

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-515303

(P2004-515303A)

(43) 公表日 平成16年5月27日(2004.5.27)

(51) Int.Cl.⁷

A61B 18/04

A61B 17/34

F 1

A 61 B 17/38

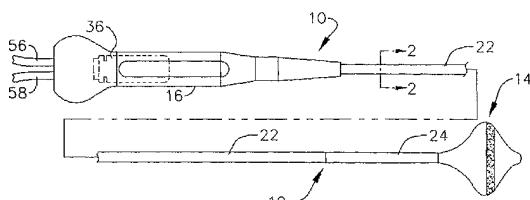
A 61 B 17/34

3 1 O

テーマコード(参考)

4 C 0 6 0

審査請求 未請求 予備審査請求 有 (全 55 頁)


(21) 出願番号	特願2002-549144 (P2002-549144)	(71) 出願人	500013418 ボストン サイエンティフィック リミテッド Boston Scientific Limited バルバドス国 セント マイケル, ベイ ストリート、ブッシュヒル、ザ コーポレ イト センター
(86) (22) 出願日	平成13年12月6日 (2001.12.6)	(74) 代理人	100078282 弁理士 山本 秀策
(85) 翻訳文提出日	平成15年6月12日 (2003.6.12)	(74) 代理人	100062409 弁理士 安村 高明
(86) 國際出願番号	PCT/EP2001/014347	(74) 代理人	100113413 弁理士 森下 夏樹
(87) 國際公開番号	W02002/047566		
(87) 國際公開日	平成14年6月20日 (2002.6.20)		
(31) 優先権主張番号	09/737,176		
(32) 優先日	平成12年12月13日 (2000.12.13)		
(33) 優先権主張国	米国(US)		

最終頁に続く

(54) 【発明の名称】膨張可能治療デバイスを支持するための外科プローブ

(57) 【要約】

身体組織における創傷の作製を容易にするプローブ。このプローブは、比較的短いシャフトおよび膨張可能な治療要素を備える。膨張可能な治療要素の少なくとも一部は、マイクロポアを備え得る。本発明の外科プローブは、該シャフト内にスライド可能に取り付けられた、針であって、該針は、該針の遠位部分が該シャフトの遠位端から外向きに伸長するように、該シャフトに対して可動であり、該膨張可能な治療要素が、該針の該遠位部分に取り付けられている、針をさらに備え得る。

【特許請求の範囲】**【請求項 1】**

外科プローブであって、以下：

遠位部分および近位部分を規定する、比較的短いシャフト；ならびに該シャフトの該遠位部分に付随する、膨張可能な治療要素、を備える、外科プローブ。

【請求項 2】

前記比較的短いシャフトが、比較的剛性である、請求項 1 に記載の外科プローブ。

【請求項 3】

前記比較的短いシャフトが、弾性である、請求項 1 に記載の外科プローブ。

【請求項 4】

前記比較的短いシャフトの前記近位部分が、該比較的短いシャフトの前記遠位部分より剛性である、請求項 3 に記載の外科プローブ。

【請求項 5】

前記膨張可能な治療要素の少なくとも一部が、マイクロポアを備える、請求項 1 に記載の外科プローブ。

【請求項 6】

前記膨張可能な治療要素が、遠位に面するエネルギー伝達領域を備える、請求項 1 に記載の外科プローブ。

【請求項 7】

前記エネルギー伝達領域が、環状の形状である、請求項 6 に記載の外科プローブ。

【請求項 8】

前記エネルギー伝達領域が、非伝導性領域を囲んでいる、請求項 7 に記載の外科プローブ。

【請求項 9】

前記膨張可能な治療要素が、近位に面する非伝導性領域を備える、請求項 6 に記載の外科プローブ。

【請求項 10】

前記膨張可能な治療要素が、エネルギー伝達領域および非伝導性領域を備え、そして該エネルギー伝達領域および該非伝導性領域の少なくとも一方が、色を規定し、該色は、該エネルギー伝達領域および該非伝導性領域の該一方を、もう一方から視覚的に区別する、請求項 1 に記載の外科プローブ。

【請求項 11】

前記膨張可能な治療要素が、前記シャフトの前記遠位部分に取り付けられている、請求項 1 に記載の外科プローブ。

【請求項 12】

前記シャフトが、遠位端を規定する、請求項 1 に記載の外科プローブであって、該外科プローブが、以下：

該シャフト内にスライド可能に取り付けられた、針であって、該針は、該針の遠位部分が該シャフトの該遠位端から外向きに伸長するように、該シャフトに対して可動であり、前記膨張可能な治療要素が、該針の該遠位部分に取り付けられている、針、をさらに備える、外科プローブ。

【請求項 13】

前記針が、複数の針を備え、そして前記膨張可能な治療要素が、該複数の針にそれぞれ取り付けられた複数の膨張可能な治療要素を備える、請求項 12 に記載の外科プローブ。

【請求項 14】

前記針の前記遠位部分が、予め設定された曲率を規定している、請求項 12 に記載の外科プローブ。

【請求項 15】

外科プローブシステムであって、以下：

10

20

30

40

50

外科プローブであって、遠位部分および近位部分を規定する、比較的短いシャフト、ならびに該シャフトの該遠位部分に付随する、膨張可能な治療要素を備える、外科プローブ；ならびに

流体源であって、該膨張可能な治療要素に作動可能に接続されており、そして該膨張可能な治療要素内の圧力を、予め決定されたレベルに維持するよう適合されている、流体源、を備える、外科プローブシステム。

【請求項 16】

前記比較的短いシャフトが、展性である、請求項 15 に記載の外科プローブシステム。

【請求項 17】

前記膨張可能な治療要素の少なくとも一部が、マイクロポアを備える、請求項 15 に記載 10 の外科プローブシステム。

【請求項 18】

前記膨張可能な治療要素が、遠位に面するエネルギー伝達領域を備える、請求項 15 に記載の外科プローブシステム。

【請求項 19】

前記遠位に面するエネルギー伝達領域が、環状の形状である、請求項 14 に記載の外科プローブシステム。

【請求項 20】

前記遠位に形成されたエネルギー伝達領域が、非伝導性の領域を囲んでいる、請求項 19 20 に記載の外科プローブシステム。

【請求項 21】

前記膨張可能な治療要素内の圧力を決定するよう適合された、圧力センサをさらに備える、請求項 19 に記載の外科プローブシステム。

【請求項 22】

前記圧力センサが、前記流体源に付随している、請求項 21 に記載の外科プローブシステム。

【請求項 23】

前記流体源がポンプを備える、請求項 19 に記載の外科プローブシステム。

【請求項 24】

前記流体源が、前記膨張可能な治療要素に連続的に流体を注入し、そして該膨張可能な治療要素から連続的に流体を排出させる、請求項 19 に記載の外科プローブシステム。 30

【請求項 25】

前記膨張可能な治療要素が、前記シャフトの前記遠位部分に取り付けられている、請求項 15 に記載の外科プローブシステム。

【請求項 26】

前記シャフトが遠位端を規定している、請求項 15 に記載の外科プローブシステムであって、該外科プローブが、以下：

該シャフト内にスライド可能に取り付けられた、針であって、該針は、該針の遠位部分が該シャフトの遠位端から外向きに伸長するように、該シャフトに対して可動であり、該膨張可能な治療要素が、該針の該遠位部分に取り付けられている、針、をさらに備える、外科プローブシステム。 40

【請求項 27】

前記針が、複数の針を備え、そして前記膨張可能な治療要素が、該複数の針にそれぞれ取り付けられた複数の膨張可能な治療要素を備える、請求項 26 に記載の外科プローブシステム。

【請求項 28】

前記針の前記遠位部分が、予め設定された曲率を規定している、請求項 26 に記載の外科プローブシステム。

【請求項 29】

外科プローブであって、以下：

中空針；ならびに

治療アセンブリであって、該治療アセンブリは、該中空針内に位置しており、そして該中空針に対して可動であり、該治療アセンブリは、遠位部分および近位部分を規定する、比較的短いシャフト、ならびに該シャフトの該遠位部分に付随する、膨張可能な治療要素を備える、治療アセンブリ、
を備える、外科プローブ。

【発明の詳細な説明】

【0001】

(発明の背景)

(1. 発明の分野)

10

本発明は、一般に、身体組織と接触している治療デバイスを支持する、外科プローブに関する。

【0002】

(2. 関連技術の説明)

診断要素および治療要素が身体内に挿入されなければならない、多くの場合が存在する。一例としては、不整脈と呼ばれる、不快で不規則な心拍を導く、心房性細動および心房粗動のような、心臓の状態の処置が挙げられる。

【0003】

心臓の正常な洞調律は、電気インパルスを発生させる洞房結節（または「SA結節」）で開始する。このインパルスは、通常、左右の心房、ならびに心房中隔を通して房室結節（または「AV結節」）へと均一に伝播される。この伝播は、心房から心室まで血液を輸送するように組織化された様式で収縮させること、および心室の定期刺激を与えることを、心房に引き起こす。AV結節は、房室束（または「HIS束」）への伝播の遅れを調節する。この心臓の電気活性の調整は、心室性拡張期の間、心房性収縮を引き起こす。これは、次に、心臓の機械的な機能を改良する。心臓での解剖学的障害物が、心房中の通常は均一な電気インパルスの伝播を中断させる場合に、心房性細動は生じる。これらの解剖学的障害物（「伝導ブロック」と呼ばれる）は、電気インパルスを、その障害物の周囲を循環するいくつかの環状の小波に変性させ得る。これらの小波は、「リエントリー回路」と呼ばれ、左右の心房の通常は均一な活性化を中断する。

20

【0004】

房室同期の欠失に起因して、心房性細動および心房粗動に苦しむ人々はまた、損なわれた血行力学および心臓の効率の損失の結果に苦しむ。彼らはまた、有効な収縮の損失および心房のうっ血に起因して、発作および他の血栓塞栓性の合併症の危険が高い。

30

【0005】

リエントリー回路の経路を中断することによって心房性細動を処置する1つの外科的な方法には、左右の心房内での電気伝播のための回旋状の経路（すなわち迷路）を解剖学的に作製するために定められたパターンの切開に頼るいわゆる「メイズ手術」である。その切開は、電気インパルスを、SA結節から、特定の経路に沿って両方の心房のすべての領域を通して方向付け、正常な心房の輸送機能に必要とされる均一な収縮を引き起こす。その切開は最終的にインパルスをAV結節に向け、心室を活性化させ、正常な房室同期を回復させる。その切開はまた、最も通常のリエントリー回路の伝導経路を中断させるように、慎重に配置される。メイズ手術は、心房性細動を治療するのに非常に効果的であるということが見出された。しかし、メイズ手術は、実行することが技術的に困難である。

40

【0006】

心内膜に創傷（この創傷は1～15cmの長さであり、種々の形状である）を形成するカテーテルを使用して、所定の通路に電気伝導のための迷路を有効に作り出し得る、迷路様の手順もまた開発された。軟部組織の凝固によるこれらの創傷の形成（「切除」ともまた称される）は、外科的なメイズ手術が現在提供する複雑な切開パターンと同じ治療利益を提供し得る。

【0007】

50

創傷を作りだすために使用されるカテーテルは代表的に、遠位端上にある軟部組織凝固電極および／または遠位端近くにある間隔を空けた一連の組織凝固電極を有する、比較的長くそして比較的可撓性のある本体部分を備える。この可撓性本体の近位端は、代表的に、操縦制御器を備えるハンドルに接続される。カテーテルの本体部分の患者に挿入される部分は、代表的には 58.4 cm ~ 139.7 cm の長さであり、ハンドルを含んだ他の部分 (20.3 cm ~ 38.1 cm) が、患者の外にあり得る。そのカテーテル本体の長さおよび可撓性は、大静脈または心臓の内側に向いた動脈（代表的に大腿動脈）にカテーテルが挿入され、次に凝固電極が、切除されるべき組織に接触するように操作されることを可能にする。次いで、線状または曲線状の創傷が、単一の電極を引きずることによって、または間隔を空けた一連の電極に電力を（好ましくは同時に）印加することによって、作製され得る。

10

【0008】

カテーテルに基づく軟部組織凝固は、一般的には医療の分野において、そして特に、心臓の状態の処置において、かなり有利であることが示された。それにもかかわらず、本発明者らは、カテーテルに基づく手順が、全ての状況において適切であるわけではないこと、および従来のカテーテルが、全ての型の創傷を容易に形成し得るわけではないことを、本明細書中で実証した。例えば、従来のカテーテルデバイスを用いて形成することが困難であることが示されたある創傷は、肺静脈を隔離し、そして異所性心房性細動を治癒するために使用される、周囲の創傷である。肺静脈を隔離する創傷は、肺静脈自体の内部に形成され得るか、または肺静脈を囲む組織に形成され得る。これらの周囲の創傷は、先端電極を肺静脈の周囲で引きずることによって、または肺静脈の周囲で相互接続された一群の曲線状の創傷を 1 つずつ作製することによって、形成される。このような技術は、効果的ではないことが示された。なぜならこれらの技術は遅く、そして伝導性の組織の空隙が、この手順の後に残り得るからである。従来のカテーテルとの十分な組織接触を達成することもまた、困難であり得る。

20

【0009】

従って、本発明者らは、身体開口部の内部またはその周囲に、そして心房性細動の処置の観点では、肺静脈の内部または周囲に、周囲の創傷を作製するために使用され得る構造体に対する必要性が存在することを、本明細書中で実証した。

30

【0010】

治療要素が身体内に挿入される別の実例は、腫瘍（例えば、乳癌および肝癌に関連する癌性腫瘍）の処置である。今まで、腫瘍は、重篤な副作用を有することが示された、高度に毒性の薬物を用いて処置されてきた。より最近は、複数の針様電極を備えるデバイスが導入されている。針様電極は、腫瘍組織内に方向付けられ得、そして R F エネルギーを送達するために使用され得る。付随する電流が組織を加熱し、そして組織の凝固を引き起こす。

【0011】

本発明者らは、組織を凝固させるために針様電極を使用することに関する、多数の欠点が存在することを、本明細書中で実証した。最も顕著なことには、針様電極は、不均一な浅い創傷および／または点創傷を作製し、そしてまた、腫瘍組織の全容量を凝固させない。この欠点の結果として、最終的に、腫瘍がそのもとの大きさより大きくさえ成長し得る。針様電極はまた、組織の炭化を引き起こし得る。さらに、組織は、凝固プロセスの間に、針様電極の周囲で収縮する傾向がある。このことは、電極を患者から引き抜くことを非常に困難にし、そしてしばしば、組織の外傷を生じる。

40

【0012】

従って、本発明者らは、組織の大きな容量を炭化することなく、完全に均一に凝固させ得、そしてまた、針様電極に付随する困難性なしに、患者から取り除かれ得るデバイスに対する必要性が存在することを、本明細書中で実証した。

【0013】

（発明の要旨）

50

従って、本発明の一般的な課題は、実用的な目的で、上述の問題を回避するデバイスを提供することである。特に、本発明の1つの課題は、肺静脈またはその周囲、および他の身体開口部またはその周囲に、従来の装置より効率的な様式で、周囲の創傷を作製するために使用され得る、デバイスを提供することである。

