HETEROCYCLOXY-, -THIOXY- AND -AMINOBENZAZOLE DERIVATIVES AS 5-HYDROXYTRYPTAMINE-6 LIGANDS

The present invention provides a compound of formula (I) and the use thereof for the therapeutic treatment of disorders relating to or affected by the 5-HT6 receptor.

\[\text{Formula (I)} \]

Abstract: The present invention provides a compound of formula (I) and the use thereof for the therapeutic treatment of disorders relating to or affected by the 5-HT6 receptor.
HETEROCYCLOXY-, -THIOXY- AND -AMINOBENZAZOLE
DERIVATIVES AS 5-HYDROXYTRYPTAMINE-6 LIGANDS

This invention relates to heterocyclyloxy-, -thioxy-
and -aminobenzazole derivatives as 5-hydroxytryptamine-6
ligands, to processes for preparing them, to methods of
using them and to pharmaceutical compositions containing
them.

BACKGROUND OF THE INVENTION

Various central nervous system disorders such as
anxiety, depression, motor disorders, etc., are believed
to involve a disturbance of the neurotransmitter 5-
hydroxytryptamine (5-HT) or serotonin. Serotonin is
localized in the central and peripheral nervous systems
and is known to affect many types of conditions including
psychiatric disorders, motor activity, feeding behavior,
sexual activity, and neuroendocrine regulation among
others. The effects of serotonin are regulated by the
various 5-HT receptor subtypes. Known 5-HT receptors
include the 5-HT1 family (e.g. 5-HT1A), the 5-HT2 family
(e.g. 5-HT2A), 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7
subtypes.

The recently identified human 5-hydroxytryptamine-6
(5-HT6) receptor subtype has been cloned, and the
extensive distribution of its mRNA has been reported.
Highest levels of 5-HT6 receptor mRNA have been observed
in the olfactory tubercle, the striatum, nucleus
accumbens, dentate gyrus and CA1, CA2 and CA3 regions of
the hippocampus. Lower levels of 5-HT6 receptor mRNA
were seen in the granular layer of the cerebellum,
several diencephalic nuclei, amygdala and in the cortex. Northern blots have revealed that 5-HT6 receptor mRNA appears to be exclusively present in the brain, with little evidence for its presence in peripheral tissues.

The high affinity of a number of antipsychotic agents for the 5-HT6 receptor, in addition to its mRNA localization in striatum, olfactory tubercle and nucleus accumbens suggests that some of the clinical actions of these compounds may be mediated through this receptor.

Therefore, 5-HT6 receptor ligands are believed to be of potential use in the treatment of certain CNS disorders such as anxiety, depression, epilepsy, obsessive compulsive disorders, attention deficit disorder, migraine, cognitive memory enhancement (e.g. for the treatment of Alzheimer’s disease), sleep disorders, feeding disorders (e.g. anorexia and bulimia), panic attacks, withdrawal from drug abuse (e.g. cocaine, ethanol, nicotine and benzodiazepines), schizophrenia, or the like; or in the treatment of certain gastrointestinal disorders such as irritable bowel syndrome.

Therefore, it is an object of this invention to provide compounds which are useful as therapeutic agents in the treatment of a variety of central nervous system disorders related to or affected by the 5-HT6 receptor.

It is another object of this invention to provide therapeutic methods and pharmaceutical compositions useful for the treatment of central nervous system disorders related to or affected by the 5-HT6 receptor.

It is a feature of this invention that the compounds provided may also be used to further study and elucidate the 5-HT6 receptor.

These and other objects and features of the invention will become more apparent by the detailed description set forth hereinbelow.
SUMMARY OF THE INVENTION

The present invention provides compounds of formula

\[\text{(I)} \]

wherein

- \(W \) is SO₂, CO, CONH, CSNH or \((\text{CH}_2)_n\);
- \(X \) is O, SOₙ or NR₁₁;
- \(Y \) is CR₁₃ or N;
- \(Z \) is CR₁₃ or N with the proviso that when \(Y \) is N then \(Z \) must be CR₁₃;
- \(m \) and \(x \) are each independently 0 or an integer of 1, 2 or 3;

- \(Q \) is \[\text{or } \]

- \(R_1 \) is halogen, CN, OR₁₄, CO₂R₁₅, CONR₁₆R₁₇, CNR₁₈NR₁₉R₂₀, SO₂NR₂₁R₂₂, SOₙR₂₃, or a C₁-C₆alkyl, C₂-C₆alkenyl, C₃-C₆alkynyl, C₅-C₆cycloalkyl, cycloheteroalkyl, phenyl or heteroaryl group each optionally substituted;
- \(R_2 \) is H, CNR₂₄NR₂₅R₂₆, or a C₁-C₆alkyl, C₂-C₆alkenyl, C₃-C₆alkynyl, C₅-C₆cycloalkyl, cycloheteroalkyl, aryl or heteroaryl group each optionally substituted;
- \(\text{R}_3, \text{R}_4, \text{R}_5, \text{R}_6, \text{R}_7, \text{R}_8, \text{R}_9, \text{R}_{2₈} \) and \(\text{R}_{₂₉} \) are each independently H or an optionally substituted C₁-C₆alkyl group;
R₁₀ is an optionally substituted C₁-C₄ alkyl, aryl or heteroaryl group;

n and p are each independently 0 or an integer of 1 or 2;

R₁₁ is H or a C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl or cycloheteroalkyl group each optionally substituted;

R₁₂ and R₁₃ are each independently H, halogen or a C₁-C₆ alkyl, aryl, heteroaryl or C₁-C₆ alkoxy group each optionally substituted;

R₁₄ is H, COR₇, or a C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, aryl or heteroaryl group each optionally substituted;

R₁₅ and R₁₆ are each independently H or a C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, cycloheteroalkyl, aryl or heteroaryl group each optionally substituted;

R₁₇, R₁₈, R₁₉, R₂₀, R₂₁ and R₂₆ are each independently H or an optionally substituted C₁-C₆ alkyl group;

R₁₁ and R₂₂ are each independently H or a C₁-C₆ alkyl, aryl or heteroaryl group each optionally substituted; and

R₃ is an optionally substituted C₁-C₆ alkyl, aryl, or heteroaryl group; or

the stereoisomers thereof or the pharmaceutically acceptable salts thereof.

The present invention also provides methods and compositions useful for the therapeutic treatment of central nervous system disorders related to or affected by the 5-HT6 receptor.
DETAILED DESCRIPTION OF THE INVENTION

The 5-hydroxytryptamine-6 (5-HT6) receptor is one of the most recent receptors to be identified by molecular cloning. Its ability to bind a wide range of therapeutic compounds used in psychiatry, coupled with its intriguing distribution in the brain has stimulated significant interest in new compounds which are capable of interacting with or affecting said receptor. At present, there are no known fully selective agonists. Significant efforts are being made to understand the possible role of the 5-HT6 receptor in psychiatry, cognitive dysfunction, motor function and control, memory, mood and the like. To that end, compounds which demonstrate a binding affinity for the 5-HT6 receptor are earnestly sought both as an aid in the study of the 5-HT6 receptor and as potential therapeutic agents in the treatment of central nervous system disorders.

