This invention relates to cymbals, generally categorized, more particularly to sizzle-cymbals, and has to do with a significant advance in that it permits the user, a drummer, to dispense with the commonly used sizzle-cymbal and, attaching the invention to convert a standard cymbal into a sizzle-cymbal.

The currently used self-contained sizzle-cymbal (as distinguished from a sizzle attachment for a cymbal) is one having rivets or the like fitted into circumferentially spaced holes adjacent the marginal edge or rim and collared with loosely mounted metal washers which when set into action vibrate and produce a metallic clink-clank or so-called sizzle sound effect. When the tempo and rhythmical character of the musical composition calls for accentuation and emphasis, the sizzle effect can be called upon for strikingly unique effects.

However to have to resort to a specially made sizzle cymbal for such dynamics and color is expensive insmuch as a sizzle-cymbal is usable only for sizzle effects. Then, too, an extra cymbal adds to transportation difficulties of the drummer's traps. Therefore, and as stated, one object of this invention is to provide a simple, practical and highly effective attachment which enables the user to employ it interchangeably, if desired, on any conventional-type cymbal with a radius greater than the longest arm of the herein disclosed attachment. Experience has shown that the invention, when properly applied and appropriately adjusted, will not mar the cymbal's fine finished surface. It will improve the timber or tone-quality of the cymbal (expensive or not) and when not in use may be readily detached and conveniently and compactly stored in one's accessory case. Although expressly adapted and designed for use on 15" cymbals it lends itself to use on other diameters sizes dependent on the length and cross-sectional gauge of the arms.

Briefly the herein disclosed invention, construed as an attachment, comprises a plurality of specially designed arms or legs (three or more) one short and two long having U-shaped or correspondingly constructed at their free outer ends defining cymbal riding fingers responsive to the vibrating cymbal. If three arms—and this is the preferred adaptation—are used six fingers are brought actively into play with ample space between at least two arms for unhampstered stick-work. An adapter such as a simple hub serves to efficiently assemble and operate to mount the inner ends of the arms. In keeping with one embodiment of the concept the adapter has marginal sleeves and the sleeves provide adequate bearings in which the inner ends of the arms are journaled for nominal rotary motion.

In one embodiment of the invention ball and socket joints are provided inwardly of and in alignment with the sleeve-type bearings thus permitting the desired action with requisite nicety. In the other form or embodiment slots are provided for nail-like heads on the inner anchorable ends of said arms.

Then, too, the concept features a hold-down finger-nut and felt washers cooperating with a screw-threaded stud and this arrangement permits controlled adjustment of the arms and attending fingers for manually regulable cymbal tonal effects.

Further, it is an objective in the instant matter to improve upon prior devices, for example, the two-legged Thomas Sizzler cymbal attachment disclosed in Patent 3,009,379 by employing three arms (or legs) two long and one short in that with such arrangement the assemblage is stable and is more securely maintained in operative position. From the manufacturer's point of view the present invention is desirable in that it comprises a minimum of component parts which can be precision made and readily assembled. With the herein disclosed adaptation the drummer can control the sizzle sound simply by tightening the retaining nut with the result that a wide range of effects from muffled or muted sound to controlled sizzle is attainable. Moreover, the hole in the adapter hub or collar is non-threaded making it easy matter to readily apply and remove the attachment.

These together with other objects and advantages which will become subsequently apparent reside in the details of construction and operation as more fully hereinafter described, and claimed, reference being had to the accompanying drawing forming a part hereof, wherein like numerals refer to like parts throughout, and in which:

FIGURE 1 is a view in perspective showing a sizzle cymbal with the tonal control attachment cooperatively mounted thereon in readiness for use;

FIGURE 2 is a view with parts in section and elevation taken on the plane of the line 2—2 of FIGURE 1 with the component parts appropriately enlarged to show the construction and arrangement thereof;

FIGURE 3 is a still further enlarged detail section on the section line 3—3 of FIGURE 2;

FIGURE 4 is a top plan view of the attachment removed from the cymbal;

FIGURE 5 is an enlarged bottom plan of the adapter or hub with outer end portions of the arms or legs broken away;

FIGURE 6 is a view on a scale similar to FIGURE 5 and showing a top plan illustrating a modification in the construction and arrangement of the attached inner ends of the several arms; and

FIGURE 7 is a section on the plane of the line 7—7 of FIGURE 6.