【0014】

これらおよび他の課題のいくつかを達成するために、本発明の1つの実施形態による外科プローブは、比較的短いシャフト、およびこのシャフトの遠位部分に付随する膨張可能な治療要素を備える。好ましい実施形態において、この治療要素は、これが肺静脈の周囲に連続的な創傷を形成し得るように構成される。

【0015】

このようなプローブは、従来の装置より優れた多数の利点を提供する。例えば、本発明の外科プローブは、心臓へのアクセスが胸部造瘻術、開胸術、もしくは胸骨正中切開によって得られる、開心術の間に、またはより侵襲性の低い手順において使用され得る。比較的短いシャフト、およびアクセスが得られる様式は、治療要素が心臓に容易に挿入され、そして所望のレベルの接触で標的組織に対して配置されることを可能にし、これによって、カテーテルに基づく手順に付随する多くの問題を排除する。さらに、本発明の治療要素は、1工程で、肺静脈（または他の手順においては、他の開口部）の内部またはその周囲の組織の環状領域に創傷を形成するために、使用され得、これによって、先端電極を環状領域の周囲で引きずること、または相互接続された多数の曲線創傷を形成すること（これは、カテーテルに基づく手順に付随する）のいずれの必要性も、排除する。

【0016】

さらに、好ましい実施形態によれば、膨張可能な治療要素の可撓性は、適切なように変化され得る。このことは、このシャフトが標的組織領域に対して完全に垂直である場合、標的組織領域がいくらか不均一である場合、または標的組織が石灰化に起因して剛性になっている場合でさえも、外科医が、適切なレベルの組織接触を達成することを可能にする。

【0017】

別的好ましい実施形態によれば、膨張可能な治療要素は、これが腫瘍（または他の標的位置）に挿入され得、膨張され得、次いで腫瘍全体（または他の位置に付随する組織の大きな容量）を、炭化することなく均一に凝固させるために使用され得るように、構成される。一旦、凝固手順が完了すると、この膨張可能な治療要素は収縮され得、そして針様電極に付随する困難性および外傷なしに、患者から取り除かれ得る。

【0018】

これらおよび他の課題のいくつかを達成するために、本発明の1つの実施形態による外科プローブは、中空針、およびこの中空針の内部に位置し、そしてこの中空針に対して可動の治療アセンブリを備え、この治療アセンブリは、比較的短いシャフトおよびこのシャフトの遠位部分に付随する膨張可能な治療要素を有する。この中空針は、腫瘍のような標的位置に入るように組織を通して貫くために、使用され得る。凝固の前に、この中空針は引き抜かれ得、そして膨張可能な治療要素が、腫瘍の内部で適所に保持され得る。次いで、この治療要素は、膨張され得、そして組織が凝固し得る。凝固手順が完了すると、この治療要素は収縮され得、そして中空針の中に引き戻され得る。

【0019】

これらおよび他の課題のいくつかを達成するために、本発明の1つの実施形態による外科プローブは、膨張可能な多孔性の治療要素が取り付けられた、1つ以上の針を備える。これらの針は、従来の針電極と類似の様式で、組織（例えば、腫瘍組織のような）の内部に指向され得る。しかし、ここで、拡張可能な多孔性治療要素内の伝導性流体が、この治療要素および隣接する組織から熱を逃す。このような熱移動は、比較的深い大きな容量の創傷の形成を、従来の針電極に付随する炭化および凝固なしに、生じる。

【0020】

本発明の、上記および他の多くの特徴および付随する利点は、添付の図面と組み合わせて考慮される場合に以下の詳細な説明を参照することによって、本発明がよりよく理解され

10

20

30

40

50

るにつれて、明らかになる。

【0021】

本発明の好ましい実施形態の詳細な説明は、添付の図面を参照してなされる。

【0022】

(好ましい実施形態の詳細な説明)

以下は、本発明を実施する、現在わかっている最良の形態の詳細な説明である。この説明は、限定する意味には解釈されず、本発明の一般的な原理を説明するのみの目的でなされる。

【0023】

本明細書は、主として心臓の切除の文脈において、多数のプローブ構造体を開示する。なぜなら、これらの構造体は、心筋層の組織における使用によく適しているからである。例えば、本発明は、心房性細動のような不整脈に付随する標的基体との、密接な組織接触を提供するように設計される。1つの適用は、異所性の心房性細動を処置するための、肺静脈の内部またはその周囲への創傷の作製である。それにもかかわらず、これらの構造体は、他の型の軟部組織が関与する治療における使用のために適切であることが、理解されるべきである。例えば、本発明の種々の局面は、身体の他の領域（例えば、前立腺、肝臓、脳、胆嚢、子宮および他の固形器官）に関する手順における適用を有する。

【0024】

例えば図1～7に示されるように、本発明の好ましい実施形態による外科プローブ10は、比較的短いシャフト12、膨張可能な治療要素14、およびハンドル16を備える。比較的短いシャフト12は、代表的に、10.1cmと45.7cmとの間の長さであり、そして好ましくは、約17.8cmの長さであり、一方でこのシャフトの外径は、好ましくは、約6フレンチと24フレンチとの間である。

【0025】

適切なレベルの組織接触を達成するために、シャフト12を介して、力が付与される。従って、シャフト12は、力が付与される場合につぶれることを防ぐように十分に強いべきであり、そして好ましくは、比較的剛性である。本明細書中において使用される場合、語句「比較的剛性」とは、シャフト12（または他の構造要素）が、剛性であるか、展性であるか、またはいかに可撓性であるかのいずれかであることを意味する。剛性のシャフトは、屈曲し得ない。展性のシャフトは、解放される場合に戻ることなく外科医によって所望の形状に容易に屈曲され得、その結果、外科手順の間にその形状を維持するシャフトである。従って、展性のシャフトの硬さは、このシャフトが屈曲するために十分に低くなければならないが、外科手順に付随する力がこのシャフトに付与される場合に、屈曲に抵抗するよう十分に高くなければならない。いかに可撓性のシャフトは、屈曲され、そして解放されると戻る。しかし、このシャフトを屈曲させるために必要とされる力は、相当のものでなければならない。剛性のシャフトおよびいかに可撓性のシャフトは、好ましくは、ステンレス鋼から形成され、一方で展性のシャフトは、完全に焼きなましされたステンレス鋼から形成される。

【0026】

示される実施形態において、シャフト12は、外側ポリマージャケット20を有するハイポチューブ(hypotube)18を備え、そして近位部分22および遠位部分24（これらはどちらも展性である）を備える。しかし、近位部分22は、遠位部分24より硬い。近位部分22（約11.5cm）はまた、遠位部分24（約6.4cm）より長い。

【0027】

シャフトの可撓性を定量する1つの方法は、それが本発明によるシャフトであっても従来のカテーテルのシャフトであっても、一端が片持ち梁の様式で固定され、そしてこのシャフトの長手方向軸に対して垂直な力が、端部間のどこかに付与される場合の、このシャフトの撓みを見ることである。このような撓み()は、以下のように表される：

$$= W X^2 (3L - X) / 6 EI$$

ここで：

10

20

30

40

50

Wは、シャフトの長手方向軸に対して垂直に付与される力であり、

Lは、シャフトの長さであり、

Xは、シャフトの固定された端部と付与される力との間の距離であり、

Eは、弾性率であり、そして

Iは、シャフトの慣性モーメントである。

【0028】

力がシャフトの自由端に付与される場合、撓みは、以下のように表され得る：

$$= WL^3 / 3EI$$

異なるシャフトを比較する場合に、WとLとが等しいと仮定すると、それぞれのEおよびIの値が、そのシャフトがどのくらい屈曲するかを決定する。換言すれば、シャフトの硬さは、EおよびIの積の関数である。この積は、本明細書中において、「屈曲率」と称される。Eは、シャフトを形成する材料の特性であり、一方でIは、シャフトの幾何学的形状、壁の厚みなどの関数である。従って、比較的軟質な材料から形成されるシャフトは、この軟質なシャフトの慣性モーメントがより硬いシャフトの慣性モーメントより十分に大きい場合、比較的硬質の材料から形成されるシャフトと同じ屈曲率を有し得る。

【0029】

例えば、比較的剛性の5.1 cmのシャフト（弾性またはいくらか可撓性のいずれか）は、少なくとも約28 N·cm²（11 b·in²）の屈曲率を有する。好ましくは、比較的剛性の5.1 cmのシャフトは、約86 N·cm²（31 b·in²）と約1435 N·cm²（501 b·in²）との間の屈曲率を有する。対照的に、従来のカテーテルシャフトの5.1 cmの片（これは、静脈を通って移動するために十分に可撓性でなければならない）は、代表的に、約2.8 N·cm²（0.11 b·in²）と約8.6 N·cm²（0.31 b·in²）との間の屈曲率を有する。本明細書中で議論される屈曲率の範囲は、主として、初期の撓みに関連することが、注目されるべきである。換言すれば、屈曲率の範囲は、片持ち梁状のシャフトの長手方向軸の自由端に対して垂直に付与される、静止位置（すなわち撓みのない位置）から2.5 cmのたわみを生じるために必要とされる力の量に基づく。

【0030】

上記のように、シャフトの撓みは、シャフトの組成およびその慣性モーメントに依存する。シャフトは、ポリマー材料、金属材料、またはこれらの組み合わせから作製され得る。シャフト12が比較的剛性（かつ好ましくは弾性）であるように設計することによって、本発明の外科プローブは、外科手順の間に遭遇する制約により良好に適合する。比較的剛性の5.1 cm長のシャフトを屈曲させるために必要とされる力は、約6.7 N（1.51 b）～約53.4 N（121 b）の範囲であるはずである。対照的に、従来のカテーテルシャフトの5.1 cmの片を屈曲させるために必要とされる力は、約0.9 N（0.21 b）～約1.1 N（0.251 b）の間であるはずである。再度、このような力の値は、片持ち梁状のシャフトの長手方向軸の自由端に対して垂直に付与される、静止位置（すなわち撓みのない位置）から2.5 cmのたわみを生じるために必要とされる力の量を考慮する。

【0031】

延性材料は、多くの適用において好ましい。なぜなら、このような材料は、破損の前に可塑的に変形し得るからである。材料は、破損前の伸び率に基づいて、延性または脆性のいずれかとして分類される。破損前に5%より大きな伸び率を有する材料は、一般に、延性とみなされ、一方で、破損前に5%未満の伸び率を有する材料は、一般に、脆性であるとみなされる。

【0032】

あるいは、シャフト12は、シールドされた（金属の螺旋状に巻かれたジャケット）導管または可撓性L o c - L i n e（登録商標）（これは、中央管腔を有し得る、噛み合うボールおよびソケットの連結の、線状のセットである）に類似の機械的構成要素であり得る。これらは、シャフトを作製するために線状に組み立てられる。ヒンジ状の区分セクショ

10

20

30

40

50

ンである。

【0033】

図3および4に注目すると、例示的な膨張可能な治療要素14は、非導電性または半導体の、熱可塑性または熱硬化性のプラスチック材料から形成され、そしてマイクロポア28を有する、前に面する多孔性領域26、および非多孔性領域30を備える。流体圧が使用されて、以下に記載される様式で、治療要素14を膨張させ、そしてこの要素をその膨張状態に維持する。治療要素14を充填するために使用される流体は、RFエネルギーを多孔性領域26から組織へと運ぶための導電性経路を確立する、導電性の流体である。

【0034】

他の形状（例えば、楕円形、三角形および矩形）ならびに大きさが使用され得るが、例示的な膨張可能な治療要素14は、断面が実質的に円形であり、そして膨張された場合にその最も広い点において、約1.0cm～約3.0cmの間の直径を有する。好ましい膨張直径は、約1.5cmである。前に面する多孔性領域26（これは、約1mm～約6mmの幅を有する）は、シャフト12の長手方向軸に対して垂直である。このような形状および大きさは、肺静脈での使用によく適している。なぜなら、この形状および大きさは、多孔性領域26が、開心術の間に外科医によって標的組織領域に直接接触されて配置されることを可能にするからである。それにもかかわらず、適用が強制する場合に、他の膨張可能な治療要素の構成（例えば、前に面する半体の全体が多孔性である構成、前に面する半体の固体の円形部分が多孔性である構成、または要素全体が多孔性である構成）が、使用され得る。

10

20

【0035】

図3をより具体的に参照すると、電極32が、例示的な膨張可能な治療要素14に保持される。電極32は、比較的高い導電率および比較的高い熱伝導率の両方を有する材料から、形成されるべきである。電極32（その長さは、好ましくは、約1mm～6mmの範囲である）のための適切な材料としては、金、白金、白金／イリジウムが挙げられる。貴金属が好ましい。マイクロポア28は、電極32から導電性流体を通して治療要素14の外側の組織への、組織凝固エネルギーのイオン性送達を確立する。

30

【0036】

導電性流体は、好ましくは、治療要素14におけるオーム性損失、および従ってオーム性加熱効果を低下させるために、低い抵抗率を有する。この導電性流体の濃度は、変化し得る。飽和（これは、重量／容量で約20%である）またはその近くの塩化ナトリウム濃度を有する、緊張過度の生理食塩水溶液が、好ましい。緊張過度の生理食塩水溶液は、約150オーム・cmの血液の抵抗率および約500オーム・cmの心筋層組織の抵抗率と比較して、ほんの約5オーム・cmの低い抵抗率を有する。あるいは、流体は、緊張過度の塩化カリウム溶液であり得る。この媒体は、所望のイオン移動を促進するが、カリウムの過剰負荷を防止するために、マイクロポア28を通してイオン性送達が起こる速度のより厳密なモニタリングを必要とする。緊張過度の塩化カリウム溶液が使用される場合、イオン性伝達の速度は、約1mEq／分未満の速度に維持されることが好ましい。

40

【0037】

マイクロポア28を横切る質量濃度の差異に大きく依存して、導電性流体中のイオンは、濃度の差異により駆動される拡散に起因して、これらのポアを通過する。マイクロポア28を通るイオン拡散は、治療要素14を横切る濃度勾配が維持される限り、続く。マイクロポア28に含まれるイオンは、治療要素14を横切って電流を伝導する手段を提供する。RFエネルギーが、RF電源および制御装置から電極32へと運ばれる場合、電流は、マイクロポア28内のイオンによって運ばれる。イオンによって提供されるRF電流は、DC電圧が印加される場合におこるようなイオンの正味の拡散を生じないが、RF周波数の印加の間、イオンは前後にわずかに動く。印加されるRF場に応答するこのイオンの運動（および電流）は、マイクロポア28を通しての流体の灌流を必要としない。イオンは、RFエネルギーをマイクロポア28を通して組織内へと、そして戻り電極（これは代表的に、外部パッチ電極（単極配置を形成する）である）へと運ぶ。あるいは、伝達される

50

エネルギーは、組織を通って隣接する電極（双極配置を形成する）へと通り得る。R F エネルギーは、組織を（大部分はオーム的に）加熱して、組織を凝固させ、そして創傷を形成する。

