a2 United States Patent

Barrack et al.

US007142551B2

US 7,142,551 B2
Nov. 28, 2006

(10) Patent No.:
45) Date of Patent:

(54) HARDWARE IMPLEMENTATION OF (56) References Cited
VOICE-OVER-IP PLAYBACK WITH
SUPPORT FOR COMFORT NOISE U.S. PATENT DOCUMENTS
INSERTION 5,793,747 A *  8/1998 KIne ..oovvrverrrrrrrrnnnne. 370/230
(75) Inventors: Craig Barrack, Irvine, CA ([JS), 2002/0191625 Al* 12/2002 Kelly et al. ................. 370/412
James Yik, Mission Viejo, CA (US) * cited b .
(73) Assignee: Zarlink Semiconductor V.N. Inc., cited by examuner
Irvine, CA (US) Primary Examiner—Chau Nguyen
) ) o ) Assistant Examiner—Christopher Grey
(*) Notice:  Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm—Lawrence E. Laubscher, Jr.
patent is extended or adjusted under 35
U.S.C. 154(b) by 1045 days. (57) ABSTRACT
(21) Appl. No.: 10/195,657 Methods and apparatus are presented for scheduling play-
) back for voice data sample packet payloads conveyed over
(22) Filed: Jul. 15, 2002 best-effort packet-switched infrastructure. The hardware
. L. implementation presented provides support for concurrent
(65) Prior Publication Data and independent comfort noise insertion and for dynamic
US 2004/0008715 Al Jan. 15, 2004 clock adjustment for telephone sessions provisioned con-
currently without making recourse to signaling. The appa-
(51) Inmt. Cl ratus and methods support high density solutions scaleing up
HO4L 12/28 (2006.01) to large numbers of concurrently provisioned telephone
(52) US.CL .o 370/412; 370/468 sessions.
(58) Field of Classification Search ..................... None
See application file for complete search history. 20 Claims, 5 Drawing Sheets
100 " 130 H
H Time Indexed Table T~ .
\/ﬁ 136 132 StreamID indexed E
------- - H ves . 134 Event Scheduling !
Phone : Packet List - "’—“K Table H
i Element - [~ !
i %g Prev | Next E
{ Packet H i
/* Switched ¢ ,/ t :
\_ Network ) Packet 300 —ﬁ‘ :
'\_‘ {_._"7 Classifier E
«{ Input VOS Packets \ 190 Timing 138 !
" Block '
102 Cl?ck Drift E s
Adjustment E 122 !
700 : 300 :
V] 180 ; 500 :
T 4 [l
Playback i . ;
Module 1 | StreamID indexed Forwarding Table Forwarding H
: Module H
Buffer E %2 g:::: Packet? | Backlog 160 E
182 : 0 V4 :
142 ol :
Packet : N 170 :
omfort Noise | Buffer 140 ' ]
Pattern leosorosncncntanccnneaeencaccsnnmnnceccmcsacnasanaanasnneand :
T < Time Sequenced
A Voice Sample
Phone Playback 144



US 7,142,551 B2

Sheet 1 of 5

Nov. 28, 2006

U.S. Patent

L S A5
0Ll = —— N
\. . AR R

S
\ 0
Boproeg | ¢lavaeq | Mond | XAl
091 a|npow IXaN | QIS

Buipsemioy A_nm.r Buipiemiod paxepu) qjueasns

)

[ ]

[ ]

[ ]

[ ]

[ ]

]

[}

]

[}

'

1

1

[}

]

]

L}

]

'

' 00s

" 00v 051

' \ 44"

L

m /_m_zno:ow

; < < 3oolg

i 8el 2z) 4| B

]

' _\ 0zl 2Z1L
: I -
[ P e

m 5 [ / / 124"
m XON | Addd xal _ :.\w
' ais

! .

“ O_QN._- J/I‘I\\. . Cew o

' Buiinpayog jJusag .

‘ paxapuj qlueans vel

' ) A~ cel
m ogl L °l9eL paxspujawiy

L}

yoeqheld mmmmn_
L4ds sjdweg aalop v
paduanbag ouil] N s
' wayed
1 ori iayng | asjoN uojwog
' }oey >
-+ 00§ 2t
[]
' A1
[ ]
[ ]
H A
' G
’ yoeqhe|d
L
Y ~ (A
081 00L
[ ]
; Jusunsnipy
' BUQJ 4901D
: // N\c_F
I' e
2ag 061 sjeqoed dioA Indu| be,
o JaiIsse|n oy
\ ., 00€ Joyord \ domeN Y
* , pausymsg ¢
Plo IXaN H .., umw_um.n_ \.
HAAY e ' 90l oocssoa
I [ ]
[ '
L4
7 Juswo|g m
s1ieoed | auoyd 7
.V m (AL =
9t ~——
00l



US 7,142,551 B2

Sheet 2 of 5

Nov. 28, 2006

U.S. Patent

Va4 Zve ove
2 N )
Y Yoo,
- .o LI . Z M
TINN TINN 8888 !
(nd)os | (ad) 2L e 1 8cz
INN_ | (0d) pb8 06 A/
(‘nd) vr3 711NN Il w
.. .. 0 ...m
weals weals xepul 4
IXaN shojasld | glueans '
sjqe) Buynpeysg juaaz
. paxapu| qlueans
8clL vel
0ce
e
s
o€l

YA P NoN/\i TI0N_| TINN
~raav wam Naav W3w
902 9218 "Pid ~ | oz=2218
alweans 09€L} Mos=ais
..... cevecncancs ~—1
POTINN._ acl juswalg Juswa|3
w_mmm.ﬁ.m.ﬁw 1si73000ed | 1811 1039ed
; 92IS Vid $0Z ¥0z
. gqiuueansg H
Juowa|3 prz | [HOaywan ~} [daav waw
pelL 3817 39%9ed ~1™ 9218 Nd ascl Z¢ = 9218
~}» alweans 1S¢ = QIS
[4 %4
~J  wewe3 - {02 Juswely
9c 3817 J9x0Rd 1817 19%9ed
vee eee
) D
¥ N -+ JXoN
“1}d 317 JuUaA3 “11d 1817 19%9ed Haav Waw
— — Oy = ozIS
~Te “iid IS 3u0AT “id ¥s17 19)9ed ¢ LL=qlIS
e ‘l1d 1SI7JU8A3 "1} 1517 J9)9ed ¢
“I1d 317 JUaAT 1d IS 19428 - ¥ Juswolg
T T h 1817 39%9¢ed
—al 3d 3817 JUaAT "1d s 19)9ed zel N
1817 JU9A3 15|17 10%9ed : voel
_ A
B ajqel paxapuj swi} _ 9c?



US 7,142,551 B2

Sheet 3 of 5

Nov. 28, 2006

U.S. Patent

17

"OId

1S17 usAg
ayj o} Jajulod
yum a|npop
Buipremiog
apiaold

L~
ocy

A

1817 J9x0ed
ayj 0} J8juiod
yym a|npoy
Butpiemiod
apinoid

oy

A

10})28[38
xapu] awi)
2oUBAPY —

|\/

13|npayosg
uels

oLy

j

oov

uianed N w_n_
——1 9sION Hojwo
, Adeqkerd
2
onhv SaA

é
asualajey

asioN
HoJwon

(4 %72
\\
uoneIdossy (Sordues
agiweasjs
sujunaleq ejeq 9910/ doaQ
1
Y
sojdwesg
0L ejeq 9910A o/
jsenbey WorqAeld
e T ") oze
EYNELEYY I
/ 1 Aowap
b oBei0}S 183j0Rd
89l4

>

444

ainpon
yoeqAhe|d pels

vie a|qe) paxapu|
awy uy Agu3
pasuanbag awiy
Buipuodsaliion
zie T eunwsieq
aw| yoeqAeld
oL [ oEnoed
sseippy abeiolg
wcm/| Kioway 109
~_|_ ®1°ed d0is
90¢ I
Joxoed WO}
dwejgauiy
vom/.l joea)Xg
~ 19)0ed 9A1909Y Al\
20¢

