Title: COMPOSITION FOR ORGANIC OPTOELECTRIC DIODE, ORGANIC OPTOELECTRIC DIODE, AND DISPLAY DEVICE

Abstract: The present invention relates to: a composition for an organic optoelectric diode, containing a first host compound represented by chemical formula I and a second host compound represented by chemical formula II; an organic optoelectric diode comprising the composition for an organic optoelectric diode; and a display device.
유기광전자 소자용 조성물, 유기광전자소자 및 표시 장치

유기광전자 소자용 조성물, 유기광전자소자 및 표시 장치에 관한 것이다.

유기광전자소자 (organic optoelectric diode)는 전기 에너지와 광 에너지를 상호 전환할 수 있는 소자이다.

광 에너지에 의해 형성된 에식톤(exciton)이 전자와 정공으로 분리되고 상기 전자와 정공이 각각 다른 전극으로 전달되면서 전기 에너지를 발생하는 광전 소자이고, 다른 하나는 전극에 전압 또는 전류를 공급하여 전기 에너지로부터 광 에너지를 발생하는 발광 소자이다.

유기광전자 소자의 예로는 유기 광전 소자, 유기 발광 소자, 유기 태양 전지 및 유기 감광체 드럼(organic photo conductor drum) 등을 들 수 있다.

이 경우, 유기 발광 소자(organic light emitting diode, OLED)는 근래 평판 표시 장치(flat panel display device)의 수요 증가에 따라 크게 주목받고 있다. 상기 유기 발광 소자는 유기 발광 재료에 전류를 가하여 전기 에너지를 빛으로 전환시키는 소자로서, 통상 양극(anode)과 읍극(cathode) 사이에 유기 층이 삽입된 구조로 이루어져 있다. 여기서 유기 층은 발광층과 선택적으로 보조층을 포함할 수 있으며, 상기 보조층은 예컨대 유기발광소자의 효율과 안정성을 높이기 위한 정공 주입 층, 정공 수송 층, 전자 차단 층, 전자 수송 층, 전자 주입 층 및 정공 차단 층에서 선택된 적어도 1층을 포함할 수 있다.

유기 발광 소자의 성능은 상기 유기 층의 특성에 의해 영향을 많이 받으며, 그 중에서도 상기 유기 층에 포함된 유기 재료에 의해 영향을 많이 받는다.

특히 상기 유기 발광 소자가 대형 평판 표시 장치에 적용되기 위해서는 정공 및 전자의 이동성을 높이는 동시에 전기화학적 안정성을 높일 수 있는 유기 재료의 개발이 필요하다.

유기광전자 소자용 조성물, 유기광전자소자 및 표시 장치에 관한 것이다.

유기광전자 소자용 조성물, 유기광전자소자 및 표시 장치에 관한 것이다.
일 구현에는 고효율 및 장수명 유기 광전자 소자를 구현할 수 있는 유기 광전자 소자용 조성물을 제공한다.
다른 구현에는 상기 조성물을 포함하는 유기 광전자 소자를 제공한다.
또 다른 구현에는 상기 유기 광전자 소자를 포함하는 표시 장치를 제공한다.

【별적 해결 방법】
일 구현예에 따르면, 하기 화학식 I로 표현되는 제1 호스트 화합물, 및 하기 화학식 II로 표현되는 제2 호스트 화합물을 포함하는 유기 광전자 소자용 조성물을 제공한다.

[화학식 1]

상기 화학식 1에서,
Z는 각각 독립적으로 N, 또는 CR²이고,
3개의 Z 중 적어도 둘은 N이고,
R¹ 내지 R³, 및 R²는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기를, 치환 또는 비치환된 C3 내지 C30 사이클로알킬기, 치환 또는 비치환된 C6 내지 C30 아닐기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기, 치환 또는 비치환된 C6 내지 C30 아킬아민기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C2 내지 C30 알콕시 카르보닐기, 치환 또는 비치환된 C2 내지 C30 알콕시 카르보 담아미노기, 치환 또는 비치환된 C7 내지 C30 알콕시 카르보 담아미노기, 치환 또는 비치환된 C1 내지 C30 숏포로 일아미노기, 치환 또는 비치환된 C2 내지 C30 알케닐기, 치환 또는 비치환된 C2 내지 C30 알킬닐기, 치환 또는 비치환된 C3 내지 C40 실릴기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C30 아실기, 치환 또는 비치환된 C1 내지 C20 아실옥시기, 치환 또는 비치환된 C1 내지 C20 아실아미노기, 치환 또는 비치환된 C1 내지 C30 알킬티 올기, 치환 또는 비치환된 C1 내지 C30 숏포닐기, 치환 또는 비치환된 C1 내지 C30 알킬티 올기,
치환 또는 비치환된 C6 내지 C30 아릴티 올기, 치환 또는 비치환된 C1 내지 C30 우레아기, 할로겐기, 할로겐 함유기, 시아노기, 헤테르스킬, 아미노기, 니트로기, 카르복실 기, 페로세 종합기, 또는 이들의 조합이거나.

\[R^1 \text{ 내지 } R^3, \text{ 및 } R^a \text{ 에서 선택된 인접한 물은 } \text{용합하여 } \text{고리를 형성하고,} \]

\[L^1 \text{ 내지 } L^3 \text{은 각각 독립적으로, 단일 결합, 치환 또는 비치환된 C1 내지 C30 알킬렌기, 치환 또는 비치환된 C3 내지 C30 사이클로알킬 렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴 렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌아민기, 치환 또는 비치환된 C1 내지 C30 알록실 렌기, 치환 또는 비치환된 C1 내지 C30 아릴옥실 렌기, 치환 또는 비치환된 C2 내지 C30 알킬닐렌기, 치환 또는 비치환된 C2 내지 C30 알키닐렌기, 또는 이들의 조합이요,} \]

상기 \(L^1 \) 내지 \(L^3 \)가 모두 단일 결합일때, 상기 \(R^1 \) 내지 \(R^3 \)는 모두 수소가 아니며, [화학식 II]

\[R^4 \text{ 내지 } R^{17} \text{은 각각 독립적으로, 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테아릴기, 또는 이들의 조합이거나,} \]

\[R^a \text{ 내지 } R^g, \text{ 및 } R^{11} \text{ 내지 } R^{17} \text{ 중 인접한 물은 } \text{용합하여 } \text{고리를 형성하고,} \]

\[R^{19} \text{ 및 } R^{19} \text{은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C3 내지 C30 사이클로알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테아릴기, 치환 또는 비치환된 C6 내지 C30 아릴아민기, 치환 또는 비치환된 C1 내지 C30 알록시기, 치환 또는 비치환된 C2 내지 C30 알록시 아릴보닐기, 치환 또는 비치환된 C2 내지 C30 알록시 카르보닐기, 치환 또는 비치환된 C7 내지 C30 알록시 카르보닐아미도 기, 치환 또는 비치환된 C7 내지 C30]
아릴옥시 카르보닐아미노기, 치환 또는 비치환된 C1 내지 C30 술파모일아미노기,
치환 또는 비치환된 C2 내지 C30 알카니릴기, 치환 또는 비치환된 C2 내지 C30
알카니릴기, 치환 또는 비치환된 C3 내지 C40 실릴기, 치환 또는 비치환된 C3 내지
C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C30 아실기, 치환 또는 비치환된 C1
내지 C20 아실옥시기, 치환 또는 비치환된 C1 내지 C20 아실아미노기, 치환 또는
비치환된 C1 내지 C30 술파모일기, 치환 또는 비치환된 C1 내지 C30 알킬티올기,
치환 또는 비치환된 C6 내지 C30 아릴티올기, 치환 또는 비치환된 C1 내지 C30
우레이드기, 할로겐기, 할로겐 함유기, 시아노기, 허드록실기, 아미노기, 니트로기,
카르복실기, 폐로세닐기, 또는 이들의 조합이고,

\[n \text{은 1 내지 4의 정수이다.} \]

다른 구현에 따르면, 서로 마주하는 양극과 음극, 상기 양극과 상기 음극
사이에 위치하는 적어도 1층의 유기충을 포함하고, 상기 유기층은 상기 조성물을
포함하는 유기 광전자 소자를 제공한다.

다른 구현에는 상기 유기 광전자 소자를 포함하는 표시 장치를 제공하다—

발명의 효과]

고효율 장수명 유기 광전자 소자를 구현할 수 있다.

또 면의 간단한 설명]

또 1 및 2는 각각 일 구현에 따르면 유기 발광 소자를 도시한 단면도이다.

<부호의 설명>

100, 200: 유기 발광 소자
105: 유기층
110: 유극
120: 양극
130: 발광층
140: 정공 보조층

발명을 실시하기 위한 최선의 형태]

이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서
제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할
청구범위의 범주에 의해 정의될 뿐이다.

본 명세서에서 "치환"이란 별도의 정의가 없는 한, 치환기 또는 화합물 중의
적어도 하나의 수소가 중수소, 할로겐기, 힌드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C30 아민기, 니트로기, 치환 또는 비치환된 C1 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C3 내지 C30 헤 테로시 클로알킬기, C6 내지 C30 아릴기, C6 내지 C30 헤 테로아 알킬기, C1 내지 C20 알룩시기, 폴루로로기, 트리폴루로로 메틸기 등의 C1 내지 C10 트리폴루로 알킬기 또는 시아노기로 치환된 것을 의미한다.

또한 상기 치환된 할로겐기, 힌드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C3 내지 C30 헤 테로시 클로알킬기, C6 내지 C30 아릴기, C6 내지 C30 헤 테로아 알킬기, C1 내지 C20 알룩시기, 폴루로로기, 트리폴루로로 메틸기 등의 C1 내지 C10 트리폴루로 알킬기 또는 시아노기 중 인접한 두 개의 치환기가 융합되어 고리를 형성할 수도 있다.

예를 들어, 상기 치환된 C6 내지 C30 아릴기는 인접한 또다른 치환된 C6 내지 C30 아릴기와 융합되어 치환 또는 비치환된 폴루오렌 고리를 형성할 수 있다.

본 명세서에서 "아릴(aryl) 기"란 별도의 정의가 없는 한, 하나의 작용기 내에 N, O, S, P 및 Si로 이루어진 군에서 선택되는 헤 테로 원자를 1 내지 3개 함유하고, 나머지 품소인 것을 의미한다.

본 명세서에서 "알킬(alkyl) 기"란 별도의 정의가 없는 한, 지방족 탄화수소 기를 의미한다. 알킬기는 어떠한 이중결합이나 삼중결합을 포함하고 있지 않은 "포화 알킬(saturated alkyl) 기"일 수 있다.

상기 알킬기는 C1 내지 C30 을 알킬기일 수 있다. 보다 구체적으로 알킬기는 C1 내지 C20 알킬기 또는 C1 내지 C10 알킬기일 수도 있다. 예를 들어, C1 내지 C4 알킬기는 알킬쇄에 1 내지 4 개의 품소원자가 포함되는 것을 의미하며, 메틸, 에틸, 프로필, 이소-프로필, η-부틸, 이소-부틸, sec-부틸 및 t-부틸로 이루어진 군에서 선택됨을 나타낸다.

상기 알킬기는 구체적인 예를 들어 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, t-부틸기, 펜닐기, 핵실기, 시클로프로필기, 시클로부 틸기, 시클로렌 틸기, 시클로헥실기 등을 의미한다.

본 명세서에서 "아릴(aryl) 기"는 환형인 치환기의 모든 원소가 p-오 비탈을 가지고 있으며, 이들 p-O-비탈이 공액(conjugation)을 형성하고 있는 치환기를
의미하고, 모노시 클릭, 폴리시클릭 또는 융합 고리 폴리시클릭(즉, 탄소원 자들의
인접한 원자를 나눠 가지는 고리) 작용기를 포함한다.
본 명세서에서 "헤테로고리기(heterocyclic group)"는 아릴기, 시클로알 길기,
이들의 융합고리 또는 이들의 조합과 같은 고리 화합물 내에 N, O, S, P 및 Si로
이루어진 군에서 선택되는 헤테로 원자를 적어도 한 개를 함유하고, 나머지는
탄소인 것을 의미한다. 상기 헤테로고리기가 융합고리인 경우, 상기 헤테로고리기
전체 또는 각각의 고리마다 헤테로 원자를 한 개 이상 포함할 수 있다. 따라서,
헤테로고리기는 헤테로아릴기를 포함하는 상위개념이다.

보다 구체적으로, 치환 또는 비치환된 C6 내지 C30 아릴기 및/또는 치환 또는
비치환된 C2 내지 C30 헤테로고리기는, 치환 또는 비치환된 페닐기, 치환 또는
비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된
페 난트릴렌기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 피레닐기,
치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 P-터페닐기, 치환 또는
비치환된 m-터페닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된
트리페닐레닌기, 치환 또는 비치환된 페닐레닌기, 치환 또는 비치환된 플루오레
닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓌라닐기, 치환 또는 비치환된
티오페닐기, 치환 또는 비치환된 피플릴기, 치환 또는 비치환된 피라졸릴기, 치환
또는 비치환된 아미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는
비치환된 육사졸일기, 치환 또는 비치환된 타이아졸일기, 치환 또는 비치환된
육사디아졸일기, 치환 또는 비치환된 타이아디아졸 일기, 치환 또는 비치환된
피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는
비치환된 트리아지닐기, 치환 또는 비치환된 벤조라닐기, 치환 또는 비치환된
벤조티오페닐기, 치환 또는 비치환된 벤조미디아졸일기, 치환 또는 비치환된
인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기.