【 0 0 3 8 】

流体の温度は、好ましくは、出力制御の目的でモニタリングされる。この目的で、サーミスタ 3 4 が、例示的な治療要素 1 4 内に取り付けられ得る。他の温度感知デバイス（例えば、熱電対および参照熱電対の配置）が、サーミスタ 3 4 の代わりにかまたはそれに加えて、使用され得る。例えば、図 1 ~ 3 、 6 および 7 に示されるように、電極 3 2 およびサーミスタ 3 4 は、それぞれ、シャフト 1 2 を通って延びる導線 3 8 および 4 0 によって、ハンドル 1 6 の電気コネクタ 3 6 に接続される。プローブ 1 0 は、電気コネクタ 3 6 と嵌合するコネクタ 4 3 によって、適切な R F 電源および制御装置 4 1 に接続され得る。ハンドル 1 6 は、この目的で、開口部 4 2 を備える。

10

【 0 0 3 9 】

例示的なプローブ 1 0 は、比較的単純な制御スキームを使用して作動し得、ここで、創傷は、予め決定されたレベルで、予め決定された時間にわたって、電極 3 2 に電力を供給することによって、係止される。例えば、肺静脈創傷を形成する場合、約 1 2 0 秒間にわたる約 3 5 ワットが好ましい。膨張可能な治療要素 1 4 内の温度は、9 0 を超えるべきであり、電源は、制御装置 4 1 によって中断されるべきである。

20

【 0 0 4 0 】

治療要素 1 4 （特に、多孔性領域 2 6 ）の正確な配置もまた重要であり、そして外科医が治療要素を正確に位置決めすることをより容易にするために、色が使用され得る。多孔性領域 2 6 は、ある色であり得、一方で非多孔性領域 3 0 は、別の色であり得る。あるいは、またはさらに、多孔性領域 2 6 は、比較的透明であり得、そして非多孔性領域 3 0 は、比較的不透明であり得る。これらの特性はまた、逆にされ得る。1 つの例示的な実施において、多孔性領域 2 6 は、実質的に無色透明であり得、一方で非多孔性領域 3 0 は、比較的不透明な青色であり得る。この配置の結果、多孔性領域 2 6 は、無色透明のリングであり、これは外科医から容易に見える。

20

【 0 0 4 1 】

例示的な治療要素 1 4 は、安定化構造体 4 4 （図 3 ）を備える。安定化構造体 4 4 は、好ましくは、可撓性の非伝導性の管状部材 4 6 、およびこの管状部材の遠位端の先端部材 4 8 備える。この管状部材 4 6 （これは、電極 3 2 およびサーミスタ 3 4 を支持し、そしてまた、導線 3 8 および 4 0 のための通路を提供する）の可撓性は、組織の穿孔を防止する。先端部材 4 8 は、平滑な遠位表面を備え、これは、組織の穿孔を防止する。組み立ての間、管状部材 4 6 の近位端は、適切な接着材料 5 0 （例えば、シアノアクリレート）を用いて、図 5 に示される様式で、シャフト 1 2 の遠位端の内部に固定され得る。

30

【 0 0 4 2 】

図 3 に示される、例示的な治療要素 1 4 は、近位端 5 2 の内径がシャフト 1 2 の外径に密接に対応し、そして遠位端 5 4 の内径が先端部材 4 8 の外径に密接に対応するように、成形される。ポリマーコーティング 2 0 は、組み立ての前にシャフト 1 2 の遠位端から取り外され得る（図示のように）か、または適所に残されて、その上に治療要素の近位端 5 2 が配置される。シアノアクリレートまたは別の適切な接着材料が、この治療要素の近位端 5 2 および遠位端 5 4 を適所に固定し、そして流体密のシールを提供するために、使用され得る。

40

【 0 0 4 3 】

材料に関して、多孔性領域 2 6 は、好ましくは、再生セルロースまたは細孔弹性ポリマーから形成される。Hydro - Fluoro - M 材料が、別の例示的な材料である。レーザー、静電放電、イオンビームボンバードメントまたは他のプロセスの使用によってマイクロポアを作製された、ナイロン（1 0 0 より高い軟化点を有する）、P T F E 、 P E I および P E E K のような材料もまた、使用され得る。このような材料は、好ましくは、親水性コーティングを備える。マイクロポアは、直径が約 1 ~ 5 μm であり、そして多孔

50

性領域 26 の表面積の約 1 % を占めるべきである。わずかに大きなポア直径もまた、使用され得る。より大きなポア直径は、多孔性領域を通る有意な流体移動を生じるので、重量 / 容量で約 0.9 % の塩化ナトリウム濃度を有する生理食塩水溶液が好ましい。

【 0 0 4 4 】

非多孔性領域は、好ましくは、比較的弾性の材料（例えば、シリコーンおよびポリイソブレン）から形成される。しかし、他の弾性が低い材料（例えば、ナイロン（登録商標）、Pebax（登録商標）、ポリエチレン、ポリエステルウレタンおよびポリエステル）もまた、使用され得る。ここで、膨張可能な治療要素 14 は、多孔性電極の折り畳みを容易にする、皺のある領域を備え得る。

【 0 0 4 5 】

拡張可能かつ折り畳み可能な本体のさらなる情報および例は、発明の名称「Device and Methods for Creating Lesions in Endocardial and Surrounding Tissue to Isolate Arrhythmia Substrates」の米国特許出願番号 08/984,414、米国特許第 5,368,591 号、および米国特許第 5,961,513 号（これらの各々は、本明細書中に参考として援用される）に開示されている。

【 0 0 4 6 】

治療要素 14 は、代表的に、外科プローブ 10 を患者に挿入する前に、伝導性流体で満たされる。図 2、5、6 および 7 における例に關して示されるように、伝導性流体は、注入管腔 56 によって、圧力下で膨張可能な治療要素 14 に供給される。流体は、排出管腔 58 によって、治療要素 14 から出る。注入管腔 56 および排出管腔 58 は、シャフト 12 の遠位端から、ハンドル 16 の一対の開口部 60 および 62 を通って延びる。注入管腔 56 および排出管腔 58 の近位端は、オン - オフバルブ 64 および 66 を備え、これらは、流体供給デバイス 72（例えば、可変の流速が可能な注入ポンプのような）の注入ライン 68 および排出ライン 70 に接続され得る。

【 0 0 4 7 】

好ましい実施において、伝導性流体は、連続的に注入および排出される（約 1.5 cm の直径の治療要素 14 については、約 4 ~ 8 ml / 分の速度で）。従って、治療要素 14 を膨張させ、そして電極 32 から組織への伝導経路を提供することに加えて、流体は、治療要素を冷却し、その結果、熱が、電流の通過によって、組織内でのみ発生する。

【 0 0 4 8 】

治療要素 14 内の流体供給デバイス 72 によって供給される流体の圧力は、比較的低く（20 psi 未満）あるべきであり、そして所望の膨張レベル、使用される材料の強度、および所望の可撓性の程度に従って、流体供給デバイスによって変化され得る。圧力（これは、流体の流速の関数である）は、流体の流速を増加させることによって上昇し得、そして流体の流速を減少させることによって低下し得る。所望の圧力は、流体供給デバイス 72 に入力され得、そして圧力調節が、流体供給デバイス内の制御装置（これは、流速を適切に変化させる）によって、自動的に実施され得る。あるいは、流速（および圧力）は、外科医によって手動で変化され得る。

【 0 0 4 9 】

治療要素 14 内の圧力は、種々の様式でモニタリングされ得る。例えば、注入管腔 56 および排出管腔 58 を通る流れは、短時間（約 1 秒間）中断され得、その結果、流体の圧力が、流体供給デバイス 72 に付随する（図示の通り）か、またはバルブ 64 および 66 の一方に付随する、圧力センサ 74 によって測定され得る。あるいは、非流動流体で満たされ、そして治療要素 14 の内側から圧力センサ 74（流体供給デバイス 72 またはバルブ 64 および 66 のいずれかに付随する）へと延びる圧力センサ管腔（図示せず）が、流体の流れの中断なしに、使用され得る。

【 0 0 5 0 】

治療要素 14 内の圧力のレベルを変化させることによって、外科医は、シャフト 14 が標的組織領域に対して完全には垂直ではない場合でさえ、そして標的組織領域がいくらか不

10

20

30

40

50

均一な場合でさえも、適切なレベルの組織接触を達成し得る。例えば、肺静脈の口が比較的円形である場合、およびこの口の組織が比較的健常かつ柔軟である場合には、より硬い治療要素 14（これは、組織をひずませる）が好ましい。この口が円形ではなく、そしてこの口の組織が、疾患に起因して比較的石灰化しており、そして硬い場合には、より可撓性の治療要素 14（これは、組織に輪郭を合わせる）が好ましい。硬さを変化させる能力は、外科医が単に、プローブ 10 の遠位端を患者に挿入し、治療要素 14 を身体開口部の内部または周囲に位置決めし、そして電力を印加することによって、肺静脈または他の身体開口部の周囲に完全に延びる創傷を容易に形成することを可能にする。

【 0 0 5 1 】

本発明は、もちろん、心房性細動の処置以外の領域における治療に適用可能である。このような治療の1つは、腫瘍（例えば、乳癌および肝癌に関連する癌性腫瘍）の処置である。腫瘍の処置によく適した外科プローブの1つの例は、図8に示されており、そして一般に、参考番号76で表されている。外科プローブ76は、図1～7に示されるプローブ10と実質的に同一である。しかし、ここでは、このプローブは、多孔性領域26と同じ材料から形成され、そしてマイクロポア28で全体が覆われた、治療要素78を備える。大きさおよび形状は、意図される適用に従って変化するが、例示的な治療要素78は、約5mm～50mmの長さであり、そして膨張された場合に、約10mm～40mmの直径を有する。

【 0 0 5 2 】

図8に示される例示的な外科プローブ76は、種々の技術を使用して、標的位置（例えば、癌性腫瘍内）に導入され得る。このような技術としては、プローブが、トロカール、半径方向に拡張可能なポート、または段階トロカール拡張可能ポートを用いて導入される、腹腔鏡技術が挙げられる。治療要素78は、導入プロセスの間に、収縮されるべきである。一旦、治療要素78が標的位置にくると、この要素は膨張され得、そして組織が、上記の様式で凝固され得る。治療要素78は、凝固手順が完了すると、トロカール、半径方向に拡張可能なポート、または段階トロカール拡張可能ポートによって、収縮され、そして患者から取り除かれる。

【 0 0 5 3 】

例示的な治療要素78、および固体器官の組織内で拡張されるかまたは他の組織内で拡張されることが意図された、以下に記載される他の治療要素（図9、10および12～16を参考のこと）は、使用前に拡張されるか、または器官もしくは身体の他の部分の内側の中空領域において拡張される治療要素より、大きなポアを備え得る。0.1mmまでのポアサイズが、受容可能である。固体組織内での治療要素の膨張から生じる、組織と膨張された治療要素との間の密接なフィットが、ポア28を通しての有効な流れ抵抗を増加させて、より大きなポアサイズが、使用され得る。さらに、より大きなポアの使用に付随し得る、少量の導電性流体の漏出は、オーム的な損失を低下させ、そして組織の炭化および蒸発なしで、電力の増加を可能にする。

【 0 0 5 4 】

その使用は制限されないが、図9および10に示される例示的な外科プローブ80もまた、腫瘍を処置するために特によく適している。外科プローブ80は、中空針82、シャフト12'、および治療要素78'からなる可動治療アセンブリ84、ならびに治療要素を保護する可動スタイルット86を備える。治療アセンブリ84およびスタイルット86は、ハンドル16'に取り付けられたスライド可能ノブ88および90を用いて、中空針82に対して近位および遠位に、独立して移動し得る。

【 0 0 5 5 】

外科プローブ80は、トロカールまたは任意の適切なポート、ならびに組織を穿刺して腫瘍のような標的位置に入るため使用される中空針82を通して、患者に導入され得る。あるいは、中空針82は、外科プローブ80を患者に導入するため、および組織を穿刺して標的位置に入るため、使用され得る。いずれの場合においても、一旦、腫瘍または他の標的位置内にくると、中空針82およびスタイルット86は、引き抜かれ得、一方で治

10

20

30

40

50

療アセンブリ 8 4 は、適所に保持され得、その結果、治療要素 7 8 ' は、標的位置に残る。次いで、治療要素 7 8 ' は、膨張され得、そして標的位置に付随する組織が、上記の様式で凝固され得る。一旦、凝固手順が完了すると、治療要素 7 8 ' は、収縮され、その結果、スタイルット 8 6 は、この治療要素の上をスライドし得る。次いで、両方が中空針 8 2 の内部に引き戻され、その結果、プローブ 8 0 は、患者から除かれ得る。

【 0 0 5 6 】

中空針 8 2 、治療アセンブリ 8 4 およびスタイルット 8 6 を形成するために使用される大きさ、形状および材料は、意図される適用に従って変化する。

【 0 0 5 7 】

腫瘍の処置に関して、例示的な中空針 8 2 は、好ましくは、線状であり、約 1 . 3 cm と 10
7 . 6 cm との間の長さであり、そして約 2 . 0 mm と約 6 . 4 mm との間の外径、および約 1 . 5 mm と約 5 . 8 mm との間の内径を有する。中空針 8 2 (これは、好ましくは、直線状であるかまたは予め設定された曲率を有するかのいずれかである) のための適切な材料としては、ステンレス鋼およびニチノールが挙げられる。シャフト 1 2 ' は、好ましくは、直線状 (であるが曲率を有し得る) かつ剛性 (であるが柔軟性であり得る) であり、そして硬さは、一端から他端まで均一である。適切な材料としては、ステンレス鋼、ニチノールおよび剛性ポリマーが挙げられる。直径は、好ましくは、約 0 . 6 mm と 4 . 6 mm との間である。例示的な治療要素 7 8 ' は、約 19 mm ~ 38 mm の長さ、膨張された場合に約 5 mm ~ 約 40 mm の直径であり、壁厚は、約 0 . 025 mm ~ 約 0 . 250 mm である。スタイルット 8 6 は、ステンレス鋼およびニチノールのような材料から形成され得、そして好ましくは、約 1 . 4 mm と 5 . 7 mm との間の外径、および約 1 . 1 mm と約 5 . 2 mm との間の内径を有する。

【 0 0 5 8 】

図 1 1 を参照すると、本発明の他の実施形態による外科プローブ (これは、図 1 ~ 7 に示されるプローブ 1 0 と、他の点では実質的に同一である) は、加熱された膨張可能な治療要素 9 2 を、多孔性治療要素 1 4 の代わりに備え得る。例示的な治療要素 9 2 (これは、治療要素 1 4 と本質的に同じ様式で、シャフト 1 2 の遠位端に支持される) は、水、緊張過度の生理食塩水溶液、または他の生体適合性の流体で膨張され得る。この流体は、上記の様式で、流体供給デバイス 7 2 によって、治療要素 9 2 に圧力下で供給され得る。圧力は、比較的低い (20 psi 未満) べきであり、そして膨張の所望のレベル、使用される材料の強度、および所望の可撓性のレベルに従って、変化する。流体は、好ましくは、冷却の目的で、連続的に注入および排出される。あるいは、流体は、治療要素を充填する代わりに、加熱されるようにそこに残り得、次いで、創傷の形成手順が完了した後に、排出され得る。

