
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
1

74
4

24
4

A
2

��&������
���
�
(11) EP 1 744 244 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
17.01.2007 Bulletin 2007/03

(21) Application number: 06019541.9

(22) Date of filing: 06.08.1997

(51) Int Cl.: �
G06F 9/445 (2006.01) G06F 11/14 (2006.01)

(84) Designated Contracting States:
DE FR GB IT

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
97937140.8 / 1 008 042

(71) Applicant: MACRONIX INTERNATIONAL CO., LTD. �
Hsinchu (TW)�

(72) Inventors:
• Sun, Albert C. �

Neihu
Taipei (TW) �

• Lee, Chee H. �
San- �Chung
Taipei (TW) �

• Chen, Chang L. �
Hsinchu (TW) �

(74) Representative: Horner, David Richard
D Young & Co
120 Holborn
London EC1N 2DY (GB) �

Remarks:
This application was filed on 19 - 09 - 2006 as a
divisional application to the application mentioned
under INID code 62.

(54) Fault-�tolerant architecture for in- �circuit programming

(57) The present invention provides a method and
apparatus for providing fault- �tolerance for in-�circuit pro-
gramming systems. The invention operates by storing a
minimal set of code to initialize the in- �circuit programming
process in a protected memory (107) so that if the pro-
gramming process fails, the process can be restarted
from the protected memory. This type of fault- �tolerance
is especially important in systems which allow the code
which accomplishes the in- �circuit programming to be
modified by the in- �circuit programming process. One em-
bodiment of the invention provides a multiplexer (110) to
selectively switch between a normal boot code sequence
(102) and a protected boot code sequence (107), as well
as a watchdog timer (122) to monitor the in- �circuit pro-
gramming process to determine whether the process is
progressing properly.

EP 1 744 244 A2

2

5

10

15

20

25

30

35

40

45

50

55

Description

Cross- �Reference to Related Applications

�[0001] This application is related to international appli-
cation No. PCT/US96/17302, entitled, "PROCESSOR
WITH EMBEDDED IN- �CIRCUIT PROGRAM STRUC-
TURES," filed 28 October 1996 by applicants Macronix
International Co., Ltd., for all states other than the United
States, and Albert C. Sun, Chee H. Lee and Chang L.
Chen for the United States. This application hereby in-
corporates by reference this prior application.
�[0002] This application is also related to international
application No. PCT/US97/05622, entitled, "IN- �CIRCUIT
PROGRAMMING ARCHITECTURE WITH ROM AND
FLASH MEMORY," filed 3 April 1997 by applicants Ma-
cronix International Co., Ltd., for all states other than the
United States, and Albert C. Sun, Chee H. Lee and Chang
L. Chen for the United States. This application hereby
incorporates by reference this prior application.

BACKGROUND

Field of the Invention

�[0003] The present invention relates to a computer
system having non- �volatile memory for storing sequenc-
es of instructions for execution by a processor in the com-
puter system, and more particularly to fault-�tolerance
techniques for in-�circuit programming to update and mod-
ify sequences of instructions stored in non-�volatile mem-
ory.

Related Art

�[0004] Integrated circuit microcontrollers have been
developed which include arrays of non-�volatile memory
on an integrated circuit for storing sequences of instruc-
tions to be executed by a microcontroller. The sequences
of instructions are stored in read- �only memory (ROM),
which must be programmed during manufacture of a de-
vice, and cannot be updated. The sequences of instruc-
tions can also be stored in an EPROM array. However,
this approach requires special hardware to program the
EPROM array before the device is placed in a circuit. In
yet other systems, EEPROM memory is used for storing
instructions. EEPROM has the advantage that it can be
programmed much more quickly than EPROM, and can
be modified on the fly. In yet another approach, flash
memory is used to store instructions. This allows for high-
er density and higher speed reprogramming of the non-
volatile memory. When a device combines a reprogram-
mable non-�volatile memory, such as EEPROM or a flash
memory, with a microcontroller, the device can be repro-
grammed while it is in a circuit, allowing for in-�circuit pro-
gramming based on interactive algorithms.
�[0005] The ability to interactively download instruction
and data to a remote device can be very valuable in a