25 치환 또는 비치환된 쿼나올리닐기, 치환 또는 비치환된 쿼녹살리닐기, 치환 또는
비치환된 나프티디닐기, 치환 또는 비치환된 벤조옥시존 일기, 치환 또는 비치환된
벤조티아질일기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 폐나질 일기,
치환 또는 비치환된 폐노티아질일기, 치환 또는 비치환된 폐녹사질 일기, 치환 또는
비치환된 카바졸 일기, 치환 또는 비치환된 디벤조라닐기, 치환 또는 비치환된
디벤조티오페닐기, 이들의 조합 또는 이들의 조합이 융합된 형태일 수 있으나, 이에

30
제한되지 않는 다.
본 명세서에서, 단 일 결합이란 탄소 또는 탄소 이외의 헤테로 원자들
경유하지 않고 직접 연결되는 결합을 의미하는 것으로, 구체적으로 L 이 단 일
결합이라는 의미는 L 과 연결되는 치환기가 중심 코어에 직접 연결되는 것을
5 의미한다. 즉, 본 명세서에서 단 일 결합이란 탄소를 경유하는 메틸렌 등을
의미하는 것이 아니다.
본 명세서에서, 정공 특성 이란, 전기장(electric field) 을 가했을 때 전자들
공여하여 정공을 형성할 수 있는 특성을 말하는 것으로, HOMO 준위를 따라 전도
특성을 가져 양극에서 형성된 정공의 발광중으로의 주입, 발광중에서 형성된 정공의
10 양극으로의 이동 및 발광중에서의 이동을 응이하게 하는 특성을 의미한다.
또한 전자 특성 이란, 전기장을 가했을 때 전자를 받을 수 있는 특성을 말하는
것으로, LUMO 준위를 따라 전도 특성을 가져 음극에서 형성된 전자의 발광중으로의
주입, 발광중에서 형성된 전자의 음극으로의 이동 및 발광중에서의 이동을 응이하게
하는 특성을 의미한다.
15 이하 일부분에 따른 조성물을 설명한다.
일 구현예에 따른 조성물은 제 1 호스트(host), 제 2 호스트 , 및 도편트 (dopant) 를
포함할 수 있다.
상기 제 2 호스트는 1개 내지 4개의 페닐렌으로 연결된 연결기를
포함함으로써, 연결기 없이 직접 연결된 바이카바톤에 비해 유연한 분자 구조를
20 가질 수 있고, 이러한 유연한 분자 구조로 인하여 화합물들의 스테킹(stacking) 을
효과적으로 방지하여 박막 특성을 향상시켜 공정 안정성을 높이는 동시에 중력
온도를 낮출 수 있다.
그러나, 상기 제 2 호스트는 LUMO 에너지 레벨이 슈퍼컴퓨터 GAIA (IBM
power 6) 으로 프로그램 Gaussian 09 를 사용하여 B3LYP/6-3 1G 방법에 따른 계산값
25 기준으로 약 -1.3 eV 이상으로 써, 단독으로 적용할 경우 전자주입이 매우 어렵다.
전자가 응이하게 주입되기 위해서는 화합물의 'LUMO 에너지 레벨이
슈퍼컴퓨터 GAIA (IBM power 6) 으로 프로그램 Gaussian 09 를 사용하여 B3LYP/6-3 1G
방법으로 계산시 -1.5 eV 이상이어야 하는데, 상기 제 1 호스트 화합물은 중심 코어에
적어도 2개의 N 을 함유함으로써, LUMO 에너지 레벨이 -1.5 eV 이하가 되므로, 제1
30 호스트 화합물을 함께 사용함으로써, 소자의 전자 특성을 보완할 수 있고, 이로서
고 효율, 장수 명의 유기 광전자 소자를 구현할 수 있다.

상 기 제 1 호스트 화합물은 하기 화학식 I 로 표현된다.

[화학식 I]

\[
\begin{align*}
R^1 & \quad R^3, \quad \text{및 } R^2 \text{는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 } C_1 \text{ 내지 } C_30 \text{ 알킬기, 치환 또는 비치환된 } C_3 \text{ 내지 } C_30 \text{ 사이클로알킬기, 치환 또는 비치환된 } C_6 \text{ 내지 } C_30 \text{ 아릴기, 치환 또는 비치환된 } C_2 \text{ 내지 } C_30 \text{ 아릴하전고리기, 치환 또는 비치환된 } C_6 \text{ 내지 } C_30 \text{ 아릴하전고리기, 치환 또는 비치환된 } C_1 \text{ 내지 } C_30 \text{ 알룩시기, 치환 또는 비치환된 } C_2 \text{ 내지 } C_30 \text{ 알룩시 카르보닐기, 치환 또는 비치환된 } C_2 \text{ 내지 } C_30 \text{ 알룩시 카르보닐하이미 나이키, 치환 또는 비치환된 } C_7 \text{ 내지 } C_30 \text{ 아릴옥시 카르보닐하이미 나이키, 치환 또는 비치환된 } C_1 \text{ 내지 } C_30 \text{ 솔파모 일아미 나이키, 치환 또는 비치환된 } C_2 \text{ 내지 } C_30 \text{ 알케닐기, 치환 또는 비치환된 } C_2 \text{ 내지 } C_30 \text{ 알킬닐기, 치환 또는 비치환된 } C_3 \text{ 내지 } C_40 \text{ 실릴기, 치환 또는 비치환된 } C_40 \text{ 실릴옥시기, 치환 또는 비치환된 } C_1 \text{ 내지 } C_30 \text{ 아실기, 치환 또는 비치환된 } C_1 \text{ 내지 } C_30 \text{ 아실옥시기, 치환 또는 비치환된 } C_1 \text{ 내지 } C_30 \text{ 아실아미 나이키, 치환 또는 비치환된 } C_1 \text{ 내지 } C_30 \text{ 솔포닐기, 치환 또는 비치환된 } C_1 \text{ 내지 } C_30 \text{ 알킬트 을기, 치환 또는 비치환된 } C_6 \text{ 내지 } C_30 \text{ 아릴티 을기, 치환 또는 비치환된 } C_1 \text{ 내지 } C_30 \text{ 우레이드 기, 할로겐 기, 할로겐 할유기, 시아노기, 허드록실기, 아미노기, 네르토기, 카르복 실기, 폐로세 나이키, 또는 이들의 조합이 거나,}
\end{align*}
\]

\[R^1 \text{ 내지 } R^3, \text{ 및 } R^2 \text{에서 선택된 일정한 물은 응합하여 고리를 형성하고,}
\]

\[L^1 \text{ 내지 } L^3 \text{은 각각 독립적으로, 단일 결합, 치환 또는 비치환된 } C_1 \text{ 내지 } C_30 \text{ 알킬렌기, 치환 또는 비치환된 } C_3 \text{ 내지 } C_30 \text{ 사이클로알킬 렌기, 치환 또는 비치환된 알킬렌기, 치환 또는 비치환된}
C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌아민기, 치환 또는 비치환된 C1 내지 C30 알콕실렌기, 치환 또는 비치환된 C1 내지 C30 아릴옥실렌기, 치환 또는 비치환된 C2 내지 C30 알케닐렌기, 치환 또는 비치환된 C2 내지 C30 알킬닐렌기, 또는 이들의 조합이요,

상기 L1 내지 L3가 모두 단일 결합일때, 상기 R1 내지 R3는 모두 수소가 아니다.

상기 제1 호스트 화합물은 함유되는 N의 위치에 따라 예컨대 하기 1-1 내지
화학식 1-5 중 어느 하나로 표현될 수 있다.

상기 화학식 1-1 내지 화학식 1-5에서 R1 내지 R3, R4, 및 L1 내지 L3은
전술한 바와 같다.

일 예에서, 상기 화학식 1-1 내지 화학식 1-5에서 R1 내지 R3, 및 R4는 각각
독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는
바치환된 C3 내지 C30 사이클로알킬기, 치환 또는 바치환된 C6 내지 C30 아릴기,
치환 또는 바치환된 C2 내지 C30 헤테로고리기, 치환 또는 바치환된 C6 내지 C30
아릴아민기, 치환 또는 비치환된 C3 내지 C40 실릴기, 치환 또는 비치환된 C1 내지
C30 알킬릴기, 치환 또는 비치환된 C6 내지 C30 아릴릴기, 치환 또는 바치환된
C1 내지 C30 우레아기, 할로겐기, 시아노기, 히드록실기, 아미노기, 니트로기, 카르복실기, 페로세닐기, 또는 이들의 조합이고,
L1 내지 L3은 각각 독립적으로, 단일 결합, 치환 또는 비치환된 C1 내지 C30 알킬렌기, 치환 또는 비치한 C3 내지 C30 사이클로알킬렌기, 치환 또는 비치한 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아닐렌기, 또는 이들의 조합일 수 있다.

단, 상기 L1 내지 L3가 모두 단일 결합일때, 상기 R1 내지 R3는 모두 수소가 아니다.

상기 제1 호스트 화합물은 적어도 2개의 질소를 함유하는 고리를 포함함으로써 전기장 인가시 전자를 받기 쉬운 구조가 될 수 있고, 이에 따라 상기 제1 호스트 화합물을 적응한 유기 광전자 소자의 구조 전압을 낮출 수 있다.

일 예에서, 상기 화학식 I로 표현되는 제1 호스트 화합물의 L1 내지 L3은 각각 독립적으로, 단일 결합, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아닐렌기 또는 이들의 조합일 수 있다.

예를 들어, 치환 또는 비치환된 C6 내지 C30 아릴렌기는 치환 또는 비치환된 페닐렌기, 치환 또는 비치한 C6 내지 C30 아릴렌기는 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 탄페닐기, 치환 또는 비치환된 퀀테페닐기일 수 있다. 구체적으로, 상기 퀀테페닐기는 O-터페닐기, m- 터페닐기, p-터페닐기일 수 있으며, 퀀테페닐기는 직선형의 퀀테페닐기이거나, 분지형인 iso- 퀀테페닐기, tert- 퀀테페닐기, 2- 퀀테페닐기 등일 수 있다.

상기 화학식 I로 표현되는 제1 호스트 화합물의 L1 내지 L3은 각각 독립적으로, 단일 결합이거나 하기 그룹 I에 나열된 치환 또는 비치환된 기에서 선택될 수 있다.
그룹 I
상기 그룹 I 에서, *은 연결 지점이다.
또한, 상기 화학식 I 로 표현되는 제1 호스트 화합물의 R1 내지 R3, 및 Rα는 각각 독립적으로, 수소, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기, 또는 이들의 조합일 수 있다.
구체적으로, 상기 치환 또는 비치환된 C6 내지 C30 아릴기는, 치환 또는 비치환된 페닐기, 치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 테페닐기, 치환 또는 비치환된 퀴터페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페난트렌일기, 치환 또는 비치환된 1H-페닐렌일기 (1H-phenalenyl), 치환 또는 비치환된 피렌일기 (pyrenyl), 치환 또는 비치환된 폴로우레닐기, 치환 또는 비치환된 트리페닐렌기, 또는 이들의 조합이고, 상기 치환 또는 비치환된 C2 내지 C30 헤테로고리기는, 치환 또는 비치환된 카바졸 일기, 치환 또는 비치환된 벤조퓨란 일기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 디벤조퓨란 일기, 치환 또는 비치환된 디벤조티오페닐기, 또는 이들의 조합일 수 있고, 더 구체적으로, 상기 치환 또는 비치환된 C6 내지 C30 아릴기 및 상기 치환 또는 비치환된 C2 내지 C30 헤테로고리기는, 하기 그룹 II에 나열된 치환 또는 비치환된 기에서 선택될 수 있다.
상기 그룹 Π 에서,
R^3 내지 R^4는 각각 독립적으로, 수소, 중수소, 치환 또는 비치환된 C1 내지
C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지
C30 해테로아릴기, 또는 이들의 조합이고, *은 연결지점이다.

상기 제1 호스트 화합물의 LUMO 에너지 레벨은 -1.5 eV 이하 일 수 있다.

LUMO 에너지 레벨이 상기 범위 내인 제1 호스트 화합물은 전자 특성이 강한
화합물로써, 정공 특성이 강한 제2 호스트 화합물과 함께 사용됨으로써 바이플라
특성을 구현할 수 있다.

상기 제1 호스트 화합물은 예컨대 하기 그룹 m에 나열된 화합물에서 선택될
수 있으나, 이에 한정되는 것은 아니다.
상기 제2 호스트 화합물은 하기 화학식 II로 표현된다.