Surprisingly, it has now been found that heterocyclyloxy-, -thioxy- or -aminobenzazole derivatives of formula I demonstrate 5-HT6 affinity. Advantageously, said benzazole derivatives may be used as effective therapeutic agents for the treatment of central nervous system (CNS) disorders associated with or affected by the 5-HT6 receptor. Accordingly, the present invention provides heterocyclyloxy-, -thioxy- or -aminobenzazole derivatives of formula I

![Diagram](image)

wherein
W is SO₂, CO, CONH, CSNH or \((\text{CH}_2)_n\);
X is O, SO₃ or NR₆;
Y is CR₃ or N;
Z is CR₃ or N with the proviso that when Y is N then
Z must be CR₃;
m and x are each independently 0 or an integer of 1, 2 or 3;

Q is

R₁ is halogen, CN, OR₄, CO₂R₆, CONR₄₋₇, CNR₄₋₇, C₆H₅, SO₂NR₂₋₇, SO₃R₂₋₇, or a C₁₋₃ alkylo, C₂₋₃ alkenyl, C₂₋₃ alkynyl, C₃₋₅ cycloalkyl, cycloheteroalkyl, phenyl or heteroaryl group each optionally substituted;
R₂ is H, CNR₄₋₇, NR₂₋₇ or a C₁₋₃ alkylo, C₂₋₃ alkenyl, C₂₋₃ alkynyl, C₃₋₅ cycloalkyl, cycloheteroalkyl, aryl or heteroaryl group each optionally substituted;
R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁ are each independently H or an optionally substituted C₁₋₃ alkylo group;
R₁₂ is an optionally substituted C₁₋₃ alkylo, aryl or heteroaryl group;
n and p are each independently 0 or an integer of 1 or 2;
R₁₃ is H or a C₁₋₃ alkylo, C₂₋₃ alkenyl, C₂₋₃ alkynyl, C₃₋₅ cycloalkyl, cycloheteroalkyl, aryl or heteroaryl group each optionally substituted;
R₁₄ and R₁₅ are each independently H, halogen or a C₁₋₃ alkylo, aryl, heteroaryl or C₁₋₃ alkoxy group each optionally substituted;
R_{14} is H, COR$_{17}$, or a C$_{1-4}$alkyl, C$_{2-4}$alkenyl, C$_{2-}$
C$_{4}$alkynyl, aryl or heteroaryl group each
optionally substituted;
R_{15} and R_{17} are each independently H or a C$_{1-4}$alkyl,
C$_{2-4}$alkenyl, C$_{2-4}$alkynyl, C$_{2-4}$cycloalkyl,
cycloheteroalkyl, aryl or heteroaryl group each
optionally substituted;
R_{16}, R_{17}, R_{18}, R_{19}, R_{20}, R_{24}, R_{25} and R_{26} are each
independently H or an optionally substituted C$_{1-}$
C$_{4}$alkyl group;
R_{21} and R_{22} are each independently H or a C$_{1-4}$alkyl,
aryl or heteroaryl group each optionally
substituted; and
R_{33} is an optionally substituted C$_{1-4}$alkyl, aryl, or
heteroaryl group; or
the stereoisomers thereof or the pharmaceutically
acceptable salts thereof.

As used in the specification and claims, the term
halogen designates Br, Cl, I or F and the term
cycloheteroalkyl designates a C$_{3-6}$cycloalkyl ring system
containing 1, 2 or 3 heteroatoms, which may be the same
or different, selected from N, O or S and optionally
containing one double bond. Exemplary of the
cycloheteroalkyl ring systems included in the term as
designated herein are the following rings wherein X$_1$ is
NR, O or S and R is H or an optional substituent as
defined hereinbelow.
Similarly, as used in the specification and claims, the term heteroaryl designates a 5- to 10-membered aromatic ring system containing 1, 2 or 3 heteroatoms, which may be the same or different, selected from N, O or S. Such heteroaryl ring systems include pyrrolyl, azolyl, oxazolyl, thiazolyl, imidazolyl, furyl, thielyl, quinolinyl, isoquinolinyl, indoliny1, benzothienyl, benzofurany1, benzisoxazolyl or the like. The term haloalkyl as used herein designates a C₆H₄₃₂₅₁ group having from one to 2n+1 halogen atoms which may be the same or different and the term haloalkoxy as used herein designates an OC₅H₄₃₂₅₁ group having from one to 2n+1 halogen atoms which may be the same or different.

In the specification and claims, when the terms C₁-C₄alkyl, C₅-C₈alkenyl, C₇-C₈alkynyl, C₇-C₈cycloalkyl, cycloheteroalkyl, phenyl or heteroaryl are designated as being optionally substituted, the substituent groups which are optionally present may be one or more of those customarily employed in the development of pharmaceutical compounds or the modification of such compounds to influence their structure/activity, persistence, absorption, stability or other beneficial property. Specific examples of such substituents include halogen atoms, nitro, cyano, thiocyanato, cyanato, hydroxyl, alkyl, haloalkyl, alkoxy, haloalkoxy, amino, alkylamino, dialkylamino, formyl, alkoxy carbonyl, carboxyl, alkanoy1, alkylthio, alkylthionyl, alkylsulphonyl, carboalkoxy, alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heterocycly1 (e.g. heteroaryl and cycloheteroalkyl) or cycloalkyl groups, preferably halogen atoms or lower alkyl groups. Typically, 0-3 substituents may be present. When any of the foregoing substituents represents or contains an alkyl substituent group, this may be linear or branched and may contain up to 12, preferably up to 6, more preferably up to 4 carbon atoms.
Pharmaceutically acceptable salts may be any acid addition salt formed by a compound of formula I and a pharmaceutically acceptable acid such as phosphoric, sulfuric, hydrochloric, hydrobromic, citric, maleic, malonic, mandelic, succinic, fumaric, acetic, lactic, nitric, sulfonic, p-toluene sulfonic, methane sulfonic acid or the like.

Compounds of the invention may exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, or selectively prepare said stereoisomers. Accordingly, the present invention comprises compounds of Formula I, the stereoisomers thereof and the pharmaceutically acceptable salts thereof. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active or enantiomerically pure form.

Preferred compounds of the invention are those compounds of formula I wherein W is SO₂ or CO. Also preferred are those compounds of formula I wherein X is O. Another group of preferred compounds of the invention are those compounds of formula I wherein Y is CR₄₃. Further preferred compounds of the invention are those compounds of formula I wherein R₅ is an aryl or heteroaryl group each optionally substituted. Preferably Q is an optionally substituted 3-pyrrolidinyl group. Z may be for example N.

Examples of R₅ are aryl e.g. phenyl or naphthyl, or heteroaryl e.g., pyrazolyl (such as pyrazol-4-yl) thienyl (such as thien-2-yl) or quinolyl (such as quinolin-8-yl);
said aryl and heteroaryl groups being unsubstituted or optionally substituted by one or more (e.g., 1 to 3) substituents the same or different as described herein. Such substituents include halo, nitro, cyano, thiocyanato, cyanato, hydroxyl, alkyl of 1-6 carbon atoms, halo(C$_1$-C$_5$)alkyl, (C$_1$-C$_4$)alkoxy, halo(C$_1$-C$_4$)alkoxy, amino, (C$_1$-C$_4$)alkylamino, di-(C$_1$-C$_4$)alkylamino, formyl, (C$_1$-C_4)alkoxy)carbonyl, carboxyl, (C$_1$-C_4)alkanoyl, (C$_1$-C_4)alkylthio, (C$_1$-C_4)alkylsulphinyl, (C$_1$-C_4)alkyl-sulphonyl, carbamoyl, (C$_1$-C_4)alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heteroaryl and cycloheteroalkyl or (C$_1$-C_4)cycloalkyl groups.

More preferred compounds of the invention are those compounds of formula I wherein W is SO$_2$; X is O; and R$_s$ is an aryl or heteroaryl group each optionally substituted. Another group of more preferred compounds of the invention are those compounds of formula I wherein W is SO$_2$; X is O; Y is CR$_3$; and Q is a 3-pyrrolidinyl group.