network environment. For example, a company can serv-
ice a customer’s equipment without requiring the cus-
tomer to bring the equipment to a service center. Rather,
the company can execute diagnostic functions using the
in-�circuit programming capability of the customer’s
equipment across a communication channel such as the
Internet or telephone lines. In this way, software fixes
can be downloaded to a customer’s equipment, and the
equipment can be reenabled with corrected or updated
code.
�[0006] Reliability can become a problem during in-�cir-
cuit programming. The in-�circuit programming process
can take up to ten minutes, during which time there may
be data transmission errors or recording errors. These
errors can be especially troubling if the code which per-
forms the communication with the outside world (hand-
shaking code) is itself modified during the in-�circuit pro-
gramming process. If this code gets corrupted, the in-
circuit programming module may be left without any way
of resetting itself or communicating with the outside
world.
�[0007] What is needed is a method for providing fault-
tolerance during in-�circuit programming which can recov-
er from an error during the in-�circuit programming proc-
ess, even if the code used by the in-�circuit programming
process to communicate with the outside world is improp-
erly programmed.

SUMMARY

�[0008] The present invention provides a method and
an apparatus for providing fault- �tolerance during in-�cir-
cuit programming. The invention operates by ensuring
that a portion of the computer system’s boot code is pro-
tected from the in-�circuit programming process, so that
it will not be corrupted during in-�circuit programming. The
invention maintains an in-�circuit programming status,
which is set to an incomplete value when the in-�circuit
programming process is in progress, and is reset to a
complete value after the in-�circuit programming process
terminates. If the system is reset during the in-�circuit pro-
gramming process, the system will boot from the protect-
ed section of boot code, otherwise, the system will boot
from normal boot code, which is programmable through
the in-�circuit programming process. The invention also
operates in conjunction with a watch dog timer which
causes the system to reset itself if the in-�circuit program-
ming process fails to successfully terminate.
�[0009] Thus, the present invention can be character-
ized as a method for providing error recovery during in-
circuit programming of a computer system, comprising:
setting an in-�circuit programming status to an incomplete
value, indicating the in- �system programming process is
in progress; initiating the in- �circuit programming process;
when the in- �circuit programming process terminates, set-
ting the in-�circuit programming status to a complete value
indicating that the in-�circuit programming process is com-
plete; and during initialization of the system, executing a

1 2

EP 1 744 244 A2

3

5

10

15

20

25

30

35

40

45

50

55

first boot code sequence if the in-�circuit programming
status has a complete value, the first boot code sequence
being programmable through the in- �circuit programming
process, and executing a second boot code sequence if
the in- �circuit programming status has an incomplete val-
ue, the second boot code sequence being protected from
the in-�circuit programming process.
�[0010] According to one aspect of the present inven-
tion, the in- �circuit programming process includes testing
a section of code programmed by the in-�circuit program-
ming process.
�[0011] According to another aspect of the present in-
vention, the in-�circuit programming process is monitored
in order to detect a delay in the transmission of in- �circuit
programming instructions. The in-�circuit programming
process is restarted if the delay exceeds a specific time
out value. In one embodiment, the monitoring is conduct-
ed by a remote host from which the in-�circuit program-
ming code is downloaded. In another embodiment, the
monitoring is performed using a watch dog timer coupled
to the in- �circuit programming system.
�[0012] According to another aspect of the present in-
vention, the above-�mentioned method includes the step
of storing an address of a remote host from which the in-
circuit programming code is downloaded.
�[0013] The present invention may also be character-
ized as an apparatus for providing error recovery during
in-�circuit programming of a computer system, compris-
ing: a processor; a first boot code sequence coupled to
the processor; a second boot code sequence coupled to
the processor; an in-�circuit programming status indicator
coupled to the processor, the status indicator being set
to an incomplete value during in-�circuit programming,
and being set to a complete value after in-�circuit program-
ming is complete; and a selector mechanism coupled to
the first boot code sequence and the second boot code
sequence, for selecting a boot code sequence for com-
puter system initialization, the selector mechanism se-
lecting the first boot code sequence if the in-�circuit pro-
gramming status indicator is set to a complete value, and
selecting the second boot code sequence if the in- �circuit
programming status indicator is set to an incomplete val-
ue.
�[0014] The present invention can also be character-
ized as a method for providing error recovery during in-
circuit programming of a computer system, comprising:
monitoring the in- �circuit program in process in order to
detect a delay in transmission of in-�circuit programming
instructions from a remote host; and restarting the in-
circuit programming process if the delay exceeds a time-
out value.