1817 39)9ed

+

1ayy1sse[D
19398 HEIS

01194%ed PPV |




US 7,142,551 B2

Sheet 4 of 5

Nov. 28, 2006

U.S. Patent

Q
o
-
m,}

—~

J0LL

CL LT TS

0

0soL

144]

eccdenedeond

- -
Bopjoeg ¢

paunouy ¢

CL XX TP

OlqejieAy
1942ed

lecccaana

awi] JudAg
wealys IXeN

[]
'
H

alwesns m

(=3
[+2]

9901

Ll

9801

'

Bopyoeg
pa1inauj

[ Y CE e T PP

Lalqelieay

j9)0Rd

awl) JuUsAg
jueaIS JXON

¥
]
]
),
f
]

qlweens

¥4---d
Q)
-
7]

-—
(2]

cesccaeel T
g

o
M~
-—

AN\

v<

990

I 06

9801

ﬁ\\
voll

1 Bopjoeg
V paunou)

joyoed

iolqe|leAy

weans

awij JuaAg

oy | QIUE®

g9

E|

ns ¢

T o 4 0 8.0l LS¢ :
aois e : - Py
Bopyoe a|qeq n!"
~ poeg ooalgeieay | auwnLjuaag | oo
aozl paunau | j9yoed | weens Ixsn '
9lg 145} LS 8Ls
| ~ ~ |
N v X adi
p— o - N ;
0 0 9ol 8
~J,]
T g T
0 0 9ol 06 :
0 0 90l LL :
. . 0 am
Bopoeg {csalqenieay| awng juaag T
paunouj | 19yoeq | weans ixaN qiuesiis m
~4
0Ll o|qel Buipsemiod paxspu| qjweans




US 7,142,551 B2

Sheet 5 of 5

Nov. 28, 2006

U.S. Patent

oWl JuaAl IxeN
0} m:_ucoamm.:oo)\
moy ajgel
paxapu| awi] Aqg
pasuaiajay IS
jUaAz 03 Juawaly
3SI7 JUsA3 PRY

929

ainpow ¥oeqAeld|
0} 3senbay

yoeqAe|d as|ON

Hojwo piemiod

N S

| tsiuerg |
[ sywoy |
| juawagzis |
| JUBAZ 2A0wdY |

ST

:o: Oﬁ
plald s|qepeAy |« A
| 1908d 198

mva

Bopjoeg paimnou|
woli4q urened
9SI0N MOoJWoI jo
:o_u\m._zn_ 1oeang

vnw.w

Eb=
alqejieAy
j930ed
It

awil JueAl

IXaN 0} udened
9SION HOJWOY
40 uonjeing ppy

Y

giwesng

19oed o)
Buipuodsanion

MOy 9|qel
Bujpiemiog pur4

Fcnm

juawa|g 1817 JUsA3

ut s3SI JURA7 [

ay) woay
juaws|3 s
UIAT SAOWID
juang A
¥ 999

W] JUSAT IXaN
03 Buipuodsalio)n
Moy ajqel
paxapuj awi] Aq
pasuaJajay Isi
jusAg 0} Juawa|gz
JS17 JUSAT PPY

..\J
7 8v9

a|npo yoeqAeld
03] )sanbay

yoeqheld

piemio PN

059

9010/ 10} poyde
19)9ed
3

099 A 289

h 4 ¥

Juswisnfpy Aqg/
Bopjoeg pasnauj

yoeg Jod aseaisa(
( | " soquodssn | | jsryiedoeq |
009 | uaag aalaoey | [ pieasiq 1

uoneoyoads | g 4q
awl] JudAT IXeN Bopyoegq pasinau

o} g - uoneang , @sealou

yoeqAheld Zr9l »

PPV \ g asualayiqg

\ | eEnafed

v9 S i

o9 N

a[npop yoeqAe|d

éauny

0} 3sanbay JUSAT JXON =
yoeqAe|d A Xapu| awi],
piemiod X juaung

vi9 0L9
\ J P
sk O3 dlweang [
PiI2ld a|qelieAy j9)oed 0}
o)ded 188 | Buipuodsalion
m\hw Moy ajqel
! Buipiemio pui4

uopeoyoadg
awil] JUdAT IXaN
0} uopeing
xomn>m_m,nu<

Juswa|3 jst Ja30ed
yoseg 104

N

819

N S

I sequmogisiy |
| y9%0Rd 2A1999Y |




US 7,142,551 B2

1

HARDWARE IMPLEMENTATION OF
VOICE-OVER-IP PLAYBACK WITH
SUPPORT FOR COMFORT NOISE
INSERTION

RELATED APPLICATION INFORMATION

This application is related to co-pending U.S. patent
application Ser. No. 10/103,299 filed Mar. 20%, 2002
entitled “Method of Detecting Drift Between Two Clocks”
and co-pending U.S. patent application Ser. No. 10/139,644
flied May 7%, 2002 entitled “Time-Indexed Multiplexing as
an Efficient Method of Scheduling in Hardware”.

FIELD OF THE INVENTION

The invention relates to provisioning of telecommunica-
tion services, and in particular to methods and apparatus for
conveying telephone quality voice data over packet-
switched data transport networks.

BACKGROUND OF THE INVENTION

In the field of telecommunications, telephone quality
services such as the Plain Old Telephone Service (POTS)
traditionally has been provisioned over circuit-switched
signal transmission infrastructure. There is a current need to
provision telephone quality streaming data services over
packet-switched data transport infrastructure. There is sub-
stantial market pressure towards convergent technologies.
Convergent technologies concern the merging of voice, data,
and video service provisioning over the same transport
infrastructure by integrating telecommunication and com-
puter technologies. Moreover, there is a need to provide high
density, implementations supporting an ever increasing
number of telecommunication sessions concurrently.

Circuit-switched provisioning and packet-switched pro-
visioning employ different operational principles optimizing
different operational parameters. A quality-of-service is
defined as a combination of operational parameter values.
Circuit-switched provisioning attempts to achieve zero-de-
lay and zero-jitter, while packet-switched provisioning
attempts to achieve bandwidth efficiency. The migration
from traditional circuit-switched provisioning to packet-
switched provisioning is a matter of intense current research
and development. Although packet-switched transport
adheres to different operational principles from circuit-
switched technologies, there is a need to achieve the quality-
of-service traditionally provisioned over circuit-switched
technologies using packet-switched technologies.

Exemplary implementations of packet-switched tele-
phone service provisioning solutions employ Voice-over-
Internet Protocol (VoIP) technologies. VoIP technologies
relate to the conveying of VoIP packets in accordance with
best-effort service level guarantees. As opposed to circuit-
switched technologies, wherein telephone sessions are asso-
ciated with dedicated end-to-end connections, audio sample
groups conveyed by VoIP packets route independently in a
packet-switched network. The audio samples form a data
stream played back, at a destination end station, using
computed playback times referenced to a clock associated
with the destination station.

As opposed to traditional telephone service provisioning
over dedicated circuits ensuring transmission of voice
samples at constant rates, VoIP telephone service provision-
ing is subject to a best-effort bursty conveyance of VoIP
packets. Bursty transmission stems from the fact that each

20

25

30

35

40

45

50

55

60

65

2

VoIP packet conveys a particular number of voice data
samples. Early generated voice data samples accumulate in
VoIP packet payloads waiting for later generated voice data
samples before transmission.

Other factors related to packet-switched provisioning
have to do with packet processing at data transport nodes in
packet-switched networks. Packet processing introduces a
processing delay in packet transmission. Internet Protocol
(IP) data transmission employs store-and-forward tech-
niques whereby packets are stored pending processing. The
storage of packets pending processing is subject to queuing
techniques, queuing delays, queue service disciplines, etc.
all of which introduce variable delays. The combination of
these effects is evidenced in a variable packet interarrival
time at destination end stations, referred to in the art as jitter.

