(19) World Intellectual Property Organization Vd”Ij

) IO O T PO 5O

International Bureau

(43) International Publication Date
5 June 2008 (05.06.2008)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2008/067226 Al

(51) International Patent Classification: (74) Agent: KOLODKA, Joseph; 4 Independence Way, Suite
GOGF 7/24 (2006.01) 200, Princeton, New Jersey 08540 (US).

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every

PCT/US2007/085357 kind of national protection available): AE, AG, AL, AM,

. . AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,

(22) International Filing Date: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,

21 November 2007 (21112007) ES, FL GB, GD, GE, GH, GM, GT, HN, HR, H[J, ID, IL,

- . Jish IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,

(25) Filing Language: Englis LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,

.. X . MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,

(26) Publication Language: English PT, RO, RS, RU, SC, SD., SE, SG, SK, SL. SM, SV, SY,

(30) Priority Data: TJ, ™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

11/566,122 1 December 2006 (01.12.2006) US M, ZW.
(71) Applicant (for all designated States except US): NEC (84) Designated States (unless otherwise indicated, for every

(72)

LABORATORIES AMERICA, INC. [US/US]; 4 Inde-
pendence Way, Suite 200, Princeton, New Jersey 08540
Us).

Inventors: DUBNICKI, Cezary; 1614 Mulberry Court,
Monmouth Junction, New Jersey 08852 (US). LICHOTA,

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,

Krzysztof; Al. Ken 26/8, PL.-02-797 Warszawa (PL).
KRUUS, Erik; 261 Hamilton Road East, Hillsborough,
New Jersey 08844 (US). UNGUREANU, Cristian; 147
Hamilton Avenue, Princeton, New Jersey 08540 (US).

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(54) Title: METHODS AND SYSTEMS FOR DATA MANAGEMENT USING MULTIPLE SELECTION CRITERIA

Inout: Faster Boundary Slower Boundary Output: Content
gp‘t‘ - L—»| Point/Data Block Point/Data Block —»| Defined Block/
ata Window Module Window Module Chunk Points
110 120 130 140

(57) Abstract: Systems and methods for data management and data processing are provided. Embodiments may include systems
and methods relating to fast data selection with reasonably high quality results, and may include a faster data selection function
and a slower data selection function. Various embodiments may include systems and methods relating to data hashing and/or data
redundancy identification and elimination for a data set or a string of data. Embodiments may include a first selection function is
used to pre-select boundary points or data blocks/windows from a data set or data stream and a second selection function is used to
refine the boundary points or data blocks/windows. The second selection function may be better at determining the best places for
boundary points or data blocks/windows in the data set or data stream. In various embodiments, data may be processed by a first
faster hash function and slower more discriminating second hash function.

wO 2008/067226 A1 |00 DO 0 OO0

WO 2008/067226 PCT/US2007/085357

METHODS AND SYSTEMS FOR DATA MANAGEMENT USING MULTIPLE
SELECTION CRITERIA

[0001] This patent application is related to U.S. Patent Application No. (TBD), titled
METHODS AND SYSTEMS FOR QUICK AND EFFICIENT DATA MANAGEMENT
AND/OR PROCESSING to Cezary Dubnicki, Erik Kruus, and Cristian Ungureanu, also filed on
December 1, 2006, which is hereby incorporated herein by reference for all purposes.

[0002] This disclosure may contain information subject to copyright protection, for
example, the various exemplary C++ codes and pseudocodes presented herein. The copyright
owner has no objection to the facsimile reproduction by anyone of the patent disclosure or the
patent as it appears in the U.S. Patent and Trademark Office files or records, but otherwise

reserves all copyright rights whatsoever.

BACKGROUND

FIELD OF THE INVENTION
[0003] The present invention relates to the field of data processing and data
management and, more specifically, to methods and systems related to quick data processing for

applications such as data hashing and/or data redundancy elimination.

DESCRIPTION OF RELATED ART

[0004] Every day more and more information is created throughout the world and the
amount of information being retained and transmitted continues to compound at alarming rates,
raising serious concerns about data processing and management. Much of this information is
created, processed, maintained, transmitted, and stored electronically. The mere magnitude of
trying to manage all this data and related data streams and storage is staggering. As a result, a
number of systems and methods have been developed to process data more quickly and to store
and transmit less data by eliminating as much duplicate data as possible. For example, various
systems and methods have been developed to help reduce the need to store, transmit, etc.,
duplicate data from the various electronic devices such as computers, computer networks (e.g.,
intranets and the Internet), mobile devices such telephones and PDA’s, hardware storage devices,
etc. Further, there is a need to encrypt data using cryptography, particularly during e.g., data

transmission. For example, systems and methods have been developed that provide for strong

WO 2008/067226 PCT/US2007/085357

(i.e. cryptographic) hashing, and such methods may be incorporated quite naturally within
applications that use data hashing to accomplish data redundancy elimination over insecure
communication channels.

[0005] In various electronic data management methods and systems, a number of
methodologies have been developed to hash data and/or to eliminate redundant data from, for
example, data storage and data transmission. These techniques include various data
compression, data hashing, and cryptography methodologies. Some exemplary techniques are
disclosed in various articles including Philip Koopman, 32-Bit Cyclic Redundancy Codes for
Internet Applications, Proceedings of the 2002 Conference on Dependable Systems and
Networks, 2002; Jonathan Stone and Michael Greenwald, Performance of Checksums and CRCs
over Real Data, IEEE/ACM Transactions on Networking, 1998; Val Henson and Richard
Henderson, An Analysis of Compare-by-Hash, Proceedings of the Ninth Workshop on Hot
Topics in Operating Systems, Lihue, Hawaii, May 2003, pp. 13-18; and Raj Jain, A Comparison
of Hashing Schemes for Address Lookup in Computer Networks, IFEEE Transactions on
Communications, 1992. There are also a number of U.S. patents and patent publications that
disclosed various exemplary techniques, including U.S. Patent Pub. Nos. 2005/0131939,
2006/0047855, and 2006/0112148 and U.S. Patent Nos. 7,103,602, and 6,810,398.

[0006] However, the known techniques lack certain useful capabilities. Typically the
better performing selection techniques (e.g., high data redundancy elimination) use too much
processing time (take too long) and very fast data selection techniques may lack the desired
degree of data elimination. For example, there are a number of hashing function approaches,
including whole file hashing, fixed size data block hashing, and content-defined data chunk
hashing. However, none of these techniques are reasonably fast (using only a amount of
computation time) and have the ability to identify most of the data redundancies in a data set
(e.g., have high data redundancy elimination).

[0007] Therefore, there is a need for a data selection technique that has reasonable
performance and is fast. For example, a hashing and/or data redundancy identification and
elimination system and method is needed that can quickly perform data hashing and/or data
redundancy identification and elimination while still identifying most of the redundant data in a
data set. There is also a need for systems and methods that more quickly determine appropriate
break points or boundaries for determining data blocks or chunks in a content defined hash

function.

WO 2008/067226 PCT/US2007/085357

SUMMARY

[0008] The present invention is directed generally to providing systems and methods for
data management and data processing. For example, embodiments may include systems and
methods relating to fast data selection with better performing selection results (e.g., high data
redundancy elimination), and may include a faster data selection process and a slower data
selection process. Durther, exemplary systems and methods relating to a data hashing and/or data
redundancy identification and elimination for a data set or a string of data are provided. The
present invention may be more robust and may provide systems and methods which combine
some of the speed of a fast hash with the more robust performance characteristics of a hash that
determines a more appropriate set of break points or boundaries. The invention may be a
computer implemented invention that includes software and hardware for improving data
processing speed without notably reducing the quality of the data processing results.

[009] In various embodiments of the present invention, for example, systems and
methods are provided which may include a first selection function used to pre-select boundary
points or data blocks/windows from a data set or data stream and may include a second selection
function that may refine the boundary points or data blocks/windows from a data set or data
stream. The first selection function may be faster to compute (e.g., take less processing time to
roll, that is, produce a hash value for a subsequent data block/window from said data set or data
stream) than the second selection function. The second selection function may be better at
determining appropriate places for boundary points or data blocks/windows in the data set or data
stream. The second selection function may be, but need not be, rollable. One exemplary first
selection function may be a boxcar sum based function using, for example, moving windows.
This is a particularly fast data selection process. One exemplary second selection function may
be a Rabin fingerprint function. This first selection function is particularly fast and this second
selection function has particularly good bit-randomizing characteristics. In various embodiments
the first selection function and the second selection function may be used to generate a plurality
of content-defined boundary points, block break points or chunk points for determining at what
point a data set or data stream should be segregated into various data blocks, chunks, or
windows. In various embodiments, the content defined boundaries may be used for determining
the data block, chunk, or window sizes to which a hash function may be applied and a resulting
hash value may be produced. In various embodiments, the resulting hash value may be

compared to one or more stored hash values to determine if the data block, chunk, or window is

WO 2008/067226 PCT/US2007/085357

entirely duplicate data or whether the new hash value should be stored as a unique data block,
chunk, or window.

