
US008O18453B2

(12) United States Patent (10) Patent No.: US 8,018,453 B2
FOWler et al. (45) Date of Patent: Sep. 13, 2011

(54) DEFERRED ACCELERATION DATA 2008.0043018 A1 2/2008 Keller et al. 345.426
STRUCTURE OPTIMIZATION FOR 2008/0231633 A1* 9, 2008 Keller et al. 345.426
IMPROVED PERFORMANCE 2009.0167763 A1* 7, 2009 Waechter et al. 345.426

2009,025.6845 A1 * 10, 2009 Sevastianov et al. 345/426
2009/0284523 A1* 11/2009 Peterson et al. 345,419

(75) Inventors: David Keith Fowler, Hastings, MN 2009,0289.939 A1* 11/2009 Peterson et al. 345,421
SS Robert Allen Shearer, Rochester, 2009/0322752 A1* 12/2009 Peterson et al. 345.426

OTHER PUBLICATIONS

Wald et al. Rav Tracing Def ble S Using Bounding Vol
(73) Assignee: International Business Machines i hi y systs fO cenes Sing sounding vo

Corporation, Armonk, NY (US) ume 11erarcnies, ; pp. 1-U.
s s Foley et al. “KD-Tree Acceleration Structures for a GPU Raytracer',

- r Graphics Hardware (2005).*
(*) Notice: Subject to any disclaimer, the term of this Carret al. “Fast GPU Ray Tracing of Dynamic Meshes using Geom

patent is extended or adjusted under 35 etry images', published 2006.*
U.S.C. 154(b) by 1037 days.

* cited by examiner
(21) Appl. No.: 11/673,042

Primary Examiner — Kimbinh T. Nguyen
(22) Filed: Feb. 9, 2007 (74) Attorney, Agent, or Firm — Patterson & Sheridan LLP:

O O Robert R. Williams
(65) Prior Publication Data

US 2008/0192044 A1 Aug. 14, 2008 (57) ABSTRACT
Embodiments of the invention provide methods and appara

(51) E;5/00 2006.O1 tus to defer the optimization an acceleration data structure
.01) (e.g., a kd-tree) in response to movements of objects within a

(52) U.S. Cl. 345/419; 345/420; 345/421: 345/426; three-dimensional scene. According to one embodiment of
345/473; 34.5/522; 707/101 the invention, an image processing system may determine

(58) Field of Classification Search 345/419, portions of an acceleration data structure affected by the
345/420, 421, 423,426, 427, 506, 440, 473, movement of an object within a three-dimensional scene. The

345f522. 707/101 image processing system may store the affected portion of the
See application file for complete search history. ADS in an optimization queue. If the image processing sys

tem does not have sufficient processing bandwidth available
(56) References Cited to optimize the ADS, the image processing system may defer

the ADS optimization until sufficient processing bandwidth
U.S. PATENT DOCUMENTS becomes available. Once sufficient processing bandwidth

3S R. 3.58. try'real is a becomes available, the image processing system may opti
- J. CCC al.

7,012,604 B1* 3/2006 Christie et al. 345.426 mize the ADS according to the information stored in the
7,418.454 B2 * 8/2008 Chen et al. 707/101 optimization queue.
7.495,664 B2 * 2/2009 Keller et al. 345.426

2007/0182732 A1* 8/2007 Woop et al. 345,420 12 Claims, 23 Drawing Sheets

POSTION AT FRAMEN POSION AT FRAMEN

1/ 605

U.S. Patent Sep. 13, 2011 Sheet 1 of 23 US 8,018,453 B2

BASC
THROUGHPUT
ENGINE (BTE)

BTE BTE
NBOXES

FIG.

U.S. Patent Sep. 13, 2011 Sheet 3 of 23 US 8,018,453 B2

U.S. Patent Sep. 13, 2011 Sheet 4 of 23 US 8,018,453 B2

SCENE KD-TREE

Bv, 450
410A AA AA 410s
405

Y A 410c .." A X

FIG. 4A

410A

405 460

FIG. 4B

U.S. Patent Sep. 13, 2011 Sheet 5 of 23 US 8,018,453 B2

SCENE KD-TREE

455

FIG. 4C

U.S. Patent Sep. 13, 2011 Sheet 6 of 23 US 8,018,453 B2

WORKLOAD PHYSICS
MANAGER (WM) ENGINE (PE)

OO

VECTOR WECTOR
THROUGHPUT THROUGHPUT
ENGINE (VTE) INBOXES ENGINE (VTE)

FIG. 5

U.S. Patent Sep. 13, 2011 Sheet 7 of 23 US 8,018,453 B2

US 8,018,453 B2 Sheet 8 of 23 Sep. 13, 2011 U.S. Patent

EGION />CITHOMA
00/.

09/.

ÅGO8
| HVO

STEEHAW 09/

US 8,018,453 B2 Sheet 9 of 23 Sep. 13, 2011 U.S. Patent

US 8,018,453 B2 Sheet 10 of 23 Sep. 13, 2011 U.S. Patent

098998 'A8 /-098
006

US 8,018,453 B2

A8

Sheet 11 of 23 Sep. 13, 2011 U.S. Patent

(1+N EWVH-H) 0, '91-'

N EWVH-|1\# NOLLISOd

US 8,018,453 B2 Sheet 13 of 23 Sep. 13, 2011 U.S. Patent

909 />

N = WVH-I.LV/ NOLLISOd

8 | -50/-|

US 8,018,453 B2 Sheet 14 of 23 Sep. 13, 2011

909 />

U.S. Patent

N EWVH-} L\; NOLLISOCH

U.S. Patent Sep. 13, 2011 Sheet 15 Of 23 US 8,018,453 B2

1405 DETERMINE DIMENSIONS OF VELOCITY
BOX TO BE CAST

CAST BOX INTONTEGRATED
ACCELERATION DATASTRUCTURE,
TRAVERSEVELOCITYBOX THROUGH
INTEGRATED ACCELERATION DATA
STRUCTURE UNTIL OBJECT NODES

ARE REACHED

1410

PERFORM COLLISION DETECTION TESTS
WITH THE OBJECTS DEFINED BY

THE TRAVERSED TO OBJECT NODES

1415

FIG. 14

LOETBO Z HVO
··· LOEPEO ETOHIO

CJELLSEL EIE OL}

US 8,018,453 B2

| ºwa RossºA8998 *S?

U.S. Patent

US 8,018,453 B2 Sheet 17 Of 23 Sep. 13, 2011 U.S. Patent

U.S. Patent Sep. 13, 2011 Sheet 18 of 23 US 8,018,453 B2

1700

1705 BUILD ACCELERATION DATA
STRUCTURE (ADS)

1710 - PERFORMIMAGE PROCESSING FOR
FRAME

1715 MOVE OBJECT WHIN THREE
DIMENSONAL SCENE

1720. DETERMINE PORTION OF ADS AFFECTED
BYMOVE (DETERMINE AREA INTO WHICH

OBJECT MOVED

1725 N STORE AFFECTED PORTION OF ADS IN
OPTIMIZATION OUEUE

1730 OPTIMIZE ADS

1735 OPTIMIZE ADS ACCORDING TO
NFORMATIONSTORED IN THE

OPTIMIZATION GUEUE

FIG. 17

U.S. Patent Sep. 13, 2011 Sheet 19 Of 23 US 8,018,453 B2

k
8

\ N1
k

O?
- KNk

1.
K OO ?

S O
so l

U.S. Patent Sep. 13, 2011 Sheet 20 of 23 US 8,018,453 B2

O
O

O
CN Y- S. y

k1 N. M.H.
o
top

K.
K 9.

S 9
ye

T.
r

US 8,018,453 B2
1.

DEFERRED ACCELERATION DATA
STRUCTURE OPTIMIZATION FOR
IMPROVED PERFORMANCE

BACKGROUND OF THE INVENTION

1. Field of the Invention
Embodiments of the invention generally relate to the field

of computer processing.
2. Description of the Related Art
The process of rendering two-dimensional images from

three-dimensional scenes is commonly referred to as image
processing. As the modern computer industry evolves image
processing evolves as well. One particular goal in the evolu
tion of image processing is to make two-dimensional simu
lations or renditions of three-dimensional scenes as realistic
as possible. One limitation of rendering realistic images is
that modern monitors display images through the use of pix
els.
A pixel is the Smallest area of space which can be illumi

nated on a monitor. Most modern computer monitors will use
a combination of hundreds of thousands or millions of pixels
to compose the entire display or rendered scene. The indi
vidual pixels are arranged in a grid pattern and collectively
cover the entire viewing area of the monitor. Each individual
pixel may be illuminated to render a final picture for viewing.
One technique for rendering a real world three-dimen

sional scene onto a two-dimensional monitor using pixels is
called rasterization. Rasterization is the process of taking a
two-dimensional image represented in vector format (math
ematical representations of geometric objects within a scene)
and converting the image into individual pixels for display on
the monitor. Rasterization is effective at rendering graphics
quickly and using relatively low amounts of computational
power; however, rasterization suffers from some drawbacks.
For example, rasterization often suffers from a lack of realism
because it is not based on the physical properties of light,
rather rasterization is based on the shape of three-dimensional
geometric objects in a scene projected onto a two-dimen
sional plane. Furthermore, the computational power required
to render a scene with rasterization scales directly with an
increase in the complexity of the scene to be rendered. As
image processing becomes more realistic, rendered scenes
also become more complex. Therefore, rasterization suffers
as image processing evolves, because rasterization scales
directly with complexity.

Another technique for rendering a real world three-dimen
sional scene onto a two-dimensional monitor using pixels is
called ray tracing. The ray tracing technique traces the propa
gation of imaginary rays, rays which behave similar to rays of
light, into a three-dimensional scene which is to be rendered
onto a computer screen. The rays originate from the eye(s) of
a viewer sitting behind the computer Screen and traverse
through pixels, which make up the computer screen, towards
the three-dimensional scene. Each traced ray proceeds into
the scene and may intersect with objects within the scene. If
a ray intersects an object within the scene, properties of the
object and several other contributing factors are used to cal
culate the amount of color and light, or lack thereof, the ray is
exposed to. These calculations are then used to determine the
final color of the pixel through which the traced ray passed.
The process of tracing rays is carried out many times for a

single scene. For example, a single ray may be traced for each
pixel in the display. Once a sufficient number of rays have
been traced to determine the color of all of the pixels which
make up the two-dimensional display of the computer screen,

10

15

25

30

35

40

45

50

55

60

65

2
the two-dimensional synthesis of the three-dimensional scene
can be displayed on the computer screen to the viewer.
Ray tracing typically renders real world three-dimensional

scenes with more realism than rasterization. This is partially
due to the fact that ray tracing simulates how light travels and
behaves in a real world environment, rather than simply pro
jecting a three-dimensional shape onto a two-dimensional
plane as is done with rasterization. Therefore, graphics ren
dered using ray tracing more accurately depict on a monitor
what our eyes are accustomed to seeing in the real world.

Furthermore, ray tracing also handles increases in scene
complexity better than rasterization as scenes become more
complex. Ray tracing scales logarithmically with scene com
plexity. This is due to the fact that the same number of rays
may be cast into a scene, even if the scene becomes more
complex. Therefore, ray tracing does not suffer in terms of
computational power requirements as Scenes become more
complex as rasterization does.