【 0 0 5 9 】

流体加熱要素が、治療要素 9 2 の内部に位置する。この流体加熱要素は、好ましくは、白金、金およびステンレス鋼のような金属から形成され得る電極 (図示せず) であり、そして支持構造体 4 4 に取り付けられる。あるいは、双極の電極の対が、電力を伝導性流体 (例えば、等張生理食塩水溶液) を通して伝達して熱を発生させるために、使用され得る。流体の温度は、約 90 °C に加熱され得、これによって、治療要素 9 2 の外側の温度を、組織凝固のために、およそ同じ温度に上昇させる。しかし、治療要素 9 2 は、比較的表面近くに創傷を作製する傾向があることが注目されるべきである。

【 0 0 6 0 】

例示的な治療要素 9 2 のための適切な材料としては、比較的弾性の熱伝導性の生体適合性材料 (例えば、シリコーンおよびポリイソブレン) が挙げられる。他の弾性が低い材料 (例えば、ナイロン (登録商標) 、 Pebax (登録商標) 、ポリエチレンおよびポリエチレンテル) もまた、使用され得る。ここで、治療要素 9 2 は、折り畳み線を有して形成されなければならない。温度感知要素もまた、提供され得る。加熱電極および温度感知電極は、ハンドル 1 8 の電気コネクタ 3 6 に、電気コネクタによって、上記の様式で接続される。適切な電源および制御デバイス (これは、感知された温度に基づいて電力を制御する) が

10

20

30

40

50

、米国特許第5,456,682号、同第5,582,609号、および同第5,755,715号に開示されている。

【0061】

例示的な治療要素92はまた、図8～10に示される外科プローブと組み合わせて使用され得る。

【0062】

図12～16の例に関して示されるように、本発明の好ましい実施形態による外科プローブ94は、複数の組織貫通針96を備え、これらの針は、スライド可能なノブ98を用いて、シャフト12の遠位端から外向きに進められ得、そしてこの遠位端に引き込まれ得る。スライド可能なノブ98に接着されるか、クランプされるか、または他の様式で固定され得る、針96の数は、好ましくは、1～25の範囲である。針96の各々は、主要本体100、鋭利な先端102、およびマイクロポア28を有する膨張可能な多孔性治療要素104を備える。治療要素104を形成するために使用される材料、およびそれと共に使用される伝導性流体は、多孔性領域26に関して上に記載されたものと同じである。Hydro-Fluoro-M材料もまた、使用され得る。膨張される場合、流体循環空間106が、主要本体100と治療要素104との間に規定される。電極32およびサーミスタ34（これらは、空間106内で主要本体100上に位置する）が、導線38および40によって、電気コネクタ36に接続される。

【0063】

他の構成が使用され得るが、例示的な組織貫通針96は、好ましくは、図13に示される予め設定された曲率を有し、そしてこれらがシャフト12の遠位端から外向きに進められる場合に、この曲率を呈する。この目的で、針96のために適切な形状記憶材料としては、ステンレス鋼およびニチノールが挙げられる。針96は、各々が、同じ曲率を有さなくとも、全く湾曲しなくてもよいことが、注目されるべきである。針96は、好ましくは、約0.25mm～1.25mmの内径であり、そして湾曲領域は、約2.5cmの長さであるが、多孔性治療要素104の直径は、膨張された場合に約1mm～10mmであり、そして多孔性材料の厚みは、約0.025mm～0.250mmである。6つの針96の実施において、プローブ94は、約2cm～3cmの深さおよび約2cm～3cmの直径の創傷を作製する。

【0064】

例示的な組織貫通針96は、各々が、注入副管腔108および排出副管腔110を備え、遠位端が、それぞれ治療要素104の注入開口部112および排出開口部114で終結する。注入副管腔108および排出副管腔110の近位端は、針96の各々において、注入管腔56および排出管腔58に、一対の適切なポンピング接合部（ハンドル16”の内部に位置する）によって、接続される。

【0065】

針96は、12に対して前後に移動するので、導線38および40、ならびに副管腔108および110は、ハンドル16”の内部で、いくらかのあそびを有するべきであることが、注目されるべきである。

【0066】

エネルギーを伝導することに加えて、伝導性流体は、治療要素104を通して連続的に注入および排出され得、その結果、これは、治療要素およびそれに隣接する組織から、熱を奪う。このことは、炭化および凝固なしに、比較的深い、大きな容量の創傷（従来の針電極を備えるデバイスと比較して）の形成を生じる。治療要素104および隣接する組織の冷却はまた、大きな容量の創傷（従来の針電極を備えるデバイスと比較して）を形成するために必要とされる時間を、大いに減少させる。なぜなら、針96に隣接する領域から熱が除去される場合に、より高い電力が提供されるからである。

【0067】

上記のデバイスの各々は、低電圧モードと高電圧モードとの両方で、作動し得る。例示的な低電圧モードにおいて、標的領域の組織を電気的に加熱および殺傷する波形および持続

10

20

30

40

50

時間を有する、R F エネルギーが印加される。心臓における代表的な創傷は、約 150 ワットの電力を、約 10 ~ 120 秒間、500 kHz の無線周波数で送達することによって、形成され得る。印加される電圧は、60 ~ 100 ボルト rms の範囲であり得る。

【0068】

高電圧モードに注目すると、高電圧エネルギー パルスが、少なくとも 3 つの様式で、組織を殺傷するか、凝固させるか、または他の様式で改変するために、使用され得る。例えば、高電圧勾配を組織内に作製することによって、組織の構造が誘電的に破壊される。さらに、組織をオーム的に加熱することによって、組織構造が凝固し、一方で非常に高温にオーム的に加熱することによって、組織が蒸発する。

【0069】

細胞膜の誘電的な破壊によって、組織を殺傷することに関して、比較的短く（約 0.1 ミリ秒）、高電圧（約 400 ~ 4000 ボルトであり、1000 ボルトが好ましい）の R F パルス（この結果、500 ボルト / cm 以上の電圧勾配が組織に導入される）が、所望の結果を達成する。加熱に注目すると、高電圧の R F パルス（約 500 ~ 1200 ボルトの大きさであり、約 50 ~ 100 ミリ秒の持続時間）は、比較的高い電力を組織に送達し、これによって、非常に迅速な加熱を可能にする。組織が急速に加熱されるので、電力印加の間に、対流による熱の損失が、実質的に存在しない。組織の蒸発は、約 250 ミリ秒 ~ 1 秒のパルス持続時間の高電圧エネルギー パルスの使用によって、実施され得る。高電圧および低電圧の組織改変のさらなる情報は、米国特許第 6,023,638 号（これは、本明細書中に参考として援用される）に提供される。

10

20

【0070】

本発明は、上記で好ましい実施形態に関して記載されたが、上記で記載した好ましい実施形態への多数の修正および / または追加は、当業者には容易に理解できる。本発明の範囲は、このような修正およびまたは追加の全てに及ぶこと、ならびに本発明の範囲は、上記に記載される特許請求の範囲のみによって限定されることが、意図される。

【図面の簡単な説明】

【図 1】

図 1 は、本発明の好ましい実施形態による外科プローブの側面図である。

【図 2】

図 2 は、図 1 の線 2 - 2 に沿った断面図である。

30

【図 3】

図 3 は、図 1 に示される例示的な外科プローブの遠位部分の切り取り図である。

【図 4】

図 4 は、図 1 に示される例示的な外科プローブの正面図である。

【図 5】

図 5 は、図 3 の線 5 - 5 に沿った断面図である。

【図 6】

図 6 は、流体管腔が取り除かれた、図 1 に示される例示的な外科プローブの後面図である。

【図 7】

図 7 は、流体供給源および電源に接続された、図 1 に示される例示的な外科プローブを示す側面図である。

40

【図 8】

図 8 は、本発明の好ましい実施形態による外科プローブの側面図である。

【図 9】

図 9 は、本発明の好ましい実施形態による外科プローブの側面図である。

【図 10】

図 10 は、図 9 に示される外科プローブの遠位部分の部分断面図である。

【図 11】

図 11 は、本発明の好ましい実施形態による外科プローブの遠位部分の側面図である。

50

【図12】

図12は、本発明の好ましい実施形態による外科プローブの側面図である。

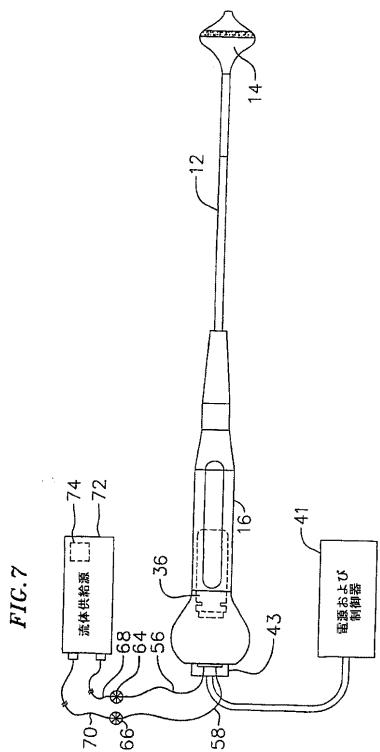
【図13】

図13は、図12に示される外科プローブにおける針の1つの拡大図である。

【図14】

図14は、図12に示される外科プローブにおける針の1つの一部の部分断面図である。

【図15】


図15は、図13の線15-15に沿った断面図である。

【図16】

図16は、図13の線16-16に沿った断面図である。

10

【図7】

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
20 June 2002 (20.06.2002)

PCT

(10) International Publication Number
WO 02/47566 A1

(51) International Patent Classification: A61B 18/14 (81) Designated States (national): AE, AG, AL, AM, AT, AU,

(21) International Application Number: PCT/EP01/14347 AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

(22) International Filing Date: 6 December 2001 (06.12.2001) CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

(25) Filing Language: English GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

(26) Publication Language: English LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(30) Priority Data: 09/737,176 13 December 2000 (13.12.2000) MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

(71) Applicant (for all designated States except US): BOSTON SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN,

SCIENTIFIC LIMITED [IE/BB]; Financial Services NE, ZA, ZM, ZW].

Centre, P.O. Box 111, Bishop's Court Hill, St. Michael (BB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KOBLISH, Josef, V. [US/US]; 13898 Magnolia Drive, Apt. 3, Palo Alto, CA 94306 (US). HEDGE, Anant [US/US]; 36105 Toulouse Street, Newark, CA 94560 (US). SWANSON, David, K. [US/US]; 1458 Ridgeley Drive, Campbell, CA 94040 (US).

(74) Agent: VIERING, JENTSCHURA & PARTNER, Postfach 22 14 43, 80504 Munich (DE).

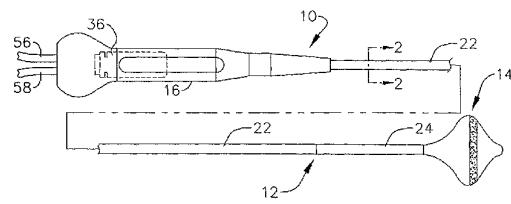
(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,

GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent


(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,

NE, SN, TD, TG).

Published:
— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SURGICAL PROBE FOR SUPPORTING INFLATABLE THERAPEUTIC DEVICES

WO 02/47566 A1

(57) Abstract: A probe that facilitates the creation of lesions in bodily tissue. The probe includes a relatively short shaft and an inflatable therapeutic element.

WO 02/47566

PCT/EP01/14347

SURGICAL PROBE FOR SUPPORTING INFLATABLE THERAPEUTIC DEVICES

BACKGROUND OF THE INVENTIONS**1. Field of Inventions**

The present inventions relate generally to surgical probes that support therapeutic devices in contact with body tissue.

5 2. Description of the Related Art

There are many instances where diagnostic and therapeutic elements must be inserted into the body. One instance involves the treatment of cardiac conditions such as atrial fibrillation and atrial flutter which lead to an unpleasant, irregular heart beat, called arrhythmia.

10 Normal sinus rhythm of the heart begins with the sinoatrial node (or "SA node") generating an electrical impulse. The impulse usually propagates uniformly across the right and left atria and the atrial septum to the atrioventricular node (or "AV node"). This propagation causes the atria to contract in an organized way to transport blood from the atria to the ventricles, and to provide timed stimulation of the ventricles. The AV node regulates the propagation delay to the atrioventricular bundle (or "HIS" bundle). This coordination of the electrical activity of the heart causes atrial systole during ventricular diastole. This, in turn, improves the mechanical function of the heart. Atrial fibrillation occurs when anatomical obstacles in the heart disrupt the normally uniform propagation of electrical impulses in the atria. These anatomical obstacles (called "conduction blocks") can cause the electrical impulse to degenerate into several circular wavelets that circulate about the obstacles. These wavelets, called "reentry circuits," disrupt the normally uniform activation of the left and right atria.

15 20 25 Because of a loss of atrioventricular synchrony, the people who suffer from atrial fibrillation and flutter also suffer the consequences of impaired hemodynamics and loss of cardiac efficiency. They are also at greater risk of stroke and other thromboembolic complications because of loss of effective contraction and atrial stasis.

One surgical method of treating atrial fibrillation by interrupting pathways for reentry circuits is the so-called "maze procedure" which relies on a prescribed pattern of incisions to anatomically create a convoluted path, or maze, for electrical propagation within the left and right atria. The incisions 5 direct the electrical impulse from the SA node along a specified route through all regions of both atria, causing uniform contraction required for normal atrial transport function. The incisions finally direct the impulse to the AV node to activate the ventricles, restoring normal atrioventricular synchrony. The incisions are also carefully placed to interrupt the conduction routes of the 10 most common reentry circuits. The maze procedure has been found very effective in curing atrial fibrillation. However, the maze procedure is technically difficult to do.

Maze-like procedures have also been developed utilizing catheters 15 which can form lesions on the endocardium (the lesions being 1 to 15 cm in length and of varying shape) to effectively create a maze for electrical conduction in a predetermined path. The formation of these lesions by soft tissue coagulation (also referred to as "ablation") can provide the same therapeutic benefits that the complex incision patterns that the surgical maze procedure presently provides.

Catheters used to create lesions typically include a relatively long and 20 relatively flexible body portion that has a soft tissue coagulation electrode on its distal end and/or a series of spaced tissue coagulation electrodes near the distal end. The proximal end of the flexible body is typically connected to a handle which includes steering controls. The portion of the catheter body 25 portion that is inserted into the patient is typically from 58.4 cm to 139.7 cm in length and there may be another 20.3 cm to 38.1 cm, including a handle, outside the patient. The length and flexibility of the catheter body allow the catheter to be inserted into a main vein or artery (typically the femoral artery), directed into the interior of the heart, and then manipulated such that the 30 coagulation electrode contacts the tissue that is to be ablated. Linear and curvilinear lesions can then be created by dragging a single electrode or by applying power (preferably simultaneously) to the series of spaced electrodes.