DESCRIPTION OF THE FIGURES

�[0015]

FIG. 1 is a block diagram illustrating some of the
major functional components of a fault- �tolerance

system for in- �circuit programming in accordance with
an aspect of the present invention.
FIGs. 2A, 2B and 2C contain a flowchart illustrating
the sequence of operations involved in providing
fault-�tolerance for an in-�circuit programming system
in accordance with an aspect of the present inven-
tion.

DESCRIPTION

�[0016] The following description is presented to enable
any person skilled in the art to make and use the inven-
tion, and is provided in the context of a particular appli-
cation and its requirements.. Various modifications to the
preferred embodiments will be readily apparent to those
skilled in the art, and the general principles defined herein
maybe applied to other embodiments and applications
without departing from the spirit and scope of the inven-
tion. Thus, the present invention is not intended to be
limited to the embodiments shown but is to be accorded
the widest scope consistent with the principles and fea-
tures disclosed herein.
�[0017] FIG. 1 is a block diagram illustrating some of
the major functional components of a fault-�tolerant sys-
tem for in-�circuit programming in accordance with an as-
pect of the present invention. The in-�circuit programming
system includes non-�volatile memory 100, RAM 108,
CPU 112 and peripherals 114. The in-�circuit program-
ming system also includes components which implement
fault-�tolerance, including jump boot vector 116, multi-
plexer (MUX) 110, ICP status register 118, remote host
address register 120 and ICP watchdog 122.
�[0018] More specifically, CPU 112 is any type of a
processing system including a microcontroller, micro-
processor or mainframe computing system. CPU 112 is
coupled to RAM 108 which is a random access memory
containing code and data executed by CPU 112. CPU
112 is additionally coupled to non-�volatile memory 100
through MUX 110.
�[0019] Non-�volatile memory 100 is any type of memory
that persists when power is removed from the system,
including flash memory, EPROM, EEPROM, and ROM
memory. Non-�volatile memory 100 includes boot pro-
grams 102, utility programs 104, ICP handler 106 and
mini-�boot code 107. Boot programs 102 include a collec-
tion of programs which are executed during system ini-
tialization in order to initialize the hardware and software
resources of the system. Boot programs 102 are stored
in programmable memory, which can be modified during
the in-�circuit programming process. Non-�volatile memory
100 also includes utility programs 104, which include pro-
grams executed by CPU 112 during operation of the sys-
tem. Utility programs 104 are also contained within mem-
ory that can be programmed through the in-�circuit pro-
gramming process. Non-�volatile memory 100 also in-
cludes ICP handler 106, which performs the in-�circuit pro-
gramming functions of the system, and which is also con-
tained within memory that can be programmed through