[0010] In various embodiments, a content-defined technique for data hashing may be
provided. The content-defined technique may include a processing system having a faster hash
function module (e.g., taking less processing time because there are few calculations) and a
slower hash function module (e.g., taking more processing time because there are more
calculations). The faster hash function module may receive data from, for example, a data
stream, and may pre-select one or more data boundary, break, block, or chunk points at which the
data stream could be broken into distinct blocks or chunks of data. The faster hash function may
be somewhat lower performance when determining the best data boundary, break, block, or
chunk points. The faster hash function may be, for example, a boxcar sum function that uses, for
example, a rolling or moving window. The slower hash function module may perform hashing on
only those data blocks or chunks that have been pre-selected by the faster hash function. The
slower hash function module may be better at determining the best data boundary, break, block,
or chunking points for achieving a particular objective (e.g., identifying more redundancies).

The slower hash function may be, for example, a Rabin fingerprint function, a, SHA-1 hash, a
CRC32c hash, etc., and may be rolling or non-rolling.

[0011] Still further aspects included for various embodiments will be apparent to one

skilled in the art based on the study of the following disclosure and the accompanying drawings

thereto.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The utility, objects, features and advantages of the invention will be readily
appreciated and understood from consideration of the following detailed description of the
embodiments of this invention, when taken with the accompanying drawings, in which same
numbered elements are identical and:

[0013] Fig. 1 is an exemplary data management or processing system using multi-mode
data boundary point determination, according to at least one embodiment;

[0014] Fig. 2 is an exemplary data management or processing method using multi-mode
data boundary point determination, according to at least one embodiment;

[0015] Fig. 3 is an exemplary illustration of how data management or processing using
multi-mode data boundary point determination system(s) and method(s) operates, according to at

least one embodiment;

WO 2008/067226 PCT/US2007/085357

[0016] Fig. 4 is a detailed exemplary method for data management or processing that
uses multi-mode data boundary point determination for identification of previously encountered
data in a data set or stream, according to at least one embodiment;

[0017] Fig. 5 is an exemplary hashing technique using content-defined data blocks or
chunks, according to at least one embodiment;

[0018] Fig. 6 is an exemplary first selection function using a boxcar sum technique,
according to at least one embodiment;

[0019] Figs. 7a and 7b provide exemplary illustrations of data windows, blocks or
chunks for an exemplary hashing technique using content-defined data blocks or chunks,
according to at least one embodiment;

[0020] Fig. 8 is an exemplary functional block diagram of a computing device,
according to at least one embodiment; and

[0021] Fig. 9 is an exemplary functional block diagram illustrating a network,

according to at least one embodiment.

DETAILED DESCRIPTION

[0022] The present invention is directed generally to systems and methods for data
management and data processing. Various embodiments may include systems and methods
relating to a multi-mode data selection techniques. More specifically, various embodiments may
include systems and methods relating to fast data selection with reasonably high quality results,
and may include a faster data selection process and a slower data selection process. In various
embodiments of the present invention, for example, systems and methods are provided which
may include a first selection function used to pre-select boundary points or data blocks/windows
from a data set or data stream and may include a second selection function that may refine the
boundary points or data blocks/windows from a data set or data stream. The first selection
function may be faster to compute (e.g., take less processing time) than the second selection
function. The second selection function may be better at determining the best places for
boundary points or data blocks/windows in the data set or data stream. One exemplary first
selection function may be a boxcar sum based function using, for example, moving windows.
This is a particularly fast data selection process. One exemplary second selection function may
be a Rabin fingerprint function that may be rolling or non-rolling. Other selection functions have

the faster/slower characteristics are equally applicable.

WO 2008/067226 PCT/US2007/085357

[0023] The invention may be a computer implemented invention that includes software
and hardware for improving data processing speed without notably reducing the quality of the
data processing results. In at least one embodiment, the system(s) and method(s) provided herein
may be implemented using a computing device, and may be operational on one or more
computer(s) within a network. Details of exemplary computing device(s) and network(s) are
described in some detail in, Fig. 8 and Fiig. 9. Prior reference to those examples may prove
helpful in developing a better appreciation for various details of the invention.

[0024] In any case, for ease of understanding the present invention will be explained in
more detail for use with hashing functions and/or data redundancy identification and /or data
duplication elimination. However, one skilled in the art would appreciate that the present
invention may be applicable to other data management and processing systems and methods
including computers with a string of data to process or store, wireless communications that have
data to transmit, Internet and Intranet applications, data encryption techniques, etc. In particular,
the exemplary embodiments used herein to explain the present invention relate primarily to data
hashing and data duplication elimination.

[0025] In data hashing and/or data redundancy identification and/or elimination
embodiments, the present invention may include a faster hashing function and a slower hashing
function. The fast hashing function may be for chunk, block or hash point pre-selection. The
slower hashing function may be applied to determine which of the pre-selected chunk, block or
hash points are better at identifying the most data duplication. Hashing functions for a data set
or a string of data may be used to identify identical sections of data in large amounts of data.
There are three general techniques for hashing: whole file content hashing, fixed size block
hashing, and content-defined hashing. Whole file content hashing operates to create a hash value
or check sum for entire files of data (e.g., a complete text or image file). Fixed size data block
hashing may operate to create hash values or check sums for predetermined fixed size portions
(e.g., 1000 bits) of various data files. Content-defined data block hashing may operate to create
hash values or check sums based on variable size data blocks whose size is determined by a
selected data content standard (e.g., break the data into a data chunk after X numbers of
consecutive 1’s or O’s are found in the data).

[0026] In the next few paragraphs, the speed of the SHA-1 may be almost the same in
all three cases; for whole-file, fixed-size, and variable-size chunking. In each case, every input
byte is in a unique chunk, and every such chunk must have the SHA-1 evaluated. However, one

of the main things that may differ between whole-file, fixed-size, variable-size chunking is the

WO 2008/067226 PCT/US2007/085357

number of such SHA-1 calculations. Nevertheless, for the SHA-1 evaluations, the total
processing time (e.g., CPU time) will be almost the same, since the bulk of the processing time
will mostly be in the SHA-1 calculation itself, and not in overhead related to storing one or
several SHA-1 hash values.

[0027] In the case of whole file hashing, hashing may be performed by applying a
hashing function to all the data of entire files. For example, a SHA-1 hashing function might be
used and applied to an entire data file. The SHA-1 hashing function is computationally complex
and may be slow relative to some other hashing functions. Regardless, in this case, for purposes
of identifying and eliminating duplication, the least amount of data duplication is found and
eliminated because when a single bit of data changes in a file, the resulting hash value will be
different than previously saved and the full amount of data associated with the revised file will
need to be transmitted or saved (e.g., when one letter in a text file is changed, the entire data
representation of the text file and it’s hash value will change so that it will not be a duplicate of a
previous version of the same text file). On the other hand the hashing is quick because the
hashing function need only be operated once for an entire file of data.

[0028] As noted above, a fixed size data block hashing function performs hashing on
portions or blocks of the entire data found in a whole file (e.g., a single text file may be broken
up into 10 same sized data blocks of 10K bits), and data blocks may be set at a non-overlapping
fixed size. Once again, a SHA-1 hashing function might be applied to each of a fixed size set of
blocks (e.g., 10K bits) that make up a whole file (e.g., 100K bits). In this case, more duplication
may be found because the block of data hashed each time is smaller, and a single bit change
somewhere in a whole file will only result in a change in one of the multiple blocks that make up
a whole file (e.g., 9 of the 10 10K bit blocks will be duplicates). However, a single byte insertion
may hinder duplicate detection for a large number of blocks (e.g., the blocks following the block
containing the first insertion may be rendered non-duplicate). The smaller the block, the better
redundancy detection, but a slightly slower process because the hashing function, for example
SHA-1, must be run more times for the same amount of data found in the whole data file.

