e.g., X-axis), and where along the axis the splitting plane 815 
was drawn. 

Furthermore, BV may be partitioned into two smaller 
bounding volumes BV and BVs. Two leafnodes 865 and 870 
in the spatial index may correspond to the bounding Volumes 
BV and BVs, respectively. 
The leaf nodes (i.e., 855,865, and 870) of the spatial index 

800 may include information which defines the correspond 
ing bounding Volumes within the three-dimensional scene 
(i.e., BV BV and BVs) and may contain pointers to primi 
tives located within the corresponding bounding Volumes. 
On a frame to frame basis, objects within the three-dimen 

sional Scene may move or change shape. In response to 
changes in position or shape of objects, the spatial index may 
need to be updated Such that the spatial index accurately 
reflects the location of objects or primitives within the three 
dimensional scene. Similarly, a scene graph used by the phys 
ics engine 505 may also need to be updated to accurately 
reflect the new position or shape of objects within the three 
dimensional scene. Thus, in response to objects moving or 
changing shape, two data structures may need to be updated 
on a frame to frame basis. 
The image processing system may store the spatial index 

800, for example, in the memory cache (e.g., cache 110). As 
previously described, a scene graph may also be stored in the 
memory cache 110 of the multiple core processing element 
100. However, in some circumstances the memory cache 110 
may not have enough storage space available to efficiently 
store both the scene graph 700 and the spatial index 800. 

Integrated Acceleration Data Structure for Physics 
and Ray Tracing Image Processing 

According to embodiments of the invention, an integrated 
acceleration data structure may be used by both the physics 
engine 505 and the image processing system in order to 
perform both physics calculations and to perform ray tracing 
respectively. A single integrated acceleration data structure 
may perform the functions of a spatial index and may simul 
taneously perform the functions of a scene graph. By using a 
single integrated acceleration data structure rather than using 
two data structures, the amount of space required to store 
information sufficient for both the physics engine 505 and the 
image processing system to perform their respective tasks 
may be reduced. Furthermore, in contrast to the need to 
update two data structures in response to movements of 
objects within the three-dimensional scene, the image pro 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
cessing system may only need to update a single data struc 
ture (i.e., the integrated acceleration data structure). The pro 
cessing time gained by only updating a single data structure 
may reduce the time necessary to perform physics engine 
tasks and image processing tasks, thus increasing overall 
system performance. 

According to one embodiment of the invention, an inte 
grated spatial index may be formed by initially partitioning a 
three-dimensional Scene into bounding Volumes that encom 
pass objects within the three-dimensional scene. Accord 
ingly, the initial or top portions of the integrated acceleration 
data structure are formed based on a spatial or bounding 
Volume hierarchy. Once a bounding Volume encompasses an 
object within the three-dimensional scene, an object oriented 
hierarchy may be used to represent the object within the 
bounding Volume. Thus, the lower portions of the integrated 
acceleration data structure are formed based on an object 
oriented hierarchy. Consequently, the initial or top portions of 
the integrated acceleration data structure may resemble a 
spatial index 800 (e.g., a kd-tree) and the lower portions of the 
integrated acceleration data structure may resemble a scene 
graph 700. 

FIG. 9 illustrates an integrated acceleration data structure 
900, according to one embodiment of the invention. The 
exemplary integrated acceleration data structure 900 corre 
sponds to the three-dimensional scene 605 illustrated in FIG. 
6. 
The integrated acceleration data structure 900 illustrated in 

FIG.9 has an initial structure defined by the spatial index 800 
which was described with reference to FIG. 8, having a world 
node and smaller bounding volumes. 

According to embodiments of the invention, in order to 
form an integrated acceleration data structure 900, the nodes 
which define bounding volumes within the three-dimensional 
scene may branch to (i.e., contain information which points 
to) nodes which define objects located within bounding vol 
umes. Thus, in contrast to a spatial index where the final 
spatially oriented nodes (i.e., the leaf nodes) only point to 
primitives, the final spatially oriented nodes in an integrated 
acceleration data structure 900 may branch to object nodes 
which define objects. 

For example, as illustrated in FIG. 9, node 855 correspond 
ing to BV may branch to object nodes 760 and 770 (repre 
senting the first car object 610 and the second car object 
610) from the scene graph 700. The object nodes 760 and 
770 are branched to from the node 855 corresponding to BV, 
because the first car object 610 and the second car object 
610 are both located within bounding volume BV, as illus 
trated in FIG. 8. 

Similar to the scene graph 700, the nodes branched to from 
each object node in the integrated acceleration data structure 
900 may continue to define properties of the objects or por 
tions of the object which collectively construct the object. For 
example, each car object node branches to a wheel object 
node (e.g., 762 or 772) and a body object node (e.g., 764 or 
774), which further define each car object. 

Also illustrated in the integrated acceleration data structure 
900 are nodes corresponding to the remaining objects in the 
three-dimensional scene 605. For example, the circle object 
node 780 is branched to from the node 865 defining the 
bounding volume BV. The circle object node 780 may be 
branched to from the node 865 defining bounding volume 
BV because the circle object 615 is located within bounding 
volume BV. Furthermore, the triangle object node 790 is 
branched to from the node 870 defining the bounding volume 
BVs. The triangle object node 790 may be branched to from 
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the node 865 defining bounding volume BVs, because the 
triangle object 620 is located within bounding volume BVs. 

In order for a physics engine 505 or an image processing 
system to determine if a node corresponds to an object or to a 
bounding Volume, each node within the integrated accelera 
tion data structure may contain an object node flag orbit. The 
object node bit may be a single bit located within the memory 
space which defines a node within the integrated acceleration 
data structure 900. According to one embodiment of the 
invention, if a node within the spatial index is an object node, 
the object node bit may be asserted. Furthermore, if a node 
within the spatial index is not an object node, the object node 
bit may not be asserted. Thus, a physics engine 505 perform 
ing physics calculations or the image processing system per 
forming ray tracing may be able to quickly determine if the 
node is an object node or a node defining a bounding Volume 
by determining if the object node bit is asserted. 