Image processing Systems (such as ray-tracing image pro
cessing systems) may be used in combination with a physics
engine to provide animation in a three-dimensional Scene.
The physics engine may simulate real world physical phe
nomena as applied to objects within the three-dimensional
scene. For example, the physics engine may perform position
updates for a moving object, and may perform collision
detection tests to determine if the object collides with any
other objects within the three-dimensional scene.
One major drawback of game system using ray tracing

image processing is the large number of calculations, and thus
processing power, required to simulate the physics involved
with a three-dimensional scene and to perform ray tracing to
render the scene. This leads to problems when fast rendering
is needed. For example, fast rendering may be necessary
when a physics engine and an image processing system are to
render graphics for animation in a game console. Due to the
increased computational requirements for performing the
physics calculations and to perform ray tracing it is difficult to
render animation quickly enough to seem realistic (realistic
animation is approximately twenty to twenty-four frames per
second).

Therefore, there exists a need for more efficient techniques
and devices to perform ray tracing and to perform physics
simulation.

SUMMARY OF THE INVENTION

Embodiments of the present invention generally provide
methods and apparatus for physics simulation and image
processing.

According to one embodiment of the invention a method of
updating an acceleration data structure is provided. The
method generally comprising: determining a portion of the
acceleration data structure affected by a movement of an
object within a three-dimensional scene; adding an indication
of the affected portion to an optimization queue; and when the
processing element has free bandwidth, updating the accel
eration data structure based on information in the optimiza
tion queue.

According to another embodiment of the invention a com
puter readable medium is provided. The computer readable
medium containing a program which, when executed, per
forms operations generally comprising: determining a por
tion of an acceleration data structure affected by a movement
of an object within a three-dimensional Scene; adding an
indication of the affected portion to an optimization queue;

US 8,018,453 B2
3

and when the processing element has free bandwidth, updat
ing the acceleration data structure based on information in the
optimization queue.

According to another embodiment of the invention a sys
tem is provided. The system generally comprising: an accel- 5
eration data structure having nodes defining bounding Vol
umes within a three-dimensional Scene; an optimization
queue; and a first processing element configured to determine
a portion of the acceleration data structure affected by a
movement of an object within a three-dimensional scene, add 10
the affected portion to the optimization queue, and update the
acceleration data structure based on information in the opti
mization queue.

BRIEF DESCRIPTION OF THE DRAWINGS 15

FIGS. 1 and 5 illustrate multiple core processing elements,
according to embodiments of the invention.

FIG. 2 illustrates multiple core processing element net
works, according to embodiments of the invention. 2O

FIG. 3 is an exemplary three-dimensional scene to be ren
dered by an image processing system, according to one
embodiment of the invention.

FIGS. 4A-4C illustrate a two-dimensional space to be ren
dered by an image processing system and a corresponding 25
spatial index created by an image processing system, accord
ing to embodiments of the invention.

FIG. 6 illustrates an exemplary three-dimensional scene to
be rendered by an image processing system, according to
embodiments of the invention. 30

FIG. 7 illustrates a scene graph, according to one embodi
ment of the invention.

FIG. 8 illustrates a three-dimensional scene to be rendered
by an image processing system and a corresponding spatial
index, according to one embodiment of the invention. 35

FIGS. 9, 11 and 15 illustrate integrated acceleration data
structures, according to embodiments of the invention.

FIG. 10 illustrates a three-dimensional scene to be ren
dered by an image processing system, according to one
embodiment of the invention. 40

FIGS. 12, 13, and 16 illustrate exemplary three-dimen
sional scenes, according to embodiments of the invention.

FIG. 14 is a flowchart illustrating an exemplary method of
performing box casting, according to one embodiment of the
invention. 45

FIG. 17 is a flowchart illustrating an exemplary method of
deferring optimization of an acceleration data structure,
according to one embodiment of the invention.

FIGS. 18, 19, and 22 illustrate exemplary three-dimen
sional scenes and corresponding acceleration data structures, 50
according to embodiments of the invention.

FIGS. 20 and 21 illustrate exemplary acceleration data
structure optimization queues and corresponding accelera
tion data structures, according to embodiments of the inven
tion. 55

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Embodiments of the invention provide methods and appa- 60
ratus to defer the optimization an acceleration data structure
(e.g., a kd-tree) in response to movements of objects within a
three-dimensional scene. According to one embodiment of
the invention, an image processing system may determine
portions of an acceleration data structure (hereinafter ADS) 65
affected by the movement of an object within a three-dimen
sional Scene. The image processing system may store the

4
affected portion of the ADS in an optimization queue. If the
image processing system does not have Sufficient processing
bandwidth available to optimize the ADS, the image process
ing system may defer the ADS optimization until sufficient
processing bandwidth becomes available. Once sufficient
processing bandwidth becomes available, the image process
ing system may optimize the ADS according to the informa
tion stored in the optimization queue.
By only using objects which are in the same area as the

Velocity box during intersection tests, the physics engine may
reduce the number of intersection tests which are necessary to
determine which objects intersect the velocity box. A reduc
tion in the number of intersection tests which may need to be
performed by the physics engine may reduce the amount of
time necessary to determine if a moving object collides with
any other objects within the three-dimensional scene.

In the following, reference is made to embodiments of the
invention. However, it should be understood that the inven
tion is not limited to specific described embodiments. Instead,
any combination of the following features and elements,
whether related to different embodiments or not, is contem
plated to implement and practice the invention. Furthermore,
in various embodiments the invention provides numerous
advantages over the prior art. However, although embodi
ments of the invention may achieve advantages over other
possible solutions and/or over the prior art, whether or not a
particular advantage is achieved by a given embodiment is not
limiting of the invention. Thus, the following aspects, fea
tures, embodiments and advantages are merely illustrative
and are not considered elements or limitations of the
appended claims except where explicitly recited in a claim(s).
Likewise, reference to “the invention' shall not be construed
as a generalization of any inventive subject matter disclosed
herein and shall not be considered to be an element or limi
tation of the appended claims except where explicitly recited
in a claim(s).
One embodiment of the invention is implemented as a

program product for use with a computer system. The pro
gram(s) of the program product defines functions of the
embodiments (including the methods described herein) and
can be contained on a variety of computer-readable media.
Illustrative computer-readable media include, but are not lim
ited to: (i) information permanently stored on non-writable
storage media (e.g., read-only memory devices within a com
puter such as CD-ROM disks readable by a CD-ROM drive):
(ii) alterable information stored on writable storage media
(e.g., floppy disks within a diskette drive or hard-disk drive);
and (iii) information conveyed to a computer by a communi
cations medium, Such as through a computer or telephone
network, including wireless communications. The latter
embodiment specifically includes information downloaded
from the Internet and other networks. Such computer-read
able media, when carrying computer-readable instructions
that direct the functions of the present invention, represent
embodiments of the present invention.

In general, the routines executed to implement the embodi
ments of the invention, may be part of an operating system or
a specific application, component, program, module, object,
or sequence of instructions. The computer program of the
present invention typically is comprised of a multitude of
instructions that will be translated by the native computer into
a machine-readable format and hence executable instruc
tions. Also, programs are comprised of variables and data
structures that either reside locally to the program or are
found in memory or on Storage devices. In addition, various
programs described hereinafter may be identified based upon
the application for which they are implemented in a specific

US 8,018,453 B2
5

embodiment of the invention. However, it should be appreci
ated that any particular program nomenclature that follows is
used merely for convenience, and thus the invention should
not be limited to use solely in any specific application iden
tified and/or implied by such nomenclature.

An Exemplary Processor Layout and
Communications Network

FIG. 1 illustrates a multiple core processing element 100,
according to one embodiment of the invention. The multiple
core processing element 100 includes a plurality of basic
throughput engines 105 (BTEs). A BTE 105 may contain a
plurality of processing threads and a core cache (e.g., an L1
cache). The processing threads located within each BTE may
have access to a shared multiple core processing element
cache 110 (e.g., an L2 cache).
The BTEs 105 may also have access to a plurality of

inboxes 115. The inboxes 115 may be memory mapped
address space. The inboxes 115 may be mapped to the pro
cessing threads located within each of the BTEs 105. Each
thread located within the BTEs may have a memory mapped
inbox and access to all of the other memory mapped inboxes
115. The inboxes 115 make up a low latency and high band
width communications network used by the BTEs 105.

The BTEs may use the inboxes 115 as a network to com
municate with each other and redistribute data processing
work amongst the BTEs. For Some embodiments, separate
outboxes may be used in the communications network, for
example, to receive the results of processing by BTEs 105.
For other embodiments, inboxes 115 may also serve as out
boxes, for example, with one BTE 105 writing the results of
a processing function directly to the inbox of another BTE
105 that will use the results.
The aggregate performance of an image processing system

may be tied to how well the BTEs can partition and redistrib
ute work. The network of inboxes 115 may be used to collect
and distribute work to other BTEs without corrupting the
shared multiple core processing element cache 110 with BTE
communication data packets that have no frame to frame
coherency. An image processing system which can render
many millions of triangles perframe may include many BTES
105 connected in this manner.

In one embodiment of the invention, the threads of one
BTE 105 may be assigned to a workload manager. An image
processing system may use various software and hardware
components to render a two-dimensional image from a three
dimensional scene. According to one embodiment of the
invention, an image processing system may use a workload
manager to traverse a spatial index with a ray issued by the
image processing system. A spatial index, as described fur
ther below with regards to FIG.4, may be implemented as a
tree type data structure used to partition a relatively large
three-dimensional Scene into Smaller bounding Volumes. An
image processing system using a ray tracing methodology for
image processing may use a spatial index to quickly deter
mine ray-bounding Volume intersections. In one embodiment
of the invention, the workload manager may perform ray
bounding Volume intersection tests by using the spatial index.

In one embodiment of the invention, other threads of the
multiple core processing element BTEs 105 on the multiple
core processing element 100 may be vector throughput
engines. After a workload manager determines a ray-bound
ing Volume intersection, the workload manager may issue
(send), via the inboxes 115, the ray to one of a plurality of
vector throughput engines. The vector throughput engines
may then determine if the ray intersects a primitive contained

10

15

25

30

35

40

45

50

55

60

65

6
within the bounding Volume. The vector throughput engines
may also perform operations relating to determining the color
of the pixel through which the ray passed.

FIG. 2 illustrates a network of multiple core processing
elements 200, according to one embodiment of the invention.
FIG. 2 also illustrates one embodiment of the invention where
the threads of one of the BTEs of the multiple core processing
element 100 is a workload manager 205. Each multiple core
processing element 220 in the network of multiple core
processing elements 200 may contain one workload manager
205, according to one embodiment of the invention. Each
multiple core processing element 220 in the network of
multiple core processing elements 200 may also contain a
plurality of vector throughput engines 210, according to one
embodiment of the invention.
The workload managers 205 may use a high speed bus

225 to communicate with other workload managers 205
and/or vector throughput engines 210 of other multiple core
processing elements 220x, according to one embodiment of
the invention. Each of the vector throughput engines 210 may
use the high speed bus 225 to communicate with other vector
throughput engines 210 or the workload managers 205.
The workload manager processors 205 may use the high
speed bus 225 to collect and distribute image processing
related tasks to other workload managers 205, and/or dis
tribute tasks to other vector throughput engines 210. The use
of a high speed bus 225 may allow the workload managers
205 to communicate without affecting the caches 230 with
data packets related to workload manager communications.