The above factors have been addressed in connection with
telephone service provisioning over packet-switched infra-
structure and have been subject to improvement between
which:

Co-pending commonly assigned U.S. patent application
Ser. No. 10/103,299 entitled “Method of Detecting Drift
Between Two Clocks” addresses issues related to dynamic
synchronization of source and playback clocks and is incor-
porated herein by reference. Methods of and apparatus for
detecting drift between two clocks were developed. The
apparatus comprises a hardware implementation of a clock
drift evaluator. The evaluator monitors received packets
associated with a data stream, and extracts from each packet
a time stamp generated by a source clock. A difference d
between the extracted time stamp and the local time is
compared against a d_ref value to determine whether the
packet was received early or late. On a prescribed schedule,
a degree of late or early receipt of packets is compared
against a tolerance level to determine whether a relative drift
exists between the pacing of the source clock and the pacing
of the local clock. The detection of drift between the two
clocks provides support for service level guarantees in
provisioning data streaming services in packet-switched
environments.

Co-pending commonly assigned U.S. patent application
Ser. No. 10/139,644 entitled “Time-Indexed Multiplexing as
an Efficient Method of Scheduling in Hardware” addresses
issues related to hardware process scheduling and is incor-
porated herein by reference. The presented apparatus
includes a table of task lists. Each task list holds specifica-
tions of processes requiring handling during a corresponding
time interval. Each task list is parsed by a scheduler during
a corresponding interval and the processes specified therein
are handled. The presented methods of process handling
may include a determination of a next time interval in which
the process requires handling and inserting of process speci-
fications in task lists corresponding to the determined next
handling time. Implementations are also presented in which
task lists specify work units requiring handling during
corresponding time intervals. The entire processing power
of the scheduler is used to schedule processes for handling.
Advantages are derived from an efficient use of the process-
ing power of the scheduler as the number of processes is
increased in support of high density applications.

Over and above the mentioned improvements, it is nec-
essary to address the facts that best effort IP data transport
does not guarantee the transmission of packets, and that a
transmitting station may opt to suppress transmission of
VoIP packets otherwise conveying voice data samples hav-
ing a low signal energy. Such silence suppression techniques
are beneficial in reducing data transmission bandwidth
requirements. Nonetheless, at the receiving end station,



US 7,142,551 B2

3

non-availability of voice sample data for playback regard-
less of the reason for non-availability thereof results in silent
playback. A reduced apparent quality-of-service is perceived
when the audio playback is devoid of sound creating an eerie
feeling. Comfort noise insertion techniques must be
employed to enhance the perceived quality-of-service.

Having regard to the fact that human speech has an
activity factor of about, 0.4, about 60% of voice samples
generated in digitizing human speech are silent. A substan-
tial amount of development has been undertaken recently in
generating comfort noise patterns—subject matter which is
described elsewhere. Largely these recent developments
have fallen short of providing suitable methods of inserting
comfort noise patterns during playback. Comfort noise
insertion at the destination end must take into account:
silence suppression instances in the absence of received
packets, dropped packet instances evidenced by the absence
of received packets, late packet arrivals, etc. Having regard
to convergent applications, there is a need to develop
apparatus and methods for efficiently inserting comfort noise
patterns into multiple voice streams concurrently and inde-
pendently.

Prior attempts at coordinating timed playback for a large
number of VoIP streams scan each stream, for each clock
tick of a system clock, to determine whether it is time to play
back voice data samples received in a packet associated with
the stream or whether to insert comfort noise in the stream
playback. For each system clock tick, some streams will
have to be attended to and some will not. Every stream needs
to be scanned on every clock tick—every 125 ps. Such
scanning solutions are unscalable and inadequate for con-
vergent solutions.

There therefore is a need to provide methods and appa-
ratus for comfort noise insertion having regard to the above
presented factors.

SUMMARY OF THE INVENTION

In accordance with an aspect of the invention, a sched-
uling apparatus for data streaming services is provided. The
scheduling apparatus includes time indexed task scheduling
storage for retrievably storing task scheduling information.
The time indexed storage further includes time sequenced
entries. Each one the time sequenced entries references a
plurality of task lists. Work units scheduled for handling
during a time interval corresponding to a particular time
sequenced entry are referenced in a corresponding work unit
task list. Data streams scheduled for handling during the
same time interval are referenced in a corresponding stream
event task list. A scheduler handles tasks specified in the task
lists during respective time intervals. The scheduling appa-
ratus further includes stream indexed forwarding informa-
tion storage for retrievably storing request forwarding infor-
mation. A request forwarding module processes task
scheduling information and request forwarding information,
to generate at least one handling request. The scheduling
apparatus also includes a work unit storage for retrievably
storing at least one work unit.

In accordance with another aspect of the invention, a
method of forwarding handling requests is provided. A
plurality of work unit handling tasks are received during
each one of a plurality of sequential handling time intervals,
each work unit handling task being associated with a cor-
responding stream. A plurality of stream event handling
tasks are received during each one of the sequential handling
time intervals.

10

20

25

30

35

40

45

50

55

60

65

4

A handling request is forwarded for each one of the
plurality of work unit tasks, if a stream event handling task
corresponding to the stream association of the work unit task
was received during the same handling time interval.

A stream idle handling request is forwarded for each one
of the plurality of stream event handling tasks is received
during a particular time interval without having received a
work unit handling task associated with the same stream.

A delayed handling request is forwarded for each one of
the plurality of work unit tasks received without receiving a
stream event handling task corresponding to the stream
association of the work unit task during the same handling
time interval.

And, a stream event task is scheduled for a time interval
during which a subsequent work unit is expected to be
handled.

Advantages are derived from an increased efficiency in
scheduling playback handling for voice data sample packet
payloads conveyed over best-effort packet-switched infra-
structure. Transmission bandwidth is conserved by making
use of silence suppression techniques to suppress the con-
veyance of silent payload packets. The hardware implemen-
tation presented provides support for concurrent and inde-
pendent comfort noise insertion and for dynamic clock
adjustment for telephone sessions provisioned concurrently
without making recourse to signaling. The apparatus and
methods support high density solutions scaleing up to large
numbers of concurrently provisioned telephone sessions.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the invention will become
more apparent from the following detailed description of the
preferred embodiments with reference to the attached dia-
grams wherein:

FIG. 1 is a schematic diagram showing elements and
relationships therebetween implementing a packet-switched
streaming service provisioning in accordance with an exem-
plary embodiment of the invention;

FIG. 2 is a schematic diagram showing memory storage
structures used in scheduling tasks in support of a packet-
switched streaming service provisioning in accordance with
an exemplary embodiment of the invention;

FIG. 3 is a schematic flow diagram showing exemplary
process steps for front end processing of received packets in
support of a packet-switched streaming service provision-
ing;

FIG. 4 is a schematic flow diagram showing exemplary
process steps of scheduling task handling in support of a
packet-switched streaming service provisioning in accor-
dance with an exemplary embodiment of the invention;

FIG. 5 is a schematic diagram showing a memory storage
structure used in handling tasks in support of a packet-
switched streaming service provisioning in accordance with
an exemplary embodiment of the invention;

FIG. 6 is a schematic flow diagram showing exemplary
process steps for timely forwarding of playback requests in
accordance with an exemplary embodiment of the invention;
and

FIG. 7 is a schematic flow diagram showing exemplary
process steps for back end processing of packets in support
of a packet-switched streaming service provisioning.

It will be noted that in the attached diagrams like features
bear similar labels.