Among the preferred compounds of the invention are:

1-(phenylsulfonfonyl)-4-(3-pyrrolidinloxy)-1H-indole;
4-(3-pyrrolidinloxy)1-(thien-2-y1sulfonfonyl)-1H-indole;
4-{[4-(3-pyrrolidinloxy)-1H-indol-1-y1]sulfonfonyl}aniline;
1-(1-naphthylsulfonfonyl)-4-(3-pyrrolidinloxy)-1H-indole;
1-[(5-chloro-1,3-dimethyl-1H-pyrazol-4-y1)sulfonfonyl]4-(3-pyrrolidinloxy)-1H-indole;
1-(phenylsulfonfonyl)-4-(3-pyrrolidinloxy)-1H-indazole;
1-(1-naphthylsulfonfonyl)-4-(3-pyrrolidinloxy)-1H-indazole;
1-[(2-chlorophenyl)sulfonfonyl]-4-(3-pyrrolidinloxy)-1H-indazole;
1-[(2-fluorophenyl)sulfonfonyl]-4-(3-pyrrolidinloxy)-1H-indazole;
1-[3,4-dimethoxyphenyl)sulfonfonyl]-4-(3-pyrrolidinloxy)-1H-indazole;
1-[(5-chlorothien-2-y1)sulfonfonyl]4-(3-pyrrolidinloxy)-1H-indazole;
N-(2-chloro-4-([4-(3-pyrrolidinylxyloxy)-1H-indazol-1-yl]sulfonyl)phenyl)acetamide;
N-[(4-(3-pyrrolidinylxyloxy)-1H-indazol-1-yl)sulfonyl]phenylacetamide;
8-[(4-(3-pyrrolidinylxyloxy)-1H-indazol-1-yl)sulfonyl]quinoline;
1-(1-naphthylsulfonyl)-4-(piperidin-4-ylxyloxy)-1H-indazole;
1-(1-naphthylsulfonyl)-4-(piperidin-3-ylxyloxy)-1H-indazole;
1-[(5-chlorothien-2-yl)sulfonyl]-4-(piperidin-4-ylxyloxy)-1H-indazole;
1-[(5-chlorothien-2-yl)sulfonyl]-4-(piperidin-3-ylxyloxy)-1H-indazole;
1-(phenylsulfonyl)-4-(piperidin-3-ylxyloxy)-1H-indole;
4-[(4-(piperidin-3-ylxyloxy)-1H-indol-1-yl)sulfonyl]aniline;
1-(1-naphthylsulfonyl)-4-(piperidin-3-ylxyloxy)-1H-indole;
1-(phenylsulfonyl)-4-(piperidin-4-ylxyloxy)-1H-indole;
4-[(4-(piperidin-4-ylxyloxy)-1H-indol-1-yl)sulfonyl]aniline;
1-(1-naphthylsulfonyl)-4-(piperidin-4-ylxyloxy)-1H-indole;
1-(phenylsulfonyl)-5-(pyrrolidin-3-ylxyloxy)-1H-indole;
1-(phenylsulfonyl)-6-(pyrrolidin-3-ylxyloxy)-1H-indole;
1-(phenylsulfonyl)-6-(pyrrolidin-3-ylxyloxy)-1H-indazole;
1-(phenylsulfonyl)-5-(pyrrolidin-3-ylxyloxy)-1H-indazole; or
the stereoisomers thereof or pharmaceutically acceptable
salts thereof.

This invention also provides a process for the
preparation of a compound of formula I which comprises
one of the following:

a) reacting a compound of formula (B)

\[
\begin{array}{c}
\text{X} \\
\text{Q} \\
\text{Z} \\
\text{R}_1 \text{m} \\
\text{H}
\end{array}
\]

\(\text{(B)} \)
wherein \(m, Q, X, Y, Z \) and \(R_i \) are as defined herein, with an appropriate sulphonylating, acylating, carbamoylating, thiocarbamoylating, arylation or alkylating agent containing the group:

\[
R_{10} - W -
\]

where \(R_{10} \) is as defined above and \(W \) is \(\text{SO}_2, \text{CO}, \text{CONH}, \text{CSNH} \) or \((\text{CH}_2)_n \); said reactants protected on reactive sites and/or on reactive substituent groups as required, and removing any protecting groups, to give a corresponding compound of formula (I);

or b) removing a protecting group from a compound of formula (C):

\[
\text{(C)}
\]

wherein \(m, W, X, Y, Z, R_1 \) and \(R_{10} \) are as defined herein and

\[
\text{Q}_1 \text{is }
\]

where \(P \) is a protecting group to give a corresponding compound of formula (I) wherein \(R_2 \) is \(H \);

or c) alkylating a compound of formula (I) as defined herein wherein \(R_1 \) is hydrogen with an alkylating agent of formula \(R_2 - L \) wherein \(L \) is a leaving group, such as
halogen, and \(R_3 \) is as defined herein excepting hydrogen to give a corresponding compound of formula (I); or
d) converting a compound of formula (I) having a reactive substituent group to a different compound of formula I; or
e) converting a basic compound of formula (I) to an acid addition salt or vice versa.

Compounds of the invention may be conveniently prepared using conventional synthetic methods and, if required, standard separation and isolation techniques. For example, compounds of formula I wherein \(W = \text{SO}_2; \) \(X = \text{O}; \) \(Y = \text{CR}_{13}; \) \(Z = \text{CR}_{13}; \) \(Q \) is an optionally substituted 3-pyrrolidinyl group; and \(R_2 \) is \(H \) (Ia) may be prepared by reacting an hydroxyindole of formula II with a protected 3-hydroxypyrroolidine of formula III in the presence of triphenylphosphine and diethyl azodicarboxylate to give the pyrrolidinyloxyindole of formula IV. Sulfonation followed by deprotection gives the desired compound of formula Ia. The reaction is shown in flow diagram I wherein \(P \) is a protecting group.
Commonly used protecting groups include t-butyl-carboxylate, benzyl, acetyl, benzyloxycarbonyl, or any conventional group known to protect a basic nitrogen in standard synthetic procedures.

Compounds of formula I wherein W is SO₂; X is O; Y is CH; Z is N; and Q is optionally substituted 3-pyrrolidinyl group (Ib) may be prepared by reacting a nitromethylphenol of formula VI with a protected 3-hydroxypyrrolidine of formula III in the presence of
triphenylphosphine and diethyl azodicarboxylate to give the corresponding pyrrolidinyl oxysterbenzene of formula VII, reducing the nitro group, for example via catalytic hydrogenation, to give the amine of formula VIII,

reacting the formula VIII amine with isoamyl nitrite in the presence of potassium acetate and acetic anhydride to give the pyrrolidinyl-oxyindazole of formula IX. Sulfonylation and deprotection of said formula IX compound gives the desired compound of formula Ib.

Subsequent reaction of the formula Ib compound with a suitable alkylating reagent such as an alkyl or aryl halide, R₂-Hal, gives those compounds of formula Ib' wherein R₂ is other than H. The reaction sequence is shown in flow diagram II wherein P is a protecting group and Hal is Cl, Br or I.
Flow Diagram II

(VI) + (III) → (VII) → [H] → (IX) → (VIII) → 1a) base
 1b) R_{10}SO_2Cl
 2) deprotection → (Ib) → (Ib')
Similarly, compounds of formula I wherein \(X \) is \(S \) and \(W \) is \(SO_2 \) may be prepared by employing the appropriate indolylthiol or thiophenol and utilizing the reactions shown in flow diagrams I and II, respectively. Oxidation of the thus-formed heterocyclylthiobenzazole derivatives of formula I gives those compounds of formula I wherein \(X \) is \(SO_3 \) and \(n \) is 1 or 2.