[화학식 II]

상기 화학식 II에서,

R^4 내지 R^{17}은 각각 독립적으로, 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지
C30 헤테아릴기를, 또는 이들의 조합이 거나,
R4 내지 R10, 및 R11 내지 R17 중 인접한 둘은 융합하여 고리를 형성하고,
R18 및 R19는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C3 내지 C30 산이클로알킬기, 치환 또는 비치환된 C6 내지 C10 아킬기를, 치환 또는 비치환된 C2 내지 C30 헤테아릴기, 치환 또는 비치환된 C6 내지 C30 아킬바이미기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C2 내지 C30 알콕시 카르보닐기, 치환 또는 비치환된 C2 내지 C30 알콕시 카르보닐아미기, 치환 또는 비치환된 C7 내지 C30 아킬록시 카르보닐아미기, 치환 또는 비치환된 C1 내지 C30 슬파모 일아미기, 치환 또는 비치환된 C2 내지 C30 알케닐기에, 치환 또는 비치환된 C2 내지 C30 알킬네일기에, 치환 또는 비치환된 C3 내지 C40 실릴기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C30 아실기, 치환 또는 비치환된 C1 내지 C30 아실옥시기, 치환 또는 비치환된 C1 내지 C20 아실옥시기, 치환 또는 비치환된 C1 내지 C20 아실아미기, 치환 또는 비치환된 C1 내지 C30 슬포닐기, 치환 또는 비치환된 C1 내지 C30 알킬트로일기, 치환 또는 비치환된 C6 내지 C30 아밀리옥시기, 치환 또는 비치환된 C1 내지 C30 우레아디기, 할로겐기, 할로겐 함유기, 시아노기, 허드록실기, 아미노기, 니트로기, 카르복 실기, 페로세닐기, 또는 이들의 조합이 고,

n은 1 내지 4의 정수이다.

상기 제2 호스트 화합물은 1개 내지 4개의 폐닐렌으로 연결된 연결기를 포 함함으로써, 유연한 분자 구조를 갖게 되어 스택링(stack)이 효과적으로 방지되므로, 중합 공정 시 유리하다.

또한, 제1 호스트 화합물과 함께 적용할 경우, 정공 및 전자의 흐름을 적절히 균형 맞출 수 있고, 이에 따라 상기 제1 호스트 화합물 및 제2 호스트 화합물을 포함하는 조성물은 적응한 유기 광전자 소자는 효율을 개선될 수 있다.

상기 제2 호스트 화합물은, 중간 연결기의 종류에 따라 하기 화학식 Π -1 내지 화학식 Π -16 중 어느 하나로 표현될 수 있다.
화학식 Π-9

화학식 Π-10

화학식 Π-11

화학식 Π-12

화학식 Π-13

화학식 Π-14
상기 화학식 II-1 내지 화학식 II-16에서, R₄ 내지 R₁₀는 전술한 바와 같다.
또한, 예에서, 상기 화학식 화학식 II-1 내지 화학식 II-16에서, R₄ 내지 R₁₀은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 아릴기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테아릴기, 또는 이들의 조합이거나, R₄ 내지 R₁₀ 및 R₁₁ 내지 R₁₇ 중 인접한 듯은 융합하여 고리를 형성하고, R₁₈ 및 R₁₉는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C3 내지 C30 사이클로알킬기.

치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테아릴기, 치환 또는 비치환된 C6 내지 C30 아릴아릴기, 치환 또는 비치환된 C1 내지 C30 카릴트릴기, 치환 또는 비치환된 C6 내지 C30 카릴티어릴기, 또는 이들의 조합일 수 있다.

구체적으로, 상기 R₁₈ 및 R₁₉는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테아릴기일 수 있고, 더욱 구체적으로, 상기 치환 또는 비치환된 C6 내지 C30 아릴기는 치환 또는 비치환된 페닐기, 치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 트리페닐기, 치환 또는 비치환된 나프탈레닐기, 치환 또는 비치환된 안트레닐기, 치환 또는 비치환된 패넷렌일기, 치환 또는 비치환된 1H-페닐렌일기(1H-phenalenyl), 치환 또는 비치환된 피렌일기(pyrenyl), 치환 또는 비치환된 플루오레닐기, 치환 또는 비치환된 트리페닐렌일기, 또는 이들의
조합이고, 상기 치환 또는 비치환된 C2 내지 C30 헤테로아릴 기는, 치환 또는
비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된
트리아지닐기, 또는 이들의 조합일 수 있다.
또한, 상기 제2 호스트 화합물은, R₁₈ 및 R₁₉의 치환기에 따라 하기 화학식 II-
17 내지 화학식 II-39 중 어느 하나로 표현될 수 있다.

[화학식 II-17]

[화학식 II-18]

[화학식 II-19]

[화학식 II-20]
상기 화학식 II-17 내지 화학식 II-39에서, \(R^4\), \(R^7\), 및 \(\eta\)은 전술한 바와
전달.
일 예에서, 상기 화학식 II-17 내지 화학식 II-39에서, R₄ 내지 R₁₇은 각각 독립적으로, 수소, 중수소, 치환 또는 비치환된 C₁ 내지 C₃₀ 알킬기, 치환 또는 비치환된 C₆ 내지 C₃₀ 아릴기, 치환 또는 비치환된 C₂ 내지 C₃₀ 헤테아릴기, 또는 이들의 조합이거나,
R₄ 내지 R₁₀, 및 R₁¹ 내지 R₁₇ 중 인접한 두는 응합하여 고리를 형성하고, n은 1 내지 4의 정수일 수 있다.
상기 화학식 II의 R₄ 내지 R₁₇은 각각 독립적으로, 수소, 중수소, 또는 치환 또는 비치환된 C₆ 내지 C₃₀ 아릴기일 수 있다.
구체적으로, 상기 치환 또는 비치환된 C₆ 내지 C₃₀ 아릴기는 치환 또는 비치환된 폐닐기, 치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 o-터페닐기, 치환 또는 비치환된 p-터페닐기, 치환 또는 비치환된 m-터페닐기, 치환 또는 비치환된 iso- 퀀터페닐기, 치환 또는 비치환된 tert- 퀀터페닐기, 2-芊터페닐기, 치환 또는 비치환된 나프틸기, 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 제2 호스트 화합물은 예컨대 하기 그룹 IV에 나열된 화합물에서 선택될 수 있으나, 이에 한정되는 것은 아니다.

[그룹 IV]

B-1 B-2 B-3 B-4

B-5 B-6 B-7 B-8
상술한 제1 호스트 화합물과 제2 호스트 화합물은 다양한 조합에 의해 다양한 조성물로 준비될 수 있다.

상기 제1 호스트 화합물은 전자 특성이 상대적으로 강한 화합물이고 상기 제2 호스트 화합물은 정공 특성이 상대적으로 강하고, 동시에 중착 공정에 유리한 화합물로, 이들 이 함께 사용됨으로써 단독으로 사용된 경우와 비교하여 전자 및 정공의 이동성을 높여 발광 효율을 현저히 개선시킬 수 있다.

전자 혹은 정공 특성이 한쪽으로 치우친 재료를 발광층으로 도입한 소자는 발광층과 전자수송층 또는 정공수송층의 계면에서 캐리어의 재결합이 일어나면서 엑시트론의 형성이 상대적으로 많이 일어나게 된다. 그 결과 발광층 내 부자 여기자와 수송층 계면의 전하와의 상호작용으로 인해 효율이 급격히 떨어지는 롤-오프 (roll-off) 현상이 발생하고 발광 수명 특성 또한 급격히 떨어지게 된다. 이러한 문제를 해결하기 위하여 제1 및 제2 호스트를 동시에 발광층에 도입하여 전자 또는 정공수송층 어느 한쪽으로 발광 영역이 치우치지 않도록 발광층 내의 캐리어 빌런스를 맞출 수 있는 소자를 제작함으로써 롤-오프의 개선과 동시에 수명 특성 또한 현저히 개선시킬 수 있다.
상기 제1 호스트 화합물과 상기 제2 호스트 화합물은 예컨대 1:10 내지 10:1의 증량비로 포함될 수 있다. 상기 범위로 포함됨으로써 바이폴라 특성이 더욱 효과적으로 구현되어 효율과 수명을 동시에 개선할 수 있다.

상기 조성물은 전술한 제1 호스트 화합물 및 제2 호스트 화합물 외에 1종 이상의 호스트 화합물을 더 포함할 수 있다.

상기 조성물은 도펜트를 더 포함할 수 있다. 상기 도펜트는 적색, 녹색 또는 청색의 도펜트일 수 있으며, 예컨대 인광 도펜트일 수 있다.

상기 도펜트는 상기 제1 호스트 화합물과 상기 제2 호스트 화합물에 미장 혼합되어 발광을 일으키는 물질로, 일반적으로 삼중 항 상태 이상으로 여기시키는 다중항 작용(multiple excitation)에 의해 발광하는 금속 합체(metal complex)와 같은 물질이 사용될 수 있다. 상기 도 пен트는 예컨대 무기, 유기, 유무기 화합물일 수 있으며, 1종 또는 2종 이상 포함될 수 있다.

상기 인광 도펜트의 예로는 Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd 또는 이들의 조합을 포함하는 유기 금속화합물을 들 수 있다. 상기 인광 도펜트는 예컨대 하기 화학식 Z로 표현되는 합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.

[화학식 Z]

\[L_2M_X \]

상기 화학식 Z에서 \(M \) 은 금속이고, \(L \) 및 \(X \) 는 서로 같거나 다르며 \(M \) 과 \(X \)의 결합을 형성하는 리간드이다.

상기 \(M \) 은 예컨대 Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd 또는 이들의 조합일 수 있고, 상기 \(L \) 및 \(X \) 는 예컨대 바이덴테이트 리간드일 수 있다.

상기 조성물은 화학기상중착과 같은 건석 성극법 또는 응용 공정으로 형성될 수 있다.

이하 상술한 조성물을 적응한 유기 광전자 소자를 설명한다.

상기 유기 광전자 소자는 전기 에너지와 광 에너지를 상호 전환할 수 있는 소자이면 특별히 한정되지 않으며, 예컨대 유기 광전 소자, 유기 발광 소자, 유기 태양 전지 및 유기 감광체 드럼 등을 들 수 있다.

상기 유기 광전자 소자는 서로 마주하는 양극과 음극, 상기 양극과 상기 음극 사이에 위치하는 적어도 1층의 유기층을 포함할 수 있고, 상기 유기층은 전술한
조성물을 포함할 수 있다.

여기서는 유기 광전자 소자의 일 예인 유기 발광 소자를 도면을 참고하여 설명한다.

도 1 및 도 2는 일 구현예에 따른 유기 발광 소자를 보여주는 단면도이다.

도 1을 참고하면, 일 구현예에서 유기 발광 소자(100)는 제로와 마주하는 양극(120)과 음극(110). 그리고 양극(120)과 음극(110) 사이에 위치하는 유기층(105)을 포함한다.

양극(120)은 에전대 정공 주입이 원활하도록 일 합수를 높은 도전체로 만들어질 수 있으며, 에전대 금속, 금속 산화물 및/또는 도전성 고분자로 만들어질 수 있다. 양극(120)은 에전대 니켈, 백금, 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산 화물, 인듐산 화물, 인듐주석 산화물(11'0), 인듐아연산 산화물(120)과 같은 금속 산화물; ZnO와 A1 또는 SnO2와 Sb와 같은 금속과 산화물의 조합; 폴리(3- 메틸티오폴리), 폴리(3,4- (에틸렌)-1,2- 디옥시) 티오폴리XPolyethyleneoxytiophene: PEDT), 폴리피로필 및 폴리아닐린과 같은 도전성 고분자를 포함할 수 있다. 도전성 고분자 소자도 있으나, 이에 한정되는 것은 아니다.

음극(110)은 에전대 전자 주입이 원활하도록 일 합수를 낮은 도전체로 만들어질 수 있으며, 에전대 금속, 금속 산화물 및/또는 도전성 고분자로 만들어질 수 있다. 음극(110)은 에전대 마그네슘, 갈슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 납, 세슘, 바륨 등과 같은 금속 또는 이들의 합금; LiF/Al, LiO2/Al, LiF/Ca, LiF/Al 및 BaF2/Ca에 깔은 다층 구조 물질을 만들 수 있으나, 이에 한정되는 것은 아니다.

유기층(105)은 전측한 조성물을 포함하는 발광층(130)을 포함한다.

발광층(130)은 에전대 전측한 조성물을 포함할 수 있다.

도 2를 참고하면, 유기 발광 소자(200)는 발광층(130) 외에 정공 보조층(140)을 더 포함한다. 정공 보조층(140)은 양극(120)과 발광층(130) 사이의 정공 주입 및/또는 정공 이동성을 더욱 높이고 전자를 차단할 수 있다. 정공 보조층(140)은 에전대 정공 수송층, 정공 주입층 및/또는 전자 차단층일 수 있으며, 적어도 1층을 포함할 수 있다.

또한, 본 발명의 일 구현예에서는 도 1 또는 도 2에서 유기발광 소자일 수도
유기 발광 소자(100, 200)는 기판 위에 양극 또는 음극을 형성한 후, 진공증착법(evaporation), 스퍼터링(sputtering), 플라즈마 도금 및 이온도금과 같은 건식성막법 등으로 유기층을 형성한 후, 그 위에 음극 또는 양극을 형성하여 제조할 수 있다.