Attention is first directed to the form or modification appearing in FIGS. 1 to 5, inclusive. Noting FIGS. 1 and 2 in particular the cymbal is denoted by the numeral 8, this being a conventional cymbal construction the body portion being denoted at 10 and the concavo convex or domical mounting at 12. In practice, generally stated, cymbals are supported either on a floor stand or simply on a support rod which is mounted on the periphery of a drum (not shown). In either instance the support member comprises a relatively stationary vertical rod 14 having a reduced upper end which is screw-threaded to provide a stud 16. This stud extends through and upwardly beyond the central opening in the mount or mounting 12, the upper end portion 18 being provided with a knurled or an equivalent thumb nut 20 to retain the cymbal atop a felt or an equivalent washer 22 which is sandwiched between the mount 12 and a supporting nut 24 on the stud, in the manner illustrated. The readily applicable and removable cymbal attachment comprises a central adapter and several radial circumferentially spaced outstanding arms or legs. The adapter hub comprises a rigid metal collar or hub denoted generally (FIG. 5) by the numeral 25 and comprising a circular or disk-like plate 28 having a hole 30 therein, said hole being non-threaded...
and fitted rotatably and removably over the stud 18. For rigidity the marginal edge portion of the hub has a depending flange denoted generally as 31. Formed integrally with the marginal portion of the adapter and projecting radially therefrom at equidistant circumferentially spaced points are sleeves 32 which constitute bearings. Inwardly of the sleeves the hub is provided with rectangular slots 34. As shown in FIG. 4 three arms or legs of longitudinally bowed (bendable metal) are provided. These are two long legs 36 and one short leg 38. The inner end portions of all of the legs (in the two embodiments shown) are journaled for nominial movement or rotation in their respective bearing sleeves 32. The extreme inner ends of the arms or legs are provided with disk-like heads (resembling a nailhead) said heads 40 being seated or anchored movably in their respective slots 34. Each arm is provided, usually at the outer end with a substantially U-shaped or similarly shaped member 42 the central portion of which is operatively connected with the arm whereby said member is disposed in a plane at right angles to the lengthwise axis of the arm and the free end portions 44 provide camial contacting vibration responsive fingers. Resembling the hub will be noted that the centrally apertured portion rests on a compressibly resilient felt washer 46 (FIG. 2) which is atop the crest of the mount 12. A third felt washer 48 encircles the stud and rests atop the hub and is interposed between the hub and the nut 28 as illustrated. With this construction it will be evident that the bearing sleeve and the journaled heads of the arms are constructed to permit loose vibration of the arms. However, by adjusting the thumb nut 20 the degree and consequently freedom of movement of the arms can be effectively regulated and controlled.

In the modification seen in FIG. 7 the same basic principle of construction is utilized. Here the adapter hub is denoted by the numeral 50 and comprises a strong metal or equivalent plate or disk 52 approximately one inch in diameter with a hole 54 of about ¼ of an inch in diameter. The marginal reinforcing flange is denoted at 56 and the circumferentially spaced outstanding or projecting bearing sleeves are denoted at 58. The sleeves accommodate the adjacent confined or journaled portions of the arms 36A and 38A. In this instance and as better shown in FIG. 7 the inner end portions of the arms are provided with ball-shaped heads 60 which are seated in indentations or circumferentially spaced bosses 62 which provide sockets therefor. Thus simple ball and socket joints between the arms and the hub are had.

In use the attachment is mounted as illustrated in FIG. 2 simply by placing the washer 48 over the stud, fitting the apertured portion of the hub thereon, placing the washer 48 over the stud and clamping it with the retaining and assembling nut 20. It is permissible, sometimes desirable, to manually bend the legs or arms so that they rest lightly on the cymbal and vibrate freely on the surface. The degree of vibration and variably selected tonal effects can be controlled by tightening or loosening the nut 20. By varying the thickness of the washer or washers and properly bending the arms, controlled regulation of vibratory effects can be achieved. In practice the cymbal itself should be tilted slightly with the low side toward the drummer. This cymbal position will ensure that the attachment will always hang with the short leg pointing to the top (FIG. 1) of the cymbal thus leaving the one-third lower area of the cymbal free for playing with the sticks and without interference from the legs 36 of the attachment.

