锂二次电池用负极活性材料、其制备方法和包含所述材料的锂二次电池

摘要

本发明涉及一种锂二次电池用负极活性材料及其制备方法，其中，所述负极活性材料含有多个钠晶硅，并且所述多钠晶硅包含位于晶界中的孔。因此，在充电或放电时，所述负极活性材料可以内部吸收其体积变化，从而显示缓冲作用，导致负极和电池的寿命特性的改善。
1.一种锂二次电池用负极活性材料，所述负极活性材料包含：
 多孔多晶硅，
 其中所述多孔多晶硅包含布置在晶界处的孔。
2. 根据权利要求1所述的锂二次电池用负极活性材料，其中所述多孔多晶硅还包含在
 所述多孔多晶硅的表面上形成的孔。
3. 根据权利要求1所述的锂二次电池用负极活性材料，其中所述多孔多晶硅的孔隙率为
 5体积%～80体积%。
4. 根据权利要求1所述的锂二次电池用负极活性材料，其中所述多孔多晶硅的平均晶粒尺寸为
 3nm～300nm。
5. 根据权利要求1所述的锂二次电池用负极活性材料，其中所述多孔多晶硅的平均粒径
 (D₅₀)为0.01μm～50μm。
6. 根据权利要求1所述的锂二次电池用负极活性材料，其中所述多孔多晶硅包含
 2000ppm以下的量的金属杂质。
7. 根据权利要求1所述的锂二次电池用负极活性材料，其中所述多孔多晶硅不包含金
 属杂质。
8. 根据权利要求1所述的锂二次电池用负极活性材料，还包含在所述多孔多晶硅的表
 面上的包含碳类材料的涂层。
9. 根据权利要求8所述的锂二次电池用负极活性材料，其中所述碳类材料包含无定形碳。
10. 根据权利要求8所述的锂二次电池用负极活性材料，其中基于所述负极活性材料的
 总重量，以50重量%以下的量包含所述包含碳类材料的涂层。
11. 一种制备锂二次电池用负极活性材料的方法，所述方法包括：
 对包含金属杂质的多晶硅进行热处理并在所述多晶硅进行冷却后以制备在晶界处包含
 所述金属杂质的多晶硅；以及
 通过在所述晶界处包含所述金属杂质的多晶硅进行酸处理以溶解所述金属杂质，制
 备其中在晶界处形成有孔的多孔多晶硅。
12. 根据权利要求11所述的方法，其中所述金属杂质包含选自如下中的一种：镍(Ni)、
 铱(Sc)、钛(Ti)、钒(V)、铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、铜(Cu)、锌(Zn)、钯(Pd)、
 铝(Al)、镓(Ga)、铟(In)、铊(Tl)、铅(Pb)、铋(Bi)和锂(Li)，或其两种以上的混合物。
13. 根据权利要求11所述的方法，其中所述热处理在750℃～1400℃的温度下实施。
14. 根据权利要求11所述的方法，其中所述冷却是通过在10分钟内冷却至20℃～30℃的
 温度实施。
15. 根据权利要求11所述的方法，其中所述酸包含选自如下中的一种：氢氟酸、盐酸、硫
 酸、硝酸和磷酸，或其两种以上的混合物。
16. 根据权利要求11所述的方法，还包括在制备所述多孔多晶硅之后，在所述多孔多晶
 硅的表面上形成包含碳类材料的涂层。
17. 根据权利要求16所述的方法，其中所述碳类材料包含无定形碳。
18. 一种锂二次电池用负极，其包含权利要求1～10中任一项所述的负极活性材料。
19. 一种锂二次电池，所述锂二次电池包含权利要求18所述的负极。
20. 一种电池模块，所述电池模块包含权利要求19所述的锂二次电池作为单元电池。
21. 一种电池组，所述电池组包含权利要求20所述的电池模块。
22. 根据权利要求21所述的电池组，其中所述电池组用作中型和大型装置的电源。
23. 根据权利要求22所述的电池组，其中所述中型和大型装置选自：电动车辆、混合动力电动车辆、插电式混合动力电动车辆和电力存储系统。
锂二次电池用负极活性材料、其制备方法和包含所述材料的锂二次电池

技术领域
【0001】 相关申请的交叉引用
【0002】 本申请主张向韩国知识产权局于2014年10月2日提交的韩国专利申请2014-0133430号和于2015年9月30日提交的韩国专利申请2015-0137454号的权益，通过参考将其公开内容以其整体并入本文中。

技术领域
【0003】
【0004】 本发明涉及一种锂二次电池用负极(negative electrode)活性材料、其制备方法和包含所述负极活性材料的锂二次电池。