An Exemplary Three-Dimensional Scene

FIG. 3 is an exemplary three-dimensional scene 305 to be
rendered by an image processing system. Within the three
dimensional scene 305 may be objects 320. The objects 320
in FIG. 3 are of different geometric shapes. Although only
four objects 320 are illustrated in FIG. 3, the number of
objects in a typical three-dimensional scene may be more or
less. Commonly, three-dimensional Scenes will have many
more objects than illustrated in FIG. 3.
As can be seen in FIG. 3 the objects are of varying geo

metric shape and size. For example, one object in FIG. 3 is a
pyramid 320. Other objects in FIG. 3 are boxes 320. In
many modern image processing systems objects are often
broken up into Smaller geometric shapes (e.g., squares,
circles, triangles, etc.). The larger objects are then represented
by a number of the Smaller simple geometric shapes. These
Smaller geometric shapes are often referred to as primitives.
Also illustrated in the scene 305 are light sources 325.

The light sources may illuminate the objects 320 located
within the scene 305. Furthermore, depending on the location
of the light sources 325 and the objects 320 within the scene
305, the light sources may cause shadows to be cast onto
objects within the scene 305.
The three-dimensional scene 305 may be rendered into a

two-dimensional picture by an image processing system. The
image processing system may also cause the two-dimen
sional picture to be displayed on a monitor 310. The monitor
310 may use many pixels 330 of different colors to render the
final two-dimensional picture.
One method used by image processing systems to render a

three-dimensional scene 305 into a two-dimensional picture
is called ray tracing. Ray tracing is accomplished by the
image processing system "issuing or 'shooting rays from
the perspective of a viewer 315 into the three-dimensional
scene 320. The rays have properties and behavior similar to
light rays.

US 8,018,453 B2
7

One ray 340, that originates at the position of the viewer
315 and traverses through the three-dimensional scene 305,
can be seen in FIG.3. As the ray 340 traverses from the viewer
315 to the three-dimensional scene 305, the ray 340 passes
through a plane where the final two-dimensional picture will
be rendered by the image processing system. In FIG. 3 this
plane is represented by the monitor 310. The point the ray 340
passes through the plane, or monitor 310, is represented by a
pixel 335.
AS briefly discussed earlier, most image processing sys

tems use a grid 330 of thousands (if not millions) of pixels to
render the final scene on the monitor 310. The grid 330 may
be referred to as a frame. Each individual pixel may display a
different color to render the final composite two-dimensional
picture on the monitor 310. An image processing system
using a ray tracing image processing methodology to render a
two-dimensional picture from a three-dimensional scene will
calculate the colors that the issued ray or rays encounters in
the three-dimensional scene. The image processing scene will
then assign the colors encountered by the ray to the pixel
through which the ray passed on its way from the viewer to the
three-dimensional Scene.

The number of rays issued per pixel may vary. Some pixels
may have many rays issued for a particular scene to be ren
dered. In which case the final color of the pixel is determined
by the each color contribution from all of the rays that were
issued for the pixel. Other pixels may only have a single ray
issued to determine the resulting color of the pixel in the
two-dimensional picture. Some pixels may not have any rays
issued by the image processing system, in which case their
color may be determined, approximated or assigned by algo
rithms within the image processing system.

To determine the final color of the pixel 335 in the two
dimensional picture, the image processing system must deter
mine if the ray 340 intersects an object within the scene. If the
ray does not intersect an object within the scene it may be
assigned a default background color (e.g., blue or black,
representing the day or night sky). Conversely, as the ray 340
traverses through the three-dimensional scene 305the ray340
may strike objects. As the rays strike objects within the scene,
the color of the object may be assigned to the pixel through
which the ray passes. However, the color of the object must be
determined before it is assigned to the pixel.
Many factors may contribute to the color of the object

struck by the original ray 340. For example, light sources
within the three-dimensional scene may illuminate the object.
Furthermore, physical properties of the object may contribute
to the color of the object. For example, if the object is reflec
tive or transparent, other non-light source objects may then
contribute to the color of the object.

In order to determine the effects from other objects within
the three-dimensional scene, secondary rays may be issued
from the point where the original ray 340 intersected the
object. For example, shadow rays 341 may be issued to deter
mine the contribution of light to the point where the original
ray 340 intersected the object. If the object has translucent
properties, the image processing system may issue a trans
mitted or a refracted ray344 to determine what color or light
to be transmitted through the body of the object. If the object
has reflective properties, the image processing system may
issue a reflected ray to determine what color or light is
reflected onto the object 320.
One type of secondary ray may be a shadow ray. Each

shadow ray may be traced from the point of intersection of the
original ray and the object, to a light source within the three
dimensional scene 305. If the ray reaches the light source
without encountering another object before the ray reaches

10

15

25

30

35

40

45

50

55

60

65

8
the light source, then the light source will illuminate the
object struck by the original ray at the point where the original
ray struck the object.

For example, shadow ray 341 may be issued from the
point where original ray 340 intersected the object 320, and
may traverse in a direction towards the light source 325. The
shadow ray 341 reaches the light source 325 without
encountering any other objects 320 within the scene 305.
Therefore, the light source 325 will illuminate the object
320 at the point where the original ray 340 intersected the
object 320.

Other shadow rays may have their path between the point
where the original ray struck the object and the light Source
blocked by another object within the three-dimensional
scene. If the object obstructing the path between the point on
the object the original ray struck and the light Source is
opaque, then the light source will not illuminate the object at
the point where the original ray struck the object. Thus, the
light source may not contribute to the color of the original ray
and consequently neither to the color of the pixel to be ren
dered in the two-dimensional picture. However, if the object
is translucent or transparent, then the light Source may illu
minate the object at the point where the original ray struck the
object.

For example, shadow ray 341 may be issued from the
point where the original ray 340 intersected with the object
320, and may traverse in a direction towards the light Source
325. In this example, the path of the shadow ray 341 is
blocked by an object 320. If the object 320, is opaque, then
the light source 325, will not illuminate the object 320 at the
point where the original ray 340 intersected the object 320.
However, if the object 320, which the shadow ray is translu
cent or transparent the light source 325 may illuminate the
object 320 at the point where the original ray 340 intersected
the object 320.

Another type of secondary ray is a transmitted or refracted
ray. A refracted ray may be issued by the image processing
system if the object with which the original ray intersected
has transparent or translucent properties (e.g., glass). A
refracted ray traverses through the object at an angle relative
to the angle at which the original ray struck the object. For
example, refracted ray 344 is seen traversing through the
object 320 which the original ray 340 intersected.

Another type of secondary ray is a transmitted or a
refracted ray. If the object with which the original ray inter
sected has reflective properties (e.g. a metal finish), then a
reflected ray will be issued by the image processing system to
determine what color or light may be reflected onto the object.
Reflected rays traverse away from the object at an angle
relative to the angle at which the original ray intersected the
object. For example, reflected ray 343 may be issued by the
image processing system to determine what color or light
may be reflected onto the object 320 which the original ray
340 intersected.
The total contribution of color and light of all secondary

rays (e.g., shadow rays, transmitted rays, reflected rays, etc.)
will result in the final color of the pixel through which the
original ray passed.

An Exemplary kd-Tree

One problem encountered when performing ray tracing is
determining quickly and efficiently if an issued ray intersects
any objects within the scene to be rendered. One methodol
ogy known by those of ordinary skill in the art to make the ray
intersection determination more efficient is to use a spatial
index. A spatial index divides a three-dimensional scene or

US 8,018,453 B2
9

world into smaller volumes (smaller relative to the entire
three-dimensional Scene) which may or may not contain
primitives. An image processing system can then use the
known boundaries of these smaller volumes to determine if a
ray may intersect primitives contained within the Smaller
Volumes. If a ray does intersect a Volume containing primi
tives, then a ray intersection test can be run using the trajec
tory of the ray against the known location and dimensions of
the primitives contained within that volume. If a ray does not
intersect a particular volume, then there is no need to run
ray-primitive intersection tests against the primitives con
tained within that volume. Furthermore, if a ray intersects a
bounding Volume which does not contain primitives then
there is no need to run ray-primitive intersections tests against
that bounding Volume. Thus, by reducing the number of ray
primitive intersection tests which may be necessary, the use of
a spatial index greatly increases the performance of a ray
tracing image processing system. Some examples of different
spatial index acceleration data structures are octrees, k
dimensional Trees (kd-Trees), and binary space partitioning
trees (BSP trees). While several different spatial index struc
tures exist, for ease of describing embodiments of the present
invention, a kd-Tree will be used in the examples to follow.
However, those skilled in the art will readily recognize that
embodiments of the invention may be applied to any of the
different types of spatial indexes.
A kd-Tree uses axis aligned bounding Volumes to partition

the entire Scene or space into Smaller Volumes. That is, the
kd-Tree may divide a three-dimensional space encompassed
by a scene through the use of splitting planes which are
parallel to known axes. The splitting planes partition a larger
space into Smaller bounding Volumes. Together the Smaller
bounding Volumes make up the entire space in the scene. The
determination to partition (divide) a larger bounding Volume
into two smaller bounding Volumes may be made by the
image processing system through the use of a kd-tree con
struction algorithm.
One criterion for determining when to partition a bounding

volume into smaller volumes may be the number of primitives
contained within the bounding Volume. That is, as long as a
bounding Volume contains more primitives than a predeter
mined threshold, the tree construction algorithm may con
tinue to divide Volumes by drawing more splitting planes.
Another criterion for determining when to partition a bound
ing Volume into Smaller Volumes may be the amount of space
contained within the bounding volume. Furthermore, a deci
sion to continue partitioning the bounding Volume may also
be based on how many primitives may be intersected by the
plane which creates the bounding Volume.
The partitioning of the scene may be represented by a

binary tree structure made up of nodes, branches and leaves.
Each internal node within the tree may represent a relatively
large bounding Volume, while the node may contain branches
to Sub-nodes which may represent two relatively smaller par
titioned Volumes resulting after a partitioning of the relatively
large bounding Volume by a splitting plane. In an axis-aligned
kd-Tree, each internal node may contain only two branches to
other nodes. The internal node may contain branches (i.e.,
pointers) to one or two leafnodes. A leaf node is a node which
is not further sub-divided into smaller volumes and contains
pointers to primitives. An internal node may also contain
branches to other internal nodes which are further sub-di
vided. An internal node may also contain the information
needed to determine along what axis the splitting plane was
drawn and where along the axis the splitting plane was drawn.

Exemplary Bounding Volumes

FIGS. 4A-4C illustrate a two-dimensional space to be ren
dered by an image processing system and a corresponding

5

10

15

25

30

35

40

45

50

55

60

65

10
kd-tree. For simplicity, a two-dimensional scene is used to
illustrate the building of a kd-Tree, however kd-Trees may
also be used to represent three-dimensional Scenes. In the
two-dimensional illustration of FIGS. 4A-4C splitting lines
are illustrated instead of splitting planes, and bounding areas
are illustrated instead of bounding volumes as would be used
in a three-dimensional structure. However, one skilled in the
art will quickly recognize that the concepts may easily be
applied to a three-dimensional scene containing objects.