Compounds of formula I wherein \(W \) is \(SO_2 \); \(X \) is \(NH \); \(Y \) is \(CR_{13} \); \(Z \) is \(CR_{14} \); \(Q \) is an optionally substituted 3-pyrrolidinyl group; and \(R_1 \) and \(R_2 \) are \(H(1c) \) may be prepared by hydrogenating a nitroindole of formula \(X \) to give the corresponding aminooindole of formula \(XI \) and reacting the formula \(XI \) aminoindole with a protected 3-pyrrolidinone of formula \(XII \) to give the protected pyrrolidinylaminooindole of formula \(XIII \). Subsequent sulfonylation and deprotection afford the desired compound of formula \(1c \). The reaction sequence is shown in flow diagram III.
Flow Diagram III

(X) \[\text{NO}_2 \ (R_1)^m \] \[\text{R}_{12} \text{R}_{13} \]

$[\text{H}]$

(XI) \[\text{NH}_2 \ (R_1)^m \] \[\text{R}_{12} \text{R}_{13} \]

\[\text{R}_6 \]

\[\text{R}_7 \text{R}_8 \text{R}_9 \]

\[\text{N} \text{P} \]

\[\text{O} \]

\[\text{R}_3 \text{R}_4 \]

(XII)

\[\text{NH} \]

\[\text{R}_4 \text{R}_5 \text{R}_7 \text{R}_8 \text{R}_9 \]

\[\text{SO}_2 \text{R}_{10} \]

(XC)

\[\text{R}_6 \]

\[\text{R}_7 \text{R}_8 \text{R}_9 \]

\[\text{N} \text{P} \]

\[\text{O} \]

\[\text{R}_3 \text{R}_4 \]

(XIII)

1a) base

1b) $R_{10}SO_2Cl$

2) deprotection

Compounds of formula I wherein W is SO_2; X is NR_{11}; Y is CH; Z is N; and Q is an optionally substituted 3-pyrrolidinyl group (Id) may be prepared by reacting the nitromethylphenol compound of formula VI with trifluoromethanesulfonic anhydride in the presence of a base to give the compound of formula XIV, coupling the formula XIV compound with a protected 3-aminopyrrolidine compound of formula XV in the presence of a palladium catalyst to give the pyrrolidinylaminobenzene of formula XVI, reducing the nitro group to give the amine of formula XVII and reacting the formula XVII amine with isoamyl nitrite in the presence of potassium acetate and acetic anhydride to give the pyrrolidinylaminooindazole of formula XVIII. Subsequent sulfonylation and deprotection
as described hereinabove give the desired compound of formula Id. The reaction sequence is shown in flow diagram IV wherein Tf designates a trifluoromethanesulfonyl group.

Flow Diagram IV

(VI) \[\rightarrow \] (XIV) \[\text{(CF}_3\text{SO}_2\text{)}_2\text{O} \] \[\text{Pd} \rightarrow \] (XV) \[\rightarrow \] (XVII) \[\rightarrow \] (XVI) \[\text{[H]} \rightarrow \] (XVIII) \[\text{1a) base} \rightarrow \text{1b) } R_{10}\text{SO}_2\text{Cl} \rightarrow \text{2) deprotection} \rightarrow \] (Id)
Corresponding compounds of formula I wherein Q is an optionally substituted 3- or 4-piperidinyl group may be prepared by utilizing the reaction sequences described hereinabove and illustrated in flow diagrams I, II, III and IV and by employing the appropriate protected piperidinylhydroxy, piperidinone or piperidinylamine, respectively, in place of the corresponding pyrroloidinyl starting materials of formulas III, XII or XV.

Compounds of formula I wherein W is CO may be prepared by reacting the benzazole precursor, for example a compound of formula IV, IX, XIII or XVIII, with the appropriate isocyanate, carbonyl halide or carbamoyl halide in the presence of a base. Similarly, compounds of formula I wherein W is (CH₂)ₓ and x is an integer of 1, 2 or 3 may be prepared by reacting the appropriately substituted alkylhalide with a compound of formula IV, IX, XIII or XVIII in the presence of a base. Compounds of formula I wherein W is (CH₂)ₓ and x is 0 may be prepared via a palladium-catalyzed N-arylation such as that described by D. W. Old et al., Organic Letters, 2000 (2), pp 1403-1406. Using these and other conventional methods, compounds of formula I may be prepared from readily available starting materials.

Advantageously, the inventive compound of formula I may be utilized in the treatment of central nervous system disorders relating to or affected by the 5-HT6 receptor such as motor, mood, psychiatric, cognitive, neurodegenerative, or the like disorders, for example, Alzheimer’s disease, Parkinson’s disease, attention deficit disorder, anxiety, epilepsy, depression, obsessive compulsive disorder, migraine, sleep disorders, feeding disorders (such as anorexia or bulimia), schizophrenia, memory loss, disorders associated with withdrawal from drug abuse, or the like or certain
gastrointestinal disorders such as irritable bowel syndrome. Accordingly, the present invention provides a method for the treatment of a disorder of the central nervous system (CNS) related to or affected by the 5-HT6 receptor in a patient in need thereof which comprises providing said patient a therapeutically effective amount of a compound of formula I as described hereinabove. The compounds may be provided by oral or parenteral administration or in any common manner known to be an effective administration of a therapeutic agent to a patient in need thereof.

"Providing" as used herein with respect to providing a compound or substance covered by the invention, means either directly administering such a compound or substance, or administering a prodrug, derivative or analog which forms an equivalent amount of the compound or substance within the body.

The therapeutically effective amount provided in the treatment of a specific CNS disorder may vary according to the specific condition(s) being treated, the size, age and response pattern of the patient, the severity of the disorder, the judgment of the attending physician and the like. In general, effective amounts for daily oral administration may be about 0.01 to 1,000 mg/kg, preferably about 0.5 to 500 mg/kg and effective amounts for parenteral administration may be about 0.1 to 100 mg/kg, preferably about 0.5 to 50 mg/kg.

In actual practice, the compounds of the invention are provided by administering the compound or a precursor thereof in a solid or liquid form, either neat or in combination with one or more conventional pharmaceutical carriers or excipients. Accordingly, the present invention provides a pharmaceutical composition which comprises a pharmaceutically acceptable carrier and an
effective amount of a compound of formula I as described hereinabove.

Solid carriers suitable for use in the composition of the invention include one or more substances which may also act as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aides, binders, tablet-disintegrating agents or encapsulating materials. In powders, the carrier may be a finely divided solid which is in admixture with a finely divided compound of formula I. In tablets, the formula I compound may be mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. Said powders and tablets may contain up to 99% by weight of the formula I compound. Solid carriers suitable for use in the composition of the invention include calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.

Any pharmaceutically acceptable liquid carrier suitable for preparing solutions, suspensions, emulsions, syrups and elixirs may be employed in the composition of the invention. Compounds of formula I may be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, or a pharmaceutically acceptable oil or fat, or a mixture thereof. Said liquid composition may contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, coloring agents, viscosity regulators, stabilizers, osmo-regulators, or the like. Examples of liquid carriers suitable for oral and parenteral administration include water (particularly containing additives as above, e.g.,
cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols, e.g., glycols) or their derivatives, or oils (e.g., fractionated coconut oil and arachis oil). For parenteral administration the carrier may also be an oily ester such as ethyl oleate or isopropyl myristate.

Compositions of the invention which are sterile solutions or suspensions are suitable for intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions may also be administered intravenously. Inventive compositions suitable for oral administration may be in either liquid or solid composition form.

For a more clear understanding, and in order to illustrate the invention more clearly, specific examples thereof are set forth hereinbelow. The following examples are merely illustrative and are not to be understood as limiting the scope and underlying principles of the invention in any way.