[0029] Finally, using the content defined data chunk hashing, hashing may be
performed by applying a fairly slow and somewhat better performance (e.g., more accurate and
discriminating calculation) to identify and generate a value for various chunks of data that are
defined by their content. In this case, both localized insertion and localized replacement
modifications may result in changes to a single content-defined chunk, thereby increasing the

amount of duplication found when compared to fixed-size chunking. One such hashing function

WO 2008/067226 PCT/US2007/085357

may include a combination of Rabin fingerprinting and SHA-1 hashing function. The Rabin
fingerprinting may be applied multiple times for overlapping data windows (e.g., sliding
window) of the data in the data file to determine where in the data file the chunk boundaries
should be set, based on a predetermined boundary point criteria (e.g., the value of the function
equals a predetermined number of bits or bytes ending in X number of 0’s or 1’s), then the SHA-
1 hashing function may be applied to each of the determined data blocks (whose size varies based
on the underlying data being analyzed). Again, each byte of input may enter into some SHA-1
hash calculation, as noted before. However, the Rabin fingerprinting presents an additional
calculation burden (e.g. processing time) when compared to fixed size chunking. Although this
approach is very good at identifying many more data redundancies, both of these functions can
be time consuming and in combination make hashing and/or data redundancy identification and
elimination very time consuming. In fact, the Rabin fingerprinting function may be particularly
time consuming for identifying where in particular the various data block cuts or hash points
should be in attempting to optimize the redundancy data identification and/or data elimination.
[0030] For the purposes of chunking, one means to achieve the desired degree of data
elimination is to employ a selection function that produces chunks from real-world data with a
content-defined, deterministic procedure in a manner that attains a chunk size distribution which
matches closely the distribution expected given random data input. One way to accomplish this is
to employ a hash function followed by a selection criterion with known probabilities of
occurring. Typically, a single hash function is selected that has an excellent ability to "scramble"
the bits within any data window. In this fashion, the output value exhibits little correlation with
the actual data bits within the input window. With such a bit-randomizing hash value, H, simple
selection criterion that have been used include, for example, insisting that a certain number of
bits be equal to a predetermined value, or requiring that the value of H # (H-1) > threshold, H >
threshold, or H and mask == value. Coupling a bit-randomizing hash with a selection procedure
criterion may yield a selection function that selects a “random-looking” subset of input windows.
The common hope is that such selection functions have excellent chances of producing a
random-like chunk size distribution when presented with real-life (e.g., non-random) data inputs.
[0031] Various selection functions that are expected to have random-like chunk size
distribution in the face of real-life data may be referred to herein as having good "bit-scrambling"
ability. One performance goal for the present invention may involve two aspects: one is easily
understood, namely, speed of operation; the other, somewhat abstract, is the aforementioned bit-

scrambling behavior. The present invention may provide a mechanism for data processing

WO 2008/067226 PCT/US2007/085357

applications to greatly increase the speed of operation, while still retaining a measure of control
over how much bit-scrambling ability may possibly be compromised. Selection functions
satisfying the abstract bit-scrambling goal well may result in applications better able to fulfill
non-abstract goals particular to their domain. For example, in various applications these goals
may be related to duplicate detection, including: better duplicate detection, better potential
duplicate detection, better resemblance detection, less data transmitted, increased bandwidth,
decreased storage requirements, etc. Use of the present invention within such applications may
result in them fulfilling, for example, non-abstract goals at greater speed. Some specific
applications of the present invention may focus on data storage system(s) as an example, in
which instance the concrete performance goals may be speed and amount of duplicate
elimination. Hence, hash functions that may yield better performance (in our sense) on real-
world data may tend to have little bitwise correlation between the value at on instant or window
and the value at the next instant or window. Desirable hash functions may be highly likely to
randomly influence all bits of the hash value when the window is rolled from one time in the
input data stream to the next.

[0032] An example of a selection function which may perform well with random data
but fails in real life is H='count the number of non-alphabetic characters (not in [A-Za-z]) within
a 30-byte window' coupled with a selection rule 'H=0'". For random data input, H will be zero
randomly, with probability (204/256)**30 ~= 0.0011, so one in 908 windows will produce a
selection, and an exponential distribution of chunk sizes averaging around 908 bytes is to be
expected. Unfortunately, if storing an archive of news clippings, the number of occurrences of
30-letter words is likely to be much rarer than this expectation, and few useful chunk points are
likely to result.

[0033] Hash functions that may yield "better" performance on real-world data will tend
to have little bitwise correlation between the value at one instant or window and the value at the
next instant or window. Desirable hash functions may be highly likely to influence all bits of the
hash value when the window is rolled from one time in the input data stream to the next.
Desirable hash functions are also likely to affect many bits randomly when a single bit within an
input window changes. Similar notions correspond to more conventional definitions of good
hash function characteristics, and functions fulfilling these properties may result in good bit-
scrambling ability for the purposes of various applications using the present invention. In any
case, it may be commonly assumed that such hash functions will perform well even when

presented with non-random, real-world data.

WO 2008/067226 PCT/US2007/085357

[0034] The boxcar function, for example, may be particularly bad in scrambling the
least significant bits of its hash value over bytes of input, the least significant bit being trivially
related to only the parity of bit O of the input data windows. However, the speed with which the
boxcar function may evaluate a hash for successive windows of input data may make it
particularly attractive for use in the present invention. Furthermore, the selection criterion for the
boxcar hash may be modified in some embodiments to avoid usage of bit zero to accomplish the
selection function. The companion patent mentioned above, U.S. Patent Application titled
METHODS AND SYSTEMS FOR QUICK AND EFFICIENT DATA MANAGEMENT
AND/OR PROCESSING provides an example of a large dataset for which the application's
performance goal of speed and duplicate elimination was greatly improved by the present
invention: a large increase in speed was measured, while the amount of duplicate elimination was
verified on a 1.1 Terabyte real-life dataset to be virtually identical to that obtained with several
embodiments using, for example, Rabin fingerprinting or multiplicative linear congruential
generator (MLCG) hashes only to accomplish content-defined chunking.

[00035] Referring to Fig. 1, an exemplary data management or processing system 100
using multi-mode data boundary point/data block determination is provided, according to at least
one embodiment of the present invention. In this exemplary system, input data 110 may be
provided to a Faster Boundary Point/Data Block Window Module 120. This input data 110 may
be, for example, a sequence of files or packets of data in binary 1’s and 0’s that may need to be
processed, transmitted or stored in one or more electronic devices such as a microprocessor, a
storage disk, a memory, a computer system, etc. The module 120 may be able to more quickly
process the determination of hash, cut, boundary or break points in the input data 110 because it
may use a method, for example a boxcar summation process or function, that takes less
processing time than traditional processes for determining good hash, cut, boundary or break
points. Although, module 120 might not provide the best selection of hash, cut, boundary or
break points in the data, its speed will make up for the lesser quality hash, cut, boundary or break
points (e.g., may result in less duplicate data being identified). In various embodiments, the
module 120 may pre-select a subset of all possible hash, cut, boundary or break points. Some
exemplary easily rollable hash functions may include a boxcar sum function, an successive
multiply-by-constant and add-byte-value (MLCG) function, a rolN-xor function, etc. The Faster
Boundary Point/Data Block Window Module 120 may be coupled to a Slower Faster Boundary
Point/Data Block Window Module 130. Module 130 may take relatively more processing time

per iteration than module 120, however, it is able to make better possible hash, cut, boundary or

10

WO 2008/067226 PCT/US2007/085357

break point determinations (e.g., may result in more duplicate data being identified). In various
embodiments, module 130 may utilize a CRC32c function, a Rabin fingerprint function, a SHA-1
function, etc., that may incorporate rolling or non-rolling windows. A table of various cut,
break, hash, block point functions is illustrated in Table I below, showing various speeds

achieved during simulation.

. speed
name pseudo-code (non-rolling) IVFIJB/S
boxcar | hash +=b 360
MLCG hash =hash*A+b 270

rolN-xor hash = ROL(hash,N) " b 280
rolN-xor[] | hash = ROL(hash,N) * A[b] 175
xor hash *= A[b] 170

s1 +=b; s2 +=s1 ; hash=s1 *s2 ;
xAdler hash*=hash> >6; 160

hash = ((hash< <8)|b) »
Rabin Alhash> >N] 145
Table I

[0036] Some simple Hash Functions are provided above in Table I. Hash is assigned a
constant initial value. For each byte in the window, hash is modified by adding the next byte
value b. The hash functions listed here have fast rolling versions. Here A and N are hash-specific
constants and ROL is a rotate-left operation. The xAdler hash is a simplified version of the
Adler(/Fletcher) hash. Speed values are representative of fairly optimized code with a maximal
amount of compile-time constants, and should be viewed as a reasonable indication of the hash
function speed. The speed tests measure rolling the hash and checking for terminal zero bits on
several hundred megabytes of in-memory random data. As can be observed in Table I, algorithm
speeds roughly follow the number of external lookups required, with boxcar, ML.LCG, and rolN-
xor hashes being the fastest, with zero table lookups. The rolling versions (see below) or xor,
rolN-xor[] and Rabin hashes require two lookups of form A[b].

[0037] Specific versions of C++-like code for various exemplary non-rolling and
corresponding rolling versions of hash functions are illustrated below. In the exemplary code, ws
is the window size and buf may be an input data buffer of bytes. The function calc(buf) is a non-
rolling calculation of checksum csum, while roll(buf) is a rolling version that will update a
checksum whose value is calc(buf) to the value at calc(&buf{1]) in fewer operations. It may be
assumed that a global table of constant random numbers may be available as rudTable[256] for

the algorithms requiring pre-translation of input bytes into more random 32-bit quantities.

11

WO 2008/067226 PCT/US2007/085357

Several algorithms may roll more quickly if the window size is a compiler-time constant. Actual
code may use various optimizations, such as compiler optimization options, to achieve faster
speed.