US 7,142,551 B2

5
DETAILED DESCRIPTION OF THE DIAGRAMS

Bandwidth conservation is derived from the absence of
handshake signaling in effecting silence suppression/com-
fort noise insertion as well from the absence of signaling in
clock synchronization. Although there is a need to solve
these problems with respect to VoIP service provisioning, it
is understood that the solutions presented herein may be
adapted to other implementations in which operational deci-
sions taken by a fist of a pair of co-operating entities are
inferred by the second from a noisy output of the first, where
the “noise” is variable time delay.

Hardware implementations are preferred in providing
support for packet-switched streaming service provisioning.
Hardware implementations benefit from a designed response
time in processing VoIP packets.

FIG. 1 is a schematic diagram showing an overview of an
exemplary implementation of a playback scheduling engine
100 processing received packets 102.

A packet classifier 110 for front end processing of
received VoIP packets 102 operates in accordance with a
process 300 presented herein below with reference to FIG.
3. The packet classifier 110 uses timing information derived
from received packets 102 and timing information provided
by timing block 120 to effect queuing for processing for each
received packet 102 in accordance with a queuing discipline
implemented using time indexed task scheduling informa-
tion storage schematically represented by a time indexed
table 130.

The architecture of the time indexed task scheduling
information store, represented by the time indexed table 130,
is designed for processing a group of task lists. Two types of
tasks lists are processed concurrently: work unit task lists
and event task lists. When the methods presented herein are
applied to provisioning VoIP telephone services, each work
unit task list is more descriptively referred to as a packet list,
and each event task list is more descriptively referred to as
a stream event list. The time indexed table 130 stores packet
list references 132 and stream event list references 134.

Each packet list is made up of (work unit task list
elements) packet list elements 136. Packet list elements 136
are inter-related (interlinked) to define a packet list. Each
packet list element 136 is a data structure which holds
information relevant to processing a corresponding packet
stored in a packet buffer 140.

Each stream event list reference 134 points to entries of a
streamID indexed event scheduling table 138. Entries in the
streamID indexed event scheduling table 138 reference each
other to preferably define doubly-linked stream event lists.

The architecture of the time indexed scheduling informa-
tion store will be presented in more detail herein below with
respect to FIG. 2.

In accordance with a process of operation 400, presented
herein below with reference to FIG. 4, the timing block 120
provides a timing signal 122 which is used to advance a
selector 124 specifying which entry in the time indexed table
130 is to be scheduled for service.

A scheduler 150 provides, during each appropriate time
interval, the information held in the packet list and the
stream event list selected by the selector 124, to a forward-
ing module 160.

Associated with the forwarding module 160 is a streamID
indexed forwarding information table 170. The forwarding
module 160 performs operations on information stored in
the forwarding table 170. Information extracted from packet
lists, and the information held in the corresponding stream
event lists is combined with information held in the for-

20

25

30

35

40

45

50

55

60

65

6

warding table 170 to forward playback requests to a play-
back module 180. The playback module 180 is provided
with references 106 to blocks of voice sample data for timely
playback. The actions performed by the forwarding module
180 result in modifying both the time indexed table 130 as
well as the forwarding table 170.

A small adaptation buffer 182 may be used on the input
side of the playback module 180 to store time sequenced
playback requests. The actual use and size of the adaptation
buffer 182 is a design choice dependent on a desired
response of the playback scheduling engine 100 as will be
detailed herein below.

Depending on implementation, the packet buffer 140 may
also store a comfort noise pattern 142. Therefore the play-
back module 180 may be presented with references 106 to
either voice sample data originating from received packets
102 or with a reference 106 to voice sample data corre-
sponding to the comfort noise pattern 142. A detailed
process 600 of operation of the forwarding block 160 is
presented herein below with reference to FIG. 6.

A clock drift evaluator 190 is also provided. Clock drift
determination is preferably performed as described in co-
pending commonly assigned U.S. patent application Ser.
No. 10/103,299 referred to above and incorporated herein by
reference.

The playback module 180 operates in accordance with a
process 700 presented herein below with reference to FIG.
7. The playback module 180 makes use of timing informa-
tion from the timing block 120, subject to clock drift
adjustment provided by the clock drift evaluator block 190,
to effect time sequenced voice sample playback 134.

FIG. 2 is a schematic diagram showing details of the time
indexed storage of scheduling information.

In accordance with a preferred embodiment of the inven-
tion, an efficient approach to schedule handling of received
packets 102 and stream events, benefits from a time index
multiplexed implementation. Time indexed storage of
scheduling information is accomplished via the time indexed
table 130. Each row 230 of the time indexed table 130
preferably holds reference specifications 232 and 234 to two
corresponding task lists. The packet list references 132 are
exemplary reference specifications 232. The stream event
list references 134 are exemplary reference specifications
234. If a reference specification 232 holds a “NULL” value,
then the corresponding task list 236 does not have any
elements. If a reference specification 234 holds a “NULL”
value, then the corresponding task list does not have any
elements.

In the figure, the current time is t=1045, and on the next
tick 122 of the clock signal, VoIP streams 17, 90, 351, and
844 will require playback handling. More details will be
provided herein below with reference to FIG. 5.

The time indexed table 130 is preferably organized as a
circular buffer, with the ability to preassign handling tasks
for received packets 102 and pending stream events. The
size of the time indexed table 130 is largely dependent on the
granularity of scheduling control and jitter/latency tolerance.
For telephony applications human speech is typically
sampled at 8 kHz, therefore using 125 pus control granularity.
Each row 230 contains the task lists for all packets 102
received and all VoIP stream events that require handling
during a corresponding 125 us time interval. Depending on
a particular implementation, a higher scheduling control
granularity may be used without limiting the invention
thereto.

The circular buffer arrangement must ensure that preas-
signing handling of tasks does not loop around-and-over the



US 7,142,551 B2

7

current time interval. The minimum number of rows 230 is
dependent on the expected maximum number of voice data
samples conveyed by a packet 102 as well on the maximum
tolerated jitter. Both the maximum number of voice data
samples per packet, and the maximum tolerated jitter are
bound values negatively correlated with quality-of-service.
The size of the streamID indexed event scheduling table 138
can be preallocated or sized dynamically. The size of the
event scheduling table 138 correlates positively with the
processing capacity of the provisioned solution. High den-
sity convergent applications seek to increase the number N
of concurrently provisioned services on scalable implemen-
tations.

As will become apparent from the description provided
herein below, in scheduling stream events, the time for the
next playback event for a stream will equal to the start time
of the current playback, plus the playback duration of the
currently processed payload. For comfort noise insertion, the
playback of a comfort noise pattern having an associated
playback duration is used. By making the time indexed table
(130) a data structure of 512 rows (230) in the current
regime of operating parameters, it is assumed that packet
payloads will contain at, most 512x125 us=64 ms of
sampled audio. For packet list tasks, by using a time indexed
table data structure (130) of 512 rows (230), it is also
assumed that the calculated playback time of any arriving
packet 102 not be more than 512x125 pus=64 ms in the
future. These correspond to a tolerance for network propa-
gation jitter of 64 ms. A tolerance for jitter in excess of 64
ms would result in nonviable provisioning solutions having
poor quality-of-service. Persons of ordinary skill in the art
would understand that the above mentioned operational
parameter values are design choices based on the current
state of technology, undoubtedly these parameters will
change with future technological advancements and service
provisioning requirements.

The packet list references 132 point to corresponding
packet lists 236. More specifically each packet list reference
132 may point to a foremost packet list element 136 in a
packet list 236. An exemplary packet list 236 shown is a
linked list of packet list element data structures 136 A, 1368,
and 136C. Specifiers 202 associated with each packet list
element data structure 136 hold packet list element refer-
ences 204 to subsequent packet list element data structures
136. The packet list element reference 204 of the last packet
list element 136 in a packet list 236 is a “NULL” reference
signifying the end of the packet list 236. No ordering is
implied for the packet list elements 136 in a corresponding
packet list 236.