背景技术
【0005】 随着关于移动设备的技术开发和需求的增加，对作为能源的二次电池的需求已经显著增加。在这些二次电池中，具有高能量密度、高电压、长循环寿命和低自放电率的锂二次电池已经商业化并被广泛使用。特别地，随着锂二次电池市场近来已经从便携式装置中使用的小尺寸锂二次电池扩展到车辆中使用的大尺寸二次电池，需要用于开发高容量和高功率负极活性材料的技术。由此，开发了基于比碳类负极活性材料具有更高理论容量的材料如硅、钴、镍、锌和铝的非碳类负极活性材料。
【0006】 在上述材料中，由于硅类负极活性材料具有比碳类负极活性材料的理论容量(372mAh/g)高11倍以上的容量(4190mAh/g)，所以硅类负极活性材料作为用于替代碳类负极活性材料的材料成为关注的焦点。然而，由于硅类负极活性材料在锂离子嵌入期间的体积膨胀是在仅使用硅时的3倍以上，所以随着电池充电和放电的进行，硅类负极活性材料发生瓦解。结果，容量可能因损失接触而降低。
【0007】 因此，为了克服上述限制，已经提出了使用纳米尺寸硅的方法、使用棒状或纤维状硅的方法，或使用多孔硅的方法。
【0008】 制备纳米尺寸硅的最常见的方法之一是通过研磨大的硅粒子制备纳米尺寸的硅粒子，特别是直径为几十至几百纳米的硅粒子的方法。然而，上述方法的局限性在于，在研磨过程期间可能容易发生硅的表面氧化，并且由于作为氧化的结果在硅的表面上形成的无定形SiOx，初始效率可能降低。此外，对于棒状或纤维状纳米硅材料，由于其制造工艺复杂且制造成本高，因此可能难以批量生产棒状或纤维状纳米硅材料。另外，关于多孔硅，由于仅在粉末的表面中形成孔，因此在活性材料体积随充放电发生变化期间难以获得充分的缓冲作用。因此，寿命特性可能劣化。

发明内容
【0009】 技术问题
[0010] 本发明提供一种锂二次电池用负极活性材料，所述负极活性材料可以通过内部吸收随充电和放电发生的活性材料的体积变化以显示缓冲作用而改善负极和电池的寿命特性。

[0011] 本发明还提供一种制备上述负极活性材料的方法。

[0012] 本发明还提供一种包含上述负极活性材料的负极。

[0013] 本发明还提供包含上述负极的锂二次电池、电池模块和电池组。

[0014] 技术方案

[0015] 根据本发明的一个方面，提供一种包含多孔多晶硅的锂二次电池用负极活性材料，其中所述多孔多晶硅包含布置在晶界处的孔。

[0016] 根据本发明的另一方面，提供一种制备锂二次电池用负极活性材料的方法，所述方法包括对包含金属杂质的多晶硅进行热处理并对所述多晶硅进行冷却从而制备在晶界处包含金属杂质的多晶硅；以及通过对所述在晶界处包含金属杂质的多晶硅进行酸处理以溶解所述金属杂质，从而制备其中在晶界处形成有孔的多孔多晶硅。

[0017] 根据本发明的另一方面，提供一种包含上述负极活性材料的负极。

[0018] 根据本发明的另一方面，提供包含上述负极的锂二次电池、电池模块和电池组。

[0019] 有益效果

[0020] 由于根据本发明的锂二次电池用负极活性材料可以包含其中在晶界处形成有孔的多孔多晶硅，所以该负极活性材料通过内部吸收在充电和放电期间活性材料的体积变化而可以表现出缓冲作用。结果，可以提高负极和电池的寿命特性。

附图说明

[0021] 附属于本说明书的以下附图通过实例显示了本发明的优选实施例，并且用于使得能够与下面给出的本发明的详细描述一起来进一步理解本发明的技术概念。因此不应仅用这些附图中的主旨来解释本发明。

[0022] 图1是通过使用扫描电子显微镜(SEM)对比较例1中制备的负极活性材料的横截面进行观察的照片；

[0023] 图2A是在制备实施例1的负极活性材料时使用SEM对热处理前的多晶硅粉末的横截面进行观察的照片，且图2B是在制备实施例1的负极活性材料时使用SEM对热处理后的多晶硅粉末的横截面进行观察的照片；

[0024] 图3是显示对包含实施例1与比较例1和2的负极活性材料的电池的容量保持率进行评价的结果的图。

具体实施方式

[0025] 在下文中，将对本发明进行更详细的描述以使得更清楚地理解本发明。

[0026] 应当理解，在说明书和权利要求书中使用的词语或术语不应被解释为在通常使用的字典中定义的含义。进一步理解的是，所述词语或术语应在发明人可以适当地定义所述词语或术语的含义以最好地解释本发明原则的基础上解释为具有与其在本发明相关领域和技术理念的上下文中的含义相一致的含义。

[0027] 根据本发明实施方式的锂二次电池用负极活性材料包含多孔多晶硅，其中所述多
孔多晶硅包含置于晶界处的孔。

[0028] 在本发明中，表述“晶界”表示其中在多晶材料中一个晶体和相邻晶体、或具有相同结构但不同取向的两个晶体彼此接触的边界。

[0029] 具体地，在根据本发明实施方式的锂二次电池用负极活性材料中，多孔多晶硅是硅单晶的团聚体，其中多孔多晶硅包含由于硅单晶之间的接触而形成的晶界，并且所述晶界围绕所述硅单晶。

[0030] 由于锂二次电池用负极活性材料可以在晶界处包含孔，所以该负极活性材料可以通过将负极活性材料随着充电和放电发生的体积变化控制在晶体水平而表现出缓冲作用。结果，可以更有效地防止负极活性材料的覆解，由此，与其中不具有孔的硅类负极活性材料或仅在粒子表面中具有孔的硅类负极活性材料相比，根据本发明实施方式的锂二次电池用负极活性材料可以更有效地防止负极寿命特性的劣化。

[0031] 通过溶解去除包含在多晶硅原料中并因热处理而在晶界处浓缩的金属杂质和细晶粒来形成孔。结果，可以通过控制多晶硅原料中包含的金属杂质的量来调节多孔多晶硅中所包含的孔的尺寸和孔隙率。