상술한 유기 발광 소자는 유기 발광 표시 장치에 적용될 수 있다.

발명을 실시하기 위한 형태] 이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.

제1 호스트 화합물의 합성

합성예 1: 중간체 1-1의 합성

\[
\begin{align*}
\text{B(OH)}_2 & \quad \begin{array}{c}
\text{Br} \\
\text{I}
\end{array} \\
\text{Pd}(\text{PPh}_3)_4 \text{KCO}_3 & \quad \text{THF}, 80 ^\circ \text{C}
\end{align*}
\]

질소 환경에서 biphenyl-3-ylboronic acid(100 g, 505 mmol) 을 tetrahydrofuran(THF) 1.4 L에 녹인 후, 여기에 1-bromo-3-iodobenzene(71 g, 606 mmol) 와 tetrakis(triphenylphosphine)palladium(5.83 g, 5.05 mmol) 을 넣고 고반시켰다. 물에 포화된 potassium carbonate(186 g, 1.26 mol) 을 넣고 80 ℃에서 6시간 동안 가열하여 환류시켰다. 반응 완료 후 반응액을 물을 넣고 dichloromethane(DCM) 로 추출한 다음 무수 MgSO4 로 수분을 제거한 후, 필터하고 갈압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography 로 분리 정제하여 중간체 1-(142 g, 91%) 을 얻었다.

HRMS (70 eV, E1+): m/z calcd for C18H 13Br: 308.0201, found: 308.
Elemental Analysis: C, 70 %; H, 4 %

합성예 2: 중간체 1-2의 합성
질소 환경에서 중간체 1-1(140 g, 453 mmol)을 dimethylformamide (DMF) 3 L에 녹인 후, 여기에 bis(pinacolato)diboron(138 g, 543 mmol)와 (I, I')-
bis(diphenylphosphine)ferrocene)dichloropalladium(II)(3.70 g, 4.53 mmol) 그리고 potassium acetate(133 g, 1,359 mmol)을 넣고 150 °C에서 4시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 혼합물을 필터한 후, 진공 오븐에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-2(145 g, 90 %)를 얻었다.

HRMS (70 eV, EI+): m/z calcd for C24H25B02: 356.1948, found: 356.
Elemental Analysis: C, 81 %; H, 7 %

합성예 3: 중간체 I-3의 합성

질소 환경에서 중간체 1-2(100 g, 281 mmol)을 tetrahydrofuran (THF) 1.0 L에 녹인 후, 여기에 l-bromo-3-iodobenzene(95.4 g, 337 mmol) 와 tetrakis(triphenylphosphine)palladium(3.25 g, 2.81 mmol)을 넣고 고반사 시켰다. 물에 녹화된 potassium carbonate(103 g, 703 mmol)을 넣고 80 °C에서 8시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane (DCM)로 추출한 다음 무수 MgSO4로 수분을 제거한 후, 필터하고 감압농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-3(85.5 g, 79 %)를 얻었다.

Elemental Analysis: C, 75 %; H, 4 %
합성예 4: 중간체 1-4의 합성

중간체 1-4의 합성은 dimethylformamide(DMF) 0.7 L에 녹인 후, 여기에 bis(pinacolato)diboron(63.2 g, 249 mmol)와 (1,1'-
bis(diphenylphosphine)ferrocene)dichloropalladium(II)(1.70 g, 2.08 mmol) 그리고 potassium acetate(61.2 g, 624 mmol)을 넣고 150°C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 혼합물을 필터한 후, 진공 오븐에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-4(67.4 g, 75%)를 얻었다.

HRMS (70 eV, EI+): m/z calcd for C30H29BO2: 432.2261, found: 432.
Elemental Analysis: C, 83% ; H, 7%

합성예 5: 중간체 1-5의 합성

중간체 1-5의 합성은 tetrahydrofuran(THF) 0.6 L에 녹인 후, 여기에 1-bromo-3-iodobenzene(5.0 g, 180 mmol)와 tetrakis[bis(diphenylphosphine)palladium(0)](1.73 g, 1.50 mmol)을 넣고 교반시켰다. 물에 포화된 potassium carbonate(55.2 g, 375 mmol)을 넣고 80°C에서 15시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 수수 MgSO4로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-5(49.1 g, 71%)을 얻었다.

HRMS (70 eV, EI+): m/z calcd for C30H21Br: 460.0827, found: 460.
Elemental Analysis: C, 78% ; H, 5%
합성예 6: 중간체 1-6의 합성

\[
\begin{align*}
\ce{C6H5-Br} & + \ce{C6H5-Br} \\
\rightarrow & \ce{C6H5-BR-C6H5} \\
\text{(DMF, 150°C)} & \\
\end{align*}
\]

질소 환경에서 중간체 1-5(45 g, 97.5 mmol) 을 dimethylformamide(DMF) 0.7 L 에 녹인 후,
여기에 bis(pinacolato)diboron(29.7 g, 117 mmol) 와 (1,1'-
bis(diphenylphosphine)ferrocene)dichloropalladium(II)(0.8 g, 0.98 mmol) 그리고 potassium acetate(28.7 g, 293 mmol) 을 넣고 150 ℃에서 8시간 동안 가열하여 환류 시켰다. 반응
완료 후 반응액을 물을 넣고 혼합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게
얻어진 잔사를 flash column chromatography 로 분리 정제하여 중간체 1-6(34.7 g, 70 %)를
얻었다.

HRMS (70 eV, EI+): m/z calcd for C36H33B02: 508.2574, found: 508.
Elemental Analysis: C, 85 %; H, 7 %

합성예 7: 중간체 1-7의 합성

\[
\begin{align*}
\ce{C6H5-Br} & + \ce{C6H5-Br} \\
\rightarrow & \ce{C6H5-BR-C6H5} \\
\text{(THF, 80 °C)} & \\
\end{align*}
\]

질소 환경에서 2-bromotriphenylene(32.7 g, 107 mmol) 을 tetrahydrofuran(THF) 0.3 L 에 녹인 후, 여기에 3-네프로신넷로사테크토(20.7 찐 128 mmol)와
tetrakis(triphenylphosphine)palladium(1.23 g, 1.07 mmol) 을 넣고 80 ℃에서 24시간 동안 가열하여 환류
시켰다. 반응 완료 후 반응액을 물을 넣고 dichloromethane(DCM) 로 추출한 다음 무수
MgSO4 로 수분을 제거한 후, 필터하고 갑압 농축하였다. 이렇게 얻어진 잔사를 flash
column chromatography 로 분리 정제하여 중간체 1-7(22.6 g, 63 %)을 얻었다.

HRMS (70 eV, EI+): m/z calcd for C24H15Cl: 338.0862, found: 338.
Elemental Analysis: C, 85 %; H, 5 %
합성 예 8: 중간체 1-8의 합성

\[
\begin{align*}
\text{I-7} & \quad \text{I-8}
\end{align*}
\]

질소 환경에서 중간체 1-7(22.6 g, 66.7 mmol) 을 dimethylfortnaniideiDMF) 0.3 L에 녹인 후, 여기에 bis(pinacolato)diboron (25.4 g, 100 mmol) 와 1,1'-bis(diphenylphosphine)ferrocene)dichloropalladium(II)(0.54 g, 0.67 mmol) 그리고 potassium acetate(16.4 g, 167 mmol)을 넣고 150 ℃에서 48시간 동안 가열하여 반응시켰다. 반응완료 후 반응액에 물을 넣고 혼합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-8(18.6 g, 65 %)을 얻었다.

HRMS (70 eV, EI+): m/z calcd for C30H19Br: 458.0670, found: 458.
Elemental Analysis: C, 78 %; H, 4 %

합성 예 9: 중간체 1-9의 합성

\[
\begin{align*}
\text{I-8} & \quad \text{I-9}
\end{align*}
\]

질소 환경에서 중간체 1-8(50 g, 116 mmol) 을 tetrahydrofuran(THF) 0.5 L에 녹인 후, 여기에 1-bromo-3-iodobenzene(39.4 g, 139 mmol)과 tBu(비아에티스핀)N,N,N,N,5-pentacosa(1.34 몇 1.16 mol)을 넣고 교반시켰다. 물에 포화된 potassium carbonate(40.1 g, 290 mmol)을 넣고 80 ℃에서 12시간 동안 가열하여 반응시켰다. 반응완료 후 반응액에 물을 넣고 dichlorotnethane(DCM)로 추출한 다음 무수 MgSO4로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-9(42.6 g, 80 %)을 얻었다.

HRMS (70 eV, EI+): m/z calcd for C30H19Br: 458.0670, found: 458.
Elemental Analysis: C, 78 %; H, 4 %
합성예 10: 중간체 1-10의 합성

것 소 환경에서 중간체 1-9(40 g, 87.1 mmol) 을 dimethylformamide (DMF) 으로 3 L에 녹인 후,
여기에 뱌 (갈 0 Sann0) <sat 0 100 (26.5 g, 1/40 0 01)와 (1,1'-
bis(diphenylphosphine)ferrocene)dichloropalladium(II)(0.71 g, 0.87 mmol) 그리고 potassium
ac하에 2.1 g, 218 0 01)을 넣고 150 °C에서 26시간 동안 가열하여 반응시켰다. 반응
완료 후 반응액에 물을 넣고 혼합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게
얻어진 잔사를 flash column chromatography 로 분리 정제하여 중간체 1-10(34 g, 77 %)
을 얻었다.

HRMS (70 eV, EI+): m/z calcd for C36H31B02: 506.2417, found: 506.
Elemental Analysis: C, 85 %; H, 6 %

합성예 11: 중간체 1-11의 합성

것 소 환경에서 3-bromo-9-phenyl-9H-carbazole(10) g, 310 mmol) 을 tetrahydrofuran(THF)
0.8 L에 녹인 후, 여기에 3-chlorophenylboronic acid(53.4 g, 341 mmol) 와
tetrakis(triphenylphosphine)palladium(3.58 g, 3.10 mmol)을 넣고 교반시켰다. 물에 포화된
potassium carbonate(114 g, 775 mmol) 을 넣고 80 °C에서 8시간 동안 가열하여 반응
시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane (DCM) 로 추출한 다음 무수
MgSO4 로 수분을 제거한 후, 필터하고 갑압 농축하다. 이렇게 얻어진 잔사를 flash
column chromatography 로 분리 정제하여 중간체 1-1(104 g, 95 %)을 얻었다.

HRMS (70 eV, EI+): m/z calcd for C24H16C1N: 353.0971, found: 353.
 Elemental Analysis: C, 81%; H, 5%

합성예 12: 중간체 1-12의 합성

\[
\begin{align*}
&\text{합성예 12: 중간체 1-12의 합성} \\
&\text{질소 환경에서 중간체 1-11(100 g, 283 mmol) 을 ditmethyleamide(DMF) 0.9 L에 녹인 후, 여기에 bis(pinacolato)diboron (86.1 g, 339 mmol) 와 (1,1')-bis(diphenylphosphine)ferrocene dichloropalladium(II) (2.3 g, 2.83 mmol) 그리고 potassium acetate (83.3 g, 849 mmol)을 넣고 150 °C에서 48시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 혼합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography 로 분리 정제하여 중간체 1-12(83.2 g, 66%)을 얻었다.}
\end{align*}
\]

합성예 13: 중간체 1-13의 합성

\[
\begin{align*}
&\text{합성예 13: 중간체 1-13의 합성} \\
&\text{질소 환경에서 중간체 1-12(80 g, 180 mmol) 을 tetrahydrofliran(THF) 0.7 L에 녹인 후, 여기에 1-bromo-3-iodobenzene (6.0 g, 2.16 mmol)와} \\
&\text{tetrakis}(1,1,1,3,3-pentaphenyltris(tetraisopropyphosphine)borate(2.08 황 180 mol%)을 넣고 교반시켰다. 물에 포함된 potassium carbonate (66.3 g, 450 mmol) 을 넣고 80 °C에서 15시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM) 로 추출한 다음 무수 MgSO4 로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash}
\end{align*}
\]
column chromatography로 분리 정제하여 중간체 1-13(70.9 g, 83 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C30H20BrN: 473.0779, found: 473.
Elemental Analysis: C, 76 %; H, 4 %

합성 예 14: 중간체 1-14의 합성

물에 포화된 « 5 0 없 186 홧 1,26 0 1)을 넣고 80 °C에서 8시간 동안 가열하여 환류 시켰다. 반응
완료 후 반응액에 물을 넣고 혼합물을 필터한 후, 진공으로 분에서 건조하였다. 이렇게
얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-14(50.0 g, 70 %)을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C36H32BN02: 521.2526, found: 521.
Elemental Analysis: C, 90 %; H, 6 %

합성 예 15: 중간체 1-15의 합성

물에 포화된 « 5 0 없 186 홧 1,26 0 1)을 넣고 80 °C에서 8시간 동안 가열하여 환류 시켰다. 반응
완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수

합성 예 16: 중간체 1-16의 합성
MgSO₄로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-15(148 g, 95%)를 얻었다.