Integrated Acceleration Data Structure Usage 

According to embodiments of the invention, an image pro 
cessing system may perform ray tracing with an integrated 
acceleration data structure. As described with regards to FIG. 
4, when using a spatial index (e.g., a kd-tree) the image 
processing system may use a workload manager 205 to issue 
rays into the three-dimensional Scene and to trace the rays 
(based on the trajectory of the ray) through the three-dimen 
sional scene. The workload manager 205 may trace rays 
through the three-dimensional Scene using the spatial index 
by performing ray-bounding Volume intersection tests 
against the bounding Volumes defined by the nodes in the 
spatial index. The workload manager 205 may take branches 
to nodes based on which bounding Volumes are intersected by 
the ray. When the workload manager 205 traverses to a certain 
point within the spatial index (e.g., a leaf node defining a 
bounding volume), the workload manager 205 may send the 
ray to a vector throughput engine 210 to determine if the ray 
intersects any primitives (e.g., contained within the bounding 
volume defined by the leaf node). If the ray intersects a 
primitive, the vector throughput engine 210 may conse 
quently determine the color contribution to the two-dimen 
sional image based on an intersected primitive. If not, the 
workload manager 205 may traverse the kd-tree again to 
determine if the ray intersects any other primitives located 
within the three-dimensional scene. 

The image processing system may use an integrated accel 
eration data structure 900 to perform ray tracing, in a manner 
similar to using a spatial index. The image processing system 
may issue rays into the three-dimensional scene and trace 
rays through the three-dimensional scene using the integrated 
acceleration data structure 900 by performing ray-bounding 
Volume intersection tests against the bounding Volumes 
defined by the spatially oriented nodes in the spatial index. 
The workload manager 205 may take branches to nodes based 
on which bounding volumes are intersected by the ray. When 
the workload manager 205 traverses to a certain point within 
the integrated acceleration data structure (e.g., an object 
node), the workload manager 205 may send the ray to a vector 
throughput engine 210 to determine if the ray intersects any 
primitives. However, according to other embodiments of the 
invention, the workload manager 205 may determine if the 
ray intersects any primitives. 

Furthermore, the physics engine 505 may perform physics 
related tasks using the integrated acceleration data structure. 
When using a scene graph the physics engine may determine 
the effect of physical phenomena on objects within the three 
dimensional scene 605 on an object-by-object basis. The 
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physics engine 505 may perform the same physics calcula 
tions with an integrated acceleration structure on an object 
by-object basis by searching for object nodes within the inte 
grated acceleration data structure 900. The physics engine 
505 may determine ifa node is an object node by checking the 
object node bit in the information which defines the node. 
Once a node is found within the integrated acceleration data 
structure that has its object node bit asserted, the physics 
engine may perform physics calculations on the object. 

Thus, by forming a data structure which uses both a spatial 
(or bounding Volume) oriented hierarchy and an object ori 
ented hierarchy, a single data structure may be formed which 
may be used by both the image processing system and the 
physics engine 505. 

Although in the preceding example the integrated accel 
eration data structure 900 has been described wherein each 
entire object may be contained within a single bounding 
Volume, in some circumstances portions of objects may be 
located within two separate bounding Volumes. That is, 
objects within the three-dimensional scene may be divided by 
a splitting plane which creates a boundary between bounding 
Volumes. Consequently, portions of an object may be located 
within separate bounding Volumes created by the splitting 
plane. 

In this scenario, according to one embodiment of the inven 
tion, the information defining an object node may contain a 
bit location which indicates that information which defines 
the entire object is located within a plurality of object nodes 
within the integrated acceleration data structure. The bit 
within the information defining an object node may be 
asserted to indicate that information which defines the object 
may be located within a plurality of object nodes of the 
integrated acceleration data structure, and de-asserted to indi 
cate that the information which defines the object is located 
entirely within the current object node. 

Furthermore, if an object node which contained only a 
portion of an object was created when constructing the inte 
grated acceleration data structure, a pointer to another object 
node (or nodes) which contain the remaining information 
which defines the object may be stored in each object node 
(which contains a portion of the object, according to one 
embodiment of the invention. Thus, the physics engine may 
quickly find the other object node(s) within the integrated 
acceleration data structure. By using a bit within the informa 
tion defining an object node to indicate whether or not the 
object is defined within a plurality of object nodes, the like 
lihood may be reduced that a physics engine 505 performing 
position updates or collision detection tests fails to perform 
tests againstall of the portions of an object located within the 
three-dimensional scene. 

Updating an Integrated Acceleration Data Structure 
in Response to Object Movements 

According to embodiments of the invention, an integrated 
acceleration data structure 900 may be used to maintain a 
record of movements or changes to objects located within the 
three-dimensional scene. For example, in contrast to the 
three-dimensional scene 605 illustrated in FIG. 6, FIG. 10 
illustrates a three-dimensional scene 605B where the first car 
object 610 has moved from a first position in the frame N of 
the three-dimensional scene 605 to a second position inframe 
N+1 of the three-dimensional scene 605 (as illustrated by the 
dashed lines in FIG. 10). 
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In response to the movement of the first car object 610, 
hardware or Software components within the image process 
ing system may update the integrated acceleration data struc 
ture 900. 

According to one embodiment of the invention, the physics 
engine 505 may update the integrated acceleration data struc 
ture 900 to reflect change in position or shape of objects 
within the three-dimensional scene 605. The physics engine 
505 may perform position updates and collision detection 
tests for all of the objects located within the three-dimen 
sional scene. For example, the object node 760 corresponding 
to the first car object 610 may be updated to reflect the new 
position of the first car object 610. After performing the tests, 
the physics engine 505 may record the results of the calcula 
tions (e.g., the new positions of the objects) in the integrated 
acceleration data structure 900. 