3 4

EP 1 744 244 A2

4

5

10

15

20

25

30

35

40

45

50

55

the in-�circuit programming process.
�[0020] Non-�volatile memory 100 additionally includes
mini-�boot code 107, which is contained within a protected
memory, which cannot be modified during the same in-
circuit programming process of normal boot programs.
Mini-�boot code 107 is an alternative set of system initial-
ization instructions which perform many of the same func-
tions of boot programs 102. However, mini-�boot code
107 only springs into action when there is an error during
the in-�circuit programming process which potentially
causes boot programs 102 to be corrupted and unusable.
Hence, mini-�boot code 107 must be stored in memory
that cannot be modified during the same in-�circuit pro-
gramming process of normal boot programs. In one em-
bodiment of the present invention, mini-�boot code 107 is
stored in mask ROM memory while boot programs 102,
utility programs 104 and ICP handler 106 are stored in
programmable flash memory.
�[0021] CPU 112 is additionally coupled to hardware
components which facilitate fault tolerance during the in-
circuit programming process. CPU 112 is coupled to
MUX 110, which takes as inputs non-�volatile memory
100 and jump boot vector 116, as well as a control input
from ICP status register 118. MUX 110 selectively switch-
es CPU 112 between jump boot vector 116 and non-
volatile memory 100, depending upon the state of ICP
status 118. If ICP status 118 is dirty, this indicates that a
previous in-�circuit programming operation did not com-
plete, and CPU 112 takes as input a jump instruction to
a boot vector 116 during system initialization, which
points to mini-�boot code 107. On the other hand, if ICP
status 118 is clean, this indicates that no in-�circuit pro-
gramming operation is in progress, and CPU 112 takes
as input the initial location of non-�volatile memory 100
during system initialization. CPU 112 is additionally cou-
pled to remote host address register 120, which contains
a backup copy of the remote host address in case the
system is reset during in- �circuit programming. CPU 112
is also coupled to ICP watchdog 122 through read/�write
path 130 and reset line 132. ICP watchdog 122 contains
timeout period register 126 and timer 124 as well as
match logic 128. Both timer 124 and timeout period 126
can be initialized by CPU 112 through read/�write path
130. When the value of timer 124 matches timeout period
126, match logic 128 causes a reset signal to be sent
across reset line 123 which feeds into CPU 112. In one
embodiment, the above-�mentioned hardware compo-
nents to provide fault-�tolerance include programmable
memory elements that are protected from the in-�circuit
programming process.
�[0022] CPU 112 additionally connects to peripherals
114, which include input and output devices used to com-
municate with a system user, as illustrated by the double
arrow on the left-�hand- �side of peripherals 114. Peripher-
als 114 also includes an interface through which periph-
erals 114 are coupled to Internet 134. Internet 134 is itself
coupled to remote hosts 136, 138 and 140. Remote host
138 is coupled to disk 142 which contains new versions