HRMS (70 eV, El+): m/z calcd for C₁₈H₁₃Br: 308.0201, found: 308.
Elemental Analysis: C, 70%; H, 4%

합성 예 16: 중간체 1-16의 합성

\[
\begin{align*}
MgSO₄ \quad \xrightarrow{\text{수분을 제거한 후, 필터하고 감압 농축한 후}} \quad \text{IBC}
\end{align*}
\]

\[
\begin{align*}
\text{IBC} \quad \xrightarrow{\text{flash column chromatography}} \quad \text{산 환경으로서 중간체 1-15(148 g, 95%)}
\end{align*}
\]

HRMS (70 eV, El+): m/z calcd for C₂₄H₂₅BrO₂: 356.1948, found: 356.
Elemental Analysis: C, 81%; H, 7%

합성 예 17: 중간체 1-17의 합성

\[
\begin{align*}
\text{IBC} \quad \xrightarrow{\text{flash column chromatography}} \quad \text{산 환경으로서 중간체 1-15(148 g, 95%)}
\end{align*}
\]

HRMS (70 eV, El+): m/z calcd for C₂₄H₂₅BrO₂: 356.1948, found: 356.
Elemental Analysis: C, 81%; H, 7%

합성 예 18: 중간체 1-18의 합성

\[
\begin{align*}
\text{IBC} \quad \xrightarrow{\text{flash column chromatography}} \quad \text{산 환경으로서 중간체 1-15(148 g, 95%)}
\end{align*}
\]

HRMS (70 eV, El+): m/z calcd for C₂₄H₂₅BrO₂: 356.1948, found: 356.
Elemental Analysis: C, 81%; H, 7%
HRMS (70 eV, EI+): m/z calcd for C17H13BrO: 312.0150, found: 312.
Elemental Analysis: C, 65%; H, 4%

Synthesis 18: Intermediate 1-18 Synthesis

\[
\text{Intermediate 1-18}
\]

Synthesis 19: Intermediate 1-19 Synthesis

\[
\text{Intermediate 1-19}
\]
HRMS (70 eV, EI+): m/z calcd for C24H14Br2N2: 487.9524, found: 488.
Elemental Analysis: C, 59%; H, 3%

합성예 20: 화합물 6의 합성

진공 환경에서 2,4,6-trichloro-1,3,5-triazine(20 g, 108 mmol)을 tetrahydrofuran(THF) 0.8 L에 녹인 후, 여기에 중간체 1-2(135 g, 380 mmol)와 tetrakis(triphenylphosphine)palladium(3.74 g, 3.24 mmol)을 넣고 교반시켰다. 물에 포화된 potassium carbonate(95.4 g, 648 mmol)를 넣고 80 °C에서 24시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgSO4로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 6(60.4 g, 73%)을 얻었다.

HRMS (70 eV, EI+): m/z calcd for C57H39N3: 765.3144, found: 765.
Elemental Analysis: C, 89%; H, 5%

합성예 21: 화합물 7의 합성

질소 환경에서 Shenzhen gre-syn chemical technology(http://www.gre-syn.com/) 시스템에 4,6-bipyrine(20 g, 74.7 mmol)을 tetrahydrofuran(THF) 0.8 L에 녹인 후, 여기에 중간체 1-6(38.0 g, 74.7 mmol)와 tetrakis(triphenylphosphine)palladium(0.87 g, 0.75 mmol)을 넣고 80 °C에서 24시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgSO4로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 7(47.0 g, 73%)을 얻었다.
tnmo l)을 넣고 교반시켰다. 물에 포화된 potassium carbonate(27.5 g, 187 mmol) 을 넣고
80 °C에서 14시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고
dichloromethane(DCM) 로 추출한 다음 무수 MgSO4 로 수분을 제거한 후, 필터하고
감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography 로 분리 정제하여
화합물 7(40.3 g, 88 %)을 얻었다.

HRMS (70 eV, EI+): m/z calcd for C45H31N3: 613.2518, found: 613.
Elemental Analysis: C, 88 %; H, 5 %

합성예 22: 화합물 13의 합성

질소 환경에서 중간체 1-10(20 g, 39.5 mmol) 을 tetrahydrofuran(THF) 0.2 L에 녹인 후,
여기에 Shenzhen gre-syn chemical technology(http://www.gre-syn.com/) 사의 2-chloro-4,6-
diphenyl-1,3,5-triazine(l 0.6 g, 39.5 mmol) 와 tetrakis(triphenylphosphine)palladium(0.46 g, 0.4
mmol) 을 넣고 교반시켰다. 물에 포화된 potassium carbonate(1 3.6 g, 98.8 mmol) 을 넣고
80 °C에서 23시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고
dichloromethane(DCM) 로 추출한 다음 무수 MgSO4 로 수분을 제거한 후, 필터하고
감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography 로 분리 정제하여
화합물 13(17.9 g, 74 %)을 얻었다.

HRMS (70 eV, EI+): m/z calcd for C45H29N3: 611.2361, found: 611.
Elemental Analysis: C, 88 %; H, 5 %

합성예 23: 화합물 14의 합성
질소 환경에서 중간체 1-14(20 g, 38.4 mmol) 을 tetrahydrofuran(THF) 0.2 L 에 녹인 후, 여기에 Shenzhen gre-syn chemical technology(http://www.gre-syn.com/) 사의 2-chloro-4,6-diphenyl-1,3,5-triazine(10.3 g, 38.4 mmol) 와 tetrakis(triphenylphosphine)palladium(0.44 g, 0.38 mmol) 을 넣고 교반시켰다. 물에 포화된 potassium carbonate(4.1 g, 96.0 mmol) 을 넣고 80 °C에서 18시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM) 로 추출한 다음 무수 MgSO₄ 로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography 로 분리 정제하여 화합물 14(19.5 g, 81%)을 얻었다.

HRMS (70 eV, El+): m/z calcd for C₄₅H₃₀N₄: 626.2470, found: 626.
Elemental Analysis: C, 86%; H, 5%

합성 예 24: 화합물 21의 합성

질소 환경에서 Shenzhen gre-syn chemical technology(http://www.gre-syn.com/) 사의 2,4-dichloroquinazoline(20 g, 100 mmol) 을 tetrahydrofuran(THF) 0.8 L 에 녹인 후, 여기에 중간체 1-16(78.4 g, 220 mmol) 와 tetrakis(triphenylphosphine)palladium(3.47 g, 3.0 mmol) 을 넣고 교반시켰다. 물에 포화된 potassium carbonate(73.6 g, 500 mmol) 을 넣고 80 °C에서
15시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgSO4로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 21(46.9 g, 80%)을 얻었다.

HRMS (70 eV, EI+): m/z calcld for C44H30N2: 586.2409 found: 586.
Elemental Analysis: C, 90%; H, 5%

합성 예 25: 화합물 22의 합성

\[
\begin{align*}
\text{Br} & \quad \text{N} = \text{N} \\
\text{Br} & \quad \text{Br}
\end{align*}
\]

I-18

\[
\begin{align*}
\text{[HO]B} & \quad \text{Pd(PPh3)4} \cdot \text{K}_2\text{CO}_3 \\
\text{THF, 80°C}
\end{align*}
\]

22

질소 환경에서 중간체 1-18(20 g, 40.8 mmol)을 tetrahydrofuran(THF) 0.2 L에 녹인 후, 여기에 biphenyl-3-ylboronic acid(16.2 g, 81.6 mmol)와 tetrakis(triphenylphosphine)palladium(0.94 g, 0.82 mmol)을 넣고 교반시켰다. 물에 포화된 potassium carbonate(28.2 g, 204 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgSO4로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 22(24.9 g, 96%)를 얻었다.

HRMS (70 eV, EI+): m/z calcld for C48H32N2: 636.2565, found: 636.
Elemental Analysis: C, 91%; H, 5%

제2 호스트 화합물의 합성

합성 예 26: 중간체 1-20의 합성
질소 환경에서 3-bromo-9-phenyl-9H-carbazole(10 g, 310 mmol)을 tetrahydrofliran(THF) 0.8 L에 녹인 후, 여기에 4-chlorophenylboronic acid(53.4 g, 341 mmol) 와
5 tetrais[diphenylphosphine]diboron(3.58 핏 3.10 mmol)을 넣고 교반시켰다. 물에 포화된 potassium carbonate(114 g, 775 mmol)을 넣고 80 °C에서 18시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgSO4로 수분을 제거한 후, 필터하고 갑압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-20(97.6 g, 89 %)을 얻었다.

HRMS (70 eV, EI+): m/z calcd for C24H16ClN: 353.0971, found: 353.
Elemental Analysis: C, 81 %; H, 5 %

합성 예 27: 중간체 1-21의 합성

 질소 환경에서 중간체 1-20(90 g, 254 mmol)을 dinitroformamide(DMF) 0.8 L에 녹인 후, 여기에 bis(pinacolato)diboron (77.5 g, 305 mmol)와 (1,1'-
15 bis(diphenylphosphine)ferrocene)dichloropalladium(II)(2.70 g, 2.54 mmol) 그리고 potassium acetate(74.8 g, 762 mmol)을 넣고 150 °C에서 20시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 혼합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-21(75.8 g, 67 %)을 얻었다.
합성 예 28: 중간체 1-22의 합성

\[
\text{Br} \quad \text{Reac} \quad \text{Ph} \quad \text{Pd(dppf), K\text{CO}_3} \\
\text{THF, 80 °C} \\
\text{1-22}
\]

조소 환경에서 3-bromo-9-phenyl-9H-carbazole(100 g, 310 mmol)을 tetrahydrofuran(THF) 0.8 L에 녹인 후, 여기에 3-chlorophenylboronic acid(53.4 g, 341 mmol)을 넣고 교반시켰다. 용액에 포화된 potassium carbonate(114 g, 775 mmol)을 넣고 80 °C에서 16시간 동안 가열하여 환류시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgSO4로 수분을 제거한 후, 필터하고 갑압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-22(91.0 g, 83%)을 얻었다.

HRMS (70 eV, EI+): m/z calcd for C24H16C1N: 353.0971, found: 353.
Elemental Analysis: C, 81%; H, 5%

합성 예 29: 중간체 1-23의 합성

\[
\text{1-22} \\
\text{DMF, 150 °C} \\
\text{1-23}
\]

조소 환경에서 중간체 1-22(90 g, 254 mmol)을 dimethylformamide(DMF) 0.8 L에 녹인 후, 여기에 bis(pinacolato)diboron (77.5 g, 305 mmol)와 (I, I'-bis(diphenylphosphine)ferrocene)dichloropalladium(II)(2.70 g, 2.54 mmol) 그리고 potassium acetate(74.8 g, 762 mmol)을 넣고 150 °C에서 25시간 동안 가열하여 환류시켰다. 반응
완료 후 반응액에 물을 넣고 혼합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 중간체 1-23(67.9 g, 60 %)을 얻었다.

Elemental Analysis: C, 81 %; H, 6 %

합성예 30: 중간체 1-24의 합성

\[
\begin{align*}
\text{Pd(dba)}_2 &+ \text{P(t-Bu)}_3 \, \text{NaClBu} \\
\text{Toluene, 100°C} &
\end{align*}
\]

1-24

질소 환경에서 3-bromo-9H-carbazole(100 g, 406 mmol)을 toluene 1.2 L에 녹인 후, 여기에 3-iodobiphenyl(137 g, 488 mmol), bis(dibenzylideneacetone)palladium(o)(2.33 g, 4.06 mmol), tris-tert butylphosphate(4.11 g, 20.3 mmol) 그리고 sodium tert-butoxide(46.8 g, 487 mmol)을 순차적으로 넣고 100 ℃에서 10시간 동안 가열하여 한류시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgSO4로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 중간체 1-24(82.5 g, 51 %)를 얻었다.

HRMS (70 eV, El+): m/z calcd for C24H16BrN: 397.0466, found: 397.