Each packet list element 136 data structure further holds
a start memory storage address specification 206 specifying
the corresponding start memory address reference 106 of the
corresponding packet 102 stored in the packet buffer 140.
Other information may be held in the packet list element
data structure 136 including a streamID specification 212
and perhaps a payload size specification 214 corresponding
to the respective packet 102. Preferably the payload size
specification 214 specifies the number of voice data samples
conveyed by the corresponding received packet (playback
duration). To further reduce transport bandwidth require-
ments, packet payloads may be compressed for transport
using various voice compression techniques described else-
where. The packet payload size specification 214 relates
directly to the uncompressed size of packet payloads.

Although the streamID information and payload size
information is preferably specified in packet list elements
136, a person of ordinary skill in the art would understand

20

25

30

35

40

45

50

55

60

65

8

that such information may alternatively be specified else-
where—in the packet buffer 140 for example along with the
voice sample data. The size information may not necessarily
be specified for implementations making use of a fixed
packet payload size. The invention is not limited only to the
storage of information presented, each packet list element
data structure may also hold additional information used in
servicing packets 102.

Exemplary additional information shown stored in asso-
ciation with packet list element data structures relates to
dynamic clock adjustment presented herein below.

Each packet list 236 consolidates packet information
regarding packets 102 with a playback time within the 125
us time interval corresponding to a row 230 of the time
indexed table 130. There is a corresponding packet list 236
for each time indexed table entry 230. The number of packet
list elements 136 per packet list 236 is variable. Packet list
elements 136 are preferably created and destroyed dynami-
cally to adapt to throughput conditions, the largest number
of packet list elements 136 in a packet list 236 being equal
the number of active VoIP telephone sessions (VoIP streams)
provisioned concurrently.

Although the linked list data structure presented is a
preferred implementation of a packet list 236, people of
ordinary skill in the art would appreciate that various other
data structures providing the same result may be used.

The stream event list references 134 point to stream event
lists defined by information stored in the event scheduling
table 138. More particularly each stream event list reference
134 points to a row 238 in the event scheduling table 138.
An exemplary stream event list is shown as a doubly linked
list of rows 238 corresponding to events for VoIP streams 17,
90, and 844. Each stream event list consolidates scheduling
information regarding streams expecting packet arrivals
having handling times within the 125 ps time interval
corresponding to a row 230 of the time indexed table 130
regardless of whether a packet is actually available or not.

Preferably, the stream event list is defined as a doubly-
linked list of data structures using previous stream 242 and
next stream 244 specifications associated with each event
scheduling table row 238. The first stream event list element
contains a NULL reference in the previous stream specifi-
cation 242 and the last stream event list element contains a
NULL reference in the next stream specification 244.

The stream event list elements are not necessarily ordered.
Other stream event lists associated with other corresponding
time indexed table rows 230 may be defined concurrently
such that each event scheduling table row 238 is included in
at most one list. Inactive (idle) VoIP streams not associated
with a provisioned service have NULL entries in each one
of the previous 242 and next 244 stream specifications.

Rows 238 of the event scheduling table 138 are shown to
hold streamID specifications 240, since the event scheduling
table 138 is streamID indexed, streamID specifications 240
may not be necessarily stored to reduce memory storage
requirements of the solution. Direct memory addressing of
rows 238 may be used instead. Depending on the imple-
mentation, rows 238 may hold additional information.

It is noted that each VoIP stream can only be referenced
at most twice in the task lists corresponding to a row 230 in
the time indexed table 130: once in the packet list 126
(streamID specification 212), and once in the stream event
list. A plurality of received packets 102 for the same VoIP
stream may be referenced in the time indexed table 130,
each of which is referenced in a separate packet list 236
corresponding to different rows 230. For the stream event
list, no more than one single event task for each VoIP stream



US 7,142,551 B2

9

is placed into the time indexed table 130 at any given time.
The single event task is placed in the time indexed table 130
in the time-indexed row 230 corresponding to the next
expected stream servicing event for that VoIP stream (tele-
phone session) regardless of whether a packet is actually
available or not.

FIG. 3 is a schematic flow diagram showing exemplary
steps of a process 300 performed by the playback scheduling
engine 100 implementing front end processing of received
packets.

For each packet arrival event 302, the packet classifier 110
extracts 304 at least a time stamp value specified in the
header of the received packet 102. The time stamp value
may be provided to the clock drift evaluator 190. The
received packet 102 is stored 306 in the packet buffer 140.
The packet buffer 140 provides 308 the packet classifier 110
with the start memory storage address (106) at which the
received packet 102 was stored (306).

Aplayback time t is calculated 310 for the received packet
102. The playback time t may be made available to the clock
drift evaluator 190. A time indexed table row 230 corre-
sponding to the calculated (310) playback time t is deter-
mined 312. The received packet 102 is queued 314 in the
packet list 236 corresponding to the calculated playback
time t by (creating) adding a packet list element 136. The
reported (308) start memory address (106) for the received
packet 102 is used to populate the memory storage address
specification 206 (pointer) in the corresponding packet list
element 136.

Concurrent with the receipt 302 of packets 102 and
queuing 314 thereof, the scheduler 150 operates in accor-
dance with the exemplary process 400 show in FIG. 4.

On advancing 410 the selector 124 into the time indexed
table 130 responsive to the timing signal 122, the selector
124 points to a particular row 230.

The scheduler 150 provides (420, 430) the forwarding
module 160 with stream handling information held in the
corresponding packet list and stream event list. If the sched-
uler provides the forwarding module 160 with references
132 and 134 respectively, the scheduler 150 is then available
for processing thus deferring task processing to the forward-
ing module 160.

Alternatively the scheduler 150 and forwarding module
160 may work cooperatively, the scheduler 150 first parses
the packet list 236 corresponding to the current time index,
(sequentially) providing 420 the forwarding module 160
with references 204 to each packet list element 136 in the
packet list 236. Upon scheduling packets from the packet list
236, corresponding packet list elements 136 may be de-
linked from the packet list 236.

Subsequently, the scheduler 150 parses the stream event
list corresponding to the current time index, (sequentially)
providing 430 the forwarding module 160 with streamID’s
scheduled for expected handling during the current time
interval regardless of the availability of a packet in the
corresponding packet list 236.

In providing the forwarding module 160 stream handling
information, the scheduler 150 may use message exchange
methods.

In the worst case scenario, the maximum number N of
VoIP streams supported are active and, all N streams appear
in both the packet list 236 and corresponding stream event
list associated with the same time indexed table row 230.
The playback scheduling engine 100 may be designed with
this unlikely scenario representing maximum performance
such that the 125 us time budget is just enough to handle all
2N tasks. However, in practice playback engines 100 are

20

25

30

35

40

45

50

55

60

65

10

designed to provision a larger number of VoIP streams since
the scenario in which all streams appear in both tasks lists is
highly unlikely. Nonetheless when this scenario occurs in
practice, the preferred designed response is to handle the
tasks one-by-one, introducing a small amount of inaccuracy
into the playback timing performed by the playback sched-
uling engine 100. Preferably, the clock signal 122 does not
interrupt the scheduler 150 rather triggers the scheduler 150
into operation. If the scheduler 150 is busy handling the
tasks list of the previous 125 ps time interval, the trigger
remains pending. This however is not a concern, because the
over-provisioning of VoIP streams can be engineered such
that the timing inaccuracy introduced by the playback
engine 100 would be hidden by jitter effects.

In this sense, such implementations of the playback
engine 100 may, under such unlikely conditions introduce a
small amount of timing inaccuracy: a maximum jitter of 125
us. A maximum 125 ps of jitter comes from the fact that it
is highly unlikely that all streams will be rescheduled in the
subsequent time interval since packets 102 carry a substan-
tial number of voice data samples to be played back. The
likelihood that all the worst case scenario would be repeated
again is even more remote as 64 ms of jitter is typically
tolerated.