Unless otherwise stated, all parts are parts by weight. The terms HPLC and NMR designate high performance liquid chromatography and nuclear magnetic resonance, respectively. The terms THF and EtOAc designate tetrahydrofuran and ethyl acetate, respectively.
EXAMPLE 1

Preparation of t-Butyl 3-Hydroxy-1-pyrrolidine-carboxylate

\[
\text{HO} \quad \text{NH} + O\text{(CO}_2\text{-Bu)}_2 \xrightarrow{\text{K}_2\text{CO}_3} \text{HO} \quad \text{N-CO}_2\text{-Bu}
\]

A stirred solution of 3-pyrrolidinol (5.0 g, 57 mmol) and potassium carbonate (8.23 g, 60 mmol) in a mixture of THF/H\text{2}O is treated with a solution of di-t-butyl dicarbonate (12.5 g, 57 mmol) in THF over a 15 minute period at room temperature, stirred for 20 h at room temperature and diluted with EtOAc. The organic phase is separated, washed with H\text{2}O, dried over Na\text{2}SO\text{4} and concentrated in vacuo. The resultant residue is dissolved in EtOAc/hexane and filtered through a thin layer of silica gel. The silica gel layer is washed with EtOAc. The combined filtrates are concentrated in vacuo to give the title product as a white solid, 8.5 g, mp 52-54°C, identified by NMR and mass spectral analyses.

EXAMPLE 2

Preparation of t-Butyl 3-(1H-Indol-4-yloxy)-1-pyrrolidinecarboxylate

\[
\text{OH} \quad \text{H} \quad \text{H} + \text{HO} \quad \text{N-CO}_2\text{-Bu} \xrightarrow{} \text{O} \quad \text{N-CO}_2\text{-t-Bu}
\]

A solution of 4-hydroxyindole (2.66 g, 20.0 mmol), t-butyl 3-hydroxy-1-pyrrolidinecarboxylate (7.5 g, 40.0
mmol) and triphenylphosphine (10.5 g 40.0 mmol) in THF is treated with diethyl azodicarboxylate (DEAC) (6.3 ml, 40.0 mmol) under nitrogen at room temperature, stirred for 2 h at room temperature and concentrated in vacuo. The resultant residue is stirred under ether, cooled and filtered. The filtercake is washed with cold ether. The filtrates are combined and concentrated in vacuo. The residue is purified by flash chromatography (silica gel, EtOAc/hexane: 2/80) to give the title compound as a white solid, 3.98 g, mp 164-165°C, identified by NMR and mass spectral analyses.

EXAMPLE 3

Preparation of 1-(Phenylsulfonyl)-4-(3-pyrrolidinyloxy)-1H-indole Hydrochloride

![Chemical Reaction Diagram]

A stirred solution of t-butyl 3-(1H-indol-4-yloxy)-1-pyrrolidinecarboxylate (0.605 g 2.0 mmol) in THF is treated with sodium hydride (0.12 g, 60% in mineral oil, 3.0 mmol) under nitrogen at room temperature. After 30 minutes, benzenesulfonyl chloride (0.38 ml, 3.0 mmol) is added and the reaction mixture is stirred at room temperature for 48 h, quenched with ice-water and diluted with EtOAc. The organic phase is separated, washed sequentially with H₂O and brine, dried over MgSO₄, and concentrated in vacuo. The resultant residue is purified by flash chromatography (silica gel, EtOAc/hexane 2/8 to give the protected pyrrolidinyloxy intermediate as an
off-white foam, 0.50 g, mp 48-50°C, identified by NMR and mass spectral analyses.

A solution of thus-obtained t-butyl 3-{(1-(phenylsulfonyl)-1H-indol-4-yl)oxy}-1-
pyrrolidinecarboxylate (0.41 g, 0.93 mmol) in methanol and HCl (5.0 ml, 1M in ether) is heated at 60°C under nitrogen for 2 h and concentrated in vacuo. The residue is treated with ethyl acetate and filtered. The filtercake is dried under vacuum to give the title product as an off white solid, 0.301 g, mp 200-201°C, identified by NMR and mass spectral analyses.

EXAMPLES 4-9

15 **Preparation of 1-(Arylsulfonyl)-4-(3-pyrrolidinyl oxy)-1H-indole Hydrochloride**

Using essentially the same procedures described hereinabove for Examples 2 and 3 and employing the appropriate protected pyrrolidinol or piperidinol (Q₃) and arylsulfonyl chloride, the compounds shown in Table I are obtained and identified by NMR and mass spectral analyses.
Table I

<table>
<thead>
<tr>
<th>Ex. No.</th>
<th>Q</th>
<th>R10</th>
<th>X</th>
<th>mp °C</th>
<th>M+H</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3-pyrrolidinyl</td>
<td>thiophene-2-yl</td>
<td>1</td>
<td>158-160</td>
<td>342</td>
</tr>
<tr>
<td>5</td>
<td>3-pyrrolidinyl</td>
<td>4-aminophenyl</td>
<td>2</td>
<td>140(dec)</td>
<td>359</td>
</tr>
<tr>
<td>6</td>
<td>3-pyrrolidinyl</td>
<td>1-naphthyl</td>
<td>1</td>
<td>179(dec)</td>
<td>393</td>
</tr>
<tr>
<td>7</td>
<td>3-pyrrolidinyl</td>
<td>5-chloro-1,3-</td>
<td>1</td>
<td>100(dec)</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dimethyl-1H-pyrazol-4-yl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4-piperidinyl</td>
<td>4-aminophenyl</td>
<td>2</td>
<td>117-119</td>
<td>372</td>
</tr>
<tr>
<td>9</td>
<td>3-piperidinyl</td>
<td>4-aminophenyl</td>
<td>2</td>
<td>160(dec)</td>
<td>372</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 10

Preparation of t-Butyl 3-(2-Methyl-3-nitrophenoxy)-pyrrolidin-1-carboxylate

10
A stirred solution of 3-nitro-2-methylphenol (7.6 g, 49.7 mmol), t-butyl 3-hydroxypyrrolidin-1-carboxylate (9.3 g, 49.7 mmol) and triphenylphosphine (13.0 g, 49.7 mmol) in THF is treated with diethyl azodicarboxylate (8.7 g, 49.7 mmol), stirred at room temperature for 3 h and concentrated in vacuo. The resultant residue is mixed with ethyl acetate and filtered. The filtrate is concentrated in vacuo to give a residue, which is purified by chromatography (SiO₂, 25% EtOAc in hexanes) to afford the title compound as an off-white solid, 11.7 g (73%) identified by NMR and mass spectral analyses.

EXAMPLE 11

Preparation of t-Butyl 3-(3-Amino-2-methylphenoxy)-pyrrolidin-1-carboxylate

A mixture of t-butyl 3-(2-methyl-3-nitrophenoxy)pyrrolidin-1-carboxylate (11.0 g, 34.2 mmol) and 10% Pd/C (0.55 g) in ethanol is hydrogenated (45 psi) at room temperature overnight. After filtering off the catalyst, the filtrate is concentrated to afford the title compound as an off-white solid, 9.98 g, mp 137°C, identified by NMR and mass spectral analyses.
EXAMPLE 12

Preparation of t-Butyl 3-(1H-Indazol-4-yloxy)pyrrolidin-1-carboxylate

A solution of t-butyl 3-(3-amino-2-methylphenoxy)pyrrolidin-1-carboxylate (4.6 g, 15.4 mmol), potassium acetate (1.81 g, 18.5 mmol) and acetic anhydride (5.02 g, 49.2 mmol) in benzene is treated dropwise with isoamyl nitrite (4.13 ml, 30.8 mmol), heated at reflux temperature overnight, cooled to room temperature and filtered. The filtercake is washed with benzene. The combined filtrates are concentrated to give a yellow oil residue. The residue is purified by chromatography (SiO₂, 25% EtOAc in hexanes). The resultant oil is dissolved in ethanol, treated with 40% aqueous NaOH, heated at reflux temperature for 45 min, cooled with an ice-water bath, neutralized to pH 9 with concentrated HCl and concentrated in vacuo. The resulting aqueous mixture is extracted with EtOAc. The combined extracts are washed with water and brine, dried over MgSO₄ and concentrated in vacuo to give the title compound as a tan solid, 2.6 g, mp 196-198°C, identified by NMR and mass spectral analyses.
EXAMPLE 13

Preparation of t-Butyl 3-(((1-Phenylsulfonyl)-1H-indazol-4-yl)oxy)pyrrolidin-1-carboxylate