Elemental Analysis: C, 72 %; H, 4 %

합성예 31: 화합물 B-1의 합성

\[
\begin{align*}
Pd(PPh)_3 &\, \text{K}_2\text{CO}_3 \\
\text{THF, 80°C} &
\end{align*}
\]

1-21

B-1

질소 환경에서 중간체 1-21(20 g, 44.9 mmol)을 tetrahydrofuran(THF) 0.2 L에 녹인 후,
여기 어) 3-bromo-9-phenyl-9H-carbazole (14.5 g, 44.9 mmol) 와
tetrakis(triphenylphosphine)palladium (0.52 g, 0.45 mmol) 을 넣고 교반시켰다. 물에 포화된
potassium carbonate (16.5 g, 112 mmol) 을 넣고 80 °C에서 15시간 동안 가열하여 완류
시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM) 로 추출한 다음 무수
MgSO4 로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash
column chromatography 로 분리 정제하여 화합물 B-1 (22.7 g, 90 %) 을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C42H28N2: 560.2252, found: 560.
Elemental Analysis: C, 90 %; H, 5 %

합성예 32: 화합물 B-2의 합성

전보 환경에서 중간체 1-23 (20 g, 44.9 mmol) 을 tetrahydrofuran(THF) 0.2 L 에 녹인 후,
여기에 3-bromo-9-phenyl-9H-carbazole (1 4.5 g, 44.9 mmol) 와
tetrakis(triphenylphosphine)palladium (0.52 g, 0.45 mmol) 을 넣고 교반시켰다. 물에 포화된
potassium carbonate (16.5 g, 112 mmol) 을 넣고 80 °C에서 17시간 동안 가열하여 완류
시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM) 로 추출한 다음 무수
MgSO4 로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash
column chromatography 로 분리 정제하여 화합물 B-2 (2.14 g, 85 %) 을 얻었다.
HRMS (70 eV, EI+): m/z calcd for C42H28N2: 560.2252, found: 560.
Elemental Analysis: C, 90 %; H, 5 %

합성예 33: 화합물 B-33의 합성
질소 환경에서 증간체 1-21(20 g, 44.9 mmol) 을 tetrahydrofuran(THF) 0.2 L 에 녹인 후,
여기에 증간체 1-24(17.9 g, 44.9 mmol)와 tetrakis(triphenylphosphine)palladium(0.52 g, 0.45 mmol)을 넣고 교반시켰다. 물에 포화된 potassium carbonate(16.5 g, 112 mmol)을 넣고
80 ℃에서 18시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고
dichloromethane(DCM)로 추출한 다음 무수 MgSO4로 수분을 제거한 후, 필터하고
g감 압농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여
화합물 B-33(24.6 g, 86 %)을 얻었다.

HRMS (70 eV, EI+): m/z calcd for C48H32N2: 636.2565, found: 636.

Elemental Analysis: C, 91 %; H, 5 %

합성예 34: 화합물 B-34의 합성

질소 환경에서 증간체 1-23(20 g, 44.9 mmol)을 tetrahydrofuran(THF) 0.2 L에 녹인 후,
여기에 증간체 1-24(17.9 g, 44.9 mmol)와 tetrakis(triphenylphosphine)palladium(0.52 g, 0.45 mmol)을 넣고 교반시켰다. 물에 포화된 potassium carbonate(16.5 g, 112 mmol)을 넣고
80 ℃에서 18시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고
dichloromethane(DCM)로 추출한 다음 무수 MgSO4로 수분을 제거한 후, 필터하고
g감 압농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여
화합물 B-34(25.7 g, 90 %)을 얻었다.
유기 발광 소자의 제작 (녹색)

실시예 1

ITO (Indium tin oxide)가 1500Å의 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기를 이용 시킨 다음 산소 플라즈마를 이용하여 상기 기판을 10분간 세정한 후 진공 중착기로 기판을 이송하였다. 이렇게 준비된 1/O 투명 전극을 양극으로 사용하여 ITO 기판 상부에 화합물 A를 진공 중착하여 700Å 두께의 정공 주입층을 형성하고 상기 주입층 상부에 화합물 B를 50Å의 두께로 중착한 후, 화합물 C를 1020Å의 두께로 중착하여 정공수송층을 형성하였다. 정공수송층 상부에 상기에서 합성에 20에서 얻은 화합물 6과 제2호스트 합성에 31에서 얻은 화합물 B-1을 동시에 호스트로 사용하고 도판트로 Tris(2-phenylpyridinato)irridium (ni) [Ir(ppy)3]를 10wt.으로 도핑하여 진공 중착으로 400Å 두께의 발광층을 형성하였다. 여기서 화합물 6과 화합물 B-1은 1:1 비율로 사용되었다. 이어서 상기 발광층 상부에 화합물 D와 Liq를 동시에 1:1 비율로 진공 중착하여 300Å 두께의 전자수송층을 형성하고 상기 전자수송층 상부에 Liq15Å과 A11200Å을 순차적으로 진공 중착하여 음극을 형성함으로써 유기발광소자를 제작하였다.

상기 유기발광소자는 5층의 유기 박막층을 가지는 구조로 되어 있으며, 구체적으로 다음과 같다.

ITO/화합물A(700Å)/화합물B(50Å)/화합물C(1020Å)/EML [화합물6:화합물B-1:Ir(ppy)3 = X:X:10%](400Å)/화합물D:Liq(300Å)/Liq(15Å)/Al(1200Å)의 구조로 제작하였다. (X=중앙비)

화합물 A: N4,N4'-diphenyl-N4,N4'-bis(9-phenyl-9H-carbazol-3-yl)biphenyl-4,4'-diamine
화합물 B: 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitride (HAT-CN),
화합물 C: N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl))^helyl)-9H-fluoren-2-amine
화합물 D: 8-(4-(4,6-di(naphthalen-2-yl)-1,3,5-triazin-2-yl)phenyl)quinolone

실시예 2
화합물 6 대신 화합물 7를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.

실시예 3
화합물 6 대신 화합물 13을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.

실시예 4
화합물 6 대신 화합물 14를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.

실시예 5
화합물 B-1 대신 화합물 B-2를 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 유기발광소자를 제조하였다.

실시예 6
화합물 B-1 대신 화합물 B-33을 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 유기발광소자를 제조하였다.

실시예 7
화합물 B-1 대신 화합물 B-34을 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 유기발광소자를 제조하였다.

비교예 1
화합물 6과 화합물 B-1의 2종 호스트 대신 4,4'-(di(9H-carbazol-9-yl)biphenyl) (CBP) 를 단독 호스트로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제작하였다.
화합물 6과 화합물 B-1의 2종 호스트 대신 화합물 6을 단독 호스트로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제작하였다.

비교예 3
화합물 6과 화합물 B-1의 2종 호스트 대신 화합물 7을 단독 호스트로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제작하였다.

비교예 4
화합물 6과 화합물 B-1의 2종 호스트 대신 화합물 13을 단독 호스트로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제작하였다.

비교예 5
화합물 6과 화합물 B-1의 2종 호스트 대신 화합물 14를 단독 호스트로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제작하였다.

비교예 6
화합물 6과 화합물 B-1의 2종 호스트 대신 화합물 B-1을 단독 호스트로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제작하였다.

비교예 7
화합물 6과 화합물 B-1의 2종 호스트 대신 화합물 B-2를 단독 호스트로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제작하였다.

비교예 8
화합물 6과 화합물 B-1의 2종 호스트 대신 화합물 B-33을 단독 호스트로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제작하였다.

비교예 9
화합물 6과 화합물 B-1의 2종 호스트 대신 화합물 B-34를 단독 호스트로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제작하였다.
평가
실시예 1 내지 7과 비교예 1 내지 9에 따른 유기발광소자의 발광효율 및 수명특성을 평가하였다.
구체적인 측정방법은 하기와 같고, 그 결과는 표 1과 같다.

(1) 전압변화에 따른 전류밀도의 변화 측정
제조된 유기발광소자에 대해, 전압을 0V 부터 10V 까지 상승시 키면서 전류계(Keithley 2400)를 이용하여 단위소자에 흘르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다.
(2) 전압변화에 따른 휘도변화 측정
제조된 유기발광소자에 대해, 전압을 0V 부터 10V 까지 상승시 키면서 휘도계(Minolta Cs-1000A)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다.
(3) 발광효율 측정
상기 (1) 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 전류밀도 (10 mA/cm²)의 전류 효율 (cd/A)을 계산하였다.
(4) 수명 측정
초기휘도(cd/m²)를 6000 cd/m²로 발광시키고 시간 경과에 따른 휘도의 감소를 측정하여 초기 휘도 대비 97%로 감소하는 시간을 측정하여 결과를 얻었다.

[표 1]

<table>
<thead>
<tr>
<th></th>
<th>제1호스트</th>
<th>제2호스트</th>
<th>제1호스트: 제2호스트</th>
<th>발광효율 (cd/A)</th>
<th>수명 T97% (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>실시예 1</td>
<td>화합물 6</td>
<td>B-1</td>
<td>1:1</td>
<td>59.1</td>
<td>680</td>
</tr>
<tr>
<td>실시예 2</td>
<td>화합물 7</td>
<td>B-1</td>
<td>1:1</td>
<td>55.2</td>
<td>720</td>
</tr>
<tr>
<td>실시예 3</td>
<td>화합물 13</td>
<td>B-1</td>
<td>1:1</td>
<td>57.6</td>
<td>700</td>
</tr>
<tr>
<td>실시예 4</td>
<td>화합물 14</td>
<td>B-1</td>
<td>1:1</td>
<td>56.1</td>
<td>750</td>
</tr>
<tr>
<td>실시예 5</td>
<td>화합물 7</td>
<td>B-2</td>
<td>1:1</td>
<td>58.8</td>
<td>710</td>
</tr>
<tr>
<td>실시예 6</td>
<td>화합물 7</td>
<td>B-33</td>
<td>1:1</td>
<td>53.1</td>
<td>760</td>
</tr>
<tr>
<td>실시예 7</td>
<td>화합물 7</td>
<td>B-34</td>
<td>1:1</td>
<td>54.3</td>
<td>750</td>
</tr>
<tr>
<td>비교예 1</td>
<td>CBP</td>
<td></td>
<td>-</td>
<td>19.3</td>
<td>0.5</td>
</tr>
<tr>
<td>비교예 2</td>
<td>화합물 6</td>
<td></td>
<td>-</td>
<td>28.7</td>
<td>480</td>
</tr>
</tbody>
</table>
表 1을 참고하면, 실시예 1 내지 7에 따른 유기발광소자는 비교에 1 내지 9에 따른 유기발광소자와 비교하여 발광효율 및 수명특성이 현저하게 개선된 것을 확인할 수 있다. 수명특성 및 발광효율이 양호한 비교에 2 내지 5에 따른 유기발광소자를 정공특성이 좋은 비교에 6 내지 9에 따른 유기발광소자와 적절히 혼합하여 사용할 경우 기존 가지고 있던 각각의 발광효율 및 수명특성 대비 시너지 효과가 발생하여 현저하게 개선됨을 알 수 있다.

본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시할 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

유기 발광 소자의 제작 (적색)

실시예 8
합성예 24에서 얻은 화합물 21을 호스트로 사용하고, acetylacetonatobis(2-phenylquinoHnato)iridium (Ir(pq) _2acac)를 도포물로 사용하여 유기발광소자를 제작하였다.

양극으로는 ITO를 1500 A의 두께로 사용하였고, 음극으로는 알루미늄(A1)을 1000 A의 두께로 사용하였다. 구체적으로, 유기발광소자의 제조방법을 설명하면, 양극은 15Ω/cm의 면저항값을 가진 ITO 유리 기판을 50mm x 50 mm x 0.7 mm의 크기로 잘라서 아세톤과 이소프로필알코올과 순수물 속에서 각 15 분 동안 초음파 세정한 후, 30 분 동안 U V 오존 세정하여 사용하였다.

상기 기판 상부에 진공도 650x 10^-7Pa, 중착속도 0.1 내지 0.3 nm/s의 조건으로 4.4-
bis[N-[4- (N,N-bis(3-methylphenyl)amino)-phenyl]-N-phenylamino]biphenyl [DNTPD] 를 진공
증착하여 600 A 두께의 정공 주입층을 형성하였다. 이어서 동일한 진공 증착조건에서
HT- 1을 진공 증착으로 300 A 두께의 정공 수송층을 형성하였다.
다음으로, 동일한 진공 증착조건에서 합성에 24에서 얻은 화합물 21과 제2호스트
5
합성에 31에서 얻은 화합물 B-1을 동시에 호스트로 이용하여 막 두께 300 A의
발광층을 형성하였다. 이어서, 화합물 21과 화합물 B-1은 1:1 비율로 사용하였다. 호스트를
증착할 때, 인광 도편인 acetylacetonatobis(2-phenylquinolinato)iridium (Ir(pq) 2acac)\(\frac{1}{2}\)
 동시에 증착하였다. 이 때, 인광 도편의 중량수도를 조절하여, 발광층의 전체량을
100 중량%로 하였을 때, 인광 도편의 배합량이 7 중량%가 되도록 증착하였다.
10
상기 발광층 상부에 동일한 진공 증착조건을 이용하여 Bis(2-methyl-8-quinolinolate)-4-
(phenylphenolato)aluminium (BALq) 를 증착하여 막 두께 50 A의 정공저지층을
형성하였다. 이어서, 동일한 진공 증착조건에서 Tris(8-hydroxyquinolinato)aluminium
(AIq3) 를 증착하여, 막 두께 250 A의 전자는수송층을 형성하였다. 상기 전자는수송층
상부에 응괴로서 LiF 와 AI 1을 순차적으로 증착하여 유기광전소자를 제작하였다.
15
상기 유기광전소자의 구조는 ITO/ DNTPD (60 nm)/ HT- 1 (30 nm)/ EML (화합물24-B-1:1 중량비) (93 중량%)/ Ir(pq) 2acac(7 중량%)/ 30 nm)/ Balq (5 nm)/ AIq3 (25 nm)/ LiF (1 nm)/ AI 1 (100 nm)의 구조로 제작하였다.
실시예 9
20
화합물 21 대신 화합물 22를 사용한 것을 제외하고는 실시예 8과 동일한 방법으로
유기발광소자를 제조하였다.
실시예 12
화합물 B-1 대신 화합물 B-34 을 사용한 것을 제외하고는 실시예 9와 동일한 방법으로 유기발광소자를 제조하였다.