[0038] An exemplary Boxcar C++-like pseudocode for non-rolling calc and rolling roll
routines is shown below.

1 void Boxcar::calc(unsigned char const* const buf) {
2 csum = std::accumulate(buf, buf+ws, OxffffcO3fU);
3}

4 void Boxcar::roll(unsigned char const* &buf) {

5 csum += buf[ws] — buf[0];

6 ++buf;

7}

[0039] An example of MLCG C++-like pseudocode for non-rolling calc and rolling roll
routines, using a multiplicative linear congruential generator module 2°2 is shown below. With
this choice, modulo operations may not be required on 32-bit machines as overflow of 32-bit
arithmetic operations perform this function implicitly.

1 MLCG::MLCG(uint32_t windowsize)

2 ws(windowsize)

3, init(4329005U) // seed value

4 , mult(7411035970) // a large prime for pseudorandom sequences
5 , mult_ws(1UL) // mult"™’

6 , magic(init * (1U—mult)) // precalc. for rolling version

7

3

for(uint32_t i=0U; i<ws; ++i) mult_ws *= mult;
9/ (mult_ws is actually calculated more efficiently)
10 magic *= mult_ws;
11}
12 void MLCG::calc(unsigned char const* const buf) {
13 csum = init;
14 for(unsigned char const *p=buf, *pEnd=&p[ws]; p!=pEnd; ++p){
15 csum = csum * mult + *p;
16 1}
17 }
18 void MLCG::roll(unsigned char const* &buf) {
19 csum = csum * mult — mult_ws * buf[0] + buf[ws] + magic;
20 ++buf;
21}

[0040] An exemplary rolNxor C++-like pseudocode for non-rolling calc and rolling roll
routines, using a rotate-left function ro/32 by 5 bits and assuming a 64-byte window for

simplicity (so that no fixups rol operations are needed for the roll functions, is show below.

12

WO 2008/067226 PCT/US2007/085357

1 RolNxor::RoINxor(uint32_t windowsize, uint32_t rolbits)
2 :ws (windowsize)
3 , N(rolbits)
4 ,M(((ws-1)*N) & Ox1fU)
5 ,init(0x356a356aU) // some constant value
6 {}
7 void RolNxor::calc(unsigned char const * const buf) {
8 csum =init;
9 for(unsigned char const *p=buf, *pEnd=&p[ws]; p!=pEnd; ++p){
10 csum = rol32 (csum,N) ~ #p;
11 }
12 }
13 void RolNxor::roll(unsigned char const * &buf) {
14 csum = rol32(csum” rol32(buf[0],M), N) " buf[ws];
15 ++buf;
16 }
[0041] An exemplary rolNxor[] C++-like pseudocode for non-rolling calc and rolling

roll routines, using a rotate-left function ro/32 by 5 bits and assuming a 64-byte window for

simplicity (so that no fixups rol operations are needed for the roll function), is show below.

1 RolNxorTable::RolNxorTable(uint32_t windowsize, uint32_t rolbits)
2 :ws (windowsize)

3 , N(rolbits)

4 ,M(((ws-1)*N) & 0x1fU)

5 ,init(OU) // some constant value

6 {}

7 void RolNxorTable::calc(unsigned char const # const buf) {

8 csum = init;

9 for(unsigned char const *p=buf, *pEnd=&p[ws]; p!=pEnd; ++p){
10 csum = rol32 (csum,N) " rndTable[#p];

11 }

12 }

13 void RolNxorTable::roll(unsigned char const * &buf) {

14 c¢sum = rol32(csum " rol32(rnd Table[buf[0]],M), N) " rndTable[buf[ws]];
15 ++buf;

16 }

13

WO 2008/067226 PCT/US2007/085357

[0042] An exemplary xor hash C++-like pseudocode for non-rolling calc and rolling
roll routines, identical to rolNxor[] except without the rotation operation, is shown below.

1 void XorTable::calc(unsigned char const* const buf) {

2 csum = init;

3 for(unsigned char const *p=buf, *pEnd=&p[ws]; p!=pEnd; ++p){
) csum "= rndTable[*p];

5)

6}

7 void XorTable::roll(unsigned char const* &buf) {

8 csum "= rndTable[buf[0]] A rndTable[buf[ws]];

9 ++buf;

10}

[0043] An exemplary xAdler C++-like pseudocode for non-rolling calc and rolling roll
routines, using for example, a modified version of the Adler (/Fletcher) hash with no table
lookup, is shown below. The routines demonstrate a rol/ function that rolls internal state, while
producing a checksum value in another distinct step, provided by the scramble function.
Alternatively, rndTable[| could have been used, in conjunction with a more standard Adler
algorithm.

1 xAdler::xAdler(uint32_t windowsize)

2 : ws(windowsize)

3 , magic(1493U) // to increase range of affected bits slightly,
4 // value is related to expected size of ws

5 ,s1(0U) /sl and s2 are internal state

6 , s2(0U) // used to produce a checksum

7 {}

8 // hash is some way to generate csum from the internal state
9 uint32_t scramble(uint32_t x, uint32_ty) {

10 x"=y;

11 x A= (x>>6);

12 return x;

13}

14 void xAdler::calc(unsigned char const* const buf) {

15 sl =s2=0U;

16 for(unsigned char const *p=buf, *pEnd=&p[ws]; p!=pEnd; ++p){

17 s1 += *p + magic;
18 s2 +=s1;
19 }

20 //add a final bit—scramble

21 csum = scramble(s1,s2);

22 }

23 void xAdler::roll(unsigned char const* &buf) {
24 sl +=buf[ws] — buf[0];

25 s2 +=sl —ws * (buf[0] + magic);

26 ++buf;

27 csum = scramble(s1,s2);

14

WO 2008/067226 PCT/US2007/085357

28)

[0044] An exemplary Rabin C++-like pseudocode for non-rolling calc and rolling roll
routines for a simple implementation of a CRC is shown below. Tables of constants T[256] and
U[256] may be calculated following, for example, A. Broder, Sequences II: Methods in

Communications, Security, and Computer Science pp. 143_152 (1993).

1 Rabin::Rabin(uint32_t windowsize, uint32_t poly)
2 ws(windowsize)

3 , p(poly) // The irreducible generating polynomial

4 {

5 // precompute tables T[256] and U[256] of constants related
6 /I to a generating polynomial. T describes how to append

7 // a new byte quickly. U describes how to add/remove a

3 /I leading byte quickly (U depends on the window size).

9}

10 // adding a byte modifies the old crc value in this way:
11 uint32_t append8 (uint32_t crc, unsigned char byte) {
12 return T[((crc>>24) » byte) & Oxff] » (crc << 8);
13}

14 void Rabin::calc(unsigned char const * const buf) {
15 wint32 t csum=0ULL;

16 for(unsigned char const *p=buf, *pEnd=&p[ws]; p!=pEnd; ++p){
17 csum = append8(csum, *p);

18 }

19}

20 void Rabin::roll(unsigned char const* &buf) {

21 csum = append8(csum ” U[buf[0]], buf[ws]);

22}

[0045] When the simple hash functions in Table I are used in chunking algorithms, the
actual speed may be substantially less, because data may be supplied in small chunks and extra
buffer management may be needed. Furthermore, a chunking application may also typically
require a strong hash function to be calculated for the entire chunk.

[0046] Further, in various embodiments the methods used by module 120 and module
130 may be content-defined hashing and output Content Defined Block/Chunk Points 140. In
general, rolling window functions are faster than non-rolling window functions. As mentioned
earlier, in general, content based hashing techniques are better at identifying more duplicates than
file or fixed block size hashing techniques. In any case, the content defined block/chunk points
140 may be used to improve the processing time while maintaining a reasonable quality level for

processing the input data. In various embodiments, these content defined block/chunk points 140

15

WO 2008/067226 PCT/US2007/085357

may be used for identifying duplicate data, improving encryption, improving data transmission,
etc. It should be noted that although module 130 may be fed by the output of module 120, the
processes performed in these modules may occur to some extent in parallel or simultaneously
(e.g., use in dual processor systems). Module 130 may in some embodiments have direct
recourse, additionally, to input data 110. For example, if it is determined that exceptionally the
module 120 has failed to meet predetermined criteria, module 130 could embark upon a
presumably slower and less desirable process of processing the input data via an alternate
mechanism for content-defined chunking, as indicated by the dashed line 150. Such an alternate
mechanism may be provided by a technique using, for example, known functions to determine a
set of chunk points to be used as output for step 140.