Catheter-based soft tissue coagulation has proven to be a significant advance in the medical arts generally and in the treatment of cardiac conditions in particular. Nevertheless, the inventors herein have determined that catheter-based procedures are not appropriate in every situation and that conventional catheters are not capable of reliably forming all types of lesions. For example, one lesion that has proven to be difficult to form with conventional catheter devices is the circumferential lesion that is used to isolate the pulmonary vein and cure ectopic atrial fibrillation. Lesions that isolate the pulmonary vein may be formed within the pulmonary vein itself or in the tissue surrounding the pulmonary vein. These circumferential lesions are formed by dragging a tip electrode around the pulmonary vein or by creating a group of interconnected curvilinear lesions one-by-one around the pulmonary vein. Such techniques have proven to be less than effective because they are slow and gaps of conductive tissue can remain after the procedure. It can also be difficult to achieve the adequate tissue contact with conventional catheters.

Accordingly, the inventors herein have determined that a need exists for structures that can be used to create circumferential lesions within or around bodily orifices and, in the context of the treatment of atrial fibrillation, within or around the pulmonary vein.

Another instance where therapeutic elements are inserted into the body is the treatment of tumors, such as the cancerous tumors associated with breast cancer and liver cancer. Heretofore, tumors have been treated with highly toxic drugs that have proven to have severe side effects. More recently, devices including a plurality of needle-like electrodes have been introduced. The needle-like electrodes may be directed into the tumor tissue and used to deliver RF energy. The associated current flow heats the tissue and causes it to coagulate.

The inventors herein have determined that there are a number of shortcomings associated with the use of needle-like electrodes to coagulate tissue. Most notably, the needle-like electrodes produce non-uniform, shallow lesions and/or spot lesions and also fail to coagulate the entire volume of tumor tissue. This failure can ultimately result in the tumor growing to be even larger

than its original size. The needle-like electrodes can also cause tissue charring. Moreover, tissue tends to shrink around the needle-like electrodes during the coagulation process. This makes it very difficult to withdraw the electrodes from the patient and often results in tissue trauma.

5 Accordingly, the inventors herein have determined that a need exists for a device that can completely and uniformly coagulate large volumes of tissue without charring and can also be removed from the patient without the difficulty associated with needle-like electrodes.

10 **SUMMARY OF THE INVENTION**

Accordingly, the general object of the present inventions is to provide a device that avoids, for practical purposes, the aforementioned problems. In particular, one object of the present inventions is to provide a device that can be used to create circumferential lesions in or around the pulmonary vein and other bodily orifices in a more efficient manner than conventional apparatus.

15 In order to accomplish some of these and other objectives, a surgical probe in accordance with one embodiment of a present invention includes a relatively short shaft and an inflatable therapeutic element associated with the distal portion of the shaft. In a preferred embodiment, the therapeutic element will be configured so that it can form a continuous lesion around a pulmonary vein.

20 Such a probe provides a number of advantages over conventional apparatus. For example, the present surgical probe may be used during open heart surgery or in less invasive procedures where access to the heart is obtained via a thoracostomy, thoracotomy or median sternotomy. The relatively short shaft and manner in which access is obtained allows the therapeutic element to be easily inserted into the heart and placed against the target tissue with the desired level of contact, thereby eliminating many of the problems associated with catheter-based procedures. Moreover, the present 25 therapeutic element may be used to form lesions in an annular region of tissue within or around the pulmonary vein (or other orifice in other procedures) in one step, thereby eliminating the need to either drag a tip

electrode around an annular region or form a number of interconnected curvilinear lesions that is associated with catheter-based procedures.

Additionally, in accordance with a preferred embodiment, the flexibility of the inflatable therapeutic element may be varied as appropriate. This allows 5 the physician to achieve the appropriate level of tissue contact, even when the shaft is not perfectly perpendicular to the target tissue area, the target tissue area is somewhat uneven, or the target tissue has become rigid due to calcification.

In accordance with another preferred embodiment, the inflatable 10 therapeutic element will be configured such that it can be inserted into a tumor (or other target location), inflated and then used to uniformly coagulate the entire tumor (or a large volume of tissue associate with the other location) without charring. Once the coagulation procedure is complete, the inflatable therapeutic element can be deflated and removed from patient without the 15 difficulty and trauma associated with needle-like electrodes.

In order to accomplish some of these and other objectives, a surgical 20 probe in accordance with one embodiment of a present invention includes hollow needle and a therapeutic assembly, located within the hollow needle and movable relative thereto, having a relatively short shaft and an inflatable therapeutic element associated with the distal portion of the shaft. The hollow needle may be used to pierce through tissue to enter a target location such as 25 a tumor. Prior to coagulation, the hollow needle may be withdrawn and the inflatable therapeutic element held in place within the tumor. The therapeutic element may then be inflated and the tissue coagulated. When the coagulation procedure is complete, the therapeutic element may be deflated and withdrawn back into the hollow needle.

In order to accomplish some of these and other objectives, a surgical 30 probe in accordance with one embodiment of a present invention includes one or more needles having inflatable porous therapeutic elements mounted thereon. The needles may be directed into tissue, such as tumor tissue for example, in a manner similar to conventional needle electrodes. Here, however, conductive fluid within the inflatable porous therapeutic elements will

draw heat away from the therapeutic element and the adjacent tissue. Such heat transfer results in the formation of relatively deep, large volume lesions without the charring and coagulation associated with conventional needle electrodes.

5 The above described and many other features and attendant advantages of the present inventions will become apparent as the inventions become better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Detailed description of preferred embodiments of the inventions will be made with reference to the accompanying drawings.

5 Figure 1 is a side view of a surgical probe in accordance with a preferred embodiment of a present invention.

Figure 2 is a section view taken along line 2-2 in Figure 1.

Figure 3 is a cutaway view of the distal portion of the exemplary surgical probe illustrated in Figure 1.

10 Figure 4 is a front view of the exemplary surgical probe illustrated in Figure 1.

Figure 5 is a section view taken along line 5-5 in Figure 3.

Figure 6 is rear view of the exemplary surgical probe illustrated in Figure 1 with the fluid lumens removed.

15 Figure 7 is a side view showing the exemplary surgical probe illustrated in Figure 1 connected to a fluid supply and a power supply.

Figure 8 is a side view of a surgical probe in accordance with a preferred embodiment of a present invention.

Figure 9 is a side view of a surgical probe in accordance with a preferred embodiment of a present invention.

20 Figure 10 is a partial section view of the distal portion of the surgical probe illustrated in Figure 9.

Figure 11 is a side view of the distal portion of a surgical probe in accordance with a preferred embodiment of a present invention.

25 Figure 12 is a side view of a surgical probe in accordance with a preferred embodiment of a present invention.

Figure 13 is an enlarged view of one of the needles in the surgical probe illustrated in Figure 12.

Figure 14 is a partial section view of a portion of one of the needles in the surgical probe illustrated in Figure 12.

30 Figure 15 is a section view taken along line 15-15 in Figure 13.

Figure 16 is a section view taken along line 16-16 in Figure 13.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following is a detailed description of the best presently known modes of carrying out the inventions. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the inventions.

5 This specification discloses a number of probe structures, mainly in the context of cardiac ablation, because the structures are well suited for use with myocardial tissue. For example, the present inventions are designed to produce intimate tissue contact with target substrates associated with arrhythmias such as atrial fibrillation. One application is the creation of lesions within or around the pulmonary vein to treat ectopic atrial fibrillation. Nevertheless, it should be appreciated that the structures are applicable for use in therapies involving other types of soft tissue. For example, various 10 aspects of the present inventions have applications in procedures concerning other regions of the body such as the prostate, liver, brain, gall bladder, uterus and other solid organs.

15 As illustrated for example in Figures 1-7, a surgical probe 10 in accordance with a preferred embodiment of a present invention includes a relatively short shaft 12, an inflatable therapeutic element 14 and a handle 16. The relatively short shaft 12 will typically be between 10.1 cm and 45.7 cm in length, and is preferably about 17.8 cm in length, while the outer diameter of the shaft is preferably between about 6 and 24 French.

20 Force is applied through the shaft 12 in order to achieve the appropriate level of tissue contact. Thus, the shaft 12 should be sufficiently strong to prevent collapse when the force is applied and is preferably relatively stiff. As used 25 herein the phrase "relatively stiff" means that the shaft 12 (or other structural element) is either rigid, malleable, or somewhat flexible. A rigid shaft cannot be bent. A malleable shaft is a shaft that can be readily bent by the physician to a desired shape, without springing back when released, so that it will remain in 30 that shape during the surgical procedure. Thus, the stiffness of a malleable shaft must be low enough to allow the shaft to be bent, but high enough to resist bending when the forces associated with a surgical procedure are applied to the

shaft. A somewhat flexible shaft will bend and spring back when released. However, the force required to bend the shaft must be substantial. Rigid and somewhat flexible shafts are preferably formed from stainless steel, while malleable shafts are formed from fully annealed stainless steel.

5 In the illustrated embodiment, the shaft 12 consists of a hypotube 18 with an outer polymer jacket 20 and includes a proximal portion 22 and a distal portion 24, both of which are malleable. The proximal portion 22 is, however, stiffer than the distal portion 24. The proximal portion 22 is also longer (about 11.5 cm) than the distal portion 24 (about 6.4 cm).

10 One method of quantifying the flexibility of a shaft, be it shafts in accordance with the present inventions or the shafts of conventional catheters, is to look at the deflection of the shaft when one end is fixed in cantilever fashion and a force normal to the longitudinal axis of the shaft is applied somewhere between the ends. Such deflection (σ) is expressed as follows:

$$15 \quad \sigma = W X^2 (3L - X) / 6EI$$

where:

W is the force applied normal to the longitudinal axis of the shaft,

L is the length of the shaft,

X is the distance between the fixed end of the shaft and the applied force,

20 E is the modulus of elasticity, and

I is the moment of inertia of the shaft.

When the force is applied to the free end of the shaft, deflection can be expressed as follows:

$$\sigma = WL^3 / 3EI$$

25 Assuming that W and L are equal when comparing different shafts, the respective E and I values will determine how much the shafts will bend. In other words, the stiffness of a shaft is a function of the product of E and I. This product is referred to herein as the "bending modulus." E is a property of the material that forms the shaft, while I is a function of shaft geometry, wall thickness, etc.

30 Therefore, a shaft formed from relatively soft material can have the same bending modulus as a shaft formed from relatively hard material, if the moment of inertia of the softer shaft is sufficiently greater than that of the harder shaft.

For example, a relatively stiff 5.1 cm shaft (either malleable or somewhat flexible) would have a bending modulus of at least approximately 28 N-cm² (1 lb.-in.²). Preferably, a relatively stiff 5.1 cm shaft will have a bending modulus of between approximately 86 N-cm² (3 lb.-in.²) and approximately 1435 N-cm² (50 lb.-in.²). By comparison, 5.1 cm piece of a conventional catheter shaft, which must be flexible enough to travel through veins, typically has bending modulus between approximately 2.8 N-cm² (0.1 lb.-in.²) and approximately 8.6 N-cm² (0.3 lb.-in.²). It should be noted that the bending modulus ranges discussed here are primarily associated with initial deflection. In other words, the bending modulus ranges are based on the amount of force, applied at and normal to the free end of the longitudinal axis of the cantilevered shaft, that is needed to produce 2.5 cm of deflection from an at rest (or no deflection) position.

As noted above, the deflection of a shaft depends on the composition of the shaft as well as its moment of inertia. The shaft could be made of polymeric material, metallic material or a combination thereof. By designing the shaft 12 to be relatively stiff (and preferably malleable), the present surgical probe is better adapted to the constraints encountered during the surgical procedure. The force required to bend a relatively stiff 5.1 cm long shaft should be in the range of approximately 6.7 N (1.5 lbs.) to approximately 53.4 N (12 lbs.). By comparison, the force required to bend a 5.1 cm piece of conventional catheter shaft should be between approximately 0.9 N (0.2 lb.) to 1.1 N (0.25 lb.). Again, such force values concern the amount of force, applied at and normal to the free end of the longitudinal axis of the cantilevered shaft, that is needed to produce 2.5 cm of deflection from an at rest (or no deflection) position.

Ductile materials are preferable in many applications because such materials can deform plastically before failure. Materials are classified as either ductile or brittle, based upon the percentage of elongation before failure. A material with more than 5 percent elongation prior to fracture is generally considered ductile, while a material with less than 5 percent elongation prior to fracture is generally considered brittle.

Alternatively, the shaft 12 could be a mechanical component similar to shielded (metal spiral wind jacket) conduit or flexible Loc-Line®, which is a linear set of interlocking ball and socket linkages that can have a center lumen. These would be hinge-like segmented sections linearly assembled to make the shaft.

5 Turning to Figures 3 and 4, the exemplary inflatable therapeutic element 14 is formed from an electrically non-conductive or semi-conductive thermoplastic or thermosetting plastic material and includes a forward facing porous region 26 having micropores 28 and non-porous regions 30. Fluid 10 pressure is used to inflate the therapeutic element 14 and maintain it in its expanded state in the manner described below. The fluid used to fill the therapeutic element 14 is an electrically conductive fluid that establishes an electrically conductive path to convey RF energy from the porous region 26 to tissue.

15 Although other shapes (such as oval, triangular and rectangular) and sizes may be employed, the exemplary inflatable therapeutic element 14 is substantially circular in cross section has a diameter between about 1.0 cm to about 3.0 cm at its widest point when inflated. A preferred inflated diameter is about 1.5 cm. The forward facing porous region 26, which will have a width of about 1 mm to about 6 mm, is perpendicular to the longitudinal axis of the shaft 12. Such shapes and sizes are well suited for use with pulmonary veins because they allow the porous region 26 to be placed directly in contact with the targeted tissue area by a physician during open heart surgery. Nevertheless, other inflatable therapeutic element configurations, such as 20 those where the entire forward facing half is porous, a solid circular portion of the forward facing half is porous, or the entire element is porous, may be employed as applications dictate.

25 Referring more specifically to Figure 3, an electrode 32 is carried within the exemplary inflatable therapeutic element 14. The electrode 32 should be formed from material with both relatively high electrical conductivity and relatively high thermal conductivity. Suitable materials for the electrode 32, the length of which preferably ranges from about 1 mm to 6 mm, include gold,

platinum, and platinum/iridium. Noble metals are preferred. The micropores 28 establish ionic transport of the tissue coagulating energy from the electrode 32 through the electrically conductive fluid to tissue outside the therapeutic element 14.

5 The electrically conductive fluid preferably possesses a low resistivity to decrease ohmic losses and thus ohmic heating effects within the therapeutic element 14. The composition of the electrically conductive fluid can vary. A hypertonic saline solution, having a sodium chloride concentration at or near saturation, which is about 20% weight by volume is preferred. Hypertonic 10 saline solution has a low resistivity of only about 5 ohm-cm, compared to blood resistivity of about 150 ohm-cm and myocardial tissue resistivity of about 500 ohm-cm. Alternatively, the fluid can be a hypertonic potassium chloride solution. This medium, while promoting the desired ionic transfer, requires closer monitoring of the rate at which ionic transport occurs through 15 the micropores 28, to prevent potassium overload. When hypertonic potassium chloride solution is used, it is preferred to keep the ionic transport rate below about 1 mEq/min.