FIG. 4A illustrates a two-dimensional scene 405 contain
ing primitives 410 to be rendered in the final picture to be
displayed on a monitor 310. The largest volume which rep
resents the entire Volume of the scene is encompassed by
bounding volume 1 (BV). In the corresponding kd-Tree this
may be represented by the top level node 450, also known as
the root or world node. In one embodiment of an image
processing System, an image processing System may continue
to partition bounding Volumes into Smaller bounding Vol
umes when the bounding Volume contains, for example, more
than two primitives. As noted earlier the decision to continue
partitioning a bounding Volume into Smaller bounding Vol
umes may be based on many factors, however for ease of
explanation in this example the decision to continue partition
ing a bounding Volume is based only on the number of primi
tives. As can be seen in FIG. 4A, BV contains six primitives,
therefore kd-Tree construction algorithm may partition BV
into Smaller bounding Volumes.

FIG. 4B illustrates the same two-dimensional scene 405 as
illustrated in FIG. 4A. However, in FIG. 4B the tree construc
tion algorithm has partitioned BV into two smaller bounding
volumes BV and BV. The partitioning of BV, was accom
plished, by drawing a splitting plane SP 415 along the X-axis
at point x. This partitioning of BV is also reflected in the
kd-Tree as the two nodes 455 and 460, corresponding to BV,
and BV respectively, under the internal or parent node BV
450. The internal node representing BV may now store infor
mation Such as, but not limited to, pointers to the two nodes
beneath BV (e.g., BV and BV), along which axis the split
ting plane was drawn (e.g., X-axis), and where along the axis
the splitting plane was drawn (e.g., at point X).
The kd-Tree construction algorithm may continue to par

tition bounding Volume BV because it contains more than
the predetermined threshold of primitives (e.g., more than
two primitives). However, the kd-Tree construction algorithm
may not continue to partition bounding Volume BV, because
bounding Volume BV contains less than or equal to the
number of primitives (e.g., only two primitives 410). Nodes
which are not partitioned or sub-divided any further, such as
BV, are referred to as leaf nodes.
FIG.4C illustrates the same two-dimensional scene 405 as

illustrated in FIG. 4B. However, in FIG. 4C the kd-Tree
construction algorithm has partitioned BV. into two smaller
bounding volumes BV and BVs. The kd-construction algo
rithm has partitioned BV using a partitioning plane along the
y-axis at pointy. Since BV has been partitioned into two
sub-nodes it may now be referred to as an internal node. The
partitioning of BV is also reflected in the kd-Tree as the two
leaf nodes 465 and 470, corresponding to BV and BVs
respectively. BV and BVs are leaf nodes because the vol
umes they represent are not further divided into smaller
bounding volumes. The two leaf nodes, BV and BVs are
located under the internal node BV, which represents the
bounding volume which was partitioned in the kd-Tree.
The internal node representing BV may store information

Such as, but not limited to, pointers to the two leaf nodes (i.e.,
BV and BVs), along which axis the splitting plane was

US 8,018,453 B2
11

drawn (i.e., y-axis), and where along the axis the splitting
plane was drawn (i.e., at pointy).
The kd-Tree construction algorithm may now stop parti

tioning the bounding Volumes because all bounding Volumes
located within the scene contain less than or equal to the
maximum predetermined number of primitives which may be
enclosed within a bounding Volume. The leaf nodes may
contain pointers to the primitives which are enclosed within
the bounding Volumes each leaf represents. For example, leaf
node BV may contain pointers to primitives 410, leaf node
BV may contain pointers to primitives 410, and leaf node
BVs may contain pointers to primitives 410.
A ray tracing image processing system may use the work

load manager 205 to traverse the spatial index (kd-Tree).
Traversing the kd-Tree may include selecting a branch to a
node on a lower level (sub-node) of the kd-Tree to take or
proceed to in order to determine if the ray intersects any
primitives contained within the Sub-node. A workload man
ager 205 may use the coordinates and trajectory of an issued
ray to traverse or navigate through the kd-Tree. By executing
ray-bounding Volume intersection tests, the workload man
ager 205 may determine if the ray intersects a plane of the
bounding volumes represented by nodes within the kd-Tree
structure. If the ray intersects a bounding Volume which con
tains only primitives (i.e., a leaf node), then the workload
manager 205 may send the ray and associated information to
a vector throughput engine 210 for ray-primitive intersection
tests. A ray-primitive intersection test may be executed to
determine if the ray intersects the primitives within the
bounding Volume. This methodology results in fewer ray
primitive intersection tests needed to determine ifa ray inter
sects an object within the scene, in comparison to running
ray-primitive intersection tests for a ray against each primi
tive contained within the scene.

The resulting kd-Tree structure, or other spatial index
structure, may be stored in a processor cache 230. The kd
Tree and the size of corresponding data which comprises the
kd-Tree may be optimized for storage in a processor cache
230. The storage of the kd-Tree in a processor cache 230 may
allow a workload manager 205 to traverse the kd-Tree with a
ray that has been issued by the image processing system
without having to retrieve the kd-Tree from memory every
time a ray is issued by the image processing system.

Physics Engine

A physics engine is an application which may simulate real
world physical phenomena as applied to objects within a
three-dimensional scene. A physics engine may be used to
simulate and predict the effects of physical phenomena on a
frame to frame basis. For example, the physics engine may
perform position updates for an object if the object is moving,
and may perform collision detection tests to determine if an
object collides with any other objects within the three-dimen
sional scene.
An image processing system may be used in conjunction

with a physics engine to render the simulated physical inter
actions and objects within a three-dimensional scene to a
two-dimensional Screen. For example, a video game engine
may use both a physics engine and an image processing
system to simulate object movements or interactions within a
three-dimensional scene and to display the objects and the
environment on a monitor.

According to one embodiment of the invention, a physics
engine may use multiple threads on a multiple core process
ing element to perform physics related calculations. For
example, FIG. 5 illustrates a multiple core processing ele

10

15

25

30

35

40

45

50

55

60

65

12
ment 100 wherein the threads of one of the cores are allocated
to a physics engine 505. Other cores within the multiple-core
processing element may perform image processing related
tasks, according to embodiments of the invention. For
example, one core within the multiple-core processing ele
ment 100 may be allocated to a workload manager 205 and
other cores within the multiple-core processing element 100
may be allocated to Vector throughput engines 210, according
to one embodiment of the invention.
The multiple-core processing element 100 may have a

memory cache 110 shared between all of the cores located on
the multiple-core processing element 100. Furthermore, each
core may have its own cache (e.g., an L1 cache). The mul
tiple-core processing element 100 may also contain inboxes
115. The inboxes 115 may be memory mapped address space
used by the cores as a communications network.

FIG. 6 illustrates an exemplary three-dimensional scene
605. The three-dimensional scene 605 contains several
objects including a first car object 610, a second car object
610, a circle object 615, and a triangle object 620. A physics
engine may simulate real world physical phenomena as
applied to the objects (i.e., 610, 610, 615, and 620) within
the three-dimensional scene 605 illustrated in FIG. 6.
One structure a physics engine may use to keep track of

objects in a three-dimensional scene is a scene graph or a
scene index. On a frame to frame basis, the physics engine
505 may use a scene graph to store and access information
which defines the objects located within the three-dimen
sional scene. The scene graph may use a hierarchical structure
(e.g., a tree) to index or order the objects.

For example, FIG. 7 illustrates an exemplary scene graph
700, according to one embodiment of the invention. As illus
trated, the scene graph 700 may contain a world node 750
which represents the entire three-dimensional scene 605. The
world node 750 may branch to nodes which represent objects
within the three-dimensional scene. For example, the world
node 750 may branch to four object nodes. Each of the four
object nodes in the scene graph 700 may correspond to one of
the four objects within the three-dimensional scene 605 of
FIG. 6 (i.e., a node 760 corresponding to the first car object
610, a node 770 corresponding to the second car object 610,
a node 780 corresponding to the circle object 615, and a node
790 corresponding to the triangle object 620).
The object nodes may branch to other nodes on a lower

level of the scene graph 700. The branched to nodes may
represent objects which make up part of the larger object or
may be nodes which define the object (position, color, mass,
etc.). For example, the node 760 representing the first car
object branches to a node 762 representing a wheels object
and to a node 764 representing a body object. Thus, the scene
graph is a hierarchical acceleration data structure based on
objects located within a three-dimensional scene.
The scene graph may be stored, for example, in a memory

cache (e.g., cache 110) of a processing element to enable the
physics engine 505 fast access to the information contained
within the scene graph 700. Because a scene graph 700 is an
object oriented structure and a physics engine performs cal
culations on an object by object basis, a scene graph is an
efficient structure to use with a physics engine.

In contrast to a physics engine using a scene graph, an
image processing system may use a spatial index (e.g., a
kd-tree) to render a two-dimensional image from a three
dimensional scene. As described previously with respect to
FIG. 4, a spatial index partitions a three-dimensional scene
based on a spatial or bounding Volume hierarchy. Because a
scene graph is a spatial based structure and a ray tracing
image processing system performs calculations based on

US 8,018,453 B2
13

where a ray traverses through a three-dimensional scene, a
spatial index is an efficient structure to use with a ray tracing
image processing system.

FIG. 8 illustrates a spatial index 800 which may be used by
an image processing system to render a two-dimensional
image from the three-dimensional scene 605. The three-di
mensional scene 605 illustrated in FIG. 7 may be the same
three-dimensional scene 605 to which the scene graph 700
corresponds.
The spatial index 800 may contain a world node 850 which

defines bounding volume 1 (BV) which encompasses the
entire volume of the three-dimensional scene 605. BV may
be partitioned into two smaller bounding volumes BV and
BV through the use of a splitting plane 815. The partitioning
of BV is reflected in the kd-Tree as the two nodes 855 and
860, corresponding to BV and BV respectively, under the
internal or parent node BV 850. The internal node 850 rep
resenting BV may now store information Such as, but not
limited to, pointers to the two nodes beneath BV (e.g., BV,
and BV), along which axis the splitting plane 815 was drawn
(e.g., X-axis), and where along the axis the splitting plane 815
was drawn.

Furthermore, BV may be partitioned into two smaller
bounding volumes BV and BVs. Two leafnodes 865 and 870
in the spatial index may correspond to the bounding Volumes
BV and BVs, respectively.
The leaf nodes (i.e., 855,865, and 870) of the spatial index

800 may include information which defines the correspond
ing bounding Volumes within the three-dimensional scene
(i.e., BV BV and BVs) and may contain pointers to primi
tives located within the corresponding bounding Volumes.
On a frame to frame basis, objects within the three-dimen

sional Scene may move or change shape. In response to
changes in position or shape of objects, the spatial index may
need to be updated Such that the spatial index accurately
reflects the location of objects or primitives within the three
dimensional scene. Similarly, a scene graph used by the phys
ics engine 505 may also need to be updated to accurately
reflect the new position or shape of objects within the three
dimensional scene. Thus, in response to objects moving or
changing shape, two data structures may need to be updated
on a frame to frame basis.
The image processing system may store the spatial index

800, for example, in the memory cache (e.g., cache 110). As
previously described, a scene graph may also be stored in the
memory cache 110 of the multiple core processing element
100. However, in some circumstances the memory cache 110
may not have enough storage space available to efficiently
store both the scene graph 700 and the spatial index 800.