Furthermore, if an object has moved such that the branches 
to nodes within the integrated acceleration data structure need 
to be updated, the physics engine 505 may update the 
branches as well. For example, the movement of the first car 
object 610, from its position illustrated in frame N of the 
three-dimensional scene 605 (as seen in FIG. 7) to its position 
illustrated in frame N+1 of the three-dimensional scene (as 
seen in FIG. 10) may require that the physics engine 505 
update the position of the first car object 610 in the integrated 
acceleration data structure 900. Furthermore, as illustrated in 
FIG. 10 the first car object has moved to such a degree that it 
is no longer located within the bounding volume BV, rather 
the first car object 610 has moved such that it is located 
within the bounding Volume BV. Thus, the physics engine 
505 may update the integrated acceleration data structure 900 
so that the node 865 corresponding to BV branches to the 
object node 760 corresponding to the first car object 610. 

For example, FIG. 11 illustrates an updated integrated 
acceleration data structure 900B which reflects the new posi 
tion of the first car object 610. The branch from the node 855 
corresponding to BV to the object node 760 corresponding to 
the first car object 610 may have been removed or deleted by 
the physics engine 505 to reflect the movement of the first car 
object 610 out of the bounding volume BV. Furthermore, a 
new branch from the spatial index node 865 corresponding to 
BV to the object node 760 corresponding to the first car 
object 610 may have been added by the physics engine 505 
to reflect the movement of the first car object 610 into the 
bounding volume BV. Thus, the new position of the first car 
object 610 in the three-dimensional scene 605 is now 
reflected in the updated integrated acceleration data structure 
90OB. 
As illustrated in FIG. 11, the remaining nodes and branches 

in the updated integrated acceleration data structure 900B are 
the same as in the integrated acceleration data structure 900 
because (in this simple example) no other objects moved from 
frame N to frame N--1. The image processing system may 
now use the updated integrated acceleration data structure 
900B to render a two-dimensional image from the three 
dimensional scene 605, and the physics engine 505 may use 
the updated integrated acceleration data structure 900B to 
perform physics related calculations. 

Physics Engine Collision Detection 

As mentioned above, one function of a physics engine is to 
perform collision tests. Collision tests may determine, for 
example, if an object which is moving within the three-di 
mensional scene collides with any other objects within the 
three-dimensional scene. If the moving object collides with 
any other objects, the physics engine may also perform cal 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
culations to determine the effects of the collision on the 
moving object and the objects with which the moving object 
collided (e.g., new direction, position, and/or shape of the 
objects). The physics engine may then update a data structure 
(e.g., the integrated acceleration data structure) with the 
results of the calculations, and the image processing system 
may use the updated data structure to render a two-dimen 
sional image of the three-dimensional Scene. 

FIG. 12 illustrates an exemplary three-dimensional scene 
605 containing several objects including a first car object 
610, a second car object 610, a circle object 615, and a 
triangle object 620. The first car object 610 may moving (at 
a given velocity) within the three-dimensional scene. Over a 
period of time (e.g., a single frame) the car object 610 may 
move from a first position (illustrated by the dashed outline of 
the car object 610) to a second position. 

In order to provide realistic simulation of physical phe 
nomenon, the physics engine may perform collision tests 
(collision detection tests) with the first car object 610 and 
each of the other objects within the three-dimensional scene 
to determine if the first car object 610 collides with any other 
objects within the three-dimensional scene over the time 
period (e.g., for a single frame). 

For example, the physics engine may perform collision 
tests with the first car object 610 and the second car object 
610, the first car object 610 and the circle object 615, and the 
first car object 610 and the triangle object 620. Although this 
technique may determine which objects collide with the mov 
ing object, the technique may execute collision tests with 
objects which are unlikely to collide with the moving object. 
For example, this technique may execute a collision test with 
the first car object 6101 and the triangle object 620 which are 
relatively far away from one another and are unlikely to 
collide. Therefore, this technique may be inefficient in deter 
mining collisions between the moving object and other 
objects. 

However, a physics engine may reduce the number of 
collision tests which may be performed by only performing 
collision tests with objects that are likely to collide with the 
moving object. The physics engine may determine which 
objects are likely to collide with the moving object by creat 
ing a bounding Volume which encloses the path of the moving 
object from the first position to the second position (herein 
after a “velocity box') and performing intersection tests with 
the velocity box and every other object within the three 
dimensional scene. The objects which intersect the velocity 
box may be more likely to collide with the moving object. 
Therefore the physics engine may use the objects which inter 
sect with the velocity box to perform collision tests with the 
moving object to determine which objects collide with the 
moving object. Consequently, the number of collision tests 
may be reduced by the number objects which do not intersect 
the velocity box. 

In contrast to an object-to-object collision test, a test for an 
intersection of the velocity box and an object within the 
three-dimensional scene may take less time and processing 
power. For example, a collision test may require many more 
variables such as the velocity of the moving object, direction 
in which the moving object is traveling, the coordinates of 
both objects (i.e., the moving object and the object being 
tested), and the dimensions of both objects. Whereas, an 
intersection test may simply require the dimensions and coor 
dinates of the velocity box and the dimensions and coordi 
nates of the other object being tested for an intersection with 
the velocity box. Consequently, it may be more efficient to 
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execute intersection tests using a Velocity box than to execute 
collision tests with every object within the three-dimensional 
SCCC. 

FIG. 13 illustrates an exemplary velocity box 1300 which 
encloses the moving first car object 610. As illustrated the 
velocity box 1300 may be a simple rectangular box the 
dimensions of which are based on the dimensions of the 
moving object and the distance the moving object may move 
over the period of time under evaluation. The evaluation time 
period may be the period of a frame, or may be shorter and 
iterated many times for a single frame to prevent adverse 
effects (e.g. tunneling). 
The Velocity box may also be a more complex shape (e.g., 

a cylinder) which better reflects the path of the object from its 
initial position to its final position. A more complex shape 
may further reduce the number of objects which may collide 
with the velocity box. The complexity of the shape of the 
Velocity box created by the physics engine may ultimately 
depend on a balance between the processing time necessary 
for the physics engine to create a more complex Velocity box 
and the number of collision tests which may be reduced by 
creating a more complex Velocity box. 