Due largely to mass concentration differentials across the micropores 28, ions in the conductive fluid will pass into the pores because of 20 concentration differential-driven diffusion. Ion diffusion through the micropores 28 will continue as long as a concentration gradient is maintained across the therapeutic element 14. The ions contained in the micropores 28 provide the means to conduct current across the therapeutic element 14. When RF energy is conveyed from a RF power supply and control apparatus to the electrode 25 32, electric current is carried by the ions within the micropores 28. The RF currents provided by the ions result in no net diffusion of ions, as would occur if a DC voltage were applied, although the ions do move slightly back and forth during the RF frequency application. This ionic movement (and current flow) in response to the applied RF field does not require perfusion of fluid 30 through the micropores 28. The ions convey RF energy through the micropores 28 into tissue to a return electrode, which is typically an external patch electrode (forming a unipolar arrangement). Alternatively, the

transmitted energy can pass through tissue to an adjacent electrode (forming a bipolar arrangement). The RF energy heats tissue (mostly ohmically) to coagulate the tissue and form a lesion.

5 The temperature of the fluid is preferably monitored for power control purposes. To that end, a thermistor 34 may be mounted within the exemplary therapeutic element 14. Other temperature sensing devices, such as a thermocouple and reference thermocouple arrangement, may be employed in place of or in addition to the thermistor 34. As illustrated for example in Figures 1-3, 6 and 7, the electrode 32 and thermistor 34 are respectively 10 connected to an electrical connector 36 in the handle 16 by conductors 38 and 40 which extend through the shaft 12. The probe 10 may be connected to a suitable RF power supply and control apparatus 41 by a connector 43 that mates with the electrical connector 36. The handle 16 is provided with an 15 opening 42 for this purpose.

15 The exemplary probe 10 may operate using a relatively simple control scheme wherein lesions are formed by supplying power to the electrode 32 at a predetermined level for a predetermined period of time. When forming pulmonary vein lesions, for example, about 35 watts for a period of about 120 seconds is preferred. Should the temperature within the inflatable therapeutic 20 element 14 exceed 90°C, power will be cut off by the control apparatus 41.

25 Accurate placement of the therapeutic element 14, particularly the porous region 26, is also important and color may be used to make it easier for the physician to accurately position the therapeutic element. The porous region 26 may be one color while the non-porous regions 30 may be another color. Alternatively, or in addition, the porous region 26 may be relatively clear and the non-porous regions 30 may be relatively opaque. These properties 30 may also be reversed. In one exemplary implementation, the porous region 26 may be substantially clear and colorless, while the non-porous regions 30 may be a relatively opaque blue color. This arrangement results in the porous region 26 being a clear, colorless ring that is readily visible to the physician.

The exemplary therapeutic element 14 is provided with a stabilizing structure 44 (Figure 3). The stabilizing structure 44 preferably includes a flexible,

non-conductive tubular member 46 and a tip member 48 on the distal end of the tubular member. The flexibility of the tubular member 46, which supports the electrode 32 and thermistor 34 and also provides passage for the conductors 38 and 40, prevents tissue perforation. Tip member 48 includes a blunt distal surface that prevents tissue perforation. During assembly, the proximal end of the tubular member 46 may be secured within the distal end of the shaft 12 with a suitable adhesive material 50 (such as cyanoacrylate) in the manner illustrated in Figure 5.

The exemplary therapeutic element 14 illustrated in Figure 3 is molded such that the inner diameter of its proximal end 52 closely corresponds to the outer diameter of the shaft 12 and the inner diameter of its distal end 54 closely corresponds to the outer diameter of tip member 48. The polymer coating 20 may be removed from the distal tip of the shaft 12 prior to assembly (as shown) or left in place and the therapeutic element proximal end 52 positioned thereover. Cyanoacrylate or another suitable adhesive material may be used to secure the therapeutic element proximal and distal ends 52 and 54 in place and provide fluid tight seals.

With respect to materials, the porous region 26 is preferably formed from regenerated cellulose or a microporous elastic polymer. Hydro-Fluoro M material is another exemplary material. Materials such as nylons (with a softening temperature above 100°C), PTFE, PEI and PEEK that have micropores created through the use of lasers, electrostatic discharge, ion beam bombardment or other processes may also be used. Such materials would preferably include a hydrophilic coating. The micropores should be about 1 to 5 μm in diameter and occupy about 1% of the surface area of the porous region 26. A slightly larger pore diameter may also be employed. Because the larger pore diameter would result in significant fluid transfer through the porous region, a saline solution having a sodium chloride concentration of about 0.9% weight by volume is preferred.

The non-porous regions are preferably formed from relatively elastic materials such as silicone and polyisoprene. However, other less elastic materials, such as Nylon®, Pebax®, polyethylene, polyesterurethane and

polyester, may also be used. Here, the inflatable therapeutic element 14 may be provided with creased regions that facilitate the collapse of the porous electrode.

5 Additional information and examples of expandable and collapsible bodies are disclosed in U.S. Patent application Serial No. 08/984,414, entitled "Devices and Methods for Creating Lesions in Endocardial and Surrounding Tissue to Isolate Arrhythmia Substrates," U.S. Patent No. 5,368,591, and U.S. Patent No. 5,961,513, each of which is incorporated herein by reference.

10 The therapeutic element 14 will typically be filled with conductive fluid prior to insertion of the surgical probe 10 into the patient. As illustrated for example in Figures 2, 5, 6 and 7, the conductive fluid is supplied under pressure to the inflatable therapeutic element 14 by way of an infusion lumen 56. The fluid exits the therapeutic element 14 by way of a ventilation lumen 58. The infusion and ventilation lumens 56 and 58 extend from the distal end 15 of the shaft 12 and through a pair of apertures 60 and 62 in the handle 16. The proximal ends of the infusion and ventilation lumens 56 and 58 are provided with on-off valves 64 and 66, which may be connected to the infusion and ventilation lines 68 and 70 of a fluid supply device 72 such as, for example, an infusion pump capable of variable flow rates.

20 In a preferred implementation, the conductive fluid is continuously infused and ventilated (at a rate of about 4-8 mils/minute for a therapeutic element 14 that is about 1.5 cm in diameter). Thus, in addition to inflating the therapeutic element 14 and providing a conductive path from the electrode 32 to the tissue, the fluid cools the therapeutic element so that heat is only generated within the tissue by virtue of the passage of current therethrough.

25 The pressure of the fluid supplied by the fluid supply device 72 within the therapeutic element 14 should be relatively low (less than 20 psi) and may be varied by the fluid supply device in accordance with the desired level of inflation, strength of materials used and the desired degree of flexibility. The 30 pressure, which is a function of the fluid flow rate, may be increased by increasing the fluid flow rate and decreased by decreasing the fluid flow rate. The desired pressure may be input into the fluid supply device 72 and

pressure regulation may be performed automatically by a controller within the fluid supply device which varies the flow rate as appropriate. Alternatively, the flow rate (and pressure) may be varied manually by the physician.

Pressure within the therapeutic element 14 may be monitored in a variety of ways. For example, flow through the infusion and ventilation lumens 56 and 58 may be cut off for a brief period (about 1 second) so that the fluid pressure can be measured by a pressure sensor 74 associated with the fluid supply device 72 (as shown) or with one of the valves 64 and 66. Alternatively, a pressure sensor lumen (not shown) that is filled with non-flowing fluid and extends from the interior of the therapeutic element 14 to the pressure sensor 74 associated with the fluid supply device 72, or to a pressure sensor associated with one of the valves 64 and 66, may be used without cutting off the fluid flow.

Varying the level of pressure within the therapeutic element 14 allows the physician to achieve the appropriate level of tissue contact, even when the shaft 14 is not perfectly perpendicular to the target tissue area and when the target tissue area is somewhat uneven. For example, a stiffer therapeutic element 14 (which distorts the tissue) would be preferred when the pulmonary vein ostium is relatively circular and when the ostium tissue is relatively healthy and pliable. A more flexible therapeutic element 14 (which conforms to the tissue) would be preferred when the ostium is not circular and the ostium tissue is relatively calcified and rigid due to disease. The ability to vary the stiffness allows the physician to easily form a lesion that extends completely around the pulmonary vein or other bodily orifice by simply inserting the distal portion of the probe 10 into the patient, positioning the therapeutic element 14 in or around the bodily orifice, and applying power.

The present inventions are, of course, applicable to therapies in areas other than the treatment of atrial fibrillation. One such therapy is the treatment of tumors, such as the cancerous tumors associated with breast cancer and liver cancer. One example of a surgical probe that is well suited for the treatment of tumors is illustrated in Figure 8 and generally represented by reference numeral 76. Surgical probe 76 is substantially identical to the probe 10 illustrated in

Figures 1-7. Here, however, the probe includes a therapeutic element 78 that is formed from the same material as microporous region 26 and is entirely covered with micropores 28. Although the size and shape will vary in accordance with the intended application, the exemplary therapeutic element 5 78 is approximately 5 mm to 50 mm in length and has a diameter of about 10 mm to 40 mm when inflated.

The exemplary surgical probe 76 illustrated in Figure 8 may be introduced to a target location, such as within a cancerous tumor, using a variety of techniques. Such techniques include laparoscopic techniques where 10 the probe will be introduced with a trocar, radially expandable port, or step trocar expandable port. The therapeutic element 78 should be deflated during the introduction process. Once the therapeutic element 78 is at the target location, it may be inflated and the tissue coagulated in the manner described above. The therapeutic element 78 will be deflated and removed from the 15 patient by way of the trocar, radially expandable port, or step trocar expandable port when the coagulation procedure is complete.

The exemplary therapeutic element 78, as well as the other therapeutic elements described below that are intended to be expanded within the tissue of solid organ tissue or expanded within other tissue (see Figures 9, 10 and 20 12-16), may include larger pores than therapeutic elements that are expanded prior to use or expanded within a hollow region inside an organ or other portion of the body. Pore sizes up to 0.1 mm are acceptable. The larger pore sizes may be used because the tight fit between the tissue and the inflated therapeutic element that results from the inflation of the therapeutic element 25 within solid tissue increases the effective flow resistance through the pores 28. Additionally, the small amount of electrically conductive fluid leakage that may be associated with the use of larger pores will decrease ohmic losses and allow power to be increased without tissue charring and vaporization.

Although its uses are not so limited, the exemplary surgical probe 80 30 illustrated in Figures 9 and 10 is also particularly well suited for treating tumors. Surgical probe 80 includes a hollow needle 82, a movable therapeutic assembly 84 that consists of a shaft 12' and a therapeutic element 78', and a

movable stylet 86 that protects the therapeutic element. The therapeutic assembly 84 and stylet 86 may be independently moved proximally and distally relative to the hollow needle 82 with slideable knobs 88 and 90 mounted on the handle 16'.

5 Surgical probe 80 may be introduced into the patient through a trocar or any appropriate port and the hollow needle 82 used to pierce through tissue and enter a target location such as a tumor. The hollow needle 82 may, alternatively, be used to introduce the surgical probe 80 into the patient as well as to pierce through tissue and enter the target location. In either case, 10 once within the tumor or other target location, the hollow needle 82 and stylet 86 may be withdrawn while the therapeutic assembly 84 is held in place so that the therapeutic element 78' will remain within the target location. The therapeutic element 78' may then be inflated and the tissue associated with the target location coagulated in the manner described above. Once the 15 coagulation procedure is complete, the therapeutic element 78' will be deflated so that the stylet 86 can be slid over the therapeutic element. Both will then be pulled back into the hollow needle 82 so that the probe 80 can be removed from the patient.

20 The size, shapes and materials used to form the hollow needle 82, therapeutic assembly 84 and stylet 86 will vary in accordance with the intended application.

25 With respect to tumor treatment, the exemplary hollow needle 82 is preferably linear, is between about 1.3 cm and 7.6 cm in length, and has an outer diameter that is between about 2.0 mm and 6.4 mm and an inner diameter that is between about 1.5 mm and 5.8 mm. Suitable materials for the hollow needle 82, which is preferably either straight or has a preset curvature, include stainless steel and Nitinol. The shaft 12' is preferably straight (although it can have a curvature) and rigid (although it may be malleable) and the stiffness is uniform from one end to the other. Suitable materials 30 include stainless steel, Nitinol and rigid polymers. The diameter is preferably between about 0.6 mm and 4.6 mm. The exemplary therapeutic element 78' is approximately 19 mm to 38 mm in length, a diameter of about 5 mm and 40

mm when inflated, with a wall thickness of about 0.025 mm to 0.250 mm. The stylet 86 may be formed from materials such as stainless steel and Nitinol and preferably has an outer diameter that is between about 1.4 mm and 5.7 mm and an inner diameter that is between about 1.1 mm and 5.2 mm.

5 Turning to Figure 11, surgical probes in accordance with other embodiments of the present inventions, which are otherwise substantially identical to the probe 10 illustrated in Figures 1-7, may include a heated inflatable therapeutic element 92 in place of the porous therapeutic element 14. The exemplary therapeutic element 92, which is supported on the distal 10 end of the shaft 12 in essentially the same manner as therapeutic element 14, can be inflated with water, hypertonic saline solution, or other biocompatible fluids. The fluid may be supplied under pressure to the therapeutic element 92 by the fluid supply device 72 in the manner described above. The pressure should be relatively low (less than 20 psi) and will vary in accordance with the 15 desired level of inflation, strength of materials used and the desired level of flexibility. The fluid will preferably be continuously infused and ventilated for cooling purposes. Alternatively, the fluid may instead fill the therapeutic element, remain there to be heated, and then be ventilated after the lesion formation procedure has been completed.

20 A fluid heating element is located within the therapeutic element 92. The fluid heating element is preferably an electrode (not shown) that may be formed from metals such as platinum, gold and stainless steel and mounted on the support structure 44. A bi-polar pair of electrodes may, alternatively, be used to transmit power through a conductive fluid, such as isotonic saline 25 solution, to generate heat. The temperature of the fluid may be heated to about 90 °C, thereby raising the temperature of the exterior of the therapeutic element 92 to approximately the same temperature for tissue coagulation. It should be noted, however, that the therapeutic element 92 tends to produce relatively superficial lesions.

25 Suitable materials for the exemplary therapeutic element 92 include relatively elastic thermally conductive biocompatible materials such as silicone and polyisoprene. Other less elastic materials, such as Nylon®, Pebax®,

polyethylene and polyester, may also be used. Here, the therapeutic element 92 will have to be formed with fold lines. A temperature sensing element may also be provided. The heating electrode and temperature sensing element will be connected to the electrical connector 36 in the handle 18 by electrical conductors in the manner described above. Suitable power supply and control devices, which control power to based on a sensed temperature, are disclosed in U.S. Patent Nos. 5,456,682, 5,582,609 and 5,755,715.

5 The exemplary therapeutic element 92 may also be used in conjunction with the surgical probes illustrated in Figures 8-10.