A solution of t-butyl 3-((1H-indazol-4-yl)oxy)pyrrolidin-1-carboxylate (0.303 g, 1.00 mmol) in dimethyl formamide is treated with sodium hydride (80 mg, 2.0 mmol, 60% in mineral oil) at room temperature under nitrogen, stirred for 10 min, treated with benzenesulfonyl chloride (0.21 g, 1.20 mmol), stirred for 18 h, quenched with H₂O and diluted with ether. The organic phase is washed with H₂O and brine, dried over MgSO₄, and concentrated in vacuo. The residue is purified by chromatography (SiO₂, 20% EtOAc in hexanes) to afford the title compound as a white solid, 0.42 g, mp 134-135°C, identified by NMR and mass spectral analyses.
EXAMPLE 14

Preparation of 1-(Phenylsulfonyl)-4-(pyrrolidin-3-ylxyloxy)-1H-indazole, trifluoroacetic acid salt

A mixture of t-butyl 3-{(1-phenylsulfonyl)-1H-indazol-4-yl]oxy}-pyrrolidin-1-carboxylate (354 mg, 0.80 mmol) and trifluoroacetic acid (3 mL) is prepared at 0°C, stirred at room temperature for 90 min. and concentrated in vacuo. The residue is triturated with ether to afford the title compound as a white solid, 260 mg, mp 168-169°C, identified by NMR and mass spectral analyses.

EXAMPLES 15-22

Preparation of 1-(Arylsulfonyl)-4-(3-pyrrolidinylxloxy)-1H-indazole trifluoroacetic acid salt

Using essentially the same procedures described herein above for Examples 8-12, and employing the appropriate arylsulfonyl chloride, the compounds shown in
Table II are obtained and identified by NMR and mass spectral analyses.

Table II

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Ex. No.</th>
<th>R<sub>sub</sub></th>
<th>mp °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1-naphthyl</td>
<td>200-201</td>
</tr>
<tr>
<td>16</td>
<td>2-chlorophenyl</td>
<td>161-163</td>
</tr>
<tr>
<td>17</td>
<td>2-fluorophenyl</td>
<td>162-163</td>
</tr>
<tr>
<td>18</td>
<td>3,4-dimethoxyphenyl</td>
<td>64-70</td>
</tr>
<tr>
<td>19</td>
<td>5-chlorothiophene-2-yl</td>
<td>102-103</td>
</tr>
<tr>
<td>20</td>
<td>4-acetamido-3-chlorophenyl</td>
<td>68-72</td>
</tr>
<tr>
<td>21</td>
<td>4-acetamidophenyl</td>
<td>110-112</td>
</tr>
<tr>
<td>22</td>
<td>8-quinolinyl</td>
<td>79</td>
</tr>
</tbody>
</table>
EXAMPLE 23

Comparative Evaluation of 5-HT6 Binding Affinity of Test Compounds

The affinity of test compounds for the serotonin 5-HT6 receptor is evaluated in the following manner. Cultured Hela cells expressing human cloned 5-HT6 receptors are harvested and centrifuged at low speed (1,000 x g) for 10.0 min to remove the culture media. The harvested cells are suspended in half volume of fresh physiological phosphate buffered saline solution and recentrifuged at the same speed. This operation is repeated. The collected cells are then homogenized in ten volumes of 50 mM Tris.HCl (pH 7.4) and 0.5 mM EDTA. The homogenate is centrifuged at 40,000 x g for 30.0 min and the precipitate is collected. The obtained pellet is resuspended in 10 volumes of Tris.HCl buffer and recentrifuged at the same speed. The final pellet is suspended in a small volume of Tris.HCl buffer and the tissue protein content is determined in aliquots of 10-25 μl volumes. Bovine Serum Albumin is used as the standard in the protein determination according to the method described in Lowry et al., J. Biol. Chem., 193:265 (1951). The volume of the suspended cell membranes is adjusted to give a tissue protein concentration of 1.0 mg/ml of suspension. The prepared membrane suspension (10 times concentrated) is aliquoted in 1.0 ml volumes and stored at -70°C until used in subsequent binding experiments.

Binding experiments are performed in a 96 well microtiter plate format, in a total volume of 200 μl. To each well is added the following mixture: 80.0 μl of incubation buffer made in 50 mM Tris.HCl buffer (pH 7.4) containing 10.0 mM MgCl₂ and 0.5 mM EDTA and 20 μl of
[¹H]-LSD (S.A., 86.0 Ci/mmol, available from Amersham Life Science), 3.0 nM. The dissociation constant, Kₛ of the [¹H]LSD at the human serotonin 5-HT₆ receptor is 2.9 nM, as determined by saturation binding with increasing concentrations of [¹H]LSD. The reaction is initiated by the final addition of 100.0 µl of tissue suspension. Nonspecific binding is measured in the presence of 10.0 µM methiothepin. The test compounds are added in 20.0 µl volume.

The reaction is allowed to proceed in the dark for 120 min at room temperature, at which time, the bound ligand-receptor complex is filtered off on a 96 well unifilter with a Packard Filtermate® 196 Harvester. The bound complex caught on the filter disk is allowed to air dry and the radioactivity is measured in a Packard TopCount® equipped with six photomultiplier detectors, after the addition of 40.0µl Microscint®-20 scintillant to each shallow well. The unifilter plate is heat-sealed and counted in a PackardTopCount® with a tritium efficiency of 31.0%.

Specific binding to the 5-HT₆ receptor is defined as the total radioactivity bound less the amount bound in the presence of 10.0µM unlabeled methiothepin. Binding in the presence of varying concentrations of test compound is expressed as a percentage of specific binding in the absence of test compound. The results are plotted as log % bound versus log concentration of test compound. Nonlinear regression analysis of data points with a computer assisted program Prism® yielded both the IC₅₀ and the Kᵢ values of test compounds with 95% confidence limits. A linear regression line of data points is plotted, from which the IC₅₀ value is determined and the Kᵢ value is determined based upon the following equation:

\[
K_i = \frac{IC_{50}}{1 + L/K_p}
\]
where \(L \) is the concentration of the radioactive ligand used and \(K_i \) is the dissociation constant of the ligand for the receptor, both expressed in nM.

Using this assay, the following Ki values are determined and compared to those values obtained by representative compounds known to demonstrate binding to the 5-HT6 receptor. The data are shown in Table III, below.

<table>
<thead>
<tr>
<th>Test Compound (Ex. No.)</th>
<th>5-HT6 Binding Ki (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8.0</td>
</tr>
<tr>
<td>4</td>
<td>25.0</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>6</td>
<td>13.0</td>
</tr>
<tr>
<td>7</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>3.0</td>
</tr>
<tr>
<td>9</td>
<td>11.0</td>
</tr>
<tr>
<td>14</td>
<td>19.0</td>
</tr>
<tr>
<td>15</td>
<td>3.0</td>
</tr>
<tr>
<td>16</td>
<td>19.0</td>
</tr>
<tr>
<td>17</td>
<td>25.0</td>
</tr>
<tr>
<td>18</td>
<td>75.0</td>
</tr>
<tr>
<td>19</td>
<td>9.0</td>
</tr>
<tr>
<td>20</td>
<td>12.0</td>
</tr>
<tr>
<td>21</td>
<td>124.0</td>
</tr>
<tr>
<td>22</td>
<td>22.0</td>
</tr>
</tbody>
</table>

Comparative Examples

<table>
<thead>
<tr>
<th>5-HT6 Binding Ki (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clozapine</td>
</tr>
<tr>
<td>Loxapine</td>
</tr>
<tr>
<td>Bromocriptine</td>
</tr>
<tr>
<td>Methiothepin</td>
</tr>
<tr>
<td>Mianserin</td>
</tr>
<tr>
<td>Olanzapine</td>
</tr>
</tbody>
</table>
As can be seen from the results set forth above, the compounds of the present invention have a high degree of affinity for the 5-HT6 receptor.
WHAT IS CLAIMED IS:

1. A compound of formula I

\[\text{X}^{1} \text{Q}^{1} \text{X}^{2} \text{Y}^{1} \text{Z}^{1} \text{N}^{1} \text{WR}_{10}^{1} \text{m}^{1} \]

wherein

W is SO\(_2\), CO, CONH, CSNH or (CH\(_2\))\(_{x}\);
X is O, SO\(_x\) or NR\(_{11}\);
Y is CR\(_{12}\) or N;
Z is CR\(_{13}\) or N with the proviso that when Y is N then Z must be CR\(_{13}\);
m and x are each independently 0 or an integer of 1, 2 or 3;

Q is

\[\begin{array}{c}
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3 \\
\text{R}_4 \\
\text{N} \\
\text{R}_5 \\
\text{R}_6 \\
\text{R}_7 \\
\text{R}_8 \\
\text{R}_9
\end{array} \quad \text{or} \quad \begin{array}{c}
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3 \\
\text{R}_4 \\
\text{N} \\
\text{R}_5 \\
\text{R}_6 \\
\text{R}_7 \\
\text{R}_8 \\
\text{R}_9
\end{array} \]

R\(_{1}\) is halogen, CN, OR\(_{14}\), CO\(_{2}\)R\(_{25}\), CONR\(_{26}\)R\(_{27}\), CNR\(_{28}\)NR\(_{19}\)R\(_{20}\),
SO\(_2\)NR\(_{21}\)R\(_{22}\), SO\(_x\)R\(_{23}\) or a C\(_1\)–C\(_6\)alkyl, C\(_2\)–C\(_{6}\)alkenyl, C\(_2\)–C\(_6\)alkynyl, C\(_3\)–C\(_6\)cycloalkyl, cycloheteroalkyl,
phenyl or heteroaryl group each optionally substituted;
R\(_{2}\) is H, CNR\(_{24}\)NR\(_{25}\)R\(_{26}\) or a C\(_1\)–C\(_6\)alkyl, C\(_2\)–C\(_{6}\)alkenyl, C\(_2\)–C\(_6\)alkynyl, C\(_3\)–C\(_6\)cycloalkyl, cycloheteroalkyl,
aryl or heteroaryl group each optionally substituted;
R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, and R₁₁ are each independently H or an optionally substituted C₁-C₆ alkyl group;

R₁₂ is an optionally substituted C₁-C₆ alkyl, aryl or heteroaryl group;

n and p are each independently 0 or an integer of 1 or 2;

R₁₃ is H or a C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, cycloheteroalkyl, aryl or heteroaryl group each optionally substituted;

R₁₄ and R₁₅ are each independently H, halogen or a C₁-C₆ alkyl, aryl, heteroaryl or C₁-C₆ alkoxy group each optionally substituted;

R₁₆ is H, COR₂, or a C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, aryloalkyl or heteroaryl group each optionally substituted;

R₁₇ and R₁₈ are each independently H or a C₁-C₆ alkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl, C₄-C₆ cycloalkyl, cycloheteroalkyl, aryl or heteroaryl group each optionally substituted;

R₁₉, R₁ₐ, R₁₁, R₁₂, R₁₃, R₁₄, and R₁₅ are each independently H or an optionally substituted C₁-C₆ alkyl group;

R₁₆ and R₁₇ are each independently H or a C₁-C₆ alkyl, aryl or heteroaryl group each optionally substituted; and

R₁₈ is an optionally substituted C₁-C₆ alkyl, aryl, or heteroaryl group; or the stereoisomers thereof or the pharmaceutically acceptable salts thereof.

2. The compound according to claim 1 wherein W is SO₂.
3. The compound according to claim 1 or claim 2 wherein X is 0.

4. The compound according to any one of claims 1 to 3 wherein Q is an optionally substituted 3-pyrrolidinyl group.

5. The compound according to any one of claims 1 to 3 wherein R_v is an optionally substituted aryl or heteroaryl group.

6. The compound according to any one of claims 1 to 5 wherein Y is CR_w.

7. The compound according to any one of claims 1 to 6 wherein Z is N.

8. The compound according to claim 1 selected from the group consisting of:

- 1-[(phenylsulfonyl)-4-(3-pyrrolidinyl)oxy]-1H-indole;
- 4-(3-pyrrolidinyl)oxy)-1-(thien-2-ylsulfonyl)-1H-indole;
- 4-[[4-(3-pyrrolidinyl)oxy]-1H-indol-1-yl)sulfonyl]aniline;
- 1-[(1-naphthylsulfonyl)-4-(3-pyrrolidinyl)oxy]-1H-indole;
- 1-[(5-chloro-1,3-dimethyl-1H-pyrazol-4-yl)sulfonyl]-4-(3-pyrrolidinyl)oxy]-1H-indole;
- 1-(phenylsulfonyl)-4-(3-pyrrolidinyl)oxy]-1H-indazole;
- 1-(1-naphthylsulfonyl)-4-(3-pyrrolidinyl)oxy]-1H-indazole;
- 1-[(2-chlorophenyl)sulfonyl]-4-(3-pyrrolidinyl)oxy]-1H-indazole;
- 1-[(2-fluorophenyl)sulfonyl]-4-(3-pyrrolidinyl)oxy]-1H-indazole;
- 1-[(3,4-dimethoxyphenyl)sulfonyl]-4-(3-pyrrolidinyl)oxy]-1H-indazole;
- 1-[(5-chlorothien-2-yl)sulfonyl]-4-(3-pyrrolidinyl)oxy]-1H-indazole;
N-(2-chloro-4-[[4-(3-pyrrolidinyl)oxy]-1H-indazol-1-yl]sulfonyl)phenylacetamide;
N-((4-(3-pyrrolidinyl)oxy)-1H-indazol-1-yl)sulfonyl)acetamide;
5 8-[[4-(3-pyrrolidinyl)oxy]-1H-indazol-1-yl]sulfonyl]quinoline;
1-(1-naphthylsulfonyl)-4-([piperidin-4-yloxy]-1H-indazole;
1-(1-naphthylsulfonyl)-4-([piperidin-3-yloxy]-1H-indazole;
1-[[5-chlorothien-2-yl]sulfonyl]-4-([piperidin-4-yloxy]-
10 1H-indazole;
1-[[5-chlorothien-2-yl]sulfonyl]-4-([piperidin-3-yloxy]-
1H-indazole; 1-(phenylsulfonyl)-4-([piperidin-3-
yloxy]-1H-indole;
4-[[4-(piperidin-3-yloxy)-1H-indol-1-yl]sulfonyl]aniline;
15 1-(1-naphthylsulfonyl)-4-([piperidin-3-yloxy]-1H-indole;
1-(phenylsulfonyl)-4-([piperidin-4-yloxy]-1H-indole;
4-[[4-(piperidin-4-yloxy)-1H-indol-1-yl]sulfonyl]aniline;
1-(1-naphthylsulfonyl)-4-([piperidin-4-yloxy]-1H-indole;
1-(phenylsulfonyl)-5-(pyrrolidin-3-yloxy)-1H-indole;
20 1-(phenylsulfonyl)-6-(pyrrolidin-3-yloxy)-1H-indole;
1-(phenylsulfonyl)-6-(pyrrolidin-3-yloxy)-1H-indazole;
1-(phenylsulfonyl)-5-(pyrrolidin-3-yloxy)-1H-indazole;
the stereoisomers thereof; and
the pharmaceutically acceptable salts thereof.

9. A method for the treatment of a disorder of the
central nervous system related to or affected by the 5-
HT6 receptor in a patient in need thereof which comprises
providing to said patient a therapeutically effective
amount of a compound of formula I as claimed in any one
of Claims 1 to 8; or a stereoisomer thereof or the
pharmaceutically acceptable salts thereof.
10. The method according to claim 9 wherein said disorder is a motor disorder, anxiety disorder or cognitive disorder.