After creating the velocity box 1300 the physics engine 
may perform intersection tests with the velocity box 1300 and 
objects within the three-dimensional scene 605. For example, 
intersection tests may be performed with the velocity box 
1300 and the second car object 610, the velocity box 1300 
and the circle object 615, and the velocity box 1300 and the 
triangle object 620. As a result of performing these intersec 
tion tests, the physics engine may determine that the Velocity 
box 1300 intersects the circle object 615 (the intersection of 
the velocity box 1300 and the circle object 615 is illustrated in 
FIG. 13). Thus, a collision between the first car object 610 
and the circle object 615 may be likely. Consequently, the 
physics engine may only need to perform a single collision 
detection test (i.e., with the first car object 610 and the circle 
object 615). 
By determining which objects are likely to intersect the 

moving first car object 610 the physics engine was able to 
reduce the number of collision tests from three tests to one 
test. Although testing objects within the three-dimensional 
scene for intersections with the velocity box may add to the 
total number tests which may need to be performed from three 
tests to fourtests (i.e., one collision test plus three intersection 
tests), the increase intests will be less computationally expen 
sive and consume less time than executing three collision 
tests. Therefore, the overall result may be a reduction in the 
time necessary to determine if the moving object collides with 
any other objects. 

Box Casting Using an Integrated Acceleration Data 
Structure 

Although intersection tests with a velocity box may reduce 
the number of collision tests which may need to be performed 
by the physics engine, the physics engine may still need to 
perform intersection tests with the velocity box and each 
object within the three-dimensional scene in order to deter 
mine which objects are likely to collide with the moving 
object. In a complicated three-dimensional scene containing 
many objects, this may resultina large number of intersection 
tests which may need to be performed to determine which 
collisions with the moving object are likely. 

However, according to one embodiment of the invention, a 
physics engine may use the spatial information stored in the 
integrated acceleration data structure to determine which 
objects within the three-dimensional scene are within the 
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same area as the Velocity box and thus are likely to intersect 
the Velocity box. Similar to how an image processing system 
may cast a ray into a three-dimensional scene and traverse the 
integrated acceleration data structure to determine objects 
which are intersected by the ray, according to embodiments of 
the invention, the physics engine may casta Velocity box into 
the three-dimensional scene and traverse the velocity box 
(based on the dimensions and location of the velocity box) 
through the integrated acceleration data structure to deter 
mine which bounding volumes the velocity box intersects 
(i.e., a portion of the Velocity box exists within a bounding 
Volume). The physics engine may then perform intersection 
tests with objects within the intersected bounding volumes 
(i.e., objects which are in the same area as the Velocity box) 
which are more likely to intersect the velocity box. 

Conversely, objects which are in bounding volumes which 
are not intersected by the velocity box may be excluded by the 
physics engine when performing intersection tests, because 
they are not in the same area as the velocity box and thus will 
not intersect the velocity box. Therefore, in contrast to a 
physics engine performing intersection tests with the Velocity 
box and every other object within the three-dimensional 
scene, the physics engine may perform intersection tests with 
objects which are in the same bounding Volumes and thus the 
same area as the Velocity box. Consequently, the physics 
engine may reduce the number of intersection tests which 
may need to be performed. 

FIG. 14 illustrates a method 1400 of casting a velocity box 
into an integrated acceleration data structure, according to 
one embodiment of the invention. The method 1400 may 
begin, for example, when a physics engine determines that an 
object will move within the three-dimensional scene. Ini 
tially, at step 1405, the physics engine may determine the 
dimensions of the velocity box to be cast into the three 
dimensional scene. 
As mentioned above, the dimensions of the velocity box 

may be determined based on the dimensions of the moving 
object and the amount of distance the moving object may 
travel over the time period under evaluation (e.g., a single 
frame). The dimensions of the velocity box should be such 
that it encompasses the moving object over the entire path of 
movement being evaluated. For example, the velocity box 
1300 in FIG. 13 encompasses the first car object 610 in both 
its first position and its second position (i.e., the amount of 
distance the first car object traveled). According to embodi 
ments of the invention, the velocity box may be created such 
that is an axis-aligned Velocity box (i.e., sides which are 
parallel or perpendicular to the axes which are used to create 
the spatial index) or may be created Such that it is not axis 
aligned (i.e., sides of the Velocity box not parallel or perpen 
dicular to the axes which are used to create the spatial index). 
However, an axis-aligned Velocity box may be easier to 
traverse through the integrated acceleration data structure. 

Next, at step 1410, the velocity box may be cast into the 
integrated acceleration data structure and traversed through 
the integrated acceleration data structure. This may entail 
testing bounding Volumes defined by the nodes in the inte 
grated acceleration data structure to determine if a portion of 
(or the entire) velocity box intersects or is within a bounding 
Volume defined by a node. The physics engine may begin 
traversing the Velocity box through the integrated accelera 
tion data structure at the world node. 

If a portion of the velocity box is located within the bound 
ing Volume defined by the world node, the physics engine 
may take the branches to the nodes beneath the world node. 
The nodes beneath the world nodes may define bounding 
Volumes which are created by a splitting plane through the 
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bounding Volume defined by the world node (e.g., an axis 
aligned splitting plane). The physics engine may determine if 
the velocity box, or a portion of the velocity box, is within the 
bounding volumes defined by the nodes below the world 
node. If so, the physics engine may take the branches from the 
nodes below the world node to nodes beneath or on a lower 
level of the integrated acceleration data structure. The bound 
ing Volume intersection tests and taking branches to nodes 
beneath nodes which defines bounding volumes intersected 
by the velocity box may continue until an object node is 
reached or a node is reached which does not contain a portion 
of the velocity box. The objects which are defined by the 
object nodes which are traversed to may be placed into a set of 
objects to be used later in intersection tests with the velocity 
box. 