of boot and utility programs to be downloaded through
Internet 134 into the in-�circuit programming system.
�[0023] The in-�circuit programming process generally
operates as follows. CPU 112 communicates with user
144 through peripherals 114. User 144 causes CPU 112
to begin executing ICP handler 106 which commences
the in-�circuit programming process. ICP handler 106
causes a connection to be made through peripherals 114
to Internet 134 and through Internet 134 to remote host
138. Remote host 138 then begins downloading data
from disk 142 through Internet 134 to non-�volatile mem-
ory 100. At the same time the data transfer is initiated,
timeout period 126 within ICP watchdog 122 is set to an
estimated value and timer 124 is initialized.
�[0024] If the in-�circuit programming process proceeds
smoothly, the fault-�tolerance features of the present in-
vention are not activated. On the other hand, if there is
an excessive delay in the in- �circuit programming process,
timer 124 will eventually match timeout period 126, caus-
ing a reset signal to flow through reset line 132 to CPU
112. This causes CPU 112 to initiate a boot sequence.
If the system is rebooted during the in- �circuit program-
ming process, ICP status register 118 is set to a dirty
value. This causes MUX 110 to direct jump boot vector
116 into CPU 112, which causes CPU 112 to boot from
mini-�boot code 107 instead of boot programs 102. If ICP
status 118 is set to a clean value, this means the in- �circuit
programming process was complete, and MUX 110
causes CPU 112 to boot from boot programs 102.
�[0025] Mini-�boot code 107 causes CPU 112 to restart
the in-�circuit programming process by first reading a val-
ue from remote host address register 120 to determine
which remote host to contact in order to reinitiate the in-
circuit programming process. The in-�circuit programming
process then recommences.
�[0026] FIGs. 2A, 2B and 2C contain a flowchart illus-
trating in detail the sequence of operations involved in
providing fault- �tolerance for an in- �circuit programming
system in accordance with an aspect of the present in-
vention. The flowchart contains five columns: user 144,
boot program 102, utility program 104, ICP handler 106
and remote host 138. Boxes under these column head-
ings indicate actions of user 144, boot program 102, utility
program 104, ICP handler 106 and remote host 138, re-
spectively.
�[0027] The system starts at step 210, in which the sys-
tem is powered up or reset by the user, or the system
starts at step 212, in which the system is self reset by
the watchdog timer. The system next proceeds to step
214 in which the system determines whether the ICP
status is set to a dirty value. If so, the system proceeds
to step 218. If not, the system proceeds to step 216.
�[0028] At step 216, the ICP status is clean. Hence, the
system fetches a first instruction from the default location
of the program memory. The system then proceeds to
step 220. At step 220, the system initializes hardware
and software resources of the system by executing boot
programs 102. The system next proceeds to step 228.

5 6

EP 1 744 244 A2

5

5

10

15

20

25

30

35

40

45

50

55

At step 228, the system allocates the requisite hardware
and software resources for requested utility programs.
The system next proceeds to step 230. At step 230, the
system determines whether in- �circuit programming
should occur. If not, the system proceeds to step 232. If
so, the system proceeds to step 240. At step 232, no in-
circuit programming is presently required, and the system
determines whether or not to shut down. If so, the system
proceeds to step 234 which is an end state. If not, the
system proceeds to step 222. At step 222, the system
runs the requested utility programs. The system then re-
turns to step 228 to allocate hardware and software re-
sources for the requested utility program. Note, that in
step 228 the system may interact with user 144 to deter-
mine the proper hardware and software resources to al-
locate.
�[0029] At step 218, the ICP status was determined to
be dirty upon system boot up. Because it is possible that
the regular system boot up code is corrupted, the system
fetches the first instruction from a default location in a
protected memory that cannot be modified by the in- �cir-
cuit programming process. The system next proceeds to
step 224. At step 224, the system executes a jump in-
struction to the boot vector which points to the specific
entry within the protected memory. The system next pro-
ceeds to step 226. At step 226, the system executes mini-
boot code 107, which initializes minimal system resourc-
es for in- �circuit programming. The system next proceeds
to step 236. At step 236, the system restores the remote
host address from remote host address register 120. The
system next proceeds to step 240.
�[0030] At step 240, the system initiates a link with a
remote host from which the in- �circuit programming code
is downloaded. Correspondingly, at step 242, the remote
host 138 links with the in- �circuit programming system.
The system next proceeds to step 244. At step 244, the
system stores the remote host address to remote host
address buffer 120. The system next proceeds to step
246. At step 246, the system loads and estimated timeout
value to the timeout period register 126. The system next
proceeds step 248. At step 248, the system sets the boot
vector register 116 to point to the start address of mini-
boot code 107. The system next proceeds to step 250.
At step 250, the system sets the ICP status register to
an incomplete state indicating that in- �circuit program-
ming is currently active. The system next proceeds to
step 252. At step 252, the system sets the number of
transferred bytes to zero. The system next proceeds to
step 254. At step 254, the system proceeds to download
a new boot and/or utility program into non- �volatile mem-
ory 100. Correspondingly, remote host 138 supplies new
versions of the boot and/or utility programs at step 255.
The system then proceeds to step 256. At step 256, the
system determines whether the ICP process is finished.
If not, the system proceeds to step 258. If so, the system
proceeds to step 264. At step 258, the ICP process has
not terminated and the system asks whether the number
of transferred bytes equals a transfer block size. If not,