11. The method according to claim 9 wherein said disorder is schizophrenia or depression.

12. The method according to claim 10 wherein said disorder is Alzheimer's disease or Parkinson's disease.

13. The method according to claim 10 wherein said disorder is attention deficit disorder.

14. A pharmaceutical composition which comprises a pharmaceutically acceptable carrier and a compound of formula I as claimed in any one of Claims 1 to 8; or a stereoisomer thereof or the pharmaceutically acceptable salts thereof.

15. The composition according to claim 14 having a formula I compound wherein X is O; Q is an optionally substituted 3-pyrrolidinyl group and R₈ is an optionally substituted aryl or heteroaryl group.

16. A process for the preparation of a compound of formula I which comprises one of the following:

a) reacting a compound of formula (B)
wherein m, Q, X, Y, Z and R₁ are as defined in claim 1, with an appropriate sulphonylating, acylating, carbamoylating, thiocarbamoylating, arylating or alkylating agent containing the group:

\[R_{10}^*{\text{W}} \]

where \(R_{10}^* \) is as defined above and W is \(\text{SO}_2 \), \(\text{CO} \), \(\text{CONHNH} \), \(\text{CSNH} \) or \((\text{CH}_3)_n \); said reactants protected on reactive sites and/or on reactive substituent groups as required, and removing any protecting groups, to give a corresponding compound of formula (I);

or

b) removing a protecting group from a compound of formula (C):

\[(R_1)_m \]

wherein m, W, X, Y, Z, R₁ and \(R_{10}^* \) are as defined in claim 1, and

\[Q_1 \text{ is } \]

\[(R_6)_7 \]

or

\[(R_4)_3 \]
where P is a protecting group to give a corresponding compound of formula (I) wherein R₂ is H;
or
c) alkylating a compound of formula (I) as defined in claim 1 wherein R₂ is hydrogen with an alkylating agent of formula R₃-L wherein L is a leaving group, such as halogen, and R₃ is as defined in claim 1 excepting hydrogen to give a corresponding compound of formula (I);
or
d) converting a compound of formula (I) having a reactive substituent group to a different compound of formula I;
or
e) converting a basic compound of formula (I) to an acid addition salt or vice versa.

17. A method for the preparation of a compound of formula Ie

\[\begin{align*}
\text{(Ie)}
\end{align*} \]

wherein
\[\begin{align*}
X &= \text{O, SO₂ or NR}_{11}; \\
Y &= \text{CR}_{13} \text{ or N;}
\end{align*} \]
\[\begin{align*}
Z &= \text{CR}_{13} \text{ or N with the proviso that when } Y = \text{N then } Z \text{ must be CR}_{13}; \\
m &= 0 \text{ or an integer of 1, 2 or 3;}
\end{align*} \]
R₁ is halogen, CN, OR₁₆, CO₂R₁₈, CONR₁₆R₁₇, CNR₁₈NR₁₆R₂₀, SO₂NR₂₁R₂₂, SO₃R₂₃ or a C₁-C₄ alkyl, C₂-C₆ alkenyl, C₅-C₆ alkynyl, C₅-C₆ cycloalkyl, cyclohexyl or heteroaryl group each optionally substituted;

R₂ is H, CNR₂₄NR₂₅R₂₆ or a C₁-C₄ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₅-C₆ cycloalkyl, cyclohexyl or heteroaryl group each optionally substituted;

R₃, R₄, R₅, R₆, R₇, R₈, R₉ and R₂₉ are each independently H or an optionally substituted C₁-C₆ alkyl group;

R₂₉ is an optionally substituted C₁-C₆ alkyl, aryl or heteroaryl group;

n and p are each independently 0 or an integer of 1 or 2;

R₃₀ is H or a C₁-C₄ alkyl, C₂-C₆ alkenyl, C₅-C₆ alkynyl, C₅-C₆ cycloalkyl, cyclohexyl or heteroaryl group each optionally substituted;

R₃₁ and R₃₂ are each independently H, halogen or a C₁-C₆ alkyl, aryl, heteroaryl or C₁-C₆ alkoxy group each optionally substituted;

R₃₃ is H, COR₃₄ or a C₁-C₆ alkyl, C₂-C₆ alkenyl, C₅-C₆ alkynyl, aryl or heteroaryl group each optionally substituted;

R₃₄ and R₃₅ are each independently H or a C₁-C₆ alkyl, C₅-C₆ alkenyl, C₅-C₆ alkynyl, C₅-C₆ cycloalkyl, cyclohexyl or heteroaryl group each optionally substituted;
R₁₆, R₁₇, R₁₈, R₁₉, R₂₀, R₂₁, R₂₂ and R₂₆ are each independently H or an optionally substituted C₁–C₄ alkyl group;
R₂₁ and R₂₂ are each independently H or a C₁–C₆ alkyl, aryl or heteroaryl group each optionally substituted; and
R₂₆ is an optionally substituted C₁–C₆ alkyl, aryl, or heteroaryl group
which process comprises reacting a compound of formula XIX

![Chemical Structure](image)

wherein X, Y, Z, m and Q are as described hereinabove
with a sulfonyl chloride, R₃₀SO₂Cl, wherein R₃₀ is as described hereinabove in the presence of a base to give the desired compound of formula Ie.
A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC 7</th>
<th>C07D403/12</th>
<th>C07D409/14</th>
<th>C07D403/14</th>
<th>C07D401/14</th>
<th>C07D401/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A61K31/404</td>
<td>A61K31/415</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched:

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, BEILSTEIN Data, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 98 50346 A (GASTER LARAMIE MARY; WYMAN PAUL ADRIAN (GB); SMITHKLINE BEECHAM PL) 12 November 1998 (1998-11-12) abstract description 51 page 29 description 59 page 31 claims</td>
<td>1-17</td>
</tr>
<tr>
<td>X</td>
<td>WO 01 02356 A (SANKYO CO; ASAI FUMITOSHI (JP); FUJIMOTO KOICHI (JP); TANAKA NAOKI) 11 January 2001 (2001-01-11) page 51 -page 136; examples claims</td>
<td>1-17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
 - *A* document defining the general state of the art which is not considered to be of particular relevance
 - *E* earlier document but published on or after the international filing date
 - *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - *O* document referring to an oral disclosure, use, exhibition or other means
 - *P* document published prior to the international filing date but later than the priority date claimed
 - *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - *S* document member of the same patent family

Date of the actual completion of the international search

15 July 2002

Date of mailing of the international search report

23/07/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk
Tel. (+31-70) 940-2040, Tx. 31 651 epo nl, Facs (+31-70) 940-3016

Authorized officer

Stix-Malaun, E
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 99 47516 A (SLASSI ABDELMALIK ; TEHIM ASHOK (CA); XIN TAO (CA); BRIEN ANNE O (C) 23 September 1999 (1999-09-23) abstract page 6, line 27 examples claims</td>
<td>1-17</td>
</tr>
</tbody>
</table>
Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☒ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

 Although claims 9-13 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

2. ☒ Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

 see further information sheet PCT/ISA/210

3. ☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☐ As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

☐ The additional search fees were accompanied by the applicant’s protest.

☐ No protest accompanied the payment of additional search fees.
Continuation of Box I.2

Present claims 1-17 relate to an extremely large number of possible compounds/products/methods. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds in which X denotes oxygen. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the compounds/products/methods in which X is defined as oxygen.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 9850346 A2</td>
<td>12-11-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9803243 A</td>
<td>18-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0102356 A1</td>
<td>11-01-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001072662 A</td>
<td>21-03-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2821799 A</td>
<td>11-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9947516 A1</td>
<td>23-09-1999</td>
</tr>
</tbody>
</table>