비교예 10
화합물 21과 화합물 B-1의 2종 호스트 대신 CBP 를 단독 호스트를 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 유기발광소자를 제작하였다.

비교예 11
화합물 21과 화합물 B-1의 2종 호스트 대신 화합물 22를 단독 호스트를 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 유기발광소자를 제작하였다.

비교예 12
화합물 21과 화합물 B-1의 2종 호스트 대신 화합물 B-1을 단독 호스트를 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 유기발광소자를 제작하였다.

비교예 13
화합물 21과 화합물 B-1의 2종 호스트 대신 화합물 B-1을 단독 호스트를 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 유기발광소자를 제작하였다.

비교예 14
화합물 21과 화합물 B-1의 2종 호스트 대신 화합물 B-2를 단독 호스트를 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 유기발광소자를 제작하였다.

비교예 15
화합물 21과 화합물 B-1의 2종 호스트 대신 화합물 B-33 을 단독 호스트를 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 유기발광소자를 제작하였다.

비교예 16
화합물 21과 화합물 B-1의 2종 호스트 대신 화합물 B-34 를 단독 호스트를 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 유기발광소자를 제작하였다.
상기 유기발광소자 제작에 사용된 DNTPD, BAlq, HT-l, CBP, 및 Ir(pq)2acac의 구조는
하기와 같다.

(dNTPD) [BAlq] [HT-l]

[CBP] [Ir(pq)2acac]

실시 예 8 내지 12와 비교 예 10 내지 16에 따른 유기 발광소자의 발광효율 및
수명특성을 평가하였다.
구체적인 측정방법은 하기와 같고, 그 결과는 표 2와 같다.
(1) 전압 변화에 따른 전류밀도의 변화 측정
제조된 유기발광소자에 대해, 전압을 0V 부터 10V 까지 상승시 키면서 전류-
전압계 (Keithley 2400) 를 이용하여 단위소자에 호르는 전류값을 측정하고, 측정된
전류값을 면적으로 나누어 결과를 얻었다.
(2) 전압 변화에 따른 휘도변화 측정
제조된 유기발광소자에 대해, 전압을 0V 부터 10V 까지 상승시 키면서 휘도계 (Minolta
Cs-1000A) 를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다.
(3) 발광효율 측정
상기 (1) 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 전류밀도 (10
mA/cm2) 의 전류 효율 (cd/A) 을 계산하였다.
(4) 수명 측정
초기휘도 (cd/m2) 를 3000 cd/m2 로 발광시키고 시간 경과에 따른 휘도의 감소를
측정하여 초기 휘도 대비 50%로 감소하는 시간을 측정하여 결과를 얻었다.

[표 2]

<table>
<thead>
<tr>
<th></th>
<th>제1호스트</th>
<th>제2호스트</th>
<th>제1호스트: 제2호스트</th>
<th>효율 (cd/A)</th>
<th>50% 수명 (h) At 3000 cd/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>실험 8</td>
<td>화합물 21</td>
<td>B-1</td>
<td>1:1</td>
<td>51.3</td>
<td>490</td>
</tr>
<tr>
<td>실험 9</td>
<td>화합물 22</td>
<td>B-1</td>
<td>1:1</td>
<td>50.0</td>
<td>510</td>
</tr>
<tr>
<td>실험 10</td>
<td>화합물 22</td>
<td>B-2</td>
<td>1:1</td>
<td>49.5</td>
<td>500</td>
</tr>
<tr>
<td>실험 11</td>
<td>화합물 22</td>
<td>B-33</td>
<td>1:1</td>
<td>48.2</td>
<td>550</td>
</tr>
<tr>
<td>실험 12</td>
<td>화합물 22</td>
<td>B-34</td>
<td>1:1</td>
<td>48.5</td>
<td>540</td>
</tr>
<tr>
<td>비교 10</td>
<td>CBP</td>
<td>-</td>
<td>-</td>
<td>37.2</td>
<td>220</td>
</tr>
<tr>
<td>비교 11</td>
<td>화합물 21</td>
<td>-</td>
<td>-</td>
<td>41.2</td>
<td>150</td>
</tr>
<tr>
<td>비교 12</td>
<td>화합물 22</td>
<td>-</td>
<td>-</td>
<td>40.4</td>
<td>250</td>
</tr>
<tr>
<td>비교 13</td>
<td>B-1</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>비교 14</td>
<td>B-2</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>비교 15</td>
<td>B-33</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>비교 16</td>
<td>B-34</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

표 2를 참고하면, 실험 8 내지 12에 따른 유기발광소자는 비교 10 내지 16에 따른 유기발광소자와 비교하여 발광효율 및 수명특성의 현저하게 개선된 것을 확인할 수 있다. 수명특성 및 발광효율이 양호한 비교 11 및 12에 따른 유기발광소자를 정공특성이 좋은 비교 13 내지 16에 따른 유기발광소자와 적절히 혼합하여 사용할 경우 기존 가지고 있던 각각의 발광효율 및 수명특성 대비 시너지 효과가 발생하여 현저하게 개선됨을 알 수 있다.

(Gaussian 풀을 이용한 에너지 준위 계)

슈퍼컴퓨터 GAIA (IBM power 6)으로 프로그램 Gaussian 09를 사용하여 B3LYP/6-31G 방법으로 각 재료의 에너지 준위를 계산하여 그 결과를 하기 표3에 기재하였다.

[표 3]

<table>
<thead>
<tr>
<th>재료</th>
<th>HOMO(eV)</th>
<th>LUMO(eV)</th>
</tr>
</thead>
</table>

화합물 6 -5.99 -1.87
화합물 7 -5.92 -1.81
화합물 13 -5.76 -1.82
화합물 14 -5.28 -1.82
화합물 21 -5.65 -1.88
화합물 22 -5.65 -1.87
B-1 -5.04 -0.77
B-2 -5.17 -0.73
B-33 -5.04 -0.98
B-34 -5.17 -0.97

상기 계산 결과에 따르면, 화합물 6, 화합물 7, 화합물 13, 화합물 14, 화합물 21, 및 화합물 22는 화합물 B-1, 화합물 B-2, 화합물 B-33, 및 화합물 B-34에 비해 낮은 LUMO 에너지 준위를 가지고 있다. 이는 화합물 6, 화합물 7, 화합물 13, 화합물 14, 화합물 21, 및 화합물 22에서 화합물 B-1, 화합물 B-2, 화합물 B-33, 및 화합물 B-34 보다 전자 주입이 잘 됨을 알 수 있다.

또한, 화합물 B-1, 화합물 B-2, 화합물 B-33, 및 화합물 B-34는 화합물 6, 화합물 7, 화합물 13, 화합물 14, 화합물 21, 및 화합물 22에 비해 HOMO 에너지 준위가 높다. 이는 화합물 B-1, 화합물 B-2, 화합물 B-33, 및 화합물 B-34에서 화합물 6, 화합물 7, 화합물 13, 화합물 14, 화합물 21, 및 화합물 22에 비해 정공 주입이 잘 됨을 알 수 있다. 이렇게 정공/전자의 흐름이 용이한 재료를 함께 사용할 경우 표 1 및 표 2에서 알 수 있는 바와 같이 시너지 효과가 발생하여 고효율/장수명의 소자를 제작할 수 있다.

본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
【청구의 범위】
【청구항 1】

하기 화학식 I 로 표 현되는 제 1 호스트 화합물, 및
하기 화학식 Π 로 표 현되는 제 2 호스트 화합물
을 포함하는 유 기 광전자 소자용 조 성물 :

상 기 화학식 ... 겐 기, 할로겐 함유기, 시아노기, 히드록실기, 아미노 기, 니트로기, 카르복실기, 페로세 닐기, 또 는 이들 의 조합이 거나,
R 내 지 3, 및 Ra 에서 선 택한 인접 한 둘은 융 합하여 고 리를 형성하고,
Z는 각각 독립적으로 N, 또는 CRa이고,
3개의 Z 중 적어도 둘은 N 이고,
R1 내지 R3, 및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C3 내지 C30 사 이클로알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기, 치환 또는 비치환된 C6 내지 C30 아릴아민기, 치환 또는 비치환된 C1 내지 C30 알콕시기, 치환 또는 비치환된 C2 내지 C30 알콕시 카르보 닐기, 치환 또는 비치환된 C2 내지 C30 알콕시 카르보 닐아미 노기, 치환 또는 비치환된 C7 내지 C30 아 밸록시 카르보 닐아미 노기, 치환 또는 비치환된 C1 내지 C30 슈파로 일아미 노기, 치환 또는 비치환된 C2 내지 C30 알케닐기, 치환 또는 비치환된 C2 내지 C30 알킬닐기, 치환 또는 비치환된 C3 내지 C40 싱릴기, 치환 또는 비치환된 C3 내지 C40 싱릴옥시기, 치환 또는 비치환된 C1 내지 C30 아실기, 치환 또는 비치환된 C1 내지 C20 아실옥시 기, 치환 또는 비치환된 C1 내지 C20 아실아미 노기, 치환 또는 비치환된 C1 내지 C30 슈포닐기, 치환 또는 비치환된 C1 내지 C30 알킬ti 올기, 치환 또는 비치환된 C6 내지 C30 아릴ti 올기, 치환 또는 비치환된 C1 내지 C30 우 레이드기, 함 록겐기, 함 록겐 헬유기, 시아노기, 히 드록실기, 아미노기, 니트로기, 카르복 실기, 페로세 닐기, 또는 이들의 조합이 거나.

R1 내지 R3, 및 Ra 에서 선택된 인접한 둘은 응 합하여 고 리를 형성하고,
L₁ 내지 L₃은 각각 독립적으로, 단일 결합, 치환 또는 비치환된 C₁ 내지 C₃₀ 알킬렌기, 치환 또는 비치환된 C₃ 내지 C₃₀ 사이클로알킬렌기, 치환 또는 비치환된 C₆ 내지 C₃₀ 아필렌기, 치환 또는 비치환된 C₂ 내지 C₃₀ 헤테로아릴렌기, 치환 또는 비치환된 C₆ 내지 C₃₀ 아필렌아미그, 치환 또는 비치환된 C₁ 내지 C₃₀ 알록실렌기, 치환 또는 비치환된 C₁ 내지 C₃₀ 아필록실렌기, 치환 또는 비치환된 C₂ 내지 C₃₀ 알케닐렌기, 치환 또는 비치환된 C₂ 내지 C₃₀ 알키닐렌기, 또는 이들의 조합이요.

상기 L₁ 내지 L₃가 모두 단일 결합일때, 상기 R₁ 내지 R₃는 모두 수소가 아니며,

[화학식 II]

상기 화학식 II에서,

R₄ 내지 R₁³은 각각 독립적으로, 수소, 중수소, 치환 또는 비치환된 C₁ 내지 C₃₀ 알킬기, 치환 또는 비치환된 C₆ 내지 C₃₀ 아필기, 치환 또는 비치환된 C₂ 내지 C₃₀ 헤테로아릴기, 또는 이들의 조합이거나,

R₄ 내지 R₁⁶, 및 R₁¹ 내지 R₁⁷ 중 인접한 둘은 응합하여 고리를 형성하고,
R₁⁸ 및 R₁⁹는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C₁ 내지 C₃₀ 알킬기, 치환 또는 비치환된 C₃ 내지 C₃₀ 사이클로알킬기, 치환 또는 비치환된 C₆ 내지 C₃₀ 아필기, 치환 또는 비치환된 C₂ 내지 C₃₀ 헤테로아릴기, 치환 또는 비치환된 C₆ 내지 C₃₀ 아필아미그, 치환 또는 비치환된 C₁ 내지 C₃₀ 알록시기, 치환 또는 비치환된 C₂ 내지 C₃₀ 알록시 카르보닐기, 치환 또는 비치환된 C₂ 내지 C₃₀ 알록시 카르보닐아미노기, 치환 또는 비치환된 C₇ 내지 C₃₀ 아필록시 카르보닐아미노기, 치환 또는 비치환된 C₁ 내지 C₃₀ 슬파모 일아미 노기, 치환 또는 비치환된 C₂ 내지 C₃₀ 알케닐기, 치환 또는 비치환된 C₂ 내지 C₃₀ 알키닐기, 치환 또는 비치환된 C₃ 내지 C₄₀ 실립기, 치환 또는 비치환된 C₃ 내지 C₄₀ 실립옥시기, 치환 또는 비치환된 C₁ 내지 C₃₀ 아실기, 치환 또는 비치환된 C₁
내지 C20 아실옥 시기, 치환 또는 비치환된 C1 내지 C20 아실아미 노기, 치환 또는 비치환된 C1 내지 C30 술포 닐기, 치환 또는 비치환된 C1 내지 C30 알킬티 올기, 치환 또는 비치환된 C6 내지 C30 아릴티 올기, 치환 또는 비치환된 C1 내지 C30 우레이드기, 할로겐기, 할로겐 함유기, 시아노기, 히드록실기, 아미노기, 니트로기, 카르복실기, 페로세닐기, 또는 이들의 조합이고.

n은 1 내지 4의 정수이다.