Integrated Acceleration Data Structure for Physics
and Ray Tracing Image Processing

According to embodiments of the invention, an integrated
acceleration data structure may be used by both the physics
engine 505 and the image processing system in order to
perform both physics calculations and to perform ray tracing
respectively. A single integrated acceleration data structure
may perform the functions of a spatial index and may simul
taneously perform the functions of a scene graph. By using a
single integrated acceleration data structure rather than using
two data structures, the amount of space required to store
information sufficient for both the physics engine 505 and the
image processing system to perform their respective tasks
may be reduced. Furthermore, in contrast to the need to
update two data structures in response to movements of
objects within the three-dimensional scene, the image pro

10

15

25

30

35

40

45

50

55

60

65

14
cessing system may only need to update a single data struc
ture (i.e., the integrated acceleration data structure). The pro
cessing time gained by only updating a single data structure
may reduce the time necessary to perform physics engine
tasks and image processing tasks, thus increasing overall
system performance.

According to one embodiment of the invention, an inte
grated spatial index may be formed by initially partitioning a
three-dimensional Scene into bounding Volumes that encom
pass objects within the three-dimensional scene. Accord
ingly, the initial or top portions of the integrated acceleration
data structure are formed based on a spatial or bounding
Volume hierarchy. Once a bounding Volume encompasses an
object within the three-dimensional scene, an object oriented
hierarchy may be used to represent the object within the
bounding Volume. Thus, the lower portions of the integrated
acceleration data structure are formed based on an object
oriented hierarchy. Consequently, the initial or top portions of
the integrated acceleration data structure may resemble a
spatial index 800 (e.g., a kd-tree) and the lower portions of the
integrated acceleration data structure may resemble a scene
graph 700.

FIG. 9 illustrates an integrated acceleration data structure
900, according to one embodiment of the invention. The
exemplary integrated acceleration data structure 900 corre
sponds to the three-dimensional scene 605 illustrated in FIG.
6.
The integrated acceleration data structure 900 illustrated in

FIG.9 has an initial structure defined by the spatial index 800
which was described with reference to FIG. 8, having a world
node and smaller bounding volumes.

According to embodiments of the invention, in order to
form an integrated acceleration data structure 900, the nodes
which define bounding volumes within the three-dimensional
scene may branch to (i.e., contain information which points
to) nodes which define objects located within bounding vol
umes. Thus, in contrast to a spatial index where the final
spatially oriented nodes (i.e., the leaf nodes) only point to
primitives, the final spatially oriented nodes in an integrated
acceleration data structure 900 may branch to object nodes
which define objects.

For example, as illustrated in FIG. 9, node 855 correspond
ing to BV may branch to object nodes 760 and 770 (repre
senting the first car object 610 and the second car object
610) from the scene graph 700. The object nodes 760 and
770 are branched to from the node 855 corresponding to BV,
because the first car object 610 and the second car object
610 are both located within bounding volume BV, as illus
trated in FIG. 8.

Similar to the scene graph 700, the nodes branched to from
each object node in the integrated acceleration data structure
900 may continue to define properties of the objects or por
tions of the object which collectively construct the object. For
example, each car object node branches to a wheel object
node (e.g., 762 or 772) and a body object node (e.g., 764 or
774), which further define each car object.

Also illustrated in the integrated acceleration data structure
900 are nodes corresponding to the remaining objects in the
three-dimensional scene 605. For example, the circle object
node 780 is branched to from the node 865 defining the
bounding volume BV. The circle object node 780 may be
branched to from the node 865 defining bounding volume
BV because the circle object 615 is located within bounding
volume BV. Furthermore, the triangle object node 790 is
branched to from the node 870 defining the bounding volume
BVs. The triangle object node 790 may be branched to from

US 8,018,453 B2
15

the node 865 defining bounding volume BVs, because the
triangle object 620 is located within bounding volume BVs.

In order for a physics engine 505 or an image processing
system to determine if a node corresponds to an object or to a
bounding Volume, each node within the integrated accelera
tion data structure may contain an object node flag orbit. The
object node bit may be a single bit located within the memory
space which defines a node within the integrated acceleration
data structure 900. According to one embodiment of the
invention, if a node within the spatial index is an object node,
the object node bit may be asserted. Furthermore, if a node
within the spatial index is not an object node, the object node
bit may not be asserted. Thus, a physics engine 505 perform
ing physics calculations or the image processing system per
forming ray tracing may be able to quickly determine if the
node is an object node or a node defining a bounding Volume
by determining if the object node bit is asserted.

Integrated Acceleration Data Structure Usage

According to embodiments of the invention, an image pro
cessing system may perform ray tracing with an integrated
acceleration data structure. As described with regards to FIG.
4, when using a spatial index (e.g., a kd-tree) the image
processing system may use a workload manager 205 to issue
rays into the three-dimensional Scene and to trace the rays
(based on the trajectory of the ray) through the three-dimen
sional scene. The workload manager 205 may trace rays
through the three-dimensional Scene using the spatial index
by performing ray-bounding Volume intersection tests
against the bounding Volumes defined by the nodes in the
spatial index. The workload manager 205 may take branches
to nodes based on which bounding Volumes are intersected by
the ray. When the workload manager 205 traverses to a certain
point within the spatial index (e.g., a leaf node defining a
bounding volume), the workload manager 205 may send the
ray to a vector throughput engine 210 to determine if the ray
intersects any primitives (e.g., contained within the bounding
volume defined by the leaf node). If the ray intersects a
primitive, the vector throughput engine 210 may conse
quently determine the color contribution to the two-dimen
sional image based on an intersected primitive. If not, the
workload manager 205 may traverse the kd-tree again to
determine if the ray intersects any other primitives located
within the three-dimensional scene.

The image processing system may use an integrated accel
eration data structure 900 to perform ray tracing, in a manner
similar to using a spatial index. The image processing system
may issue rays into the three-dimensional scene and trace
rays through the three-dimensional scene using the integrated
acceleration data structure 900 by performing ray-bounding
Volume intersection tests against the bounding Volumes
defined by the spatially oriented nodes in the spatial index.
The workload manager 205 may take branches to nodes based
on which bounding volumes are intersected by the ray. When
the workload manager 205 traverses to a certain point within
the integrated acceleration data structure (e.g., an object
node), the workload manager 205 may send the ray to a vector
throughput engine 210 to determine if the ray intersects any
primitives. However, according to other embodiments of the
invention, the workload manager 205 may determine if the
ray intersects any primitives.

Furthermore, the physics engine 505 may perform physics
related tasks using the integrated acceleration data structure.
When using a scene graph the physics engine may determine
the effect of physical phenomena on objects within the three
dimensional scene 605 on an object-by-object basis. The

10

15

25

30

35

40

45

50

55

60

65

16
physics engine 505 may perform the same physics calcula
tions with an integrated acceleration structure on an object
by-object basis by searching for object nodes within the inte
grated acceleration data structure 900. The physics engine
505 may determine ifa node is an object node by checking the
object node bit in the information which defines the node.
Once a node is found within the integrated acceleration data
structure that has its object node bit asserted, the physics
engine may perform physics calculations on the object.

Thus, by forming a data structure which uses both a spatial
(or bounding Volume) oriented hierarchy and an object ori
ented hierarchy, a single data structure may be formed which
may be used by both the image processing system and the
physics engine 505.

Although in the preceding example the integrated accel
eration data structure 900 has been described wherein each
entire object may be contained within a single bounding
Volume, in some circumstances portions of objects may be
located within two separate bounding Volumes. That is,
objects within the three-dimensional scene may be divided by
a splitting plane which creates a boundary between bounding
Volumes. Consequently, portions of an object may be located
within separate bounding Volumes created by the splitting
plane.

In this scenario, according to one embodiment of the inven
tion, the information defining an object node may contain a
bit location which indicates that information which defines
the entire object is located within a plurality of object nodes
within the integrated acceleration data structure. The bit
within the information defining an object node may be
asserted to indicate that information which defines the object
may be located within a plurality of object nodes of the
integrated acceleration data structure, and de-asserted to indi
cate that the information which defines the object is located
entirely within the current object node.

Furthermore, if an object node which contained only a
portion of an object was created when constructing the inte
grated acceleration data structure, a pointer to another object
node (or nodes) which contain the remaining information
which defines the object may be stored in each object node
(which contains a portion of the object, according to one
embodiment of the invention. Thus, the physics engine may
quickly find the other object node(s) within the integrated
acceleration data structure. By using a bit within the informa
tion defining an object node to indicate whether or not the
object is defined within a plurality of object nodes, the like
lihood may be reduced that a physics engine 505 performing
position updates or collision detection tests fails to perform
tests againstall of the portions of an object located within the
three-dimensional scene.

Updating an Integrated Acceleration Data Structure
in Response to Object Movements

According to embodiments of the invention, an integrated
acceleration data structure 900 may be used to maintain a
record of movements or changes to objects located within the
three-dimensional scene. For example, in contrast to the
three-dimensional scene 605 illustrated in FIG. 6, FIG. 10
illustrates a three-dimensional scene 605B where the first car
object 610 has moved from a first position in the frame N of
the three-dimensional scene 605 to a second position inframe
N+1 of the three-dimensional scene 605 (as illustrated by the
dashed lines in FIG. 10).

US 8,018,453 B2
17

In response to the movement of the first car object 610,
hardware or Software components within the image process
ing system may update the integrated acceleration data struc
ture 900.

According to one embodiment of the invention, the physics
engine 505 may update the integrated acceleration data struc
ture 900 to reflect change in position or shape of objects
within the three-dimensional scene 605. The physics engine
505 may perform position updates and collision detection
tests for all of the objects located within the three-dimen
sional scene. For example, the object node 760 corresponding
to the first car object 610 may be updated to reflect the new
position of the first car object 610. After performing the tests,
the physics engine 505 may record the results of the calcula
tions (e.g., the new positions of the objects) in the integrated
acceleration data structure 900.

Furthermore, if an object has moved such that the branches
to nodes within the integrated acceleration data structure need
to be updated, the physics engine 505 may update the
branches as well. For example, the movement of the first car
object 610, from its position illustrated in frame N of the
three-dimensional scene 605 (as seen in FIG. 7) to its position
illustrated in frame N+1 of the three-dimensional scene (as
seen in FIG. 10) may require that the physics engine 505
update the position of the first car object 610 in the integrated
acceleration data structure 900. Furthermore, as illustrated in
FIG. 10 the first car object has moved to such a degree that it
is no longer located within the bounding volume BV, rather
the first car object 610 has moved such that it is located
within the bounding Volume BV. Thus, the physics engine
505 may update the integrated acceleration data structure 900
so that the node 865 corresponding to BV branches to the
object node 760 corresponding to the first car object 610.