[0047] Referring to Fig. 2, an exemplary data management or processing method 200
using multi-mode data boundary point/data block determination is provided, according to at least
one embodiment of the present invention. In this embodiment, at step 210, a data stream or data
is provided as an input to the process. Next, at step 220, pre-selection of boundary points/data
chunk windows is performed. In various embodiments, the pre-selection may be performed
using a fast hash function. Some exemplary fast hash functions may include a boxcar sum
function, a rol-5-xor function, a successive multiple-by-constant and add-byte-value function,
etc. Then, at step 230, a refined subset of boundary points/data chunk windows may be
identified using a slower but better deterministic function, for example, a quality hash function
that identifies hash, cut, boundary, or chunk points that will maximize a preferred characteristic
such as identification of duplicate data in the input data. Some exemplary processes for slower
higher quality hashing may include, for example, a Rabin fingerprint function, a SHA-1 function,
etc., that may incorporate rolling or non-rolling windows. Finally, in step 240, the process may
output a content defined boundary point(s)/data chunk windows that may be used in determining,
for example, hash values for determining data duplication and/or duplication elimination in some
of the embodiments of the present invention.

[0048] Referring to Fig. 3, an exemplary conceptual illustration 300 of data
management or processing using multi-mode data boundary point determination system(s) and
method(s) operates is provided, according to at least one embodiment of the present invention.
In this illustration, it is shown that the first faster selection function (305) and the second slower
selection function (310) may operate together to more quickly identify (processing more
megabytes per second) the desirable hash, cut, boundary or chunk points and/or windows 340

from a large set of possible data points/windows 320. The large set of possible hash, cut,

16

WO 2008/067226 PCT/US2007/085357

boundary or chunk points and/or windows 320 may include, for example, data points or chunks
A (319a), B (312a), C (317a), D (311a), E (315a), I (316a), G (321a), H (313a), [(314a), and J
(318a). The first faster selection function 305 may process the large set of possible data
points/windows 320 to quickly select a reasonably good pre-selected sub-group of desirable hash,
cut, boundary or chunk points and/or windows 330. In this example, data points and/or data
windows that are pre-selected into sub group 330 include data points and/or windows B (312b),
D (311b), E (315b), H (313b), and I (314b). The processing speed of the first faster selection
function 305 may be, for example, approximately 2 times faster than the second slower selection
function 310. However, the data hash, cut, boundary, or break points and/or data windows it
selects may have a lesser performance or may be less desirable than those that would be selected
by the second slower selection function 310, if only the second slower selection function 310
analyzed the data set 320. On the other hand, the first faster selection function 305 may be
capable of providing a reasonable number of data hash, cut, boundary, or break points and/or data
windows 320 so that statistically these points are highly likely to contain many of the data break
points and/or windows that have the highest quality of most desirable characteristics. Thus, the
second slower selection function 310 may process the data points and/or windows including B
(312b), D (311b), E (315b), H (313b), and I (314b) and select group 340 including data points
and/or windows including B (312¢) and D (311c) which have high quality characteristics, for
example, identify most of the desirable data hash, cut, boundary, or break points and/or data
windows. This process may go on repeatedly until all the data in a data set or data stream has
been processed.

[0049] Referring now to Fig. 4, an exemplary method for data management or
processing 400 that uses multi-mode data boundary point determination for identification of
previously encountered data in a data set or stream is provided, according to at least one
embodiment of the invention. First, in step 405 input data may be provided for processing. This
input data 405 may be, for example, a sequence of files or packets of data in binary 1’s and 0’s
that may need to be processed, transmitted or stored in one or more electronic devices such as a
microprocessor, a storage disk, a memory, a computer system, etc. Next, in step 410, a first
selection function may be performed. The first selection function may be a faster selection
function that identifies where one or more logical break or boundary points may be made in the
data set or data stream based on a predetermined data processing objective. In various
embodiments, the first selection process 410 may be a reasonably fast hashing function for

identifying hash, cut, boundary or break points in the data set or data stream, but may offer

17

WO 2008/067226 PCT/US2007/085357

reduced bit scrambling ability. The first selection may identify a subset of all possible hashing,
cut, or break points that may be input to the second selection function. A faster first selection
function may be defined as a function that is able to give a checksum faster based on megabytes
of input data processed per second. Some exemplary first selection functions 410 may include a
boxcar sum function, a rol-5-xor function, a successive multiple-by-constant and add-byte-value
function, etc., some of which have been described in more detail above and some are described in
more detail below. Then, in step 415, a second selection function may be performed having
better performance at selecting the preferred hash, cut, or boundary break points in the data set or
data stream. In various embodiments, this second selection function may be slower than the first
selection function but provide better discriminating and/or accuracy in identifying the preferred
(based on a desired characteristic, for example, duplication identification and/or elimination)
hash, cut, boundary or break points in the data set or data stream. Some exemplary second
selection function 415 may include a CRC32c function, a Rabin fingerprint function, etc, as
described above and may be described in more detail below. In some embodiments, the second
selection function may only consider the subset of hash, cut, boundary or break points in the data
set or data stream identified by the first selection criteria. In this way, compared to a single-
mode selection technique the process may be performed more quickly and take less processing
time.

[0050] In other embodiments, a second selection function may notice that the output of
the first selection function fails to satisfy predetermined criteria and may provide (within the
second selection module) an alternate mechanism to produce the chunk points. Such an alternate
mechanism may operate much more slowly, and may preferably operate only in exceptional
circumstances. For example, if it is noticed that every window of input is selected by the first
selection function, leading to a large number of chunks of size 1, or that the first selection
function is producing chunks at a statistically improbably low rate (compared to expectations
based on random inputs), then the second selection function may decide that the first selection
function was insufficient. In this case, the alternate policy invoked may have recourse to the
original data, (shown as dashed line 417) to produce final chunk or break points using, for
example, a chunking technique using a hash function of better bit-scrambling ability than
provided by the first (fast) selection function.

[0051] Next, one or both of steps 420 or 435 may be performed. At step 420, the most
recent underlying data contained in the chunk may be identified along with previously

encountered underlying data so that they may be compared. At step 420, the most recent

18

WO 2008/067226 PCT/US2007/085357

underlying data may be compared to all previously encountered underlying data to see if there
are any matches. Por example, in various embodiments new underlying data may be compared
with previously stored or transmitted underlying data. If, at step 420, there is a match, then at
step 425 the most recent underlying data that matched previously encountered underlying data is
not outputted. For example, in various embodiments the duplicate may be detected. In that case,
then the duplicate underlying data may be eliminated. On the other hand, if at step 420 the most
recent underlying data does not equate to any of the previously encountered underlying data, then
at step 430 the new underlying data may be outputted (e.g. stored or transmitted).

[0052] At step 435, a value for the selected data chunk(s) or block(s) may be generated
that is indicative of the underlying data contained in the data chunk(s) or block(s). For example,
a hash value may be generated to represent the particular data contained in the data chunk(s) or
block(s). One exemplary function for generating the value may be, for example, a SHA-1
function. Next, at step 440, the most recently generated value from step 435 may be identified
along with previously generated values so that they may be compared. The most recently
generated value is compared to all previously generated and encountered values to see if there are
any matches. For example, in various embodiments a newly generated hash value may be
compared with previously generated and/or stored or transmitted hash values. If, at step 440,
there is a match, then at step 445 the most recently generated value that matched a previously
generated value may not be outputted. For example, in various embodiments the duplicate may
be detected. In that case, then the duplicate data and its generated value may be eliminated, and a
location indicator related to the prior stored hash value showing which location data is stored at
so as to regenerate the eliminated data. On the other hand, if at step 440 the newly generated
value, for example a hash value, does not equate to any of the previously encountered values,
then at step 450 the newly generated value (e.g., hash value) and location indicator may be
outputted and the data which it represents may be outputted (e.g. stored or transmitted). In the
case of a hash value, it may be stored in a hash table for future reference.

[0053] Referring now to Fig. 5, an exemplary hashing technique using content-defined
data blocks or chunks is provided, according to at least one embodiment of the present invention.
Content-defined hashing functions operate by using a predetermined rule for determining at what
point in a data set or stream that a hash, cut, boundary, or chunk point is to be made. This rule,
for example X number of consecutive 0’s or 1’s, when applied to the data set or data stream will
result in random hash, cut, boundary, chunk, or break points and variable length data chunks or

data windows (e.g., C; 525, C; 530, C;5 535, and Cy4 540 are each a different length) that may be

19

WO 2008/067226 PCT/US2007/085357

hashed to produce a hash value. As another example, the content-defined data chunks may be
based on a Rabin function in which fingerprints (unique representations of the underlying data
based on a predetermined calculation) for each sliding window frame may be calculated. If the
value of this calculation matches, for example, the x least significant bits of a constant, then a
hash, cut, boundary, chunk, or break point may be determined and marked (e.g., selected) for
later use in hashing a data block or window. The diagram 500 of Iig. 5 shows a data stream 502
that has been partially broken into chunks C; 525, C; 530, C; 535, and C4 540 using hash, cut,
boundary, chunk, or break points. This may be accomplished by using a sliding window
approach and adding a new byte 510 into a sliding window may be accomplished in two parts.
The window area of the data steam may be portion 520, that may be for example a 64-byte
window. At each step in the sliding window process, the oldest position of the sliding window
may be subtracted and a new one added. The value for the oldest byte bjgq 505 in a first window
515 may be subtracted from the fingerprint and the value of the new byte b; 510 may then be
added to the data fingerprint to form a second window 518. This approach may be made possible
by having the fingerprint commutative over addition as in the simple boxcar function, or by more
complicated mechanisms specific to the window size and the fingerprint calculation chosen for
the sliding window frames. The process will continue over time as the new data 555 is provided
to the process over time as shown by arrow 560. When subtracting the oldest bytes over time,
speed and performance of the calculation may be improved by using pre-computed tables. As
noted above, this Rabin fingerprint may be used as a second selection function to find better
performance break points by virtue of its better bit-scrambling ability, and may be slower than
the first selection function. However, there are alternative functions which may also have
excellent bit-scrambling ability and may be used as the second selection function. For example,
the SHA-1 function may be used, or specific versions of Rabin fingerprinting, such as the
CR(C32c hash, may be used.