[0032] 此外，在根据本发明实施方式的锂二次电池用负极活性材料中，多孔多晶硅还可以随在原料的金属杂质存在于原料表面上时存在于表面上的金属杂质的溶解去除而包含表面孔。

[0033] 此外，在根据本发明实施方式的锂二次电池用负极活性材料中，多孔多晶硅的孔隙率可以在5体积%～80体积%的范围内。当多孔多晶硅的孔隙率小于5体积%时，对活性材料体积变的缓冲效果可能不明显，且当多孔多晶硅的孔隙率大于80体积%时，多孔多晶硅自身的机械强度可能下降。在本发明中，通过在2000kg/cm²压力下的压汞孔隙率测量法来测量多孔多晶硅中的孔隙率、孔的分布以及在表面中形成的开孔的存在。

[0034] 此外，在根据本发明实施方式的锂二次电池用负极活性材料中，多孔多晶硅包含硅纳米晶粒，并且例如可以包含平均晶粒尺寸为3nm～300nm的硅纳米晶粒。因此，通过包含纳米级硅晶粒可以获得改善电池特性的更好效果。

[0035] 在本发明中，多晶硅中的晶粒的尺寸可以通过美国材料与试验协会（ASTM）的晶粒尺寸号来确定。具体地，当在100×放大倍率下拍摄的多晶硅的照片中1平方英寸（1×in²）中的晶粒数为z时，z = 2^（N-1）。本文中，N是ASTM晶粒尺寸号。当关于N对上述方程式进行总结时，得到如下方程式1。

[0036] [方程式1]

[0037] N = (logz/log2) + 1

[0038] 此外，在根据本发明实施方式的锂二次电池用负极活性材料中，多孔多晶硅的平均粒径（Dₜₐ）可以在0.01μm～50μm的范围内。当多孔多晶硅的平均粒径小于0.01μm时，由于多晶硅的团聚而导致在用于形成负极的组合物中的分散可能下降，并且当多孔多晶硅的平均粒径大于50μm时，由于比表面积减小而导致活性可能降低。例如，考虑到由于多晶硅平均粒径的最优化而导致的显著改善，多孔多晶硅的平均粒径（Dₜₐ）可以在0.05μm～20μm的范围内。

[0039] 在本发明中，多孔多晶硅的平均粒径（Dₜₐ）可以定义为累积粒径分布中在50%处的粒径。例如，根据本发明实施方式的多晶硅粒子的平均粒径（Dₜₐ）可以通过使用激光衍射法
来测量。具体而言，多晶硅的平均粒径（D50）可以在如下方式进行测量：将多晶硅的粒子分散在分散剂中，将分散剂导入市售的激光衍射粒度测量仪器（例如由日机装公司提供的Microtrac MT 3000™）并利用频率约为28kHz且输出功率为60W的超声波进行照射，然后可以计算在测量仪器的累积粒径分布中的50%处的平均粒径（D50）。

此外，在根据本发明实施方式的锂二次电池用负极活性材料中，多孔多晶硅可能不可避免地包含在制备过程中使用的或者在制备过程期间因反应而形成的诸如催化剂的金属杂质。具体地，所述金属杂质可以包含镍（Ni）、钛（Ti）、钒（V）、铬（Cr）、锰（Mn）、铁（Fe）、钴（Co）、铜（Cu）、锌（Zn）、铌（Nb）、钼（Mo）、钌（Ru）、铑（Rh）、钯（Pd）、镧（La）、铈（Ce）、钕（Nd）、镓（Ga）、锗（Ge）、锡（Sn）、锑（Sb）、铋（Bi）或锂（Li），并且可以包含其任一种或两种以上的混合物。

然而，在其中金属杂质保留在多孔多晶硅的情况下，由于由金属杂质引起的副反应的发生而导致电池特性可能劣化。因此，本发明中，在制备多孔多晶硅期间，在晶界处形成孔，同时，可以通过喷雾处理将上述金属杂质除去。此外，通过在制备过程中的热处理和酸处理等条件进行优化，可以进一步制备的多孔多晶硅中的金属杂质的量降低到不劣化电池特性的水平。具体地，在根据本发明实施方式的锂二次电池用负极活性材料中，多孔多晶硅可以以2000ppm以下的量包含上述金属杂质，并且例如可以不包含金属杂质。

此外，根据本发明实施方式的锂二次电池用负极活性材料可以还包含在多孔多晶硅粒子上的包含碳类材料的涂层。

碳类材料的涂层可以通过提高负极活性材料的导电性和循环特性，并且可以增加在负极活性材料的体积变化期间的应力消除效果。

具体地，碳类材料可以包含选自无定形碳和晶体碳中的任一种或其两种以上的混合物。无定形碳可以包括软碳（低温烧结碳）或硬碳（高温烧结碳），且晶体碳可以包含天然石墨或人造石墨。在这些材料中，考虑到二次电池的电池特性如寿命特性和低温特性的改善，碳类材料例如可以是无定形碳。

此外，碳类材料的形状没有特别限制，并且碳类材料可以具有各种形状如平面形、球形或纤维形状。

基于负极活性材料的总重量，可以以50重量%以下、或1重量%～50重量%的量含有包含碳类材料的涂层。当含有碳类材料的涂层的量大于50重量%时，可能会使电极反应发生不可逆反应，降低初始效率。例如，包含碳类材料的涂层的量可以在1重量%～30重量%，特别是1重量%～10重量%的范围内。