The actual playback module 182 makes use of the adap-
tation buffer 182 to conceal jitter introduced by the playback
scheduling engine 100. In designing the adaptation buffer
182, the largest size thereof must be enough to store play-
back requests over and above what the combination of the
scheduler 150 and forwarding module 160 can generate in
one 125 us time interval.

In the case in which a comfort noise insertion granularity
of one voice data sample is chosen, the possibility to handle
all streams during the same 125 ps time interval becomes
very probable. The scheduler 150 and the forwarding mod-
ule 160 must be designed to handle all streams during a
single 125 ps time interval on a regular basis—including
handling all streams on every tick. For such an implemen-
tation the comfort noise insertion mentioned herein merely
signals the playback module 180 to perform the noise
insertion.

In accordance with another implementation of an exem-
plary embodiment of the invention, the scheduler 150 also
performs operations in queuing packet list elements 136
corresponding to received packets 102 in response to infor-
mation provided by the packet classifier 110.

The forwarding module 160 receives all tasks to be
handled from the scheduler 150. FIG. 5 is a schematic
diagram of an exemplary forwarding information storage
data structure 170 used by the forwarding module 160 in
processing tasks.

The exemplary forwarding table 170 is defined by a group
of row entries 510 storing forwarding information. Each
forwarding table row 510 has fields storing a next stream
event time specification 512, a packet available specification
514, and an incurred backlog specification 516. Each for-
warding table row 510 corresponds to a VoIP stream whose
streamID specification may also be specified in a field 518.
Depending on the implementation, the streamID specifica-
tion may not be stored to reduce memory storage require-
ments, such implementations may use direct memory
addressing techniques.

There are two ways to initiate stream handling. VoIP
stream handling is necessary when a received packet 102 has
a playback time equal to a current processing time interval.
These VoIP stream handling instances are derived from the
packet lists 236. VoIP stream handling is also necessary to



US 7,142,551 B2

11

play back voice data samples form a subsequent packet after
the voice sample data of a packet has been played back. Such
VoIP stream handling instances are derived from stream
event lists which track stream handling events that “should”
occur, regardless of whether a subsequent packet is actually
available.

VoIP stream handling is followed by rescheduling a
stream handling event in a stream event list. The actual VoIP
stream handling may result in a playback request providing
the playback module 180 with voice sample data derived
from a received packet 102 or voice sample data correspond-
ing to a comfort noise pattern 142. The forwarding module
160 determines whether comfort noise should be inserted
and informs the playback module 180 to do so. All voice
sample data and comfort noise insertion have a playback
duration measured in 125 ps time intervals. The next stream
event is scheduled during a subsequent 125 pus time interval
immediately following the end of the current playback to
enable back-to-back playback. A stream event is requeued in
the stream event list associated with the corresponding time
indexed table row 230. A packet having a playback time
corresponding to the particular row 230 is expected to arrive.
Silent packet suppression and packet loss prevent the ful-
fillment of the packet arrival expectation while transport
jitter causes the expectation to be postponed.

There are three scenarios of operation of the forwarding
module 160.

In accordance with a first scenario, a received packet 102
associated with a streamID is referenced 106 in a packet list
element 136 of a packet list 236 of a currently processed
time indexed table row 230, and a stream event for the same
streamID is referenced in the corresponding stream event
list. This is exemplary of instances in which the received
packet 102 has a calculated playback time equal to the time
that a packet is expected to be played back and represents the
expected mode of operation of the solution.

An exemplary representation of this first scenario is
shown in FIG. 2. Packet list element 136 A of packet list 236
references a packet associated with streamID (SID) 17 while
the corresponding stream event list references streamlID 17.
Packet list element 136C of packet list 236 references a
packet associated with streamID (SID) 90 while the corre-
sponding stream event list references streamID 90.

Referring now to FIG. 6, the forwarding module 160 uses
the streamID specification 212 from the packet list element
136 to find 610 a corresponding forwarding table row 510 in
the forwarding table 170. The forwarding module 160
checks 612 whether the corresponding next stream event
time specification 512 is equal to the current 125 us time
interval. For this scenario there will be a match. The
forwarding module 160 forwards 614 a corresponding play-
back request to the playback module 180. The corresponding
packet available specification 514 is set 616 to a logic high
value, typically “1”. And, the playback duration of the
packet payload is added 618 to the value held in the next
event time specification 512. The modified forwarding table
excerpt 170A shows the result of steps 610 through 618
performed in turn for both packet list elements 136A and
136C. It is noted that the difference in packet payload
playback durations lead to different corresponding next
stream event times.

In processing stream events specified in the corresponding
stream event list, see FIG. 5, for each event, the forwarding
module 160 finds 620 the forwarding table row 510A
corresponding to the specified streamID. If (622) the asso-
ciated packet available specification 514 holds a logic high
value, typically “17, the packet available specification 514 is

20

25

30

35

40

45

50

55

60

65

12

reset 624 to a logic low value, typically “0”. A subsequent
corresponding stream event is requeued 626 in the time
indexed table 130 based on the modified next stream event
time specification 512. Rows 510B show modifications to
the forwarding table 170B.

In accordance with a second scenario, a stream event
corresponding to a streamlID is referenced in a stream event
list of a currently processed time indexed table row 230,
while no corresponding packet list element 136 associated
with the same streamlID is referenced in the corresponding
packet list 236. This is exemplary of instances in which no
packet 102 has arrived having a calculated playback time
equal to the time that a packet is expected to be played back.

An exemplary representation of this second scenario is
also shown in FIG. 2. The stream event list for t=1046
references streamID 844 while no packet list element 136 in
the corresponding packet list 236 references a received
packet 102 associated with streamID (SID) 844.

There are several reasons why a packet is expected but
none arrives. The most common reason is silence suppres-
sion. A voice sample generator associated with the sending
end device may determine that a generated packet contains
a silent payload, and decides to save network bandwidth by
suppressing packet transmission. Other reasons include
packet loss or severe transport delay. In such cases, in lieu
of forwarding a packet reference to a received packet 102 in
the playback request, the forwarding module 160 informs
the playback module 180 to perform comfort noise insertion.

In accordance with a preferred implementation, the play-
back scheduling engine 100 is a flow-independent service
module. Therefore, it is beyond the scope of the present
disclosure to specify how the playback module 180 should
respond. Assumptions are made about the playback module
190 in engineering the operation of the playback scheduling
engine 100. The playback module 180 is assumed to have
minimum logic, simply playing back obliviously voice data
samples provided thereto via the adaptation buffer 182. The
adaptation buffer 182 maintains voice data sample informa-
tion—a combination including but not limited to: voice data
samples and references thereto.

In accordance with the preferred embodiment of the
invention, the forwarding module 160 makes a decision as
to when comfort noise is to be inserted. The forwarding
module 160 must know the playback duration of the comfort
noise pattern 142 that will be inserted. The forwarding
module 160 may determine and specify the playback dura-
tion of the comfort noise pattern 142 to be inserted.

Referring now to FIG. 6, upon receiving an event han-
dling request for streamID 844, the forwarding module 160
uses the streamID specification to find 620 a corresponding
forwarding table row 510 in the forwarding table 170. If
(622) the associated packet available specification 514 does
not hold a logic high value, typically “1”, the playback
duration of the comfort noise pattern 142 is added 630 to the
next event time specification 512.

If (632) the corresponding incurred backlog specification
516 holds a value exceeding or equal to the playback
duration of the comfort noise pattern 142, then the playback
duration of the comfort noise pattern 142 is subtracted 634
from the value of the incurred backlog specification 516.
The third scenario presented herein below will detail causes
of incurred backlog.

Only if (632) the corresponding incurred backlog speci-
fication 516 holds a value less than the playback duration of
the comfort noise pattern 142, does the forwarding module
160 inform 636 the playback module 180 in the playback



US 7,142,551 B2

13

request to perform comfort noise insertion. The playback
request may include a default comfort noise pattern refer-
ence 106.