[0054] Referring now to Fig. 6, an exemplary first selection function using a boxcar
sum technique is illustrated 600, according to at least one embodiment. In this example, a boxcar
sum function is used to determine hash, cut, boundary, chunk, or break points in a data set or data
stream. In this case, again a sliding window approach may be used. Further, to make the process
fast, the old data blocks that are subtracted and the new data blocks that are added may simply be
a predetermined number of bytes or bits of data and the calculation may be simply a sum of
adding up all the data values in each of the data blocks such that: Boxcar Sum =}’ N-bytes from

i=1 to n. As such, to calculate a new boxcar sum, the earliest group of data sum may be

20

WO 2008/067226 PCT/US2007/085357

subtracted and the most recent group of data summation may be added. As shown, a data set or
data stream 605 is provide for hashing and is comprised of groups of data a, b, ¢, d, and e. Data
groups a, b, ¢, d, and e may be of equal bit or byte length, for example, 64 bits. The first window
610 may be made up of data groups a, b, and c. Data group “a” may have a sum total value (e.g.,
the sum of each value of each of the bits in group a) of, for example, 15. Data group “b” may
have a sum total value of, for example, 10. Data group “c” may have a sum equal to 5. Data
group “d” may have a sum total value of, for example, 10. Data group “e” may have a sum total
value of, for example, 5. Given these values for the various data groups in the data stream or
data set, the boxcar sum of window 610 may be 15+10+5 = 30. Then, the next boxcar sum may
be calculated as the prior calculated sum minus the earliest group of data a 640, plus the newest
group of data d 650: 30-15+10 = 25. Then, the next boxcar sum may be calculated as the prior
calculated sum minus the earliest group of data b 6550, plus the newest group of data e 660: 25-
10+5 = 20. If the function is set to make hash, cut, boundary, chunk, or break points where the
sum is equal to 25, than the hash, cut, boundary, chunk, or break point subset would in this short
example includes points 670. As can be seen, this may be a particularly simple and fast way to
perform a first selection function for hashing of data, however, the quality of the hash points may
be somewhat lower due to the lack of sophistication. As such, the boxcar sum approach can
develop a pre-selection subset of potential hash, cut, boundary, chunk, or break points.

[0055] Referring to Figs. 7a and 7b, exemplary illustrations of data windows, blocks or
chunks are provided for an exemplary hashing technique using content-defined data blocks or
chunks, according to at least one embodiment of the present invention. Fig. 7a shows chunking
700 at various points in the data stream where the fingerprint or hash value for various windows
equals a predetermined value. Various functions may be applied with rolling, moving or sliding
windows. This example may be indicative of either a faster or a slower selection function
involving a rolling or sliding window, such as the boxcar sum or the Rabin fingerprint functions,
and the criterion of equality to a predetermined value could be replaced with another criterion
having some desired probability of occurrence. In this example, various windows (705a — 735a)
in a sliding window function are illustrated in bold and organized as a plurality of groups of data
in the data set or stream having data groups a, b, ¢, d, e, f, g, h, i, and j. At various points in time,
a new window is formed and evaluated against a predetermined value to determine if a hash, cut,
boundary, chunk, or break point should be made. In this example, the predetermined value
results in a hash, cut, boundary, chunk, or break point as identified at the end 740 of the second

window 710a. As such, a hash value may be made of the data in the sum of data blocks a, b, c,

21

WO 2008/067226 PCT/US2007/085357

and d. Then after performing hashing at two more sliding time windows, third window 715a and
fourth window 720a, a hash, cut, boundary, chunk, or break point is identified at the end 750 of
the fourth window 720a. As such, a hash value may be made of the data in the sum of data
blocks e and f. Then after calculating the value of the data in the windows of two more sliding
time windows, fifth window 725a and sixth window 730a, a hash, cut, boundary, chunk, or break
point is identified at the end 760 of the sixth window 730a. As such, a hash value may be made
of the data in the sum of data blocks g and h. As shown, the process continues to seventh
window 735a without finding another value match and resulting hash, cut, boundary, chunk, or
break point.

[0056] Fig. 7b shows chunking 765 at various points in the data stream where the
fingerprint or hash value for various windows equals a predetermined value. This example
illustrates how the hash, cut, boundary, chunk, or break point will change due to the introduction
of a new data group z has been inserted within the earlier indicated data set or stream having data
groups a, b, ¢, d, e, f, g, h, i, and j. As can be seen from this illustration, the introduction of a
new data group may result in the elimination of one hash, cut, boundary, chunk, or break point
that occurred before in the fourth window 720b; in this case no hash, cut, boundary, chunk, or
break point is selected at 780. In this example, various windows (705b — 735b) in a sliding
window function are illustrated in bold and organized as a plurality of groups of data in the data
set or stream having data groups a, b, ¢, d, e, f, g, h, i, and j, with new data group z inserted
between e and f. At various points in time, a new window is formed and evaluated against a
predetermined value to determine if a hash, cut, boundary, chunk, or break point should be made.
In this example, the predetermined value results in a hash, cut, boundary, chunk, or break point is
identified at the end 770 of the second window 710b. As such, a hash value may be made of the
data in the sum of data blocks a, b, ¢, and d. Then after performing hashing at two more sliding
time windows, third window 715b and fourth window 720b, the new data group z is encountered
and a hash, cut, boundary, chunk, or break point is not identified at the end 780 of the fourth
window 720b. Then after calculating the value of the data in the windows of three more sliding
time windows (because the sliding window covers three data groups), fifth window 725b, sixth
window 730b, and seventh window 735b, a hash, cut, boundary, chunk, or break point is
identified at the end 790 of the seventh window 735b. As such, a new hash value may be made
of the data in the sum of data blocks e, z, f, g and h. As shown, the insertion of a new data group
z may change the output of the selection function at up to 3 locations because the change in the

underlying data is limited to only a single data group and the sliding window includes three data

22

WO 2008/067226 PCT/US2007/085357

groups. In Fig. 7, it is assumed that the effect was to make all three affected windows inactive
during the selection criteria “equal to a predetermined value”. Based on this example for a
sliding window functions, one can appreciate how a change in data or a different data set can
result in varying hash, cut, boundary, chunk, or break points. In various embodiments, once a
hash, cut, boundary, chunk, or break point is identified, in the case of a faster selection function
then a subset of hash, cut, boundary, chunk, or break points may be determined using, for
example, a boxcar sum function with a rolling, sliding or moving window as described above,
then a slower but better performing second selection function may be used. For example, a
Rabin fingerprint function may then be performed using the subset of hash, cut, boundary, chunk,
or break points pre-selected as its starting point, so as to reduce processing time while keeping a
reasonable quality for hash, cut, boundary, chunk, or break points selection.

[0057] A particularly good example of a hashing function for the second selection
function is the CRC32c. The CRC32c hashing function is a particular implementation of a Rabin
fingerprint and may be found in, for example, J. Stone, R. Stewart and D. Otis, "Stream Control
Transmission Protocol (SCTP) Checksum Change", The Internet Society, RFC 3309, Sept. 2002,
pages 1-17. This may illustrate the CRC32c¢ standard and gives a sample implementation that
describes this hash function. The CRC32c¢ recommendation actually is a specific implementation
of a hash based on polynomial division, so it may somewhat be considered a particular instance
of a Rabin hash. The CRC32c is typically a 32-bit code and may specify a specific polynomial
and method, more or less. These functions may be modified for C++ language and may be
modified to supports 64-bit polynomials. The code for the second function may be generic (e.g.,
off-the-shelf) or hardwired. If it is “generic” it may turn out to be somewhat slower.

[0058] As noted above, in various embodiments the present invention may be used for
data identification and duplicate data elimination. As such, subsequent to determining preferred
hash, cut, boundary, chunk, or break points, a hash value for the determined chunk of data may
be produced and compared with previously stored has values. In various embodiments, the
present invention may be particularly applicable to data duplication elimination. Further, as also
noted above, the present invention may be equally applicable to various electronic systems
including wireless networks, the Internet, intranets, computer systems and networks with a string
of data that is processed, stored, and/or transmitted and the use of hashing can prove useful. A
description is provided below of some of the various systems upon which the present invention

may operate.

