wO 2016/040015 A1 I} 0N OO OO 00 0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/040015 A1l

17 March 2016 (17.03.2016) WIPO I PCT
(51) International Patent Classification: (74) Agents: HANSEN, ROBERT et al.; The Marbury Law
GO6F 11/30 (2006.01) GO6F 11/34 (2006.01) Group, PLLC, 11800 Sunrise Valley Drive 15th Floor, Re-
(21) International Application Number: ston, Virginia 20191 (US).
PCT/US2015/047489 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
28 August 2015 (28.08.2015) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
14/483,800 11 September 2014 (11.09.2014) US PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, 8@, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(71) Applicant: QUALCOMM INCORPORATED [US/US]; TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
ATTN: International IP Administration, 5775 Morchouse . o
Drive, San Diego, California 92121-1714 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: SALAJEGHEH, Mastooreh; 5775 Morehouse GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

Drive, San Diego, California 92121-1714 (US). CHEN,
Yin; 5775 Morehouse Drive, San Diego, California 92121-
1714 (US).

TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,

[Continued on next page]

(54) Title: METHODS AND SYSTEMS FOR AGGREGATED MULTI-APPLICATION BEHAVIORAL ANALYSIS OF MO-
BILE DEVICE BEHAVIORS

302~

304~

306~

308~ (or family of classifier models) to generate analysis

310~

32~

314~

316~

(57) Abstract: A computing device processor may be configured with pro-
cessor-executable instructions to implement methods of using behavioral ana-

yo

Monitor the activities of software applications
operating on the device

Collect behavior information for monitored activities
of each of the software applications

Generate one or more behavior vectors based on
the collected behavior information

v

Apply the behavior vectors to a classifier madel

information

v

Use the analysis information to identify a
relationship between the software applications

v