根据本发明的另一个实施方式，提供一种制备上述负极活性材料的方法。

具体地，根据本发明实施方式的制备负极活性材料的方法包括以下步骤：对包含金属杂质的多晶硅进行热处理并对所述多晶硅进行冷却以制备在晶界处包含金属杂质的多晶硅（步骤1）；以及通过在晶界处包含金属杂质的多晶硅进行酸处理以溶解上述金属杂质，制备其中在晶界处形成孔的多孔多晶硅（步骤2）。

在下文中，将对各个步骤进行详细描述，其中步骤1是对包含金属杂质的多晶硅原料进行热处理并对多晶硅原料进行冷却以制备在晶界处包含金属杂质的多晶硅的步骤。

可以使用根据常规制备方法制备的原料或者可以使用商用获得的多晶硅作为包含金属杂质的多晶硅原料。然而，由于包含在多晶硅中的金属杂质可能影响孔隙率和孔的
形成，所以考虑到影响负极活性材料的效果的孔隙率，可以使用包含适当量金属杂质的多晶硅原料。具体地，多晶硅原料可以是通常用作二次电池的负极活性材料的金属硅（metal grade silicon），并且特别地可以是金属杂质的量为100000ppm以下及50000ppm以下的金属硅。

[0051] 此外，在多晶硅中，金属杂质是在多晶硅原料的制备过程中不可避免地包含的金属材料，且具体地可以包含选自如下中的一种：Ni、Sc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、La、Hf、Ta、W、Re、Os、Mg、Ca、P、Al、Ge、Sn、Sb、Bi和Li，或其两种以上的混合物。

[0052] 此外，在根据本发明实施方式的制备负极活性材料中，可以在750℃～1400℃的温度下在惰性气氛中实施对包含金属杂质的多晶硅原料的热处理。当在上述条件下进行热处理时，分布在整个多晶硅原料中的金属杂质移动到晶界。当热处理期间的温度低于750℃时，金属杂质向晶界的移动不平稳，结果，在晶界形成的孔的尺寸和孔隙率可能变小。此外，当热处理期间的温度大于1400℃时，由于发生硅（Si）的熔化，所以可能不会形成多孔结构。

[0053] 此外，在根据本发明实施方式的制备负极活性材料的方法中，可以恒定地保持热处理期间的温度以将金属杂质集中在晶界处。

[0054] 在热处理之后，实施冷却工序以防止集中在晶界中的金属杂质移动。

[0055] 所述冷却可以通过将经热处理的多孔硅冷却至20℃～30℃的温度的方法来实施，在这种情况下，冷却方法可以按照诸如水洗、通风和冰浴浸泡的常规方法来实施。另外，冷却期间的冷却速度没有特别限定，但例如可以在10分钟以内将温度迅速降低至上述冷却温度。

[0056] 接下来，步骤2是对在步骤1中制备的包含晶界处的金属杂质的多晶硅进行酸处理以溶解金属杂质的步骤。

[0057] 在根据本发明实施方式的制备负极活性材料的方法中，所述酸处理可以通过浸渍在例如如下无机酸的任一种或其两种以上的混合物来实施：氢氟酸、盐酸、硫酸、硝酸或磷酸。在这种情况下，所述酸可以通过添加水或以稀溶液相的方式使用。

[0058] 作为酸处理的结果，通过溶解将存在于多晶硅与细晶粒的晶界处的金属杂质除去，并且在这些位置处形成孔。

[0059] 在这种情况下，考虑到最终制备的多孔多晶硅中的孔隙率和金属杂质的量，可以将上述酸处理实施一次或多次，特别是二次或两次。

[0060] 此外，在酸处理之后，可以选择性地进一步对作为酸处理的结果而得到的多晶硅实施洗涤工序和干燥工序。

[0061] 洗涤工序和干燥工序可以按照常规方法实施。具体地，可以通过诸如使用水、醇、其混合溶液进行浸渍和漂洗的方法来实施洗涤工序。此外，可以通过在其中可蒸发并除去残留溶剂成分的如80℃～120℃的温度范围内实施加热或热空气处理来实施干燥工序。