【청구항 2】
제1항에서,
상기 제1 호스트 화합물은 하기 화학식 1-1 내지 화학식 1-5 중 어느 하나로 표현되는 유기광전자 소자용 조성물:

[화학식 1-1] [화학식 1-2] [화학식 1-3]

상기 화학식 1-1 내지 화학식 1-5에서,
R1 내지 R3, 및 R4는 각각 독립적으로 수소, 황소소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C3 내지 C30 시메시로알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 해페로고 리기, 치환 또는 비치환된 C6 내지 C30 아릴아민기, 치환 또는 비치환된 C3 내지 C40 실릴기, 치환 또는 비치환된 C1 내지 C30 알킬티 올기, 치환 또는 비치환된 C6 내지 C30 아릴티 올기, 치환 또는 비치환된 C1 내지 C30 우레이드기, 할로겐기, 시아노기, 히드록실기, 아미노기, 니트로기, 카르복실기, 페로세닐기, 또는 이들의 조합이고,
L₁ 내지 L₃은 각각 독립적으로, 단일 결합, 치환 또는 비치환된 C1 내지 C30 알킬렌기, 치환 또는 비치환된 C3 내지 C30 사이클로알킬렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기, 또는 이들의 조합이고,
상기 L₁ 내지 L₃가 모두 단일 결합일 때, 상기 R¹ 내지 R³는 모두 수소가 아니다.
【청구항 3】
제1항에서,
상기 화학식 I의 L₁ 내지 L₃은 각각 독립적으로, 단일 결합이거나 하기 그룹 I에 나열된 치환 또는 비치환된 기에서 선택된 하나인 유기광전자 소자용 조성물:
[그룹 I]

상기 그룹 I에서,
*은 연결 지점이다:
【청구항 4】
제1항에서,
상기 R¹ 내지 R³, 및 R⁶는 각각 독립적으로 수소, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로고리기, 또는 이들의 조합인 유기광전자 소자용 조성물.
【청구항 5】
제4항에서,
상기 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 페닐기, 치환 또는 비치환된 아페닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 트리페닐레닌기, 치환 또는 비치환된 페닐기, 치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 연나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페닐벤조릴기 및 치환 또는 비치환된 인돌페닐기, 치환 또는 비치환된 1H-페닐렌일 전, 치환 또는 비치환된 피렌일 전 (pyrenyl), 치환 또는 비치환된 플루오레닌일 전, 치환 또는 비치환된 트리페닐렌일 전, 또는 이들의 조합이 고, 상기 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로고리 기는, 치환 또는 비치환된 카바졸 일기, 치환 또는 비치환된 벤조튜리 의사 일기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 디벤조튜리 의사 일기, 치환 또는 비치환된 디벤조티오페닐기, 또는 이들의 조합이 유기 광전자 소자용 조성물.

【청구항 6】
제4항에서, 상기 치환 또는 비치환된 C6 내지 C30 아릴기 및 상기 치환 또는 비치환된 C2 내지 C30 헤테로고리 기는, 하기 그룹 II에 나열된 치환 또는 비치환된 기에서 선택되는 것인 유기 광전소자용 조성물.
상기 그룹 II에서,

\(R^b \) 내지 \(R^d \)는 각각 독립적으로, 수소, 증수소, 치환 또는 비치환된 \(C_1 \) 내지 \(C_{30} \) 알킬기, 치환 또는 비치환된 \(C_6 \) 내지 \(C_{30} \) 아릴기, 치환 또는 비치환된 \(C_2 \) 내지 \(C_{30} \) 헤테로아릴기, 또는 이들의 조합이고,

*은 연결지점이다.

【청구항 7】

제1항에서,

상기 제2 호스트 화합물은 하기 화학식 II-1 내지 화학식 II-16 중 어느 하나로 표현되는 유기광전자 소자용 조성물:
화학식 Π-9

화학식 Π-10

화학식 Π-11

화학식 Π-12

화학식 Π-13
상기 화학식 II-1 내지 화학식 II-16에서,

R4 내지 R17은 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테아릴기, 또는 이들의 조합이거나,

R4 내지 R10, 및 R11 내지 R17 중 인접한 두가용합하여 고리를 형성하고,

R18 및 R19는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C30 알킬기, 치환 또는 비치환된 C3 내지 C30 사이클로알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테아릴기, 치환 또는
비치환된 C6 내지 C30 아릴아민기, 치환 또는 비치환된 C1 내지 C30 알킬티올기, 치환 또는 비치환된 C6 내지 C30 아릴티올기, 또는 이들의 조합이다.

【청구항 8】
제1항에서,
R₁₈ 및 R₁₉는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C6 내지 C30 아릴기, 또는 치환 또는 비치환된 C1 내지 C30 헤테로아릴기인 유기광전소자용 조성물.

【청구항 9】
제8항에서,
상기 치환 또는 비치환된 C6 내지 C30 아릴기의 치환 또는 비치환된 페닐기, 치환 또는 비치환된 바이페닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 튀터페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페난트렌일기, 치환 또는 비치환된 1H-페날렌닐기(IH-phenalenyl), 치환 또는 비치환된 피렌일기(pyrenyl), 치환 또는 비치환된 플루오레닐기, 치환 또는 비치환된 트리페닐렌기, 또는 이들의 조합이고,

상기 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 트리아지닐기, 또는 이들의 조합인 유기광전자 소자용 조성물.

【청구항 10】
제1항에서,
상기 거2 호스트 화합물은 하기 화학식 Π-17 내지 화학식 Π-39 중 어느 하나로 표현되는 유기광전자 소자용 조성물:

[화학식 Π-17] [화학식 Π-18]
화학식 Π-27

화학식 Π-28

화학식 Π-29

화학식 Π-30

화학식 Π-31

화학식 Π-32

화학식 Π-33

화학식 Π-34

화학식 Π-35

화학식 Π-36
상기 화합식 II-17 내지 화합식 II-39에서,

\(R_4 \) 내지 \(R_{17} \)은 각각 독립적으로, 수소, 중수소, 치환 또는 비치환된 \(C_1 \) 내지 \(C_{30} \) 알킬기, 치환 또는 비치환된 \(C_6 \) 내지 \(C_{30} \) 아틸기, 치환 또는 비치환된 \(C_2 \) 내지 \(C_{30} \) 헤테아틸기, 또는 이들 조합이 거나,

\(R_4 \) 내지 \(R_{10} \) 및 \(R_{11} \) 내지 \(R_{17} \) 중 인접한 두는 응함하여 고리를 형성하고,

\(\eta \)은 1 내지 4의 정수이다.

【청구항 11】

제 1항에서,

상기 화합식 II의 \(R_4 \) 내지 \(R_{17} \)은 각각 독립적으로, 수소, 중수소, 또는 치환 또는 비치환된 \(C_6 \) 내지 \(C_{30} \) 아틸기인 유기광전자 소자용 조성물.

【청구항 12】

제 1항에서,

상기 제 1 호스트 화합물은 하기 그룹 III에 나열된 화합물에서 선택된 하나인 유기광전자 소자용 조성물.
청구항 13]

제 1항에서, 상기 제 2 호스트 화합물은 하기 그룹 IV에 나열된 화합물에서 선택된 하나인 유기광전자 소자용 조성물:

[그룹 IV]
B-1 B-2 B-3 B-4
【청구항 14】

거1항에서,
상기 제1 호스트 화합물의 LUMO 에너지 레벨은 -1.5 eV 내지 -3.0 eV 인 유기광전소자용 조성물.

【청구항 15】

제1항에서,
상기 제1 호스트 화합물의 HOMO 에너지 레벨은 -5.8 eV 이하인 유기광전소자용 조성물.

【청구항 16】
저항에서,
상기 제1 호스트 화합물과 상기 제2 호스트 화합물은 1:10 내지 10:1의 중량비로 포함되어 있는 유기광전자 소자용 조성물.
【청구항 17】
제1항에서,
인광 도편트를 더 포함하는 유기광전자 소자용 조성물.
【청구항 18】
서로 마주하는 양극과 음극,
상기 양극과 상기 음극 사이에 위치하는 적어도 1층의 유기층을 포함하고,
상기 유기층은 제1항 내지 제17항 중 어느 한 항에 따른 조성물을 포함하는 유기광전자 소자.
【청구항 19】
제18항에서,
상기 유기층은 발광층을 포함하고,
상기 발광층은 상기 조성물을 포함하는 유기광전자 소자.
【청구항 20】
제18항에 따른 유기광전자 소자를 포함하는 표시 장치.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or both national classification and IPC

B. FIELDS SEARCHED

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document(s), with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2013-147205 A1 (IDEMITSU KOSAN CO., LTD.) 03 October 2013 See the entire document, especially example 9 of J16/61 C2</td>
<td>1-20</td>
</tr>
<tr>
<td>X</td>
<td>US 2013-0234119 A1 (YUMIKO MIZUKI et al.) 12 September 2013 See the entire document, especially example 12 of table 2</td>
<td>1-9, 11, 16-20</td>
</tr>
<tr>
<td>A</td>
<td>WO 2014-054452 A1 (IDEMITSU KOSAN CO., LTD.) 10 April 2014 See the entire document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>WO 2014-081206 A1 (ROHM AND HAAS ELECTRONIC MATERIALS KOREA LTD.) 30 May 2014 See the entire document</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search
20 APRIL 2015 (20.04.2015)

Date of mailing of the international search report; 21 APRIL 2015 (21.04.2015)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Seoul, 189 Seocho-ro, Seocho-gu, 302701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer
Telep-hol No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2013-147205 A1</td>
<td>03/10/2013</td>
<td>US 2015-006080 1 A1</td>
</tr>
<tr>
<td>US 2013-0234119 A1</td>
<td>12/09/2013</td>
<td>CN 103959503 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2790239 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-2014-0108637 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 20132612 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201332970 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014-0001446 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014-0151647 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013-084888 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013-145923 A1</td>
</tr>
<tr>
<td>WO 2014-081206 A1</td>
<td>30/05/2014</td>
<td>KR 10-1468402 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-2014-0006597 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201432023 A</td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야 (국제특허분류(IPC))
C09K 2/06(2006.01); C07D 251/12(2006.01); HOIL 5150(2006.01)

B. 조사된 분야
조사항 최소문헌 (국제특허분류(IPC))
C09K 11/06; C07D 403/14 ;[usion] 33/12 ;HO1L 5100 ; HO1L 51/50 ;C07D 401/14 ;C07D 251/12
조사항 기술 분야에 속하는 최소문헌 이외의 문헌
한국특허 실용신안 공고 및 한국 공개실용신안 공보 : 조사항 최소문헌 외의 기재된 IPC
일본특허 실용신안 공고 및 일본 공개실용신안 공보 : 조사항 최소문헌 외의 기재된 IPC

국제특허에 이용된 전산 데이터베이스 (데이터베이스의 명칭 및 검색어(해당하는 경우))
eKOMPASS(특허청 내부 검색시스템) & 커버티 : OLEDB, electroluminescent , host , triazine , pyridine .

C. 관련문헌

<table>
<thead>
<tr>
<th>카테고리</th>
<th>관련문헌명 및 관련 구절(해당하는 경우)</th>
<th>관련청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Al (IDEMITSU KOSAN CO., LTD.) 2013. 10. 03</td>
<td>1-20</td>
</tr>
<tr>
<td>X</td>
<td>US 2013-0234119 Al (YUMIKO MIZUKI 외 4명) 2013. 09. 12</td>
<td>1-9, 11, 16-20</td>
</tr>
<tr>
<td>A</td>
<td>Al (IDEMITSU KOSAN CO., LTD.) 2014. 04. 10</td>
<td>10, 12-15</td>
</tr>
<tr>
<td>A</td>
<td>Al (ROHIM AND HAAS ELECTRONIC MATERIALS KOREA LTD.) 2014. 05. 30</td>
<td>1-20</td>
</tr>
</tbody>
</table>

- 추가 문헌이 c(계속)에 기재되어 있습니다.

PCT/ISA/210 (두 번째 용지) (2015 년 1월)
국제조사보고서
대웅특허에 관한 정보

<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대웅특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2013--147205 Al</td>
<td>2013/10/03</td>
<td>US 2015-0060801 Al</td>
<td>2015/03/05</td>
</tr>
<tr>
<td>us 2013--0234119 Al</td>
<td>2013/09/12</td>
<td>CN 103959503 A</td>
<td>2014/07/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2790239 Al</td>
<td>2014/10/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201326121 A</td>
<td>2013/07/01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201332970 A</td>
<td>2013/08/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014-0001446 Al</td>
<td>2014/01/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014-0151647 Al</td>
<td>2014/06/05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013-084881 Al</td>
<td>2013/06/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013-084885 Al</td>
<td>2013/06/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013-145923 Al</td>
<td>2013/10/03</td>
</tr>
<tr>
<td>WO 2014--081206 Al</td>
<td>2014/05/30</td>
<td>KR 10-1468402 BI</td>
<td>2014/12/03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-2014-0065197 A</td>
<td>2014/05/29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201432023 A</td>
<td>2014/08/16</td>
</tr>
</tbody>
</table>