For example, FIG. 15 illustrates an integrated acceleration 
data structure 1500 which corresponds to a three-dimensional 
scene 1600 illustrated in FIG. 16. The integrated acceleration 
data structure contains nodes which define bounding Volumes 
(e.g., BV-BVs) within the three-dimensional scene 1600. 
The integrated acceleration data structure 1500 is similar to 
the earlier described integrated acceleration data structure 
900 of FIG.9 with the exception of several object nodes (i.e., 
object node 1505, object node 1510, object node 1515, and 
object node 1520) which correspond to objects located within 
a bounding Volume (i.e., BVs) of the three-dimensional scene 
1600. 
The physics engine may begin traversing the Velocity box 

1300 (illustrated in FIG. 16) through the integrated accelera 
tion data structure 1500 by determining if the velocity box 
1300 is within or intersects the bounding volume defined by 
the world node 850 (i.e., BV). As can be seen in FIG.16, the 
velocity box 1300 is within the bounding volume defined by 
the world node 850 (i.e., BV), and therefore the results of the 
physics engine's determination will indicate the intersection. 
An intersection of the velocity box 1300 with a bounding 
volume defined by nodes (e.g., world node 850) in the inte 
grated acceleration data structure 1500 is illustrated in FIG. 
15 by the darkened outline of the nodes (e.g., the darkened 
outline of the world node 850). 

Next, the physics engine may continue to traverse the inte 
grated acceleration data structure 1500 by taking the branches 
from the world node 850 to the nodes beneath the world node 
850 (i.e., node 855 and node 860). The physics engine may 
then perform tests to determine if the velocity box 1300 
intersects or is within the bounding volumes defined by the 
nodes beneath the world node 850 (i.e., BV, and BV.). The 
physics engine may determine from these tests that the Veloc 
ity box 1300 is within or intersects the bounding volumes 
defined by the nodes beneath the world node 850 (i.e., the 
velocity box 1300 intersects both BV and BV). The physics 
engine may then continue traversing the integrated accelera 
tion data structure 1500 by taking the branches from the 
intersected nodes to the nodes beneath the intersected nodes. 
As illustrated in FIG. 15, the physics engine may take a 

branch from node 855 (defining bounding volume BV) to the 
first car object node 760 and another branch from node 855 to 
the second car object node 770. Consequently, the second car 
object 610 is in the same areas as the velocity box 1300, and 
is likely to intersect the velocity box 1300. Therefore, the 
physics engine may add the second car object 610 to a list of 
objects which may be used later in intersection tests to deter 
mine which objects intersect the velocity box 1300. While the 
first car object 610 may be within the same area as the 
velocity box 1300, the first car object 610 may be excluded 
from the intersection tests by the physics engine because the 
first car object is the moving object. 
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The physics engine may also take the branches from node 

860 (defining bounding volume BV) to nodes beneath node 
860 (i.e., node 865 and node 870). Both node 865 and node 
870 define bounding volumes (i.e., BV and BVs), not object 
nodes. Therefore, the physics engine may perform tests to 
determine if the velocity box is within or intersects the bound 
ing volumes defined by node 865 and node 870. As can be see 
in FIG.16, part of the velocity box 1300 is within BV but no 
portion of velocity box 1300 is within BVs. Therefore, the 
results of the intersection tests may indicate that a portion of 
the velocity box is within the bounding volume defined by 
node 865 (i.e., BV), but that no portion of the velocity box is 
within the bounding volume defined by node 870 (i.e., BVs). 
The intersection with BV and not BV is illustrated in FIG. 
15 by the darkened outline of node 865 which corresponds to 
BV, but no darkened outline of node 870 corresponding to 
BVs. Consequently, the physics engine may take branches 
from node 865 but not from node 870. As illustrated in FIG. 
15, the branch from node 865 leads to the object node 780 
which corresponds to the circle object 615 contained within 
bounding volume BV. Consequently, the circle object 615 
may be in the same area of the velocity box 1300 and thus is 
likely to intersect the velocity box 1300. Therefore, the phys 
ics engine may add the circle object 615 to a list of objects 
which may be later used intersection tests to determine which 
objects intersect with the velocity box 1300. However, the 
physics engine may not use the objects located within BVs 
(i.e., triangle objects 1605-1625) and branched to from node 
870 because those objects are not in the same area as the 
velocity box. 

After the physics engine has finished traversing the Veloc 
ity box through the integrated acceleration data structure, the 
physics engine may proceed to step 1415 of method 1400 to 
perform intersection tests with the list of objects which are 
defined by the traversed to objects nodes in the integrated 
acceleration data structure. The results of these intersection 
tests indicate which objects intersect with the velocity box 
and therefore are likely to collide with the moving object. The 
physics engine may use those objects when performing col 
lision tests with the moving object. The results of the collision 
tests may indicate which objects actually collide with the 
moving object. Consequently, the physics engine may calcu 
late new positions of the moving object and the objects which 
intersect the moving object and store the new positions, for 
example, within the integrated acceleration data structure. 
The image processing system may use the updated integrated 
acceleration data structure to render a two-dimensional image 
using the new positions of the objects in the three-dimen 
sional scene. 

For example, as was determined by traversing Velocity box 
1300 through the integrated acceleration data structure 1500, 
the physics engine may perform intersection tests with the 
second car object 610 and the circle object 615 which were 
contained within the traversed to bounding volumes (i.e., BV, 
and BV, respectively). The intersection tests may determine 
that only the circle object 615 intersects the velocity box 
1300. Consequently, the physics engine may perform a col 
lision test with the moving object (i.e., the first car object 
6101) and the circle object 615. In contrast to a physics engine 
which does not cast the velocity box into the three-dimen 
sional scene and traverse the velocity box through the three 
dimensional scene, the physics engine may reduce the num 
ber of velocity box/object intersection tests by five. The 
reduction in five intersection tests is due to the physics engine 
not performing intersection tests with the five triangle objects 
(i.e., triangle objects 1605-1625) which are contained within 
the bounding volume which was not intersected by the veloc 
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ity box (i.e., BVs). In comparison a physics engine which 
does not traverse the Velocity box through an integrated accel 
eration data structure, rather merely performs intersection 
tests with the velocity box and every other object within the 
three-dimensional scene will execute intersection tests with 
the Velocity box and the triangle objects (i.e., triangle objects 
1605-1625). 