For example, FIG. 11 illustrates an updated integrated
acceleration data structure 900B which reflects the new posi
tion of the first car object 610. The branch from the node 855
corresponding to BV to the object node 760 corresponding to
the first car object 610 may have been removed or deleted by
the physics engine 505 to reflect the movement of the first car
object 610 out of the bounding volume BV. Furthermore, a
new branch from the spatial index node 865 corresponding to
BV to the object node 760 corresponding to the first car
object 610 may have been added by the physics engine 505
to reflect the movement of the first car object 610 into the
bounding volume BV. Thus, the new position of the first car
object 610 in the three-dimensional scene 605 is now
reflected in the updated integrated acceleration data structure
90OB.
As illustrated in FIG. 11, the remaining nodes and branches

in the updated integrated acceleration data structure 900B are
the same as in the integrated acceleration data structure 900
because (in this simple example) no other objects moved from
frame N to frame N--1. The image processing system may
now use the updated integrated acceleration data structure
900B to render a two-dimensional image from the three
dimensional scene 605, and the physics engine 505 may use
the updated integrated acceleration data structure 900B to
perform physics related calculations.

Physics Engine Collision Detection

As mentioned above, one function of a physics engine is to
perform collision tests. Collision tests may determine, for
example, if an object which is moving within the three-di
mensional scene collides with any other objects within the
three-dimensional scene. If the moving object collides with
any other objects, the physics engine may also perform cal

10

15

25

30

35

40

45

50

55

60

65

18
culations to determine the effects of the collision on the
moving object and the objects with which the moving object
collided (e.g., new direction, position, and/or shape of the
objects). The physics engine may then update a data structure
(e.g., the integrated acceleration data structure) with the
results of the calculations, and the image processing system
may use the updated data structure to render a two-dimen
sional image of the three-dimensional Scene.

FIG. 12 illustrates an exemplary three-dimensional scene
605 containing several objects including a first car object
610, a second car object 610, a circle object 615, and a
triangle object 620. The first car object 610 may moving (at
a given velocity) within the three-dimensional scene. Over a
period of time (e.g., a single frame) the car object 610 may
move from a first position (illustrated by the dashed outline of
the car object 610) to a second position.

In order to provide realistic simulation of physical phe
nomenon, the physics engine may perform collision tests
(collision detection tests) with the first car object 610 and
each of the other objects within the three-dimensional scene
to determine if the first car object 610 collides with any other
objects within the three-dimensional scene over the time
period (e.g., for a single frame).

For example, the physics engine may perform collision
tests with the first car object 610 and the second car object
610, the first car object 610 and the circle object 615, and the
first car object 610 and the triangle object 620. Although this
technique may determine which objects collide with the mov
ing object, the technique may execute collision tests with
objects which are unlikely to collide with the moving object.
For example, this technique may execute a collision test with
the first car object 6101 and the triangle object 620 which are
relatively far away from one another and are unlikely to
collide. Therefore, this technique may be inefficient in deter
mining collisions between the moving object and other
objects.

However, a physics engine may reduce the number of
collision tests which may be performed by only performing
collision tests with objects that are likely to collide with the
moving object. The physics engine may determine which
objects are likely to collide with the moving object by creat
ing a bounding Volume which encloses the path of the moving
object from the first position to the second position (herein
after a “velocity box') and performing intersection tests with
the velocity box and every other object within the three
dimensional scene. The objects which intersect the velocity
box may be more likely to collide with the moving object.
Therefore the physics engine may use the objects which inter
sect with the velocity box to perform collision tests with the
moving object to determine which objects collide with the
moving object. Consequently, the number of collision tests
may be reduced by the number objects which do not intersect
the velocity box.

In contrast to an object-to-object collision test, a test for an
intersection of the velocity box and an object within the
three-dimensional scene may take less time and processing
power. For example, a collision test may require many more
variables such as the velocity of the moving object, direction
in which the moving object is traveling, the coordinates of
both objects (i.e., the moving object and the object being
tested), and the dimensions of both objects. Whereas, an
intersection test may simply require the dimensions and coor
dinates of the velocity box and the dimensions and coordi
nates of the other object being tested for an intersection with
the velocity box. Consequently, it may be more efficient to

US 8,018,453 B2
19

execute intersection tests using a Velocity box than to execute
collision tests with every object within the three-dimensional
SCCC.

FIG. 13 illustrates an exemplary velocity box 1300 which
encloses the moving first car object 610. As illustrated the
velocity box 1300 may be a simple rectangular box the
dimensions of which are based on the dimensions of the
moving object and the distance the moving object may move
over the period of time under evaluation. The evaluation time
period may be the period of a frame, or may be shorter and
iterated many times for a single frame to prevent adverse
effects (e.g. tunneling).
The Velocity box may also be a more complex shape (e.g.,

a cylinder) which better reflects the path of the object from its
initial position to its final position. A more complex shape
may further reduce the number of objects which may collide
with the velocity box. The complexity of the shape of the
Velocity box created by the physics engine may ultimately
depend on a balance between the processing time necessary
for the physics engine to create a more complex Velocity box
and the number of collision tests which may be reduced by
creating a more complex Velocity box.

After creating the velocity box 1300 the physics engine
may perform intersection tests with the velocity box 1300 and
objects within the three-dimensional scene 605. For example,
intersection tests may be performed with the velocity box
1300 and the second car object 610, the velocity box 1300
and the circle object 615, and the velocity box 1300 and the
triangle object 620. As a result of performing these intersec
tion tests, the physics engine may determine that the Velocity
box 1300 intersects the circle object 615 (the intersection of
the velocity box 1300 and the circle object 615 is illustrated in
FIG. 13). Thus, a collision between the first car object 610
and the circle object 615 may be likely. Consequently, the
physics engine may only need to perform a single collision
detection test (i.e., with the first car object 610 and the circle
object 615).
By determining which objects are likely to intersect the

moving first car object 610 the physics engine was able to
reduce the number of collision tests from three tests to one
test. Although testing objects within the three-dimensional
scene for intersections with the velocity box may add to the
total number tests which may need to be performed from three
tests to fourtests (i.e., one collision test plus three intersection
tests), the increase intests will be less computationally expen
sive and consume less time than executing three collision
tests. Therefore, the overall result may be a reduction in the
time necessary to determine if the moving object collides with
any other objects.

Box Casting Using an Integrated Acceleration Data
Structure

Although intersection tests with a velocity box may reduce
the number of collision tests which may need to be performed
by the physics engine, the physics engine may still need to
perform intersection tests with the velocity box and each
object within the three-dimensional scene in order to deter
mine which objects are likely to collide with the moving
object. In a complicated three-dimensional scene containing
many objects, this may resultina large number of intersection
tests which may need to be performed to determine which
collisions with the moving object are likely.

However, according to one embodiment of the invention, a
physics engine may use the spatial information stored in the
integrated acceleration data structure to determine which
objects within the three-dimensional scene are within the

10

15

25

30

35

40

45

50

55

60

65

20
same area as the Velocity box and thus are likely to intersect
the Velocity box. Similar to how an image processing system
may cast a ray into a three-dimensional scene and traverse the
integrated acceleration data structure to determine objects
which are intersected by the ray, according to embodiments of
the invention, the physics engine may casta Velocity box into
the three-dimensional scene and traverse the velocity box
(based on the dimensions and location of the velocity box)
through the integrated acceleration data structure to deter
mine which bounding volumes the velocity box intersects
(i.e., a portion of the Velocity box exists within a bounding
Volume). The physics engine may then perform intersection
tests with objects within the intersected bounding volumes
(i.e., objects which are in the same area as the Velocity box)
which are more likely to intersect the velocity box.

Conversely, objects which are in bounding volumes which
are not intersected by the velocity box may be excluded by the
physics engine when performing intersection tests, because
they are not in the same area as the velocity box and thus will
not intersect the velocity box. Therefore, in contrast to a
physics engine performing intersection tests with the Velocity
box and every other object within the three-dimensional
scene, the physics engine may perform intersection tests with
objects which are in the same bounding Volumes and thus the
same area as the Velocity box. Consequently, the physics
engine may reduce the number of intersection tests which
may need to be performed.

FIG. 14 illustrates a method 1400 of casting a velocity box
into an integrated acceleration data structure, according to
one embodiment of the invention. The method 1400 may
begin, for example, when a physics engine determines that an
object will move within the three-dimensional scene. Ini
tially, at step 1405, the physics engine may determine the
dimensions of the velocity box to be cast into the three
dimensional scene.
As mentioned above, the dimensions of the velocity box

may be determined based on the dimensions of the moving
object and the amount of distance the moving object may
travel over the time period under evaluation (e.g., a single
frame). The dimensions of the velocity box should be such
that it encompasses the moving object over the entire path of
movement being evaluated. For example, the velocity box
1300 in FIG. 13 encompasses the first car object 610 in both
its first position and its second position (i.e., the amount of
distance the first car object traveled). According to embodi
ments of the invention, the velocity box may be created such
that is an axis-aligned Velocity box (i.e., sides which are
parallel or perpendicular to the axes which are used to create
the spatial index) or may be created Such that it is not axis
aligned (i.e., sides of the Velocity box not parallel or perpen
dicular to the axes which are used to create the spatial index).
However, an axis-aligned Velocity box may be easier to
traverse through the integrated acceleration data structure.

Next, at step 1410, the velocity box may be cast into the
integrated acceleration data structure and traversed through
the integrated acceleration data structure. This may entail
testing bounding Volumes defined by the nodes in the inte
grated acceleration data structure to determine if a portion of
(or the entire) velocity box intersects or is within a bounding
Volume defined by a node. The physics engine may begin
traversing the Velocity box through the integrated accelera
tion data structure at the world node.

If a portion of the velocity box is located within the bound
ing Volume defined by the world node, the physics engine
may take the branches to the nodes beneath the world node.
The nodes beneath the world nodes may define bounding
Volumes which are created by a splitting plane through the

US 8,018,453 B2
21

bounding Volume defined by the world node (e.g., an axis
aligned splitting plane). The physics engine may determine if
the velocity box, or a portion of the velocity box, is within the
bounding volumes defined by the nodes below the world
node. If so, the physics engine may take the branches from the
nodes below the world node to nodes beneath or on a lower
level of the integrated acceleration data structure. The bound
ing Volume intersection tests and taking branches to nodes
beneath nodes which defines bounding volumes intersected
by the velocity box may continue until an object node is
reached or a node is reached which does not contain a portion
of the velocity box. The objects which are defined by the
object nodes which are traversed to may be placed into a set of
objects to be used later in intersection tests with the velocity
box.