the system returns to step 254 in order to download more
code. If so, the system proceeds to step 260. At step 260,
the system recalculates the timeout value based upon
performance during transfer of the preceding block in-
circuit programming code. The system then proceeds to
step 262 wherein timer 124 is reset. The system next
returns to step 252, in which the number of transferred
bytes is reset to zero.
�[0031] At step 264, the data transfer for in-�circuit pro-
gramming is complete, and timer 124 is stopped. The
system next proceeds to step 266. At step 266, the sys-
tem sets the ICP status to a complete value, indicating
that in-�circuit programming is complete. The system then
proceeds to step 270. At step 270, the in- �circuit program-
ming process is complete and the system is reset.
�[0032] According to one aspect of the present inven-
tion, the in- �circuit programming process is governed by
a time out period. During this time out period a certain
amount of data must be transferred from a remote host
to the in-�circuit programming system. In one embodi-
ment, this timeout period is downloaded to the processor
from the remote host twice, and the two downloaded val-
ues are compared agaist each other to ensure that the
value is properly downloaded before the value is used
as the time out period. In another embodiment, a timeout
period is permanently stored in the in- �circuit program-
ming system, and a downloaded time out value is com-
pared with the permanently stored value to ensure the
downloaded value is at least as large as the permanently
stored value. If it is not, the permanently stored value is
used.
�[0033] The foregoing description of the preferred em-
bodiments of the invention have been presented for pur-
poses of illustration and description only. They are not
intended to be exhaustive or to limit the invention to the
precise forms disclosed. Obviously, many modifications
and variations will be apparent to practitioners skilled in
the art. It is intended that the scope of the invention be
defined by the following claims and their equivalents.

Claims

1. A method for providing for error recovery during in-
circuit programming of a computer system, compris-
ing:�

setting an in- �circuit programming status to an
incomplete value, indicating the in-�circuit pro-
gramming process is in progress;
initiating the in-�circuit programming process;
when the in-�circuit programming process termi-
nates, setting the in- �circuit programming status
to a complete value indicating the in-�circuit pro-
gramming process is complete; and
during initialization of the system, executing a
first boot code sequence if the in-�circuit pro-
gramming status has a complete value, the first

7 8

EP 1 744 244 A2

6

5

10

15

20

25

30

35

40

45

50

55

boot code sequence being programmable
through the in-�circuit programming process, and
executing a second boot code sequence if the
in- �circuit programming status has an incomplete
value, the second boot code sequence being
protected from the in-�circuit programming proc-
ess.

2. The method of claim 1, wherein the second boot code
sequence is protected from the in-�circuit program-
ming process, and is separately programmable us-
ing a special in- �circuit programming process.

3. The method of claim 1, wherein the in-�circuit pro-
gramming process includes testing a section of code
loaded by the in- �circuit programming process.

4. The method of claim 1, including the steps of:�

monitoring the in-�circuit programming process
in order to detect a delay in transmission of in-
circuit programming instructions; and
restarting the in-�circuit programming process if
the delay exceeds a timeout value.

5. The method of claim 1, including:�

monitoring the in-�circuit programming process
in order to detect a delay in transmission of in-
circuit programming instructions;
reinitializing the computer system and restarting
the in-�circuit programming process if the delay
exceeds a timeout value.

6. The method of claim 1, including:�

monitoring the in-�circuit programming process
in order to detect a delay in transmission of in-
circuit programming instructions;
reinitializing the computer system and restarting
the in-�circuit programming process if the delay
exceeds a timeout value, wherein the timeout
value is downloaded twice from a remote host,
and the two values are compared against each
other to verify that they match to ensure that the
timeout values are downloaded properly.