Although, in the present example, the reduction in calcu 
lations is relatively small, in a three-dimensional scene con 
taining many objects, casting a Velocity box into the scene and 
traversing the Velocity box through the integrated accelera 
tion data structure to determine which objects may be used in 
collision tests may result in a Substantial reduction in calcu 
lations. Consequently, the processing time required to per 
form physics simulation may be substantially reduced. 

In addition to reducing the number of objects which may 
need to be tested against to determine if the moving object 
collides with other objects, box casting may be used to par 
allelize physics calculations in a multi-processor environ 
ment. For example, a physics engine may use box casting to 
parallelize collision detection in the multiple-core processing 
element 100 or in the network of multiple-core processing 
elements 200. 

According to one embodiment of the invention, a physics 
engine may parallelize collision detection by box casting to 
determining which objects a moving object is likely to col 
lide, and then using separate processing elements to perform 
the collision detection tests using the objects which are likely 
to collide with the moving object. 

For example, a physics engine may use box casting to 
determine that two objects are likely to intersect a moving 
object. The physics engine may then use a thread of a first 
processing element (e.g., a BTE 105) to execute collision 
tests which determine if the moving object collides with a first 
of the two objects, and a thread of a second processing ele 
ment (e.g., a BTE 105) to execute collision tests which deter 
mine if the moving object collides with a second of the two 
objects. Thus, the physics engine may parallelize collision 
detection by using box casting and two separate processing 
elements. 

Deferred Acceleration Data Structure Optimization 
for Improved Performance 

Image processing systems may initially build efficient 
acceleration data structures (ADS), such as kd-trees. An effi 
cient ADS may be one that partitions a three-dimensional 
scene based on the positions of objects within the three 
dimensional scene while using optimal partitioning planes. 
Optimal partitioning planes may intersect a small number of 
objects and, consequently, intersect few primitives which 
make up the objects. Furthermore, optimal splitting planes 
may build partitioning bounding Volumes which cull out large 
amounts of empty space, and tightly or closely surround 
objects. Several levels of recursion may be used to determine 
the optimal splitting planes to use when creating the bounding 
volumes which make up the ADS. An efficient ADS may 
reduce the number of ray-bounding Volume intersection tests 
and ray-primitive intersection tests which may need to be 
executed to perform ray tracing for a three-dimensional 
scene. Although an efficient ADS may reduce the processing 
power and time required to perform ray tracing, building an 
efficient ADS using multiple levels of recursion may take a 
relatively large amount of processing power and time. 

If the image processing system is used in a game system, 
for example, in conjunction with a physics engine, the physics 
engine may move objects within or place objects into the 
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three-dimensional scene over time. Consequently, the 
objects, in their new positions, may span across splitting 
planes used to created the initial ADS. Consequently, the ADS 
may not be as efficient after objects have moved, and the 
amount of time required to perform ray-tracing may be 
increased due to the inefficiency of the ADS. In order to 
reduce the amount of time required to perform ray-tracing, 
the ADS may need to be optimized or rebuilt. However, 
rebuilding the ADS may take a relatively long time, and in 
circumstances where the image processing system must ren 
der multiple frames per second in order to provide realistic 
animation (e.g., 30-60 frames per second), the image process 
ing system may, at times, not have the processing bandwidth 
to optimize the ADS within a frame cycle. 

However, according to embodiments of the invention the 
image processing system may track the portions of the ADS 
which are affected by the movements of objects in an ADS 
optimization queue. Furthermore, the image processing sys 
tem may defer optimization of the ADS until a sufficient 
amount of processing bandwidth is available to update or 
optimize the ADS according to the information stored in the 
ADS optimization queue. When the image processing system 
detects a Sufficient amount of processing bandwidth is avail 
able, the image processing system may rebuild or optimize 
the portions of the ADS indicated in the ADS optimization 
queue. 

FIG. 17 illustrates a method 1700 for deferring accelera 
tion data structure optimization, according to one embodi 
ment of the invention. The method 1700 may begin at step 
1705 when an image processing system builds an ADS for a 
three-dimensional Scene. An ADS may, for example, be a 
spatial index such as a kd-tree. As described above, an ADS 
may be built by partitioning a three-dimensional scene which 
is to be rendered by the image processing system into a 
plurality of bounding Volumes. The bounding Volumes may 
Surround objects within the three-dimensional scene and may 
correspond to or be defined by nodes within the ADS. 

For example, FIG. 18 illustrates a three-dimensional scene 
1800 and a corresponding ADS 1805. The ADS 1805 may 
have a plurality of nodes representing bounding Volumes 
created by the splitting planes which partition the three-di 
mensional scene 1800. The partitioning of the three-dimen 
sional scene 1805 (i.e., position and orientation of splitting 
planes) may have been chosen based on the position of 
objects within the three-dimensional scene 1800. For 
example, the three-dimensional scene may have been parti 
tioned, in part, due to the location of the block object 1810. 

Next, at Step 1710, the image processing system may use 
the ADS to render a frame. The image processing system may 
perform ray-tracing image processing for a frame by travers 
ing rays through the ADS to determine if the rays intersect 
objects within the three-dimensional scene. The image pro 
cessing system may determine the color of pixels through 
which the rays passed based on objects intersected by the 
rays. The individual pixels together form the frame or two 
dimensional image rendered by the image processing system. 

Next, at Step 1715, an application (e.g., a physics engine) 
may move objects within the three-dimensional scene to 
simulate physical phenomenon. For example, as illustrated in 
FIG. 19, a physics engine may move the block object 1810 
from a first position (illustrated by the outline of the block 
object) to a second position (illustrated by the shaded or 
darkened block object). 

Since the ADS 1805 was built, in part, based on the first 
position of the block object 1810, the ADS 1805 may not be 
as efficient in partitioning the three-dimensional scene as it 
was when the block object 1810 was in the first position. The 
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ADS 1805 may not be as efficient at partitioning the three 
dimensional scene because the block object 1810, in the 
second location, may span or cross several partitioning planes 
and, thus, several bounding Volumes within the three-dimen 
sional scene. An object which exists within multiple bound 
ing Volumes may increase the number of ray-primitive inter 
section tests which may need to be performed. An increase in 
the number of ray-primitive intersection tests may result in an 
increase in processing power and time required to perform ray 
tracing and render a frame. 