For example, FIG. 15 illustrates an integrated acceleration
data structure 1500 which corresponds to a three-dimensional
scene 1600 illustrated in FIG. 16. The integrated acceleration
data structure contains nodes which define bounding Volumes
(e.g., BV-BVs) within the three-dimensional scene 1600.
The integrated acceleration data structure 1500 is similar to
the earlier described integrated acceleration data structure
900 of FIG.9 with the exception of several object nodes (i.e.,
object node 1505, object node 1510, object node 1515, and
object node 1520) which correspond to objects located within
a bounding Volume (i.e., BVs) of the three-dimensional scene
1600.
The physics engine may begin traversing the Velocity box

1300 (illustrated in FIG. 16) through the integrated accelera
tion data structure 1500 by determining if the velocity box
1300 is within or intersects the bounding volume defined by
the world node 850 (i.e., BV). As can be seen in FIG.16, the
velocity box 1300 is within the bounding volume defined by
the world node 850 (i.e., BV), and therefore the results of the
physics engine's determination will indicate the intersection.
An intersection of the velocity box 1300 with a bounding
volume defined by nodes (e.g., world node 850) in the inte
grated acceleration data structure 1500 is illustrated in FIG.
15 by the darkened outline of the nodes (e.g., the darkened
outline of the world node 850).

Next, the physics engine may continue to traverse the inte
grated acceleration data structure 1500 by taking the branches
from the world node 850 to the nodes beneath the world node
850 (i.e., node 855 and node 860). The physics engine may
then perform tests to determine if the velocity box 1300
intersects or is within the bounding volumes defined by the
nodes beneath the world node 850 (i.e., BV, and BV.). The
physics engine may determine from these tests that the Veloc
ity box 1300 is within or intersects the bounding volumes
defined by the nodes beneath the world node 850 (i.e., the
velocity box 1300 intersects both BV and BV). The physics
engine may then continue traversing the integrated accelera
tion data structure 1500 by taking the branches from the
intersected nodes to the nodes beneath the intersected nodes.
As illustrated in FIG. 15, the physics engine may take a

branch from node 855 (defining bounding volume BV) to the
first car object node 760 and another branch from node 855 to
the second car object node 770. Consequently, the second car
object 610 is in the same areas as the velocity box 1300, and
is likely to intersect the velocity box 1300. Therefore, the
physics engine may add the second car object 610 to a list of
objects which may be used later in intersection tests to deter
mine which objects intersect the velocity box 1300. While the
first car object 610 may be within the same area as the
velocity box 1300, the first car object 610 may be excluded
from the intersection tests by the physics engine because the
first car object is the moving object.

5

10

15

25

30

35

40

45

50

55

60

65

22
The physics engine may also take the branches from node

860 (defining bounding volume BV) to nodes beneath node
860 (i.e., node 865 and node 870). Both node 865 and node
870 define bounding volumes (i.e., BV and BVs), not object
nodes. Therefore, the physics engine may perform tests to
determine if the velocity box is within or intersects the bound
ing volumes defined by node 865 and node 870. As can be see
in FIG.16, part of the velocity box 1300 is within BV but no
portion of velocity box 1300 is within BVs. Therefore, the
results of the intersection tests may indicate that a portion of
the velocity box is within the bounding volume defined by
node 865 (i.e., BV), but that no portion of the velocity box is
within the bounding volume defined by node 870 (i.e., BVs).
The intersection with BV and not BV is illustrated in FIG.
15 by the darkened outline of node 865 which corresponds to
BV, but no darkened outline of node 870 corresponding to
BVs. Consequently, the physics engine may take branches
from node 865 but not from node 870. As illustrated in FIG.
15, the branch from node 865 leads to the object node 780
which corresponds to the circle object 615 contained within
bounding volume BV. Consequently, the circle object 615
may be in the same area of the velocity box 1300 and thus is
likely to intersect the velocity box 1300. Therefore, the phys
ics engine may add the circle object 615 to a list of objects
which may be later used intersection tests to determine which
objects intersect with the velocity box 1300. However, the
physics engine may not use the objects located within BVs
(i.e., triangle objects 1605-1625) and branched to from node
870 because those objects are not in the same area as the
velocity box.

After the physics engine has finished traversing the Veloc
ity box through the integrated acceleration data structure, the
physics engine may proceed to step 1415 of method 1400 to
perform intersection tests with the list of objects which are
defined by the traversed to objects nodes in the integrated
acceleration data structure. The results of these intersection
tests indicate which objects intersect with the velocity box
and therefore are likely to collide with the moving object. The
physics engine may use those objects when performing col
lision tests with the moving object. The results of the collision
tests may indicate which objects actually collide with the
moving object. Consequently, the physics engine may calcu
late new positions of the moving object and the objects which
intersect the moving object and store the new positions, for
example, within the integrated acceleration data structure.
The image processing system may use the updated integrated
acceleration data structure to render a two-dimensional image
using the new positions of the objects in the three-dimen
sional scene.

For example, as was determined by traversing Velocity box
1300 through the integrated acceleration data structure 1500,
the physics engine may perform intersection tests with the
second car object 610 and the circle object 615 which were
contained within the traversed to bounding volumes (i.e., BV,
and BV, respectively). The intersection tests may determine
that only the circle object 615 intersects the velocity box
1300. Consequently, the physics engine may perform a col
lision test with the moving object (i.e., the first car object
6101) and the circle object 615. In contrast to a physics engine
which does not cast the velocity box into the three-dimen
sional scene and traverse the velocity box through the three
dimensional scene, the physics engine may reduce the num
ber of velocity box/object intersection tests by five. The
reduction in five intersection tests is due to the physics engine
not performing intersection tests with the five triangle objects
(i.e., triangle objects 1605-1625) which are contained within
the bounding volume which was not intersected by the veloc

US 8,018,453 B2
23

ity box (i.e., BVs). In comparison a physics engine which
does not traverse the Velocity box through an integrated accel
eration data structure, rather merely performs intersection
tests with the velocity box and every other object within the
three-dimensional scene will execute intersection tests with
the Velocity box and the triangle objects (i.e., triangle objects
1605-1625).

Although, in the present example, the reduction in calcu
lations is relatively small, in a three-dimensional scene con
taining many objects, casting a Velocity box into the scene and
traversing the Velocity box through the integrated accelera
tion data structure to determine which objects may be used in
collision tests may result in a Substantial reduction in calcu
lations. Consequently, the processing time required to per
form physics simulation may be substantially reduced.

In addition to reducing the number of objects which may
need to be tested against to determine if the moving object
collides with other objects, box casting may be used to par
allelize physics calculations in a multi-processor environ
ment. For example, a physics engine may use box casting to
parallelize collision detection in the multiple-core processing
element 100 or in the network of multiple-core processing
elements 200.

According to one embodiment of the invention, a physics
engine may parallelize collision detection by box casting to
determining which objects a moving object is likely to col
lide, and then using separate processing elements to perform
the collision detection tests using the objects which are likely
to collide with the moving object.

For example, a physics engine may use box casting to
determine that two objects are likely to intersect a moving
object. The physics engine may then use a thread of a first
processing element (e.g., a BTE 105) to execute collision
tests which determine if the moving object collides with a first
of the two objects, and a thread of a second processing ele
ment (e.g., a BTE 105) to execute collision tests which deter
mine if the moving object collides with a second of the two
objects. Thus, the physics engine may parallelize collision
detection by using box casting and two separate processing
elements.

Deferred Acceleration Data Structure Optimization
for Improved Performance

Image processing systems may initially build efficient
acceleration data structures (ADS), such as kd-trees. An effi
cient ADS may be one that partitions a three-dimensional
scene based on the positions of objects within the three
dimensional scene while using optimal partitioning planes.
Optimal partitioning planes may intersect a small number of
objects and, consequently, intersect few primitives which
make up the objects. Furthermore, optimal splitting planes
may build partitioning bounding Volumes which cull out large
amounts of empty space, and tightly or closely surround
objects. Several levels of recursion may be used to determine
the optimal splitting planes to use when creating the bounding
volumes which make up the ADS. An efficient ADS may
reduce the number of ray-bounding Volume intersection tests
and ray-primitive intersection tests which may need to be
executed to perform ray tracing for a three-dimensional
scene. Although an efficient ADS may reduce the processing
power and time required to perform ray tracing, building an
efficient ADS using multiple levels of recursion may take a
relatively large amount of processing power and time.

If the image processing system is used in a game system,
for example, in conjunction with a physics engine, the physics
engine may move objects within or place objects into the

5

10

15

25

30

35

40

45

50

55

60

65

24
three-dimensional scene over time. Consequently, the
objects, in their new positions, may span across splitting
planes used to created the initial ADS. Consequently, the ADS
may not be as efficient after objects have moved, and the
amount of time required to perform ray-tracing may be
increased due to the inefficiency of the ADS. In order to
reduce the amount of time required to perform ray-tracing,
the ADS may need to be optimized or rebuilt. However,
rebuilding the ADS may take a relatively long time, and in
circumstances where the image processing system must ren
der multiple frames per second in order to provide realistic
animation (e.g., 30-60 frames per second), the image process
ing system may, at times, not have the processing bandwidth
to optimize the ADS within a frame cycle.

However, according to embodiments of the invention the
image processing system may track the portions of the ADS
which are affected by the movements of objects in an ADS
optimization queue. Furthermore, the image processing sys
tem may defer optimization of the ADS until a sufficient
amount of processing bandwidth is available to update or
optimize the ADS according to the information stored in the
ADS optimization queue. When the image processing system
detects a Sufficient amount of processing bandwidth is avail
able, the image processing system may rebuild or optimize
the portions of the ADS indicated in the ADS optimization
queue.

FIG. 17 illustrates a method 1700 for deferring accelera
tion data structure optimization, according to one embodi
ment of the invention. The method 1700 may begin at step
1705 when an image processing system builds an ADS for a
three-dimensional Scene. An ADS may, for example, be a
spatial index such as a kd-tree. As described above, an ADS
may be built by partitioning a three-dimensional scene which
is to be rendered by the image processing system into a
plurality of bounding Volumes. The bounding Volumes may
Surround objects within the three-dimensional scene and may
correspond to or be defined by nodes within the ADS.

For example, FIG. 18 illustrates a three-dimensional scene
1800 and a corresponding ADS 1805. The ADS 1805 may
have a plurality of nodes representing bounding Volumes
created by the splitting planes which partition the three-di
mensional scene 1800. The partitioning of the three-dimen
sional scene 1805 (i.e., position and orientation of splitting
planes) may have been chosen based on the position of
objects within the three-dimensional scene 1800. For
example, the three-dimensional scene may have been parti
tioned, in part, due to the location of the block object 1810.

Next, at Step 1710, the image processing system may use
the ADS to render a frame. The image processing system may
perform ray-tracing image processing for a frame by travers
ing rays through the ADS to determine if the rays intersect
objects within the three-dimensional scene. The image pro
cessing system may determine the color of pixels through
which the rays passed based on objects intersected by the
rays. The individual pixels together form the frame or two
dimensional image rendered by the image processing system.

Next, at Step 1715, an application (e.g., a physics engine)
may move objects within the three-dimensional scene to
simulate physical phenomenon. For example, as illustrated in
FIG. 19, a physics engine may move the block object 1810
from a first position (illustrated by the outline of the block
object) to a second position (illustrated by the shaded or
darkened block object).

Since the ADS 1805 was built, in part, based on the first
position of the block object 1810, the ADS 1805 may not be
as efficient in partitioning the three-dimensional scene as it
was when the block object 1810 was in the first position. The

US 8,018,453 B2
25

ADS 1805 may not be as efficient at partitioning the three
dimensional scene because the block object 1810, in the
second location, may span or cross several partitioning planes
and, thus, several bounding Volumes within the three-dimen
sional scene. An object which exists within multiple bound
ing Volumes may increase the number of ray-primitive inter
section tests which may need to be performed. An increase in
the number of ray-primitive intersection tests may result in an
increase in processing power and time required to perform ray
tracing and render a frame.