7. The method of claim 1, including:�

monitoring the in-�circuit programming process
in order to detect a delay in transmission of in-
circuit programming instructions;
reinitializing the computer system and restarting
the in-�circuit programming process if the delay
exceeds a timeout value, wherein a first timeout
value is dowloaded from a remote host and is
compared against a second timeout value which
is permanently stored in the computer system

to ensure that the first time out value is at least
as large as the second timeout value, and if not
using the second timeout value as the timeout
value.

8. The method of claim 1, wherein the step of executing
the second boot code sequence includes executing
a jump instruction to a boot vector that points to the
start of the second boot code sequence.

9. The method of claim 1, including the step of:�

monitoring the in-�circuit programming process
in order to detect a delay in transmission of in-
circuit programming instructions, wherein the
monitoring is performed by a remote host from
which the in-�circuit programming code is down-
loaded.

10. The method of claim 1, including the step of:�

monitoring the in-�circuit programming process
in order to detect a delay in transmission of in-
circuit programming instructions, wherein the
monitoring is performed using a watch dog timer
coupled to the computer system.

11. The method of claim 1, wherein the computer system
is coupled to a remote host through which the in-
circuit programming code is downloaded, and includ-
ing the step of using the remote host to determine a
timeout value for a transmission of in-�circuit pro-
gramming code.

12. The method of claim 1, including the step of using
the computer system to determine a timeout value
for a transmission of in-�circuit programming code.

13. The method of claim 1, including the step of deter-
mining a timeout value for transmissions of in-�circuit
programming code based upon system performance
during prior downloading of data to the processor.

14. The method of claim 1, wherein the computing sys-
tem is a device controller.

15. The method of claim 1, including the step of receiving
in- �circuit programming instructions from a remote
host through a computer network.

16. The method of claim 1, including the step of receiving
in- �circuit programming instructions from a remote
host through an Internet.

17. The method of claim 1, wherein the in-�circuit pro-
gramming status is protected from the in-�circuit pro-
gramming process.

9 10

EP 1 744 244 A2

7

5

10

15

20

25

30

35

40

45

50

55

18. The method of claim 1, including the step of storing
an address of a remote host from which the in-�circuit
programming code is downloaded.

19. The method of claim 1, including the step of storing
an address of a remote host from which the in-�circuit
programming code is down loaded so that the ad-
dress is protected from the in-�circuit programming
process.

20. An apparatus for providing error recovery during in-
circuit programming of a computer system, compris-
ing:�

a processor;
a first boot code sequence coupled to the proc-
essor;
a second boot code sequence coupled to the
processor;
an in-�circuit programming status indicator cou-
pled to the processor, the status indicator being
set to an incomplete value during in- �circuit pro-
gramming, and being set to a complete value
after in- �circuit programming is complete; and
a selector mechanism coupled to the first boot
code sequence and the second boot code se-
quence, for selecting a boot code sequence for
computer system initialization, the selector
mechanism selecting the first boot code se-
quence if the in-�circuit programming status indi-
cator is set to a complete value, and selecting
the second boot code sequence if the in- �circuit
programming status indicator is set to an incom-
plete value.

21. The apparatus of claim 20, wherein the selector
mechanism includes a multiplexer coupled to the
processor for selecting between the first boot code
sequence and the second boot code sequence.

22. The apparatus of claim 20, wherein the first boot
code sequence and the second boot code sequence
are contained within the same memory module.

23. The apparatus of claim 20, wherein the first boot
code sequence is programmable through the in-�cir-
cuit programming process and the second boot code
sequence is protected from the in-�circuit program-
ming process.

24. The apparatus of claim 20, wherein the first boot
code sequence resides within a flash memory and
the second boot code sequence resides within a read
only memory.

25. The apparatus of claim 20, wherein the in-�circuit pro-
gramming status is protected from the in-�circuit pro-
gramming process.