23

WO 2008/067226 PCT/US2007/085357

[0059] Asnoted, in various embodiments, the system(s) and method(s) provided
herein may be implemented using a computing device, for example, a personal computer, a
server, a mini-mainframe computer, and/or a mainframe computer, etc., programmed to execute a
sequence of instructions that configure the computer to perform operations as described herein.
In various embodiments, the computing device may be, for example, a personal computer
available from any number of commercial manufacturers such as, for example, Dell Computer of
Austin, Texas, running, for example, the Windows™ XP™ and Linux operating systems, and
having a standard set of peripheral devices (e.g., keyboard, mouse, display, printer). Fig. 8is a
functional block diagram of one embodiment of a computing device 800 that may be useful for
hosting software application programs implementing the system(s) and method(s) described
herein. Referring now to Fig. 8, the computing device 800 may include a processing unit 805,
communications interface(s) 810, storage device(s) 815, a user interface 820, operating system(s)
instructions 835, application executable instructions/API 840, all provided in functional
communication and may use, for example, a data bus 850. The computing device 800 may also
include system memory 855, data and data executable code 865, software modules 860, and
interface port(s). The Interface Port(s) 870 may be coupled to one or more input/output device(s)
875, such as printers, scanner(s), all-in-one printer/scanner/fax machines, etc. The processing
unit(s) 805 may be one or more microprocessor(s) or microcontroller(s) configured to execute
software instructions implementing the functions described herein. Application executable
instructions/APIs 840 and operating system instructions 835 may be stored using computing
device 800 on the storage device(s) 815 and/or system memory 855 that may include volatile and
nonvolatile memory. Application executable instructions/APIs 840 may include software
application programs implementing the present invention system(s) and method(s). Operating
system instructions 835 may include software instructions operable to control basic operation and
control of the processor 805. In one embodiment, operating system instructions 835 may
include, for example, the XP™ operating system available from Microsoft Corporation of
Redmond, Washington.

[0060] Instructions may be read into a main memory from another computer-readable
medium, such as a storage device. The term “computer-readable medium” as used herein may
refer to any medium that participates in providing instructions to the processing unit 805 for
execution. Such a medium may take many forms, including, but not limited to, non-volatile
media, volatile media, and transmission media. Non-volatile media may include, for example,

optical or magnetic disks, thumb or jump drives, and storage devices. Volatile media may

24

WO 2008/067226 PCT/US2007/085357

include dynamic memory such as a main memory or cache memory. Transmission media may
include coaxial cable, copper wire, and fiber optics, including the connections that comprise the
bus 850. Transmission media may also take the form of acoustic or light waves, such as those
generated during Radio Frequency (RF) and Infrared (IR) data communications. Common forms
of computer-readable media include, for example, floppy disk, a flexible disk, hard disk,
magnetic tape, any other magnetic medium, Universal Serial Bus (USB) memory stick™, a CD-
ROM, DVD, any other optical medium, a RAM, a ROM, a PROM, an EPROM, a Flash EPROM,
any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium
from which a computer can read.

[0061] Various forms of computer-readable media may be involved in carrying one or
more sequences of one or more instructions to the processing unit(s) 805 for execution. For
example, the instructions may be initially borne on a magnetic disk of a remote computer(s) 885
(e.g., a server, a PC, a mainframe, etc.). The remote computer(s) 885 may load the instructions
into its dynamic memory and send the instructions over a one or more network interface(s) 880
using, for example, a telephone line connected to a modem, which may be an analog, digital,
DSL or cable modem. The network may be, for example, the Internet, and Intranet, a peer-to-
peer network, etc. The computing device 800 may send messages and receive data, including
program code(s), through a network of other computer(s) via the communications interface 810,
which may be coupled through network interface(s) 880. A server may transmit a requested code
for an application program through the Internet for a downloaded application. The received code
may be executed by the processing unit(s) 805 as it is received, and/or stored in a storage device
815 or other non-volatile storage 855 for later execution. In this manner, the computing device
800 may obtain an application code in the form of a carrier wave.

[0062] The present system(s) and method(s) may reside on a single computing device or
platform 800, or on multiple computing devices 800, or different applications may reside on
separate computing devices 800. Application executable instructions/APIs 840 and operating
system instructions 835 may be loaded into one or more allocated code segments of computing
device 800 volatile memory for runtime execution. In one embodiment, computing device 800
may include system memory 855, such as 512 MB of volatile memory and 80GB of nonvolatile
memory storage. In at least one embodiment, software portions of the present invention
system(s) and method(s) may be implemented using, for example, C programming language

source code instructions. Other embodiments are possible.

25

WO 2008/067226 PCT/US2007/085357

[0063] Application executable instructions/APIs 840 may include one or more
application program interfaces (APIs). The system(s) and method(s) of the present invention
may use APIs 840 for inter-process communication and to request and return inter-application
function calls. For example, an API may be provided in conjunction with a database 865 in order
to facilitate the development of, for example, SQL scripts useful to cause the database to perform
particular data storage or retrieval operations in accordance with the instructions specified in the
script(s). In general, APIs may be used to facilitate development of application programs which
are programmed to accomplish some of the functions described herein.

[0064] The communications interface(s) 810 may provide the computing device 800 the
capability to transmit and receive information over the Internet, including but not limited to
electronic mail, HTML or XML pages, and file transfer capabilities. To this end, the
communications interface 810 may further include a web browser such as, but not limited to,
Microsoft Internet Explorer™ provided by Microsoft Corporation. The user interface(s) 820 may
include a computer terminal display, keyboard, and mouse device. One or more Graphical User
Interfaces (GUIs) also may be included to provide for display and manipulation of data contained
in interactive HTML or XML pages.

[0065] Referring now to Fig. 9, a network 900 upon which the system(s) and method(s)
may operate, is illustrated. As noted above, the system(s) and method(s) of the present patent
application may be operational on one or more computer(s). The network 900 may include one
or more client(s) 905 coupled to one or more client data store(s) 910. The one or more client(s)
may be coupled through a communication network (e.g., fiber optics, telephone lines, wireless,
etc.) to the communication framework 930. The communication framework 230 may be, for
example, the Internet, and Intranet, a peer-to-peer network, a LAN, an ad hoc computer-to-
computer network, etc. The network 900 may also include one or more server(s) 915 coupled to
the communication framework 930 and coupled to a server data store(s) 920. The present
invention system(s) and method(s) may also have portions that are operative on one or more of
the components in the network 900 so as to operate as a complete operative system(s) and
method(s).

[0066] While embodiments of the invention have been described above, it is evident
that many alternatives, modifications and variations will be apparent to those skilled in the art. In
general, embodiments may relate to the automation of these and other business processes in
which analysis of data is performed. Accordingly, the embodiments of the invention, as set forth

above, are intended to be illustrative, and should not be construed as limitations on the scope of

26

WO 2008/067226 PCT/US2007/085357

the invention. Various changes may be made without departing from the spirit and scope of the
invention. Accordingly, the scope of the present invention should be determined not by the
embodiments illustrated above, but by the claims appended hereto and their legal equivalents

[0067] All publications, patents, and patent applications cited herein are hereby

incorporated by reference in their entirety for all purposes.

27

WO 2008/067226 PCT/US2007/085357

CLAIMS

We claim:

1. A method of data management, comprising the steps of:

pre-selecting a portion of a plurality of windows of data in a data stream using a first
selecting function; and

selecting a subset of the portion of the plurality of windows pre-selected using a second

selecting function.

2. The method of claim 1, wherein the first selecting function is faster at selecting a data

block boundary than is the second selecting function.

3. The method of claim 2, wherein the first selecting function is faster at window selection

than is the second selecting function.

4, The method of claim 1, wherein the first selecting function includes a boxcar sum

function, an MLCG function, or a rolN-xor function.

5. The method of claim 4, wherein the first selecting function is the boxcar sum function and

the boxcar sum function is coupled with a selection criterion on the value of the boxcar sum.

6. The method of claim 1, wherein the second selecting function includes a Rabin

fingerprint, a SHA-1 function, or a CRC32c function.

7. The method of claim 1, wherein the first selecting function includes a rolling, sliding or

moving window function.

8. The method of claim 1, wherein the windows are utilized for defining data groups for

hashing and speed of determining break points in the data stream is increased.

0. The method of claim 1, further comprising the step of:

28

WO 2008/067226 PCT/US2007/085357

generating a value for a data chunk size determined by one or more chunk points of the

subset, wherein the generated value is indicative of underlying data contained in the data chunk.

10. The method of claim 9, further comprising the step of:
comparing the generated value with one or more previously generated values to determine

if the generated value equals the one or more previously generated values.