After moving objects within the three-dimensional scene,
the image processing system may proceed to step 1720 to
determine a portion (or portions) of the ADS which is (are)
affected by the movement of the object(s). According to one
embodiment of the invention, the image processing system
may determine what portion of the ADS is affected by the
movement of the object(s) within the three-dimensional
scene by box casting the object(s) through the ADS.

Similar to using box casting to facilitate collision detection
as described above with regards to FIG. 14, an image pro
cessing system may box cast the object through the ADS by
creating a shape (e.g., a box) which Surrounds the object and
traversing the shape through the ADS (similar to traversing a
ray through the ADS). However, in contrast to using the box
casting technique to perform collision detection, the shape
used to perform box casting to detect an affected portion of
the ADS may simply surround the object in its final portion
(e.g., the second position of the block object 1810). The
image processing system may traverse the box through the
ADS until leaf nodes are reached. The image processing
system may thereby determine which portions of the ADS the
box and, consequently, the object (in its final position) are
located.

For example, FIG. 19 illustrates leaf nodes which were
traversed to when box casting a box or shape Surrounding the
block object 1810 through the spatial index 1805. The image
processing system may have traversed a shape Surrounding
the block object 1810 through the ADS 1805 to leaf node
1905, leafnode 1910, leafnode 1915, and leafnode 1920. The
traversed to leaf nodes (i.e., 1905, 1910, 1915, and 1920) are
illustrated in the ADS 1805 with darkened outlines. The tra
versed to leaf nodes define bounding Volumes which encom
pass or surround the block object 1810 in the second position.
Consequently, the traversed to leaf nodes may be the portion
of the ADS 1805 affected by the movement of the block object
1810. Therefore, that portion of the ADS 1805 now ineffi
ciently partitions the three-dimensional scene due to the new
position of the block object 1810.

Next, at step 1725 of method 1700, the image processing
system may add the affected portions of the ADS to an opti
mization queue. The optimization queue may indicate a plu
rality of portions of the ADS which may have been affected by
movements of a plurality of objects within the three-dimen
sional scene. These portions may be used later by the image
processing system to update or optimize the ADS based on the
new positions of objects within the three-dimensional Scene.
According to one embodiment of the invention, the image
processing system may add each leaf node traversed to when
performing box tracing to the ADS optimization queue. The
ADS optimization queue may store a list of pointers to the
nodes of the ADS which are affected by object movements,
and the list of pointers may be a linked list.

FIG. 20 illustrates an ADS optimization queue 2000 con
taining information indicating the portion or portions of the
ADS 1805 affected by the movement of the block object
1810. As illustrated in FIG. 20, the image processing system
may have added each of the traversed to leafnodes (i.e., 1905,
1910, 1915, and 1920) to the ADS optimization queue 2000.

10

15

25

30

35

40

45

50

55

60

65

26
According to another embodiment of the invention, the

image processing system may add the highest internal node in
the ADS which branches (e.g., through other nodes) to the
farthest apart leaf nodes which were affected by the move
ment of the object. Consequently, the image processing sys
tem may update the affected portion of the ADS by reparti
tioning the three-dimensional scene starting from the
bounding Volume defined by this highest internal node.

For example, FIG. 21 also illustrates an ADS optimization
queue 2100. However, in contrast to the ADS optimization
queue 2000, the ADS optimization queue 2100 may only
identify a single node (i.e., internal node 2105). The image
processing system may have added only the node 2105 to
indicate the affected portions of the ADS because the node
2105 may be the highest node in the ADS which identifies the
entire portion of the ADS affected by the movement of the
block object 1810. Therefore, an optimization of the ADS
from this node downward may efficiently update or optimize
the ADS.

Referring back to FIG. 17, after the affected portions of the
ADS have been added to the ADS optimization queue, the
image processing system may proceed to step 1730 to deter
mine if the ADS should be optimized. According to one
embodiment of the invention, the determination of whether or
not to optimize the ADS may be made based on the amount of
processor bandwidth which is available to perform optimiza
tion operations, the amount of the ADS which needs to be
optimized, and the amount of time available to update the
ADS
The amount of processing bandwidth which is available

may be determined by monitoring the performance of pro
cessing elements which may be used to update the ADS. For
example, multiple processing elements (e.g., threads or
cores) in the multiple core processor element 100 may be used
to update the ADS, and the performance of each may be
monitored (e.g., through the use of performance counters or
monitoring an inboxes associated with processing elements).
The amount of the ADS to be optimized may be determined
based on the number of nodes in the ADS optimization queue.
The timeframe allowable to update the ADS may be less than
the frame period in which the image processing system must
render a new frame in order to achieve realistic animation
(e.g., /30"-/60" of a second).

If the processing bandwidth is not available to update the
ADS within the allowable timeframe, the image processing
system may return to step 1710 where the image processing
system may perform image processing for the frame. If the
physics engine returns to step 1710 So that the image process
ing system can perform image processing, the image process
ing system may use the inefficient version of the ADS. By
proceeding to step 1710 without optimizing the ADS after an
object had moved within the three-dimensional scene, the
image processing system may defer the optimization of the
ADS until a later time (e.g., a later frame cycle).

However, if during the current frame cycle or a later frame
cycle, the image processing system determines that there is
sufficient processing bandwidth to optimize the ADS, the
image processing system may proceed to step 1735 to opti
mize the ADS. The image processing system may determine
which portions of the ADS to optimize by examining the
information stored within the ADS optimization queue.

For example, several frames may have been rendered by
the image processing system using the ADS 1805 which
partitions the three-dimensional scene 1800 based, in part, on
the first position of the block object 1810. At step 1735, the
image processing system may optimize the ADS according to
the information stored in the optimization queue. Thus, the
image processing system may, for example, access the ADS
optimization queue 2100 illustrated in FIG.21 and determine
that the affected portion of the ADS 1805 begins at node 2105.

US 8,018,453 B2
27

Consequently, the image processing system may optimize or
repartition the bounding volume defined by node 2105 with
respect to the second position of the block object 1810. This
may result in the new partitioning of the three-dimensional
scene 1800 illustrated in FIG. 22, and the optimized ADS
2200 illustrated in FIG. 22. As illustrated, a portion 2205 of
the ADS 2200 may have been removed to create the optimized
ADS 2205. Furthermore, information which defines the posi
tion of the splitting planes and locations of splitting planes
along splitting axes may have been modified within the nodes
of the ADS 2200 in order to optimize the ADS 2200.

After optimizing the ADS according to the nodes identified
in the ADS optimization queue, the image processing system
may return to step 1710 of method 1700 to perform image
processing for a frame. However, the image processing sys
tem may now use the optimized ADS 2200 to perform ray
tracing. The image processing system may continue to
execute the steps of method 1700 for future frames and con
tinue to optimize the ADS in response to the movements of
objects within the three-dimensional scene.

Although embodiments of the invention have been
described as an image processing system building and opti
mizing an ADS, a physics engine may also build and optimize
the ADS according to other embodiments of the invention.
Furthermore, in another embodiment of the invention a com
bination of the physics and an image processing system may
build and optimize the ADS.

CONCLUSION

By determining portions of an ADS affected by movements
of objects and saving the affected portions of the ADS in an
ADS optimization queue, the image processing system may
defer the optimization of an ADS until processing bandwidth
is available. When the image processing system detects a
Sufficient amount of processing bandwidth is available, the
image processing system may rebuild or optimize the por
tions of the spatial index indicated in the ADS optimization
queue.

While the foregoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:
1. A method of updating an acceleration data structure,

comprising:
Determining, by an image processing system, an affected

portion of the acceleration data structure affected by a
movement of an object within a three-dimensional
Scene,

Adding, by the image processing system, an indication of
the affected portion to an optimization queue; and

when the processing element has free bandwidth, updating,
by the image processing system, the acceleration data
structure based on information in the optimization
queue.

2. The method of claim 1, wherein updating, by the image
processing system, the acceleration data structure based on
the information in the optimization queue comprises:

determining, by the image processing system, portions of
the three-dimensional scene corresponding to portions
of the acceleration data structure indicated in the opti
mization queue; and

repartitioning, by the image processing system, the por
tions of the three-dimensional scene based on the posi
tion of the object.

5

10

15

25

30

35

40

45

50

55

60

65

28
3. The method of claim 1, wherein determining, by the

image processing system, the portion of the acceleration data
structure corresponding to the area into which the object
moved comprises:

creating, by the image processing system, a box which
Surrounds the object in a final position;

tracing, by the image processing system, the box through
the integrated acceleration data structure having nodes
defining bounding Volumes within the three-dimen
sional scene by taking branches to nodes defining
bounding volumes intersected by the box until at least
one leaf node is reached; and

adding, by the image processing system, to the optimiza
tion queue, a pointer to the at least one leaf node.

4. The method of claim 3, further comprising:
determining, by the image processing system, an internal

node in the acceleration data structure which branches to
the at least one leaf nodes affected by the movement of
the object; and

adding, by the image processing system, to the optimiza
tion queue, a pointer to the internal node.

5. The method of claim 3, wherein the optimization queue
contains a linked list of nodes defining bounding Volumes
intersected by the box.

6. The method of claim 1, wherein the acceleration data
structure is a k-dimensional tree.

7. The method of claim 3, wherein determining, by the
image processing system, when a processing element has free
bandwidth comprises monitoring, by the image processing
system, at least one of a performance counter or an inbox
associated with a processing element.

8. A computer readable non-transitory medium containing
a program which, when executed, performs operations com
prising:

determining a portion of an acceleration data structure
affected by a movement of an object within a three
dimensional scene;

adding an indication of the portion of the acceleration data
structure affected by the movement of the object within
the three-dimensional scene to an optimization queue;
and

when the processing element has free bandwidth, updating
the acceleration data structure based on information in
the optimization queue.

9. The computer readable non-transitory medium of claim
8, wherein updating the acceleration data structure based on
the information in the optimization queue comprises:

determining portions of the three-dimensional scene cor
responding to portions of the acceleration data structure
indicated in the optimization queue; and

repartitioning the portions of the three-dimensional scene
based on the position of the object.

10. The computer readable non-transitory medium of claim
8, wherein determining the portion of the acceleration data
structure corresponding to the area into which the object
moved comprises:

creating a box which Surrounds the object in a final posi
tion;

tracing the box through the integrated acceleration data
structure having nodes defining bounding Volumes
within the three-dimensional scene by taking branches
to nodes defining bounding Volumes intersected by the
box until at least one leaf node is reached; and

US 8,018,453 B2
29

adding to the optimization queue, a pointer to the at least
one leaf node.

11. The computer readable non-transitory medium of claim
10, further comprising:

determining an internal node in the acceleration data struc
ture which branches to the at least one leaf nodes
affected by the movement of the object; and

30
adding to the optimization queue, a pointer to the internal

node.
12. The computer readable non-transitory medium of claim

8 wherein the acceleration data structure is a k-dimensional
5 tree.