[0062] 此外，根据本发明实施方式的制备负极活性材料的方法可以还包括在制备多孔多晶硅之后用碳类材料实施表面处理。

[0063] 利用碳类材料的表面处理可以通过包括如下步骤的常规方法来实施：形成碳类涂层，例如通过沉积、涂布、阴极、干湿或压缩碳类材料进行的表面涂布；机械合金化；和通过烧结有机材料进行的碳化。涂层可以通过诸如上述所述的方法或喷雾来形成；利用低
结晶或无定形碳前体对表面进行涂布，或者用无定形碳前体对表面进行涂布并然后热处理
以碳化所述碳前体。另外，涂层可以通过诸如沥青涂布或化学气相沉积（CVD）的方法形成。
在这种情况下，碳类材料的类型和量与上述的相同。
[0064] 根据本发明的另一个实施方式，提供一种包含上述负极活性材料的锂二次电池用
负极。
[0065] 具体地，负极包含负极集电器和形成在所述负极集电器上并包含上述负极活性材
料的负极活性材料层。
[0066] 在根据本发明实施方式的负极中，负极集电器没有特别限制，只要其具有高导电
性而在电池中不引起不利的化学变化即可，并且例如可以使用：铜，不锈钢，铝，镍，铁，烧结
碳，用碳，镍，钛或铁中的一种表面处理过的铜或不锈钢，或铝–镍合金。此外，负极集电器
可以通常具有3μm~500μm的厚度并且可以包含具有微细粗糙度的表面以提高与负极活性材
料的粘合强度。负极集电器可以以各种形状如膜、片、箔、带、多孔体、泡沫体或无纺布体的
形状使用。
[0067] 负极活性材料层选择性地包含粘合剂和导电剂以及负极活性材料。在这种情况
下，负极活性材料与上述相同。
[0068] 导电剂用于向电极提供导电性，其中可以使用任何导电剂而没有特别限制，只要
其具有合适的电导率而不引起电池中的不利化学变化即可。导电剂的具体实例可以是：石
墨如天然石墨和人造石墨；炭类材料如炭黑、石墨烯、科琴黑、沥青炭黑、电极黑、碳黑、热裂法
炭黑和碳纤维；金属粉末如铜粉末、镍粉末、铝粉末和银粉末，或金属纤维；导电晶须如氧化
铝晶须和钛酸钾晶须；导电金属氧化物如氧化钛；或导电聚合物如聚亚苯基衍生物，并且可以
使用单独一种或其两种以上的混合物。在这些材料中，考虑到与上述包含多孔多晶硅的
负极活性材料混合时的显著改善以及在负极制备过程中的高温干燥工序，导电剂可以是
诸如炭黑的碳类材料。基于负极活性材料层的总重量，通常可以以1重量％~30重量％的量
包含所述导电剂。
[0069] 此外，粘合剂用于改善负极活性材料粒子之间的粘合和负极活性材料与集电器之
间的粘合。粘合剂的具体实例可以是聚偏二氟乙烯（PVDF）、聚偏二氟乙烯–六氟丙烯共聚物
（PVDF–HFP）、聚乙烯醇、聚丙烯酸、羧甲基纤维素（CMC）、淀粉、羟丙基纤维素、再生纤维
素、聚乙烯基吡咯烷酮、四氟乙烯、聚乙烯、聚丙烯、乙烯–丙烯聚合物（EPDM）、磺化
EPDM、丁苯橡胶（SBR）、氯橡胶或其各种共聚物，并且可以使用单独一种或其两种以上的混
合物。在这些材料中，考虑到与上述包含多孔多晶硅的负极活性材料混合时的显著改善，
粘合剂可以是水性粘合剂，并且在水性粘合剂中，考虑到所述显著改善、粘合剂本身的粘合
能力和负极制备过程中的高温干燥工序，粘合剂可以是丁苯橡胶。基于负极活性材料层的
总重量，可以以1重量％~30重量％的量包含所述粘合剂。
[0070] 具有上述结构的负极可以通过制备负极的常规方法制备，不同之处在于使用上述
负极活性材料。具体地，负极可以通过利用用于形成负极活性材料层的组合物对负极集电
器进行涂布来制备，所述负极活性材料层通过将上述负极活性材料、粘合剂和导电剂溶解
或分散在溶剂，然后对涂布的负极集电器进行干燥来制备。在这种情况下，负极活性材料、
粘合剂和导电剂的类型和量与上述相同。
[0071] 此外，可以使用本领域中通常使用的溶剂作为用于制备负极活性材料层形成用组
合物的溶剂。溶剂可以包含二甲基亚砜（DMSO）、异丙醇、N-甲基吡咯烷酮（NMP）、丙酮或水，并且可以使用单独一种或其两种以上的混合物。如果考虑浆料的涂布厚度和制造产率，可以获取其中正极活性材料、导电剂和粘合剂可以被溶解或分散，并且在随后的用于制备正极的涂布期间可以获得优异的厚度均匀性的粘度，则所使用的溶剂的量是足够的。

此外，用于形成负极活性材料层的组合物可以还包含具有上述成分的增稠剂。具体地，增稠剂可以是纤维素类化合物如羧甲基纤维素（CMC）。基于负极活性材料层的总重量，可以以0.1重量%～10重量%的量包含增稠剂。

此外，作为另一种方法，将用于形成负极活性材料层的组合物浇铸在单独的载体上，并且可以通过将膜与载体分离并然后将膜层压在负极集电器上来制备负极。

通过包含上述负极活性材料，根据上述制备方法制备的负极可以表现出优异的寿命特性而不降低初始效率。

根据本发明的另一个实施方式，提供包含上述负极的电化学装置。电化学装置具体可以是电池或电容器且例如可以是锂二次电池。

具体地，锂二次电池包含正极（positive electrode），与所述正极相对设置的负极、设置在正极和负极之间的隔膜和电解质，并且负极与上述相同。此外，锂二次电池可以选择性地包含；容纳负极、正极和隔膜的电极组件的电池壳；和用于密封所述电池壳的密封构件。

在锂二次电池中，正极包含正极集电器和形成在正极集电器上并包含正极活性材料的正极活性材料层。

在正极中，正极集电器没有特别限制，只要其具有导电性而不引起电池中的不利化学变化即可，并且可以使用例如：不锈钢，铝，镍，钛，烧结碳，或用碳，镍，钛或镍中的一种表面处理过的铝或不锈钢。另外，正极集电器的厚度通常为3μm～500μm并可以具有包含微细粒度的表面以提高对正极活性材料的粘合性。正极集电器可以以各种形状如膜、片、箔、网、多孔体、泡沫体、无纺布体等的形状使用。