After moving objects within the three-dimensional scene, 
the image processing system may proceed to step 1720 to 
determine a portion (or portions) of the ADS which is (are) 
affected by the movement of the object(s). According to one 
embodiment of the invention, the image processing system 
may determine what portion of the ADS is affected by the 
movement of the object(s) within the three-dimensional 
scene by box casting the object(s) through the ADS. 

Similar to using box casting to facilitate collision detection 
as described above with regards to FIG. 14, an image pro 
cessing system may box cast the object through the ADS by 
creating a shape (e.g., a box) which Surrounds the object and 
traversing the shape through the ADS (similar to traversing a 
ray through the ADS). However, in contrast to using the box 
casting technique to perform collision detection, the shape 
used to perform box casting to detect an affected portion of 
the ADS may simply surround the object in its final portion 
(e.g., the second position of the block object 1810). The 
image processing system may traverse the box through the 
ADS until leaf nodes are reached. The image processing 
system may thereby determine which portions of the ADS the 
box and, consequently, the object (in its final position) are 
located. 

For example, FIG. 19 illustrates leaf nodes which were 
traversed to when box casting a box or shape Surrounding the 
block object 1810 through the spatial index 1805. The image 
processing system may have traversed a shape Surrounding 
the block object 1810 through the ADS 1805 to leaf node 
1905, leafnode 1910, leafnode 1915, and leafnode 1920. The 
traversed to leaf nodes (i.e., 1905, 1910, 1915, and 1920) are 
illustrated in the ADS 1805 with darkened outlines. The tra 
versed to leaf nodes define bounding Volumes which encom 
pass or surround the block object 1810 in the second position. 
Consequently, the traversed to leaf nodes may be the portion 
of the ADS 1805 affected by the movement of the block object 
1810. Therefore, that portion of the ADS 1805 now ineffi 
ciently partitions the three-dimensional scene due to the new 
position of the block object 1810. 

Next, at step 1725 of method 1700, the image processing 
system may add the affected portions of the ADS to an opti 
mization queue. The optimization queue may indicate a plu 
rality of portions of the ADS which may have been affected by 
movements of a plurality of objects within the three-dimen 
sional scene. These portions may be used later by the image 
processing system to update or optimize the ADS based on the 
new positions of objects within the three-dimensional Scene. 
According to one embodiment of the invention, the image 
processing system may add each leaf node traversed to when 
performing box tracing to the ADS optimization queue. The 
ADS optimization queue may store a list of pointers to the 
nodes of the ADS which are affected by object movements, 
and the list of pointers may be a linked list. 

FIG. 20 illustrates an ADS optimization queue 2000 con 
taining information indicating the portion or portions of the 
ADS 1805 affected by the movement of the block object 
1810. As illustrated in FIG. 20, the image processing system 
may have added each of the traversed to leafnodes (i.e., 1905, 
1910, 1915, and 1920) to the ADS optimization queue 2000. 
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According to another embodiment of the invention, the 

image processing system may add the highest internal node in 
the ADS which branches (e.g., through other nodes) to the 
farthest apart leaf nodes which were affected by the move 
ment of the object. Consequently, the image processing sys 
tem may update the affected portion of the ADS by reparti 
tioning the three-dimensional scene starting from the 
bounding Volume defined by this highest internal node. 

For example, FIG. 21 also illustrates an ADS optimization 
queue 2100. However, in contrast to the ADS optimization 
queue 2000, the ADS optimization queue 2100 may only 
identify a single node (i.e., internal node 2105). The image 
processing system may have added only the node 2105 to 
indicate the affected portions of the ADS because the node 
2105 may be the highest node in the ADS which identifies the 
entire portion of the ADS affected by the movement of the 
block object 1810. Therefore, an optimization of the ADS 
from this node downward may efficiently update or optimize 
the ADS. 

Referring back to FIG. 17, after the affected portions of the 
ADS have been added to the ADS optimization queue, the 
image processing system may proceed to step 1730 to deter 
mine if the ADS should be optimized. According to one 
embodiment of the invention, the determination of whether or 
not to optimize the ADS may be made based on the amount of 
processor bandwidth which is available to perform optimiza 
tion operations, the amount of the ADS which needs to be 
optimized, and the amount of time available to update the 
ADS 
The amount of processing bandwidth which is available 

may be determined by monitoring the performance of pro 
cessing elements which may be used to update the ADS. For 
example, multiple processing elements (e.g., threads or 
cores) in the multiple core processor element 100 may be used 
to update the ADS, and the performance of each may be 
monitored (e.g., through the use of performance counters or 
monitoring an inboxes associated with processing elements). 
The amount of the ADS to be optimized may be determined 
based on the number of nodes in the ADS optimization queue. 
The timeframe allowable to update the ADS may be less than 
the frame period in which the image processing system must 
render a new frame in order to achieve realistic animation 
(e.g., /30"-/60" of a second). 

If the processing bandwidth is not available to update the 
ADS within the allowable timeframe, the image processing 
system may return to step 1710 where the image processing 
system may perform image processing for the frame. If the 
physics engine returns to step 1710 So that the image process 
ing system can perform image processing, the image process 
ing system may use the inefficient version of the ADS. By 
proceeding to step 1710 without optimizing the ADS after an 
object had moved within the three-dimensional scene, the 
image processing system may defer the optimization of the 
ADS until a later time (e.g., a later frame cycle). 

However, if during the current frame cycle or a later frame 
cycle, the image processing system determines that there is 
sufficient processing bandwidth to optimize the ADS, the 
image processing system may proceed to step 1735 to opti 
mize the ADS. The image processing system may determine 
which portions of the ADS to optimize by examining the 
information stored within the ADS optimization queue. 