11. The method of claim 10, further comprising the steps of:
determining that there is data duplication present; and

halting further processing of the data in a data chunk determined to have duplicate data.

12. The method of claim 10, further comprising the step of:

storing the generated value if there is no data duplication.

13. The method of claim 1, further comprising the step of comparing underlying data
contained in a new window of data or data chunk selected by the second selection function with
previously encountered underlying data from previously defined window(s) of data or data

chunk(s).

14. The method of claim 13, further comprising the steps of:

outputting the underlying data contained in the new window of data if it does not equal
the previously encountered underlying data; and

not outputting the underlying data contained in the new data chunk if it does equal the

previously encountered underlying data.

15. The method of claim 1, further comprising the step of generating a value for a window of

data or data chunk indicative of underlying data contained in the window of data or data chunk.

16. The method of claim 15, further comprising the step of comparing the generated value

with previously generated or encountered value(s).

17. The method of claim 16, further comprising the steps of:

29

WO 2008/067226 PCT/US2007/085357

outputting the generated value if it does not equal the previously generated or
encountered value(s); and
not outputting the generated value if it does equal the previously generated or

encountered value(s).

18. A method of determining boundary points in a data stream for data management,
comprising:

pre-selecting a portion of a plurality of boundary points in a data stream using a first
selecting function;

selecting a subset of the portion of the plurality of boundary points pre-selected using a
second selecting function; and

generating a value for a chunk of data as determined by the subset of the portion of the

plurality of boundary points.

19. The method of claim 18, further comprising the step of comparing the generated value

with one or more stored value(s), so as to detect a duplicate or store the generated value.

20. The method of claim 19, wherein generating a value is performed by hashing.

21. The method of claim 20, further comprising the step of eliminating duplicate data found

by hashing the data contained in a chunk of data defined by the boundary point(s).

22. A data processing system, comprising:

a first selection function module configured to pre-select a first set of data break points or
windows; and

a second selection function module configured to select a subset of the pre-selected data
break points or windows, wherein the first selection function module processes the data break

points or windows faster than the second selection function module.

23. The data processing system of claim 22, wherein the first selection function module
includes a boxcar sum function and the second selection function module includes a Rabin

function.

30

WO 2008/067226 PCT/US2007/085357

24. The data processing system of claim 23, wherein the data processing system is a hashing

system and outputs content-defined data block(s) or chunk point(s).

25. A data processing system, comprising:

means for pre-selecting a first set of data break points or windows; and

means for selecting and outputting a subset of the pre-selected data break points or
windows, wherein the means for pre-selecting processes the data break points or windows faster

than the means for selecting.

26. The data processing system of claim 25, further comprising means for generating a value

for each of the data break point(s) or window(s) of the subset.

27. The data processing system of claim 26, wherein the means for pre-selecting a first set of
data break points or windows performs a rolling boxcar sum function, the means for selecting
and outputting a subset of the pre-selected data break points or windows performs a Rabin
function, and the means for generating a value performs a SHA-1 function.

28. The data processing system of claim 27, wherein the generated value is a hash value.

29. The data processing system of claim 25, wherein the data processing system is a hashing

system and outputs content-defined data block(s) or chunk point(s).

31

WO 2008/067226

PCT/US2007/085357

Input: Faster Boundary Slower Boundary Output: Content
Dota [Point/Data Block Point/Data Block —| Defined Block/
Window Module Window Module Chunk Points
110 120 130 140
Fig. 1
200
N Input: 210
\ Data [
Stream
Preselect Boundary Points/
——"| Data Chunk Windows Using
220 Fast Hash Function
Identify Refined Subset of Boundary 230
Points/Data Chunk Windows Usinga |

240

Slower But Better Deterministic
Quality Hash Function

]

Output: Content Defined Boundary
Points/Data Chunk Windows

Fig. 2

PCT/US2007/085357

WO 2008/067226

¢ "B
74
oee
egie
qsie
azie e
©L8) o bie
uofjouny Gog
oLLe uonos|es uopoun4 BZLE
JaMoIg uondaleg
puoosg Jajse Jsild
alie eLze egle
ozLE
ayiLe gele eyle
e
6L€ ecle
ore
AN
N
00t

WO 2008/067226

PCT/US2007/085357

Input data

405

}

|

: l

l

|

: First Selection
Function

410

|
i
|
I
l
!
[
|

Function

Second Selection

~— 415

435

v S

Chunk Indicative of Underlying

Generate Value For Data

Data Contained in Chunk

420

Underlying Data
Contained in Chunk

Previously encountered
Underlying Data?

440

Generated Value

Previously encountered
Value(s)?

YES NO YES NO
Y v v Y
Do not output Output Do not output Output
old underlying data | | new underlying data old value new generated value

-

425

e

430
Fig. 4

N

450

N

445

PCT/US2007/085357

WO 2008/067226

G b4

1949
G
GGg§ . 0gS 0vS 1% 0€sS 527G
—— W 6])) g z0s
o TS : //z/;////
\ S~—l
02s \ ~~—__
\ II..II
/ ’Il'l
/ /II/II
A 1 \ o1 .
I TR
0Ls | | _ |
g9 /l..

o
O
O

8lg

PCT/US2007/085357

WO 2008/067226

099

0.9

609 ‘ 019 ov9

PCT/US2007/085357

WO 2008/067226

(egel)

0GL

MOPUIA

° 9 € T yuanesg
(eogl)

o) q e —— MOPUIAA UIXIS
(egz2)

) q e —— MOPUIM Ylid
(eoz.)

) q e —— MOPUIA UHNO 4

<

(eg12)
—— MOPUIA PAIYL

<

(e0L2)

MOPUIAA
puoosag

ov.

— (es02)

—— MOPUIM }Sil4

AN
007

PCT/US2007/085357

(ase2)

MOPUIAN
Yuaneg

081

(aog2)
— MOPUIN YIXIS

(agzl)
— MOPUIA YUY

(qoz2)
-—MOPUIAA Y3No4

(as1)
—— MOPUIM PAIYL

(qoL2)

0L

MOPUIAA

[puooeg

WO 2008/067226

, (950.) 4/
{ I B y4 =) 2 MOPUIAA 1811 —
IDEDE 3 BN R

WO 2008/067226 PCT/US2007/085357
&0 820
805
\ \/ /f
User Interface
(Display, Processing
Keyboard, Unit(s)
Mouse)
835 | | Operaing | P |
I |
I s s—— Module(s) |
_ _Systems)_J LN a0
&
System
Memory
Volatile / Non —
Volatile \ 855
P 4 f
880 R - N S ,
L . O T {
Pl B W ™
| Bus| 777
" 850 ~)
Network ~— 870
interface(s) -
T Communications Interface Input/
‘ Interface(s) Port(s) Output
Device(s)
Remote -
Computer(s) 810 \
875
| 885
\ Storage 8
Device
I 890

Fig. 8

WO 2008/067226 PCT/US2007/085357

900
N

930

Communication

Framework
910
920

hN—————————

Server

Client Data Data

Store(s) Store(s)

—— \‘T"'J
Client(s) Server(s)
905 915

Fig. 9

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2007/085357

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 7/24(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 : GO6F. HO3M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models since 1975
Japanese Utility models and applications for Utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS(KIPO internal) "hash", "data", "redundancy", "identification”, "elimination"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 20020169934 A1(OLIVER KRAPP et al) 14 November 2002 1-29
See abstract; figures 1-11.

A US 5990810 A(ROSS NEIL WILLIAMS) 23 November 1999 1-29
See abstract; figures 4-26.

A US 6828925 B2(STEVEN MCCANNE et al.) 7 December 2004 1-29
See abstract; figures 3-14.

A US 20040225655 A1(GREGORY HAGAN MOULTON) 11 November 2004 1-29
See abstract; figures 3-14.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
29 FEBRUARY 2008 (29.02.2008) 29 FEBRUARY 2008 (29.02.2008)
Name and mailing address of the ISA/KR Authorized officer i
' Korean Intellectual Property Office =
Government Complex-Daejeon, 139 Seonsa-ro, Seo- HAN, Seon Kyoung
. gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8523

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2007/085357

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 20020169934 A1 14.11.2002 EP 01244221 A1 25.09.2002
US 6889297 B2 03.05.2005

US 5990810 A 23.11.1999 AU 123295 AO 16.03. 1995
AU 239295 AO 11.05. 1995
AU 4659396 A1 04.09. 1996
WO 9625801 A1l 22.08.1996

US 6828925 B2 07.12.2004 US 20040174276 A1l 09.09.2004
US 2005162288 A1l 28.07.2005
US 2006061495 A1 23.03.2006
US 2007018858 A1 25.01.2007
US 6961009 B2 01.11.2005
US 7116249 B2 03.10.2006

US 20040225655 A1 11.11.2004 us 7272602 B1 18.09.2007

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - wo-search-report
	Page 43 - wo-search-report