正极活性材料层可以包含导电剂和粘合剂以及正极活性材料。

此外，在正极活性材料层中，可以使用能够可逆地嵌入和脱嵌锂的化合物（锂化嵌入化合物）作为正极活性材料。具体地，可以使用锂与金属如钴、锰、镍或其组合的复合氧化物中的至少一种，且例如可以使用由下述1表示的锂金属化合物。

【式1】

\[\text{Li}_{x} \text{M}_{y} \text{M}^{'z} \text{O}_2 \]

【式2】

\[\text{Li}_{x} \text{M}_{y} \text{M}^{'z} \text{O}_2 \]

【式4】

\[\text{Li}_{x} \text{M}_{y} \text{M}^{'z} \text{O}_2 \]

【式5】

\[\text{Li}_{x} \text{M}_{y} \text{M}^{'z} \text{O}_2 \]

如上所述的正极可以通过制备正极的常规方法制备。具体地，可以通过用于形成正极活性材料层的组合物对正极集电器进行涂布来制备正极，所述组合物通过将导电剂和粘合剂以及正极活性材料溶解在溶剂中，然后对涂布的正极集电器进行干燥和压延来制
备。在这种情况下，正极活性材料层所包含的粘合剂、导电剂和溶剂可以与前面在正极中所述的相同。

在锂二次电池中，隔膜将正极和正电隔开并提供锂离子的移动路径，其中可以使用隔膜而没有特别限制，只要其是用作典型锂二次电池中的隔膜即可，并且特别地，可以使用对电解液具有高保湿能力以及对电解质离子的转移具有低阻力的隔膜。具体地，可以使用多孔聚合物膜，例如由聚烯烃类聚合物如乙烯均聚物、丙烯均聚物、乙烯/乙烯共聚物、乙烯/丙烯共聚物和乙烯/丙烯共聚物制备的多孔聚合物膜，或者可以使用其两层以上的层压结构。此外，可以使用典型的多孔无纺布，例如由高熔点玻璃纤维或聚对苯二甲酸乙二醇酯纤维形成的无纺布。此外，为了确保耐热性和机械强度，可以使用包含陶瓷成分或聚合物材料的涂布的隔膜，并且可以选择性地以单层或多层结构使用。

此外，本发明中使用的电解质可以包含有机类液体电解质、无机类液体电解质、固体聚合物电解质、凝胶型聚合物电解质、固体无机电解质和可以用于制备锂二次电池的熔融无机电解质，但是本发明不限于此。

具体地，电解质可以包含有机溶剂和锂盐。

可以将任何有机溶剂用作所述有机溶剂而没有特别限制，只要其可以充当参与电池电化学反应的离子可以移动通过其的介质即可。具体地，可以将如下物质用作所述有机溶剂：酯类溶剂如乙酸甲酯、乙酸乙酯、γ-丁内酯和ε-己内酯；醚类溶剂如二丁醚或四氢呋喃；酮类溶剂如环己酮；芳族烃类溶剂如苯和氟苯；或羧酸酯类溶剂如碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸亚乙酯(EC)、碳酸亚丙酯(PO)；醇类溶剂如乙醇或异丙醇；胺，例如R-CN(其中R是直链、支链或环状的C2～C20烃基并且可以包含双键芳环或醚键)；酰胺如二甲基甲酰胺；二氧戊环如1,3-二氧戊环；或环丁砜。在这些溶剂中，可以使用碳酸酯类溶剂，且例如可以使用具有较高传速率和介电常数的环状碳酸酯(例如碳酸亚乙酯或碳酸亚丙酯)和低粘度的线性碳酸酯类化合物(例如碳酸二甲酯、碳酸二甲酯或碳酸二乙酯)的混合物，所述环状碳酸酯可以提高电池的充电/放电性能。在这种情况下，当环状碳酸酯和链状碳酸酯以约1:1～约1:9的体积比混合时，电解液的性能可以是优异的。

可以使用锂盐而没有特别限制，只要其是能够提供锂二次电池中使用的锂离子的化合物即可。具体地，LiPF6、LiClO4、LiAsF6、LiBF4、LiSbF6、LiAlO2、LiAlCl4、LiF、Li2CO3、LiGaF4、LiNi(CF3SO3)2、Li[N(CF3SO2)2]2、Li[N(CF3SO2)2]2、LiCl、LiF或LiBr(或C6H5)2可以作为锂盐。锂盐可以以0.1M～2.0M的浓度范围使用。在其中锂盐的浓度包含在上述范围内的情况下，由于电解质可以具有适当的导电性和粘度，因此可以获得优异的电解质性能并且锂离子可以有效移动。

为了改善电池的寿命特性，抑制电池容量的降低，并且改善电池的放电容量，除了所述电解质成分之外，还可以向电解质添加至少一种添加剂，例如卤代亚烷基硫酸酸酯类化合物如二氟碳酸亚乙酯、吡啶、亚磷酸三乙酯、三乙醇胺、环醚、乙二胺、正甘醇二甲醚、六甲基磷酸三胺、硝基苯衍生物、硫酰亚胺染料、N-取代的噻唑烷酮、N,N-取代的咪唑烷、乙二醇二烷基醚、氯化钠、多聚氯乙烯酯、六甲基磷三环烷等添加剂。在这种情况下，基于电解质的总重量，可以以0.1重量%～5重量%的量包含所述添加剂。