For example, several frames may have been rendered by 
the image processing system using the ADS 1805 which 
partitions the three-dimensional scene 1800 based, in part, on 
the first position of the block object 1810. At step 1735, the 
image processing system may optimize the ADS according to 
the information stored in the optimization queue. Thus, the 
image processing system may, for example, access the ADS 
optimization queue 2100 illustrated in FIG.21 and determine 
that the affected portion of the ADS 1805 begins at node 2105. 
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Consequently, the image processing system may optimize or 
repartition the bounding volume defined by node 2105 with 
respect to the second position of the block object 1810. This 
may result in the new partitioning of the three-dimensional 
scene 1800 illustrated in FIG. 22, and the optimized ADS 
2200 illustrated in FIG. 22. As illustrated, a portion 2205 of 
the ADS 2200 may have been removed to create the optimized 
ADS 2205. Furthermore, information which defines the posi 
tion of the splitting planes and locations of splitting planes 
along splitting axes may have been modified within the nodes 
of the ADS 2200 in order to optimize the ADS 2200. 

After optimizing the ADS according to the nodes identified 
in the ADS optimization queue, the image processing system 
may return to step 1710 of method 1700 to perform image 
processing for a frame. However, the image processing sys 
tem may now use the optimized ADS 2200 to perform ray 
tracing. The image processing system may continue to 
execute the steps of method 1700 for future frames and con 
tinue to optimize the ADS in response to the movements of 
objects within the three-dimensional scene. 

Although embodiments of the invention have been 
described as an image processing system building and opti 
mizing an ADS, a physics engine may also build and optimize 
the ADS according to other embodiments of the invention. 
Furthermore, in another embodiment of the invention a com 
bination of the physics and an image processing system may 
build and optimize the ADS. 

CONCLUSION 

By determining portions of an ADS affected by movements 
of objects and saving the affected portions of the ADS in an 
ADS optimization queue, the image processing system may 
defer the optimization of an ADS until processing bandwidth 
is available. When the image processing system detects a 
Sufficient amount of processing bandwidth is available, the 
image processing system may rebuild or optimize the por 
tions of the spatial index indicated in the ADS optimization 
queue. 

While the foregoing is directed to embodiments of the 
present invention, other and further embodiments of the 
invention may be devised without departing from the basic 
scope thereof, and the scope thereof is determined by the 
claims that follow. 

What is claimed is: 
1. A method of updating an acceleration data structure, 

comprising: 
Determining, by an image processing system, an affected 

portion of the acceleration data structure affected by a 
movement of an object within a three-dimensional 
Scene, 

Adding, by the image processing system, an indication of 
the affected portion to an optimization queue; and 

when the processing element has free bandwidth, updating, 
by the image processing system, the acceleration data 
structure based on information in the optimization 
queue. 

2. The method of claim 1, wherein updating, by the image 
processing system, the acceleration data structure based on 
the information in the optimization queue comprises: 

determining, by the image processing system, portions of 
the three-dimensional scene corresponding to portions 
of the acceleration data structure indicated in the opti 
mization queue; and 

repartitioning, by the image processing system, the por 
tions of the three-dimensional scene based on the posi 
tion of the object. 
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3. The method of claim 1, wherein determining, by the 

image processing system, the portion of the acceleration data 
structure corresponding to the area into which the object 
moved comprises: 

creating, by the image processing system, a box which 
Surrounds the object in a final position; 

tracing, by the image processing system, the box through 
the integrated acceleration data structure having nodes 
defining bounding Volumes within the three-dimen 
sional scene by taking branches to nodes defining 
bounding volumes intersected by the box until at least 
one leaf node is reached; and 

adding, by the image processing system, to the optimiza 
tion queue, a pointer to the at least one leaf node. 

4. The method of claim 3, further comprising: 
determining, by the image processing system, an internal 

node in the acceleration data structure which branches to 
the at least one leaf nodes affected by the movement of 
the object; and 

adding, by the image processing system, to the optimiza 
tion queue, a pointer to the internal node. 

5. The method of claim 3, wherein the optimization queue 
contains a linked list of nodes defining bounding Volumes 
intersected by the box. 

6. The method of claim 1, wherein the acceleration data 
structure is a k-dimensional tree. 

7. The method of claim 3, wherein determining, by the 
image processing system, when a processing element has free 
bandwidth comprises monitoring, by the image processing 
system, at least one of a performance counter or an inbox 
associated with a processing element. 

8. A computer readable non-transitory medium containing 
a program which, when executed, performs operations com 
prising: 

determining a portion of an acceleration data structure 
affected by a movement of an object within a three 
dimensional scene; 

adding an indication of the portion of the acceleration data 
structure affected by the movement of the object within 
the three-dimensional scene to an optimization queue; 
and 

when the processing element has free bandwidth, updating 
the acceleration data structure based on information in 
the optimization queue. 

9. The computer readable non-transitory medium of claim 
8, wherein updating the acceleration data structure based on 
the information in the optimization queue comprises: 

determining portions of the three-dimensional scene cor 
responding to portions of the acceleration data structure 
indicated in the optimization queue; and 

repartitioning the portions of the three-dimensional scene 
based on the position of the object. 

10. The computer readable non-transitory medium of claim 
8, wherein determining the portion of the acceleration data 
structure corresponding to the area into which the object 
moved comprises: 

creating a box which Surrounds the object in a final posi 
tion; 

tracing the box through the integrated acceleration data 
structure having nodes defining bounding Volumes 
within the three-dimensional scene by taking branches 
to nodes defining bounding Volumes intersected by the 
box until at least one leaf node is reached; and 
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adding to the optimization queue, a pointer to the at least 
one leaf node. 

11. The computer readable non-transitory medium of claim 
10, further comprising: 

determining an internal node in the acceleration data struc 
ture which branches to the at least one leaf nodes 
affected by the movement of the object; and 

30 
adding to the optimization queue, a pointer to the internal 

node. 
12. The computer readable non-transitory medium of claim 

8 wherein the acceleration data structure is a k-dimensional 
5 tree. 