Steps 632—636 are critical, because if too much comfort
noise had been inserted previously, then a backlog would
have developed. Therefore, if the incurred backlog (516) is
sufficiently large, it can be substituted for comfort noise
playback thus discharging the backlog.

The stream is requeued 626 for expected re-handling in
the time indexed table 130 based on the modified next
stream event time specification 512. Row 510C shows
resulting modifications to the forwarding table 170.

It is preferable that a comfort noise pattern playback
duration be chosen to be less than typical duration of silent
periods in human speech to reduce undue introduction of
backlog. The duration of typical silent human speech periods
is subject to an empirical determination (language to lan-
guage variations). Yet the playback duration of the comfort
noise pattern should be no greater than the mean tolerated
packet transport delay so as not to unduly introduce exces-
sive playback delays.

It is preferable that the playback duration of the comfort
noise pattern contain a number of voice data samples to
generate a true comfort noise pattern typically characterized
by randomness, very short comfort noise patterns when
played back back-to-back result in an audible tone.

While the decision to insert comfort noise is made by the
forwarding module 160, the actual comfort noise insertion is
performed by the playback module 180 and is therefore
beyond the scope of the present description to define it. In
making use of the default comfort noise reference 106 in the
playback request, a consistent exchange of information
(references 106) is provided between the forwarding module
160 and the playback module 180. For all intents and
purposes the default comfort noise reference 106 may be
interpreted as a signal by the playback module 180. For this
reason the default comfort noise reference 106 may just as
well be a NULL reference.

In accordance with an exemplary implementation the
playback duration of the comfort noise inserted is an empiri-
cally determined fixed size known to the forwarding module
160 and referred to as comfort noise granularity. The default
comfort noise reference 106 may point to the comfort noise
pattern 142 stored in the packet buffer 140, to be played back
in lieu of a real packet payload.

In accordance with another exemplary implementation,
the default comfort noise reference 106 would simply alert
the playback module 180 to perform more precise comfort
noise insertion based upon the voice data sample energy
levels of preceding packets associated with the stream. The
playback module 180 inserts a comfort noise granule into
the output stream. The exemplary implementation may
make use of an (external) Digital Signal Processor (DSP).

In accordance with yet another exemplary implementa-
tion, the comfort noise pattern 142 stored in the packet
buffer 140 has a relatively large number of voice data
samples corresponding to a relatively long playback dura-
tion, perhaps longer than the tolerated amount of jitter (64
ms), i.e. in excess of 100 ms. In processing of comfort noise
insertion instances, the playback module 180 is provided
with the default comfort noise reference 106 to the start
memory storage location of the 100 ms comfort noise
pattern. Prior to actual comfort noise playback, the playback
module 190 randomly selects a segment (comfort noise
granule) from the comfort noise pattern 142 for play back.
This further prevents insertion of high tonal content in
comfort noise playback.

20

25

30

35

40

45

50

55

60

65

14

In accordance with a third scenario, a received packet 102
is referenced 106 in a packet list element 136 of a packet list
236 currently being processed, while no corresponding
stream event is scheduled in the corresponding stream event
list. This is exemplary of instances in which a received
packet 102 has a calculated playback when the correspond-
ing stream is not expected to be handled.

An exemplary representation of this third scenario is
shown in FIG. 2. Packet list element 136B of packet list 236
references a packet associated with streamID (SID) 351
while the corresponding stream event list does not reference
streamID 351.

One reason why a received packet 102 has arrived unex-
pectedly has to do with the granularity of comfort noise
insertion mentioned above. The playback duration of the
comfort noise pattern 142 will likely exceed one 125 us time
interval making it possible for too much comfort noise to
been inserted. In accordance with this scenario, a packet 102
will be ready for playback before the current playback has
fully played out.

Referring to FIG. 6, the forwarding module 160 uses the
streamID specification 212 from the packet list element 136
to find 610 a corresponding forwarding table row 510 in the
forwarding table 170. The forwarding module 160 checks
612 whether the corresponding next stream event time
specification 512 is equal to the current 125 us time interval.
The current time index value (t=1046) is observed to be less
than the value held in the next event time specification 512
(t=1048). The difference B between the current time index
value and the value held in the next stream event specifi-
cation is calculated (640). The incurred backlog specifica-
tion is increased (642) by B. The playback duration of the
packet payload, less the incurred backlog B, is added 644 to
the value held in the next event time specification 512 in an
attempt to synchronize rescheduled stream events with sub-
sequent packet arrivals.

When stream events are processed for the current time
indexed table row 230, no corresponding stream event
element will be found. The stream event element is
dequeued 646 from whatever stream event list it is currently
in before requeuing thereof. The streamID indexed storage
(138) and the doubly-linked list structure of each stream
event list makes the dequeuing operation simple and effi-
cient. The streamID indexed event scheduling table 138 is
searched based on the streamID specification 212.

A stream event is requeued 648 in the time indexed table
130 based on the modified next stream event time specifi-
cation 512. Rows 510D show resulting modifications to the
forwarding table 170.

The forwarding module 160 forwards 650 the playback
request to the playback module 180 perhaps via the adap-
tation buffer 182. At that time, the current packet would not
have finished playback. As mentioned above, the playback
module 180 simply plays back voice data samples pointed to
by references 106 one after the other as received.

No assumptions are made in regards to knowledge about
backlogs being relayed to the playback module 180. The
backlog is carried forward until discharged as described in
the second scenario. Jitter effects will help mitigate back-
logs. The adaptation buffer 182 stores the backlog of play-
back requests (references 106). The size of the adaptation
buffer 182 can be relatively small. In the worst case all N
streams are backlogged, the adaptation buffer 182 at most
requiring storage for N playback requests (reference pointers
106).

Depending on the implementation, the forwarding module
160 may receive the entire packet list 236 for processing, by



US 7,142,551 B2

15

being provided with the packet list reference 132 or my
receive packet list element references 204.

Depending on the implementation, the forwarding module
160 may provide the playback module 180 with either
packet references 106 or packet list element references 204.
The last one of the forwarding module 160 or the playback
module 180 to use the packet list element data structures 136
is responsible for freeing thereof for subsequent reuse.

Depending on the implementation, the forwarding module
160 may receive the entire stream event list for processing
by being provided with the stream event list reference 134
or my be receive streamlID specifications 240.

In order to simplify the presentation of the concepts
above, it was assumed that the generator clock and the
playback clock are synchronized. The assumption is valid
for bounded periods of time for which the amount of drift
between the two clocks is less than a 125 ps sampling time
interval. This disclosure does not preclude any particular
procedure for detecting clock drift. Dynamic clock adjust-
ment may be performed when necessary and typically has a
cyclical effect as described in the above mentioned co-
pending commonly assigned U.S. patent application Ser.
No. 10/103,299.

Clock drift is detected by the clock drift evaluator 190
external to the playback scheduling engine 100. Time
stamps are acquired from received packets 102 and playback
times calculated during front end processing. The time
stamps are typically derived from data transport protocol
headers. An example of time stamp extraction is described
in co-pending commonly assigned U.S. patent application
Ser. No. 10/033,498 entitled “Generic Header Parser pro-
viding support for Data Transport Protocol independent
Packet Voice solutions” and incorporated herein by refer-
ence. Playback times for each packet are provided to the
playback scheduling engine 100.

If clock drift is detected and the type of drift determined,
playback times will have to be adjusted. The generator clock
will have to be considered absolute, for the generator clock
may not necessarily be in a realm of control of the solution
provider.

If the playback clock is detected to play back voice data
samples for a stream too fast compared to the pacing rate of
the generator clock, then playback needs to be decelerated.
The generator clock can not be adjusted because it may not
be in the realm of control of the solution. The playback clock
120 may not be adjusted because the playback of the other
streams would be affected.