如上所述，由于包含本发明的正极活性材料的锂二次电池稳定地显示出优异的放电
电容量、输出特性和容量保持率，所以锂二次电池适用于如下装置：便携式装置如移动电话、笔记本电脑和数码相机，以及电动车辆如混合动力电动汽车。

【0093】因此，根据本发明的另一实施方式，提供包含所述锂二次电池作为单元电池的电池模块和包含所述电池模块的电池组。

【0094】电池模块或电池组可以用作如下至少一种中型和大型装置的电源：电动工具；电动汽车，包括电动车辆（EV）、混合动力电动车辆（HEV）和插电式混合动力电动车辆（PHEV）；或电力存储系统。

【0095】下文中，将本文发明所属领域的普通技术人员可以容易实施的方式对本发明的实施例进行详细描述。然而，本发明可以以多种形式实施并且不应解释为限于本文所阐述的实例。

【0096】[实施例1]

【0097】将平均粒径(D90)为5μm(孔隙率：<1体积％，平均晶粒尺寸：49nm)的多晶硅粉末在氮(Ar)惰性气氛中在1350℃下热处理1小时以将杂质浓缩在晶界处，然后通过浸入蒸馏水(DI)中在10分钟内快速冷却至20℃～25℃，并通过在0.5M盐酸的水溶液中浸泡30分钟来实施酸化处理。结果，得到其中除去了金属杂质的多孔多晶硅粉末，并将所述粉末用作负极活性材料。

【0098】[实施例2]

【0099】将实施例1中制备的多孔多晶硅粉末与2g蔗糖粉末在240g蒸馏水中混合，将由此得到的混合溶液注入喷雾干燥器中并然后喷雾干燥以用蔗糖粉末涂布多孔多晶硅粉末。在这种情况下，喷雾干燥器的入口温度和出口温度分别设定为200℃和120℃，并将混合溶液的制备速率设定为20ml/分钟。作为喷雾干燥过程的结果，得到了涂布有蔗糖粉末的多孔多晶硅粉末，并将多孔多晶硅粉末在烧结炉中在氮气气氛中在500℃下烧结和碳化2小时。结果，得到了涂布有无定形碳的多孔多晶硅粉末并将所述粉末用作负极活性材料。在这种情况下，基于负极活性材料的总重量，无定形碳涂层的量为5重量％。

【0100】[比较例1]

【0101】将10g实施例1中使用的平均粒径(D90)为5μm的多晶硅粉末(孔隙率：<1体积％，平均晶粒尺寸：49nm)浸渍在腐蚀溶液中，所述腐蚀溶液是通过将300ml 5M氢氟酸溶液和700ml 0.015M硝酸银溶液在50℃下混合30分钟而制备的。在这种情况下，硝酸银溶液的Ag⁺离子从硅接收电子以被吸附在硅粉末的表面上，并且通过将已经失去电子的Si⁺溶解在氢氟酸(HF)中实施腐蚀。将完成腐蚀后的多孔硅粉末用蒸馏水中和，然后浸入20%的硝酸溶液中以除去表面上吸附的银(Ag)，并再次中和以制备多孔多晶硅粉末。将所述粉末用作负极活性材料。

【0102】[比较例2]

【0103】将实施例1中使用的平均粒径(D90)为5μm的多晶硅粉末(孔隙率：<1体积％，平均晶粒尺寸：49nm)用作负极活性材料。

【0104】[制备例：制备负极和锂二次电池]

【0105】通过分别使用实施例1和2中制备的负极活性材料制备了锂二次电池。

【0106】具体地，利用用于形成负极活性材料层的组合物(粘度：5000mPa·s)对钢集电器进行涂布，并然后干燥以制备负极，所述组合物通过将18重量％的实施例1和2中制备的各
种多孔粉末、72重量％的石墨、5重量％作为导电剂的炭黑和5重量％的PVdF粘合剂混合在N-甲基吡咯烷酮溶剂中制得。

[0107] 此外，将作为正极活性材料的LiNi_{0.4}Co_{0.3}Mn_{0.3}O_{2}，作为导电剂的炭黑和PVdF粘合剂以90:5:5的重量比混合在N-甲基吡咯烷酮溶剂中以制备用于形成正极活性材料层的组合物（粘度：5000mPa • s），利用所述组合物对铝集电器进行涂布，并然后对涂布的集电器进行干燥和压延以制备正极。

[0108] 通过将多孔聚乙烯隔膜布置在由此制备的正极与负极之间制备了电极组件，将所述电极组件设置在壳中，并然后通过将电解液注入所述壳中制备了锂二次电池。在这种情况下，通过将具有1.5M浓度的六氟磷酸锂（LiPF_{6}）溶解在由碳酸亚乙酯（EC）/碳酸二甲酯（DMC）/碳酸甲乙酯（EMC）构成的有机溶剂（混合体积比EC/DMC/EMC＝3/4/3）中制备了电解液。

[0109] [实验例1]
[0110] 通过使用扫描电子显微镜（SEM）对比较例1中制备的负极活性材料进行观察。将其结果示于图1中。

[0111] 如图1中所示，在其中在典型的催化剂处理之后通过酸处理来制备负极活性材料的情况中，可以确认，仅在硅粉末的表面上部分地形成孔。

[0112] [实验例2]
[0113] 通过使用SEM对在实施例1中制备负极活性材料期间的热处理之前和之后的多晶硅粉末的横截面进行了观察。将其结果示于图2A和图2B中。