As should now be evident to the reader, the use of more than two legs, as herein shown, described and claimed is a significant part of the inventive concept particularly (as brought out in FIGS. 1 and 4) wherein the two legs 36 are longer than the companion short leg 38. This is so because with the short leg at the top as illustrated in FIG. 1 a self-performing stabilizer effect is achieved which results in keeping the attachment in its given position in FIG. 1 and also permits the tone control on sound vibration to be achieved, that is, when the intended clamping pressure is applied to the adapter or hub.

It is believed that a careful consideration of the description in conjunction with the views of the drawing will enable the reader to obtain a clear and comprehensive understanding of the construction, operation, mode of use and features and advantages of the overall invention. Therefore a more extensive description is thought to be unnecessary.

Minor changes in shape, size, materials, and rearrangement of component parts may be resorted to in actual practice without departing from the spirit of the invention or the scope of the invention as claimed.

What is claimed is new as follows:

1. A cymbal attachment comprising a centrally apertured hub having at least three marginal radially circumferentially coplanar spaced sleeves in a plane even with the plane of said hub and providing bearings, three radial circumferentially spaced arms having inner ends fitted for rotary movement in their respective bearings, and the outer ends of at least one arm having a laterally depending U-shaped terminal defining a camial riding fingers.

2. The structure defined in claim 1, and wherein said hub comprises a collar provided with a central non-threaded hole and further provided inwardly of the respective bearings with indentations defining sockets, the cooperating inner ends of said arms having ball-like heads seated in their respective sockets, said arms being disposed in a common, constantly maintained plane, said plane being common with a top side of said collar.

3. The structure defined in claim 1, and wherein said hub is provided inwardly of the respective bearings with slots, the inner cooperating ends of said arms having circular nail-like heads movably anchored in their respective slots.

4. The structure defined in claim 1 and wherein two of said arms are of the same length, the third arm being of a length less than said two arms.

5. In combination, a cymbal having a centrally apertured mount, a relatively stationary support rod having an upper portion provided with a substantially vertical screw-threaded stud extending upwardly and removably through and beyond an aperture provided therefor in said mount, manually variable and regulatable vibration and tone-controlling means for said cymbal comprising an adapter embodying a centrally apertured hub having an apertured portion fitted adjustable and removably over said stud, a nut screw threaded on said stud in a plane parallel and retaining said hub in its intended operative position, said hub being provided with a plurality of circumferentially spaced bearings, a plurality of radial circumferentially spaced arms, the inner ends of said arms being journaled for axial rotation in their respective bearings, said arms being simultaneously adjustable in conjunction with said hub toward and from a cooperating top surface of said cymbal, said arms having outer ends and said outer ends having terminal members normally residing, when in use, directly atop and contacting the underlying cymbal surface, a second nut adjustable on said stud in a plane below said mount, a felt washer encircling the stud and interposed between the top of said mount and said hub, and another washer encircling the stud and interposed between the hub and said first-named nut.

6. A cymbal attachment comprising a rigid hub having an axial non-threaded stud-accommodating hole and a depending marginal flange, said flange being provided at equidistant circumferentially spaced points with three integral outstanding sleeves, said sleeves being disposed in a plane common with each other and the plane of the top side of said hub, said sleeves providing individual bearings, three radial circumferentially spaced arms, said arms being manually and individually bendable and thus adapted to assume and maintain a given shape conform-
able with underlying cooperable portions of the cymbal, two of said arms being the same in length, the third arm being of a length less than said two arms, the inner ends of said arms being fitted and retained for limited rotary movement in their respective bearings, and the outer free end of each arm terminating in an inverted depending U-shaped member the bight portion of which is at right angles to and is centrally connected to the cooperating free terminal end, the depending end portions of said U-shaped member providing cymbal contacting fingers.

References Cited in the file of this patent

UNITED STATES PATENTS
2,205,593 Jeffries 1940
2,261,119 Ludwig et al. 1941
3,009,379 Thomas 1961