10 As illustrated for example in Figures 12-16, a surgical probe 94 in accordance with a preferred embodiment of a present invention includes a plurality of tissue penetrating needles 96 that may be advanced outwardly from, and retracted back into, the distal end of a shaft 12 with a slidable knob 98. The number of needles 96, which may be glued, clamped or otherwise secured to the slidable knob 98, preferably ranges from 1 to 25. Each of the needles 96 includes a main body 100, a sharpened tip 102 and an inflatable porous therapeutic element 104 with micropores 28. The materials used to form the therapeutic element 104, as well as the conductive fluid used therewith, are the same as those described above with respect to the porous region 26. Hydro-Fluoro M material may also be used. When inflated, a fluid circulation space 106 is defined between the main body 100 and the therapeutic element 104. An electrode 32 and a thermistor 34, which are positioned on the main body 100 within the space 106, are connected to the electrical connector 36 by conductors 38 and 40.

15 20 25 30 35 Although other configurations may be employed, the exemplary tissue penetrating needles 96 preferably have the preset curvature illustrated in Figure 13 and will assume this curvature when they are advanced outwardly from the distal end of the shaft 12. To that end, suitable shape-memory materials for the needles 96 include stainless steel and Nitinol. It should be noted that the needles 96 do not each have to have the same curvatures or to even be curved at all. The needles 96 are preferably about 0.25 mm to 1.25 mm in diameter and the curved region is about 2.5 cm in length, while the

5 diameter of the porous therapeutic element 104 is about 1 mm to 10 mm when inflated and the thickness of the porous material is about 0.025 mm to 0.250 mm. In an implementation with six (6) needles 96, the probe 94 would produce a lesion that is about 2 cm to 3 cm deep and about 2 cm to 3 cm in diameter.

10 The exemplary tissue penetrating needles 96 each include infusion and ventilation sub-lumens 108 and 110 with distal ends that respectively terminate at infusion and ventilation apertures 112 and 114 within the therapeutic element 104. The proximal ends of the infusion and ventilation sub-lumens 108 and 110 in each of the needles 96 are connected to the infusion lumen 56 and ventilation lumen 58 by a pair of suitable plumbing junctions located within the handle 16".

15 It should be noted that, because the needles 96 are moved back and forth relative to the 12, the conductors 38 and 40 and sub-lumens 108 and 110 should include some slack within the handle 16".

20 In addition to conducting energy, the conductive fluid may be continuously infused and ventilated through the therapeutic elements 104 such that it draws heat away from the therapeutic element and the tissue adjacent thereto. This results in the formation of relatively deep, large volume lesions (as compared to devices with conventional needle electrodes) without charring and coagulation. Cooling the therapeutic elements 104 and the adjacent tissue also greatly reduces the amount of time required to form a large volume lesion (as compared to devices with conventional needle electrodes) because higher power is provided when heat is removed from the area adjacent to the needles 96.

25 Each of the devices described above may be operated in both low voltage modes and high voltage modes. In an exemplary low voltage mode, RF energy will be applied that has a waveform shape and duration that electrically heats and kills tissue in the target region. A typical lesion within the heart could be formed by delivering approximately 150 watts of power for about 10 to 120 seconds at a radio frequency of 500 kHz. Applied voltages may range from 60 to 100 volts rms.

Turning to high voltage modes, high voltage energy pulses can be used to kill, coagulate or otherwise modify tissue in at least three ways. For example, the creation of high voltage gradients within the tissue dielectrically breaks down tissue structures. In addition, ohmically heating tissue will 5 coagulate tissue structures, while ohmically heating to very high temperatures will vaporize tissue.

With respect to killing tissue through the dielectric breakdown of cell membranes, relatively short (about 0.1 msec) high voltage (about 400 to 4000 volts with 1000 volts being preferred) RF pulses that result in voltage 10 gradients at or above 500 volts/cm being induced in tissue will accomplish the desired result. Turning to heating, a high voltage RF pulse (about 500 to 1200 volts in magnitude and about 50 to 100 msec in duration) delivers relatively high power to tissue, thereby enabling very rapid heating. Because the tissue is heated rapidly, there is essentially no convective heat loss during power 15 application. Tissue vaporization can be performed through the use of high voltage energy pulses with a pulse duration of about 250 msec to 1 sec. Additional information concerning high and low voltage tissue modification is provided in U.S. Patent No. 6,023,638, which is incorporated herein by reference.

20 Although the present inventions have been described in terms of the preferred embodiments above, numerous modifications and/or additions to the above-described preferred embodiments would be readily apparent to one skilled in the art. It is intended that the scope of the present inventions extend to all such modifications and/or additions and that the scope of the present 25 inventions is limited solely by the claims set forth below.

We claim:

- 1 1. A surgical probe, comprising:
 - 2 a relatively short shaft defining a distal portion and a proximal
 - 3 portion; and
 - 4 an inflatable therapeutic element associated with the distal
 - 5 portion of the shaft.
- 1 2. A surgical probe as claimed in claim 1, wherein the relatively short
- 2 shaft is relatively stiff.
- 1 3. A surgical probe as claimed in claim 1, wherein the relatively short
- 2 shaft is malleable.
- 1 4. A surgical probe as claimed in claim 3, wherein the proximal
- 2 portion of the relatively short shaft is stiffer than the distal portion of the relatively
- 3 short shaft.
- 1 5. A surgical probe as claimed in claim 1, wherein at least a portion
- 2 of the inflatable therapeutic element comprises micropores.
- 1 6. A surgical probe as claimed in claim 1, wherein the inflatable
- 2 therapeutic element includes a distally facing energy transmission region.
- 1 7. A surgical probe as claimed in claim 6, wherein the energy
- 2 transmission region is annularly shaped.
- 1 8. A surgical probe as claimed in claim 7, wherein the energy
- 2 transmission region surrounds a non-conductive region.
- 1 9. A surgical probe as claimed in claim 6, wherein the inflatable
- 2 therapeutic element includes a proximally facing non-conductive region.

1 10. A surgical probe as claimed in claim 1, wherein the inflatable
2 therapeutic element includes an energy transmission region and a non-
3 conductive region and at least one of the energy transmission region and the
4 non-conductive region define a color that visually distinguishes it from the other
5 of the energy transmission region and the non-conductive region.

1 11. A surgical probe as claimed in claim 1, wherein the inflatable
2 therapeutic element is mounted on the distal portion of the shaft.

1 12. A surgical probe as claimed in claim 1, wherein the shaft defines a
2 distal end, the surgical probe further comprising:
3 a needle slidably mounted within the shaft and movable relative to
4 the shaft such that a distal portion of the needle extends outwardly from the
5 distal end of the shaft, the inflatable therapeutic element being mounted on the
6 distal portion of the needle.

1 13. A surgical probe as claimed in claim 12, wherein the needle
2 comprises a plurality of needles and the inflatable therapeutic element
3 comprises a plurality of inflatable therapeutic elements respectively mounted on
4 the plurality of needles.

1 14. A surgical probe as claimed in claim 12, wherein the distal portion
2 of the needle defines a preset curvature.

1 15. A surgical probe system, comprising:
2 a surgical probe including a relatively short shaft defining a distal
3 portion and a proximal portion and an inflatable therapeutic element
4 associated with the distal portion of the shaft; and
5 a fluid source operably connected to the inflatable therapeutic
6 element and adapted to maintain pressure within the inflatable therapeutic
7 element at a predetermined level.

1 16. A surgical probe system as claimed in claim 15, wherein the
2 relatively short shaft is malleable.

1 17. A surgical probe system as claimed in claim 15, wherein at least a
2 portion of the inflatable therapeutic element comprises micropores.

1 18. A surgical probe system as claimed in claim 15, wherein the
2 inflatable therapeutic element includes a distally facing energy transmission
3 region.

1 19. A surgical probe system as claimed in claim 14, wherein the
2 distally facing energy transmission region is annularly shaped.

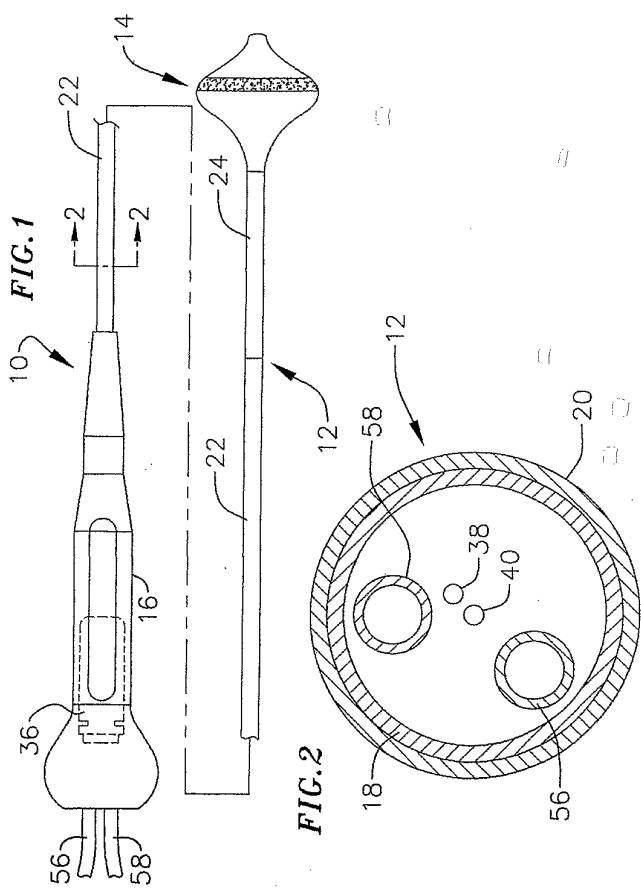
1 20. A surgical probe system as claimed in claim 19, wherein distally
2 shaped energy transmission region surrounds a non-conductive region.

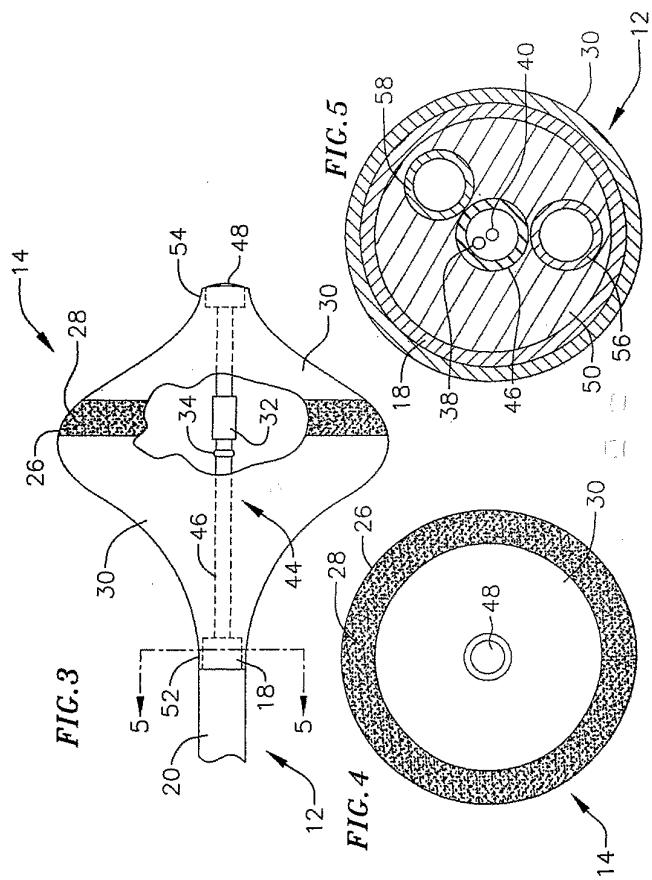
1 21. A surgical probe system as claimed in claim 19, further comprising
2 a pressure sensor adapted to determine the pressure within the inflatable
3 therapeutic element.

1 22. A surgical probe system as claimed in claim 21, wherein the
2 pressure sensor is associated with the fluid source.

1 23. A surgical probe system as claimed in claim 19, wherein the fluid
2 source comprises a pump.

1 24. A surgical probe system as claimed in claim 19, wherein the fluid
2 source continuously infuses fluid to and ventilates fluid from the inflatable
3 therapeutic element.


1 25. A surgical probe system as claimed in claim 15, wherein the
2 inflatable therapeutic element is mounted on the distal portion of the shaft.


1 26. A surgical probe system as claimed in claim 15, wherein the shaft
2 defines a distal end, the surgical probe further comprising:
3 a needle slidably mounted within the shaft and movable relative to
4 the shaft such that a distal portion of the needle extends outwardly from the
5 distal end of the shaft, the inflatable therapeutic element being mounted on the
6 distal portion of the needle.

1 27. A surgical probe system as claimed in claim 26, wherein the
2 needle comprises a plurality of needles and the inflatable therapeutic element
3 comprises a plurality of inflatable therapeutic elements respectively mounted on
4 the plurality of needles.

1 28. A surgical probe system as claimed in claim 26, wherein the distal
2 portion of the needle defines a preset curvature.

1 29. A surgical probe, comprising:
2 a hollow needle; and
3 a therapeutic assembly, located within the hollow needle and
4 movable relative thereto, including a relatively short shaft defining a distal
5 portion and a proximal portion and an inflatable therapeutic element
6 associated with the distal portion of the shaft.