[0114] 图2A是在热处理之前多晶硅粉末的横截面的SEM图像且图2B是在根据实施例1制备负极活性材料期间在热处理之后多晶硅粉末的横截面的SEM图像。

[0115] 如图2A和2B中所示，可以确认，金属杂质在热处理之后浓缩在多晶硅粉末的晶界处。

[0116] [实验例3]
[0117] 通过使用电感耦合等离子体原子发射光谱仪（ICP-AES）对在实施例1中制备负极活性材料期间在对热处理的多晶硅粉末进行酸处理之前/之后金属杂质的量的变化进行了分析。将其结果示于表1中。

[0118] [表1]

<table>
<thead>
<tr>
<th></th>
<th>在酸处理之前 (ppmw)</th>
<th>在酸处理之后 (ppmw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>2987</td>
<td>311</td>
</tr>
<tr>
<td>Al</td>
<td>2650</td>
<td>198</td>
</tr>
<tr>
<td>Ni</td>
<td>678</td>
<td>112</td>
</tr>
<tr>
<td>Ti</td>
<td>557</td>
<td>47</td>
</tr>
<tr>
<td>Cu</td>
<td>61</td>
<td>9</td>
</tr>
<tr>
<td>Mn</td>
<td>318</td>
<td>136</td>
</tr>
<tr>
<td>V</td>
<td>207</td>
<td>97</td>
</tr>
<tr>
<td>共计</td>
<td>7458</td>
<td>910</td>
</tr>
</tbody>
</table>

[0119] [实验例4]
对实施例1以及比较例1和2的负极活性材料分别测量孔隙率和平均晶粒尺寸。将其结果示于下表2中。

在2000kg/cm²的压力下通过压汞孔隙率测量法测量了负极活性材料的孔隙率。
此外，通过上述利用ASTM晶粒尺寸号的方法对平均晶粒尺寸进行了测量。

<table>
<thead>
<tr>
<th></th>
<th>实施例1</th>
<th>比较例1</th>
<th>比较例2</th>
</tr>
</thead>
<tbody>
<tr>
<td>孔隙率(体积%)</td>
<td>18</td>
<td>3</td>
<td><1</td>
</tr>
<tr>
<td>平均晶粒尺寸(nm)</td>
<td>50</td>
<td>49</td>
<td>49</td>
</tr>
</tbody>
</table>

根据实验结果，与比较例1和2的负极活性材料相比，根据本发明实施例1的包含多孔多晶硅的负极活性材料具有相同水平的平均晶粒尺寸，但是在活性材料粒子中具有显著更高的孔隙率。

通过使用实施例1和2以及比较例1和2的负极活性材料制备了半电池，并且然后对初始充电和放电特性、容量保持率和抑制负极厚度膨胀的效果进行了评价。将其结果示于下表3中。

具体地，利用用于形成负极活性材料层的组合物对铜集电器进行涂布，并然后干燥以制备各个负极，所述组合物是通过将18重量%的实施例1和2以及比较例1和2中制备的各种负极活性材料、72重量%的石墨、5重量%的作为导电剂的炭黑和5重量%的PVD粘合剂在NMP溶剂中进行混合而制得的。通过使用所述负极制备了半电池（将Li金属用作对电极）。

在室温(25°C)下在0.1C/0.1C的条件下对制备的半电池实施充电和放电，并然后测量放电容量，并由此计算初始效率。

此外，将在与上述相同的条件下的充电和放电设定为1个循环，将充放电重复50个循环，并且对第50次循环的放电容量相对于第一次循环的放电容量的容量保持率进行了评价。

此外，关于实施例1以及比较例1和2，对容量保持率随循环的变化进行了研究，并将其结果示于图3中。

此外，根据如下方程式2，对负极在第50次充电和放电循环之后相对于负极初始厚度的厚度膨胀率进行了测量。

\[\text{厚度膨胀率} = \frac{(\text{第50次充放电循环中充满电的负极的厚度} - \text{负极的初始厚度})}{\text{负极的初始厚度} - \text{铜集电器的厚度}} \]
<table>
<thead>
<tr>
<th></th>
<th>放电容量 (mAh/g)</th>
<th>初始效率 (%)</th>
<th>第50次循环的容量保持率 (%)</th>
<th>负极的厚度膨胀率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>887</td>
<td>85</td>
<td>86</td>
<td>98</td>
</tr>
<tr>
<td>实施例 2</td>
<td>882</td>
<td>89</td>
<td>87</td>
<td>97</td>
</tr>
<tr>
<td>比较例 1</td>
<td>879</td>
<td>87</td>
<td>75</td>
<td>131</td>
</tr>
<tr>
<td>比较例 2</td>
<td>892</td>
<td>90</td>
<td>66</td>
<td>189</td>
</tr>
</tbody>
</table>

根据实验结果，与比较例1的仅包含表面孔且在粒子中心含孔的负极活性材料、和比较例2的未形成孔的负极活性材料相比，包含根据本发明的多孔多晶硅的实施例1和2的负极活性材料显示了由于在晶界处包含的孔而导致的显著改善的容量保持率和抑制负极厚度膨胀的效果。
图1

图2A
图2B

图3