The result is that the received packets 102 for the affected
stream appear to arrive late—which represents another rea-
son for the second scenario presented above. Playback
deceleration can be implemented by inserting voice data
samples in the playback stream 144 to create an increase in
playback delay. The arrangement presented herein already
provides just the necessary functionality for inserting com-
fort noise data samples when received packets 102 arrive
late. No special additional functionality is required.

Clock adjustment attempts to change playback timing by
one, possibly two, 125 us time intervals. The comfort noise
insertion preferably has a granularity playback duration
considerably longer than one clock adjustment: typically
more than four 125 ps time intervals. It seems that more
backlog is created than benefits are gained from dynamic
clock adjustment. In the long run however, with repeated
clock adjustments, excess backlog is discharged.

If the playback pacing rate is slower than the sample
generator clock, then local playback needs to be accelerated.
When this condition is detected, front end processing could

20

25

30

35

40

45

50

55

60

65

16

assign a sooner packet playback time (i.e. with less delay)
prior to providing the playback scheduling engine 100 with
the received packet information. It would appear that this
playback time reassignment, by itself, would implement the
desired acceleration.

Such playback time reassignment fulfills conditions for
above presented third scenario resulting in increasing the
backlog for that stream by 1. It will be noted that in the third
scenario comfort noise insertion subsequently discharged
incurred backlog. However, simple playback time reassign-
ment will ultimately create a conflict, possibly causing the
backlog to grow unbounded. Reason being, that no oppor-
tunities for comfort noise insertion are guaranteed to occur
to discharge the backlog. It was mentioned that typical
human speech has an activity factor of 0.4—however sing-
ing can have an activity factor close to 1.

Suffice it to say that the forwarding module 160 needs to
know when stream playback needs to be accelerated due to
dynamic clock adjustment.

In accordance with an exemplary implementation, when
the clock drift evaluator 190 determines that playback time
acceleration is necessary for a stream, besides reassigning
the playback time for a received packet 102, the received
packet 102 must also be specially marked. At least one voice
data sample must be dropped from the corresponding play-
back 144. The exact implementation details are subject to
the operational definition of the playback module 180 and
therefore beyond the scope of the present disclosure. Mark-
ing a received packet 102 for voice data sample drop may be
implemented, as mentioned above, by storing relevant infor-
mation in the packet list element data structure 136 (shown
in FIG. 2). The backlog however should not be increased
because voice data samples are dropped. In forwarding the
corresponding playback request, the forwarding module 160
detects 660 marked packets and subtracts 662 the amount of
the adjustment from the backlog. The backlog field 516 in
the corresponding forwarding table row 510 is increased less
than would have been otherwise.

FIG. 7 summarizes envisioned operational steps per-
formed by the playback module.

The streamID association is determined 712 for each
playback request received 710 by the playback module 180.

If comfort noise insertion is requested (714) by the
forwarding module 160, then the playback module 180
performs 730 comfort noise insertion.

If the forwarding module 160 requested the playback of a
packet payload (714), then the playback module must deter-
mine 716 whether voice data sample drop was requested.

Playback of voice data samples ensues 720, subject to
voice data sample drops 718. Once playback of all voice
data samples has completed, the playback module 180 frees
722 packet storage memory from the packet buffer 140.

Although the stream event table 138 and the forwarding
table 170 have described separately herein, persons of
ordinary skill in the art would understand that the two tables
may be combined in a single data structure. Benefits of a
smaller foot print are derived from the combined data
structure arrangement while parallel access benefits are
derived from the divided arrangement.

The embodiments presented are exemplary only and
persons skilled in the art would appreciate that variations to
the above described embodiments may be made without
departing from the spirit of the invention. The scope of the
invention is solely defined by the appended claims.

We claim:

1. A scheduling apparatus for data streaming services
comprising:



US 7,142,551 B2

17

a. time indexed task scheduling storage for retrievably
storing task scheduling information, the time indexed
storage further comprising a plurality of time
sequenced entries, each one of the plurality of time
sequenced entries referencing a plurality of task lists,
work units scheduled for handling during a time inter-
val corresponding to a particular time sequenced entry
are referenced in a corresponding work unit task list
while data streams scheduled for handling during the
same time interval are referenced in a corresponding
stream event task list;

b. a scheduler handling tasks specified in the task lists
during respective time intervals;

c. stream indexed forwarding information storage for
retrievably storing request forwarding information;

d. a request forwarding module processing task schedul-
ing information and request forwarding information to
generate at least one handling request; and

e. a work unit storage for retrievably storing at least one
work unit.

2. A scheduling apparatus claimed in claim 1, further
comprising stream indexed event scheduling storage for
retrievably storing stream event scheduling information.

3. A scheduling apparatus claimed in claim 2, wherein the
stream indexed event scheduling storage stores at least one
stream event task list.

4. A scheduling apparatus claimed in claim 1, the stream
indexed forwarding information storage further comprising
stream sequenced entries, each entry holding stream state
information.

5. A scheduling apparatus claimed in claim 1, further
comprising a timer pacing the operation of the scheduling
apparatus.

6. A scheduling apparatus as claimed in claim 1, wherein
the time indexed storage comprises a circular buffer having
a size.

7. A scheduling apparatus as claimed in claim 6, wherein
the size of the time indexed storage corresponds to a degree
of tolerated jitter.

8. A scheduling apparatus as claimed in claim 1, further
comprising a selector for selecting, during a time interval, a
corresponding one of the plurality of time sequenced entries.

9. A scheduling apparatus as claimed in claim 8, wherein
the selector is responsive to a clock signal defining each time
interval.

10. A scheduling apparatus as claimed in claim 1, wherein
each one of the work unit task list and the stream event task
comprises a linked list.

11. A scheduling apparatus as claimed in claim 10,
wherein the work unit task list comprises a singly linked list.

12. A scheduling apparatus as claimed in claim 10,
wherein the stream event task list comprises a doubly linked
list.

13. A scheduling apparatus as claimed in claim 1, wherein
each reference to a work unit comprises a memory address
specification into the work unit storage.

5

20

25

35

40

45

50

55

18

14. A scheduling apparatus as claimed in claim 1, wherein
each work unit handling task may further specity special
work unit handling.

15. A method of forwarding handling requests comprising
steps of:

a. receiving a plurality of work unit handling tasks during
each one of a plurality of sequential handling time
intervals, each work unit handling task being associated
with a corresponding stream,

b. receiving a plurality of stream event handling tasks
during each one of the sequential handling time inter-
vals,
forwarding a handling request for each one of the
plurality of work unit tasks if a stream event handling
task corresponding to the stream association of the
work unit task was received during the same handling
time interval,

d. forwarding a stream idle handling request for each one
of the plurality of stream event handling tasks is
received during a particular time interval without hav-
ing received a work unit handling task associated with
the same stream;

e. forwarding a delayed handling request for each one of
the plurality of work unit tasks received without receiv-
ing a stream event handling task corresponding to the
stream association of the work unit task during the
same handling time interval; and

f. scheduling a stream event task for a time interval during
which a subsequent work unit is expected to be
handled.

16. A method of forwarding requests as claimed in claim
15, the method further comprising a prior step of: advancing
a selector into a time indexed storage to select a specific time
sequenced entry specifying the plurality of work unit han-
dling tasks and the plurality of stream event handling tasks.

17. A method of forwarding requests as claimed in claim
15, the method further comprising a step of: tracking the
processing of each work unit handling task.

18. A method of forwarding requests as claimed in claim
15, wherein forwarding the delayed handling request, the
method further comprising a step of: tracking an amount of
backlog incurred.

19. A method of forwarding requests as claimed in claim
18, further comprising a step of: suppressing the forwarding
of the stream idle handling request if backlog was incurred.

20. A method of forwarding requests as claimed in claim
15, wherein scheduling the stream event task, the method
further comprises steps of:

a. determining a number of time intervals corresponding

to a handing duration of a handling request; and

b. scheduling the stream event task after the number of
time intervals determined.

o