WO 02/47566

3/7

PCT/EP01/14347

FIG. 6

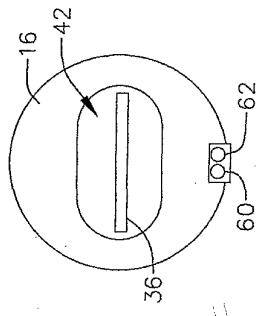


FIG. 7

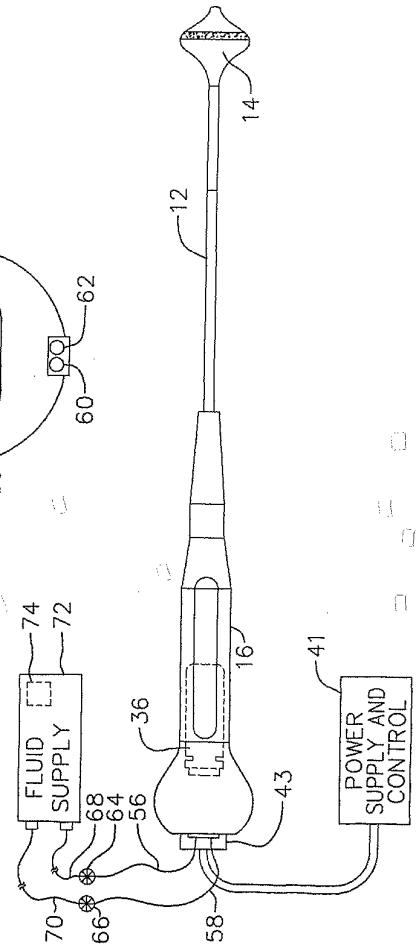
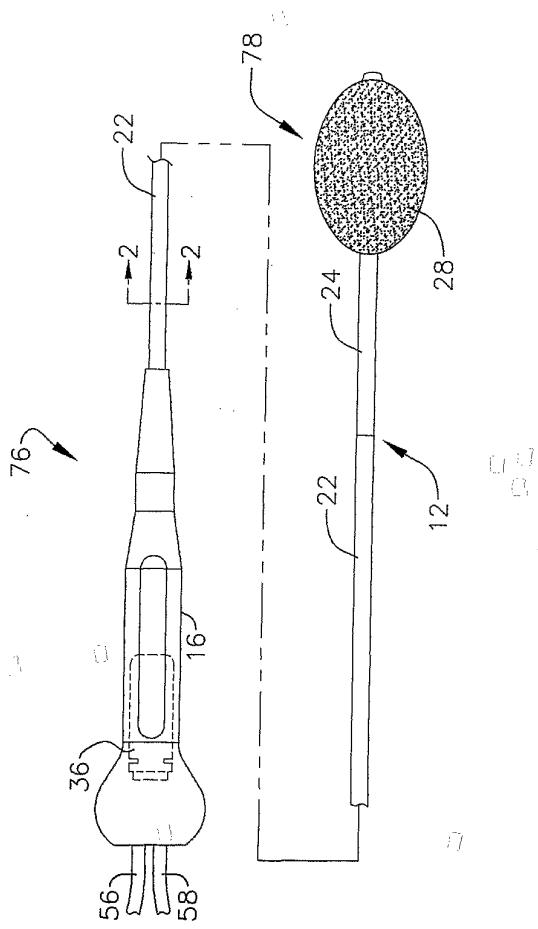



FIG. 8

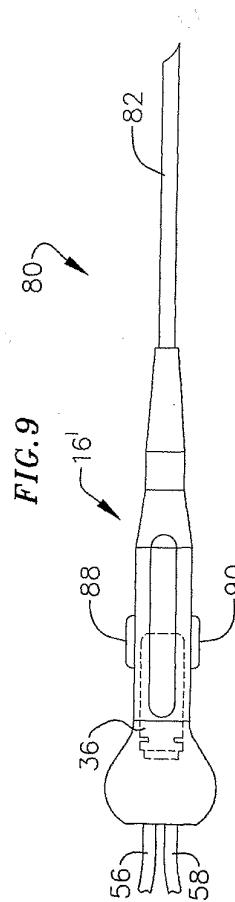


FIG. 9

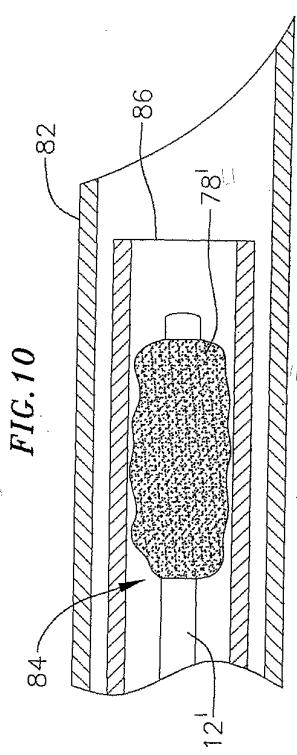
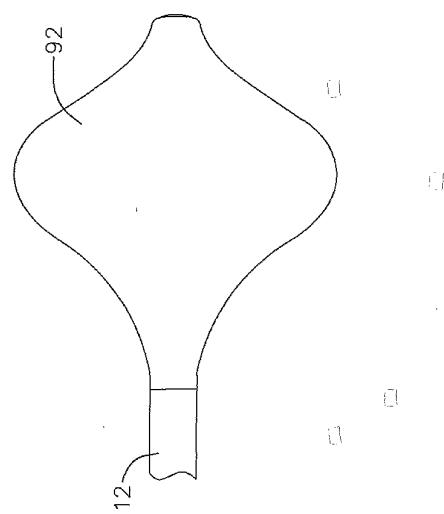
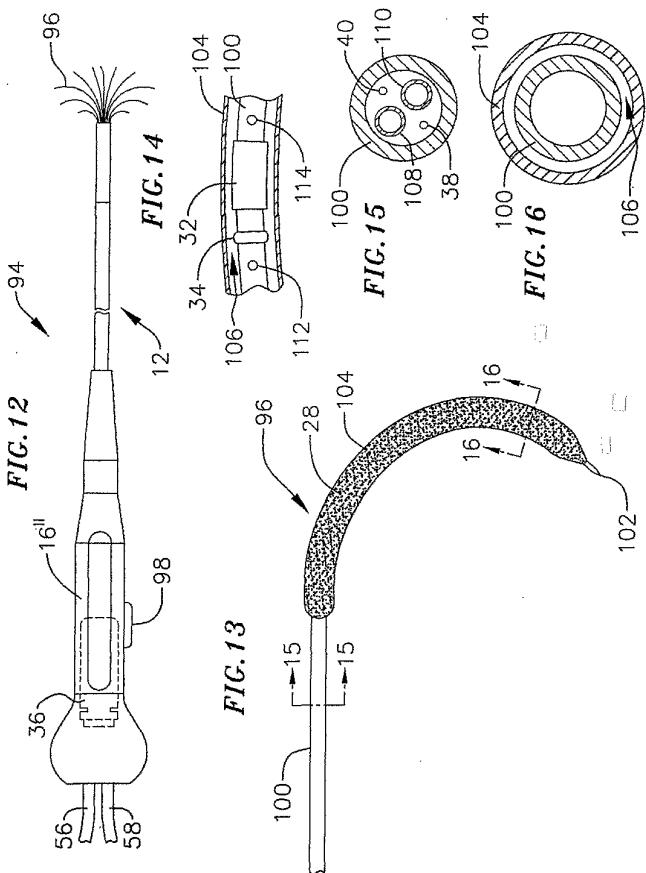




FIG. 10

FIG. 11

【国際調査報告】

INTERNATIONAL SEARCH REPORT																			
<table border="1" style="width: 100px; text-align: center;"> <tr> <td>Int'l. Application No</td> </tr> <tr> <td>PCT/EP 01/14347</td> </tr> </table>		Int'l. Application No	PCT/EP 01/14347																
Int'l. Application No																			
PCT/EP 01/14347																			
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61B18/14																			
According to International Patent Classification (IPC) or to both national classification and IPC																			
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 A61B																			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched																			
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ																			
C. DOCUMENTS CONSIDERED TO BE RELEVANT <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="width: 10%;">Category *</th> <th style="width: 80%;">Citation of document, with indication, where appropriate, of the relevant passages</th> <th style="width: 10%;">Relevant to claim No.</th> </tr> </thead> <tbody> <tr> <td>X</td> <td>US 6 002 968 A (EDWARDS STUART D) 14 December 1999 (1999-12-14)</td> <td>1,2,5,6, 9,11,15, 17,18,25</td> </tr> <tr> <td>Y</td> <td>column 3, line 66 -column 4, line 9 column 5, line 10 - line 51 column 6, line 47 -column 7, line 14; figure 8B</td> <td>3,4,7,8, 16,19-24</td> </tr> <tr> <td>X</td> <td>DE 21 24 684 A (STADELMANN W) 30 November 1972 (1972-11-30)</td> <td>1,5,11, 12,15, 17,23, 25,26,29</td> </tr> <tr> <td>Y</td> <td>page 5, paragraph 7</td> <td>13,14, 27,28</td> </tr> <tr> <td></td> <td style="text-align: center;">-/-</td> <td></td> </tr> </tbody> </table>		Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	X	US 6 002 968 A (EDWARDS STUART D) 14 December 1999 (1999-12-14)	1,2,5,6, 9,11,15, 17,18,25	Y	column 3, line 66 -column 4, line 9 column 5, line 10 - line 51 column 6, line 47 -column 7, line 14; figure 8B	3,4,7,8, 16,19-24	X	DE 21 24 684 A (STADELMANN W) 30 November 1972 (1972-11-30)	1,5,11, 12,15, 17,23, 25,26,29	Y	page 5, paragraph 7	13,14, 27,28		-/-	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.																	
X	US 6 002 968 A (EDWARDS STUART D) 14 December 1999 (1999-12-14)	1,2,5,6, 9,11,15, 17,18,25																	
Y	column 3, line 66 -column 4, line 9 column 5, line 10 - line 51 column 6, line 47 -column 7, line 14; figure 8B	3,4,7,8, 16,19-24																	
X	DE 21 24 684 A (STADELMANN W) 30 November 1972 (1972-11-30)	1,5,11, 12,15, 17,23, 25,26,29																	
Y	page 5, paragraph 7	13,14, 27,28																	
	-/-																		
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C. <input checked="" type="checkbox"/> Patent family members are listed in annex.																			
* Special categories of cited documents :																			
A document defining the general state of the art which is not considered to be of particular relevance																			
E earlier document but published on or after the international filing date																			
L document which may throw doubt on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)																			
O document referring to an oral disclosure, use, exhibition or other means																			
P document published prior to the international filing date but later than the priority date claimed																			
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention																			
X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone																			
V document of particular relevance; the claimed invention cannot be considered inventive in view of this step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art																			
G document member of the same patent family																			
Date of the actual completion of the international search	Date of mailing of the international search report																		
15 April 2002	22/04/2002																		
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentsteen 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax. (+31-70) 340-3016	Authorized officer Mayer, E																		

Form PCT/ISA/210 (second sheet) (July 1999)

INTERNATIONAL SEARCH REPORT		Int'l Application No PCT/EP 01/14347
C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 6 152 920 A (FLEISCHMAN SIDNEY D ET AL) 28 November 2000 (2000-11-28) column 10, line 51 - line 65 column 12, line 12 - line 27; figure 1 -----	3,4,16
Y	WO 00 56237 A (ATRIONIX INC) 28 September 2000 (2000-09-28) page 26, line 4 - line 6; figure 3A -----	7,8, 19-24
Y	US 6 053 937 A (BURNS PATRICK J ET AL) 25 April 2000 (2000-04-25) column 4, line 52 - line 54; figures 1B, -----	13,14, 27,28
A	US 5 879 348 A (PANESCU DORIN ET AL) 9 March 1999 (1999-03-09) column 18, line 60 -column 19, line 3; figure 11 -----	1,7,15, 19
P,X	WO 01 37746 A (BOSTON SCIENT LTD) 31 May 2001 (2001-05-31) ----- page 9, line 2 - line 11 page 13, line 1 - line 12; figure 5 -----	1-3,5-9, 11, 15-20, 23-25

Form PCT/ISA210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT
Information on patent family members

Int'l Appl. No.
PCT/EP 01/14347

Patent document cited in search report		Publication date	Patent family member(s)	Publication date	
US 6002968	A	14-12-1999	US 5964755 A US 5575788 A US 5558672 A US 5569241 A US 5505730 A AU 3660699 A WO 9953853 A1 WO 0176495 A1 US 6024743 A US 6302898 B1 US 6006755 A US 6009877 A US 6056744 A US 6044846 A US 6092528 A US 6254598 B1 US 6315776 B1 US 2001034518 A1 AU 2871795 A NL 1000670 C2 NL 1000670 A1 WO 9600041 A1 US 5681308 A US 5769846 A AU 707548 B2 AU 2998195 A CA 2193964 A1 EP 0767629 A1 WO 9600042 A1 US 5827273 A US 5800429 A US 5746224 A US 5823197 A US 5843077 A	12-10-1999 19-11-1996 24-09-1996 29-10-1996 09-04-1996 08-11-1999 28-10-1999 18-10-2001 15-02-2000 16-10-2001 28-12-1999 04-01-2000 02-05-2000 04-04-2000 25-07-2000 03-07-2001 13-11-2001 25-10-2001 19-01-1996 22-04-1996 27-12-1995 04-01-1996 28-10-1997 23-06-1998 15-07-1999 19-01-1996 04-01-1996 16-04-1997 04-01-1996 27-10-1998 01-09-1998 05-05-1998 20-10-1998 01-12-1998	
DE 2124684	A	30-11-1972	DE 2124684 A1	30-11-1972	
US 6152920	A	28-11-2000	CA 2305525 A1 EP 1024761 A2 JP 2001519199 T US 6142994 A WO 9918878 A2	22-04-1999 09-08-2000 23-10-2001 07-11-2000 22-04-1999	
WO 0056237	A	28-09-2000	AU 4173300 A WO 0056237 A2	09-10-2000 28-09-2000	
US 6053937	A	25-04-2000	US 5800484 A US 5728143 A US 5683384 A AU 2254397 A CN 1211171 A EP 0883379 A1 JP 2000507844 T US 6132425 A US 6080150 A WO 9729702 A1 US 2002026185 A1 AU 6851096 A	01-09-1998 17-03-1998 04-11-1997 02-09-1997 17-03-1999 16-12-1998 27-06-2000 17-10-2000 27-06-2000 21-08-1997 28-02-2002 12-03-1997	

Form PCT/ISA210 (patent family annex) (July 1992)

INTERNATIONAL SEARCH REPORT
Information on patent family members

Int'l. Appl. No.
PCT/EP 01/14347

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 6053937	A		AU 6851296 A	12-03-1997
			AU 6898196 A	12-03-1997
			AU 7007996 A	12-03-1997
			EP 0957988 A2	24-11-1999
			EP 0851743 A1	08-07-1998
			EP 0860024 A1	01-07-1998
			JP 11511988 T	19-10-1999
			JP 2000500033 T	11-01-2000
			JP 11511991 T	19-10-1999
			JP 11511992 T	19-10-1999
			JP 2001231790 A	28-08-2001
			KR 243503 B1	02-03-2000
			KR 243744 B1	02-03-2000
			NL 1003793 C2	02-05-1997
			NL 1003793 A1	18-02-1997
			US 5980517 A	09-11-1999
			WO 9706739 A2	27-02-1997
			WO 9706740 A2	27-02-1997
			WO 9706855 A2	27-02-1997
			WO 9706857 A2	27-02-1997
			US 6330478 B1	11-12-2001
			US 6235023 B1	22-05-2001
			US 5863290 A	26-01-1999
			US 5782827 A	21-07-1998
			US 5735847 A	07-04-1998
			US 5672173 A	30-09-1997
			US 5672174 A	30-09-1997
			US 5810804 A	22-09-1998
			US 2001001819 A1	24-05-2001
			US 6071280 A	06-06-2000
			US 5928229 A	27-07-1999
			US 5951547 A	14-09-1999
			US 6095042 A	20-07-1999
			US 5913855 A	22-06-1999
			US 6059780 A	09-05-2000
			US 6090105 A	18-07-2000
US 5879348	A	09-03-1999	CA 2243481 A1	04-12-1997
			EP 0975386 A1	02-02-2000
			US 6099526 A	08-08-2000
			WO 9725918 A1	24-07-1997
			WO 9725919 A1	24-07-1997
			WO 9745156 A2	04-12-1997
WO 0137746	A	31-05-2001	WO 0137746 A1	31-05-2001

Form PCT/ISA210 (patent family annex) (July 1992)

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,OM,PH,P,L,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZM,ZW

(72)発明者 コブリッシュ, ジョセフ ブイ.

アメリカ合衆国 カリフォルニア 94306, パロ アルト, マグノリア ドライブ 13
898, アパートメント 3

(72)発明者 ヘッジ, アナント

アメリカ合衆国 カリフォルニア 94560, ニューアーク, テュラウスストリート 36
105

(72)発明者 スワンソン, デイビッド, ケイ.

アメリカ合衆国 カリフォルニア 94040, キャンベル, リッジリー ドライブ 145
8

F ターム(参考) 4C060 FF29 KK04 KK09 KK12 KK16