26. The apparatus of claim 20, including a remote host
address coupled to the processor, the remote host
address including a network address of a remote
host from which the in-�circuit programming code is
downloaded.

27. The apparatus of claim 20, including a remote host
address coupled to the processor, the remote host
address including a network address of a remote
host from which the in-�circuit programming code is
down loaded, the remote host address residing in a
memory that is protected from the in-�circuit program-
ming process.

28. The apparatus of claim 20, including a network in-
terface coupled to the processor, the network inter-
face being coupled to a network through which the
in- �circuit programming code is downloaded.

29. The apparatus of claim 20, including a watch dog
timer coupled to the processor, the watch dog timer
monitoring the in- �circuit programming process in or-
der to detect a delay in transmission of in-�circuit pro-
gramming instructions.

30. The apparatus of claim 20, including a watch dog
timer coupled to the processor, the watch dog timer
monitoring the in- �circuit programming process in or-
der to detect a delay in transmission of in-�circuit pro-
gramming instructions, the watch dog timer causing
the in-�circuit programming process to be restarted if
the delay exceeds a timeout value.

31. The apparatus of claim 20, including a watch dog
timer coupled to the processor, the watch dog timer
monitoring the in- �circuit programming process in or-
der to detect a delay in transmission of in-�circuit pro-
gramming instructions, the watch dog timer causing
the computer system to be reinitialized and the in-
circuit programming process to be restarted if the
delay exceeds a timeout value.

32. The apparatus of claim 20, wherein the processor is
coupled to a remote host through which the in-�circuit
programming code is downloaded, the remote host
monitoring the in- �circuit programming process in or-
der to detect a delay in transmission of in-�circuit pro-
gramming instructions.

33. The apparatus of claim 20, wherein :�

the processor is coupled to a remote host
through which the in-�circuit programming code
is downloaded; and
the remote host determines a timeout value for
transmissions of in-�circuit programming code.

34. The apparatus of claim 20, wherein the processor

11 12

EP 1 744 244 A2

8

5

10

15

20

25

30

35

40

45

50

55

determines a timeout value for transmissions of in-
circuit programming code.

35. The apparatus of claim 20, including a timeout value
for transmissions of in- �circuit programming code
coupled to the apparatus which is determined based
upon system performance during prior downloading
of data to the processor.

36. A method for providing for error recovery during in-
circuit programming of a computer system, compris-
ing:�

monitoring the in-�circuit programming process
in order to detect a delay in transmission of in-
circuit programming instructions from a remote
host; and
restarting the in-�circuit programming process if
the delay exceeds a timeout value.

37. The method of claim 34, including the step of reini-
tializing the computer system if the delay exceed the
timeout value.

38. The method of claim 34, wherein the step of moni-
toring is performed by a remote host from which the
in-�circuit programming code is downloaded.

39. The method of claim 34, wherein the step of moni-
toring is performed by using a watch dog timer cou-
pled to the computer system.

40. The method of claim 34, wherein the computer sys-
tem is coupled to a remote host through which the
in- �circuit programming code is downloaded, and in-
cluding the step of using the remote host to deter-
mine a timeout value for a transmission of in-�circuit
programming code.

41. The method of claim 34, including the step of using
the computer system to determine a timeout value
for a transmission of in-�circuit programming code.

42. The method of claim 34, including the step of using
the computer system to determine a timeout value
for a transmission of in-�circuit programming code.

43. The method of claim 34, including the step of deter-
mining a timeout value for transmissions of in-�circuit
programming code based upon system performance
during prior downloading of data to the processor.

13 14

EP 1 744 244 A2

9

EP 1 744 244 A2

10

EP 1 744 244 A2

11

EP 1 744 244 A2

12

EP 1 744 244 A2

13

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 9617302 W [0001] • US 9705622 W [0002]

	bibliography
	description
	claims
	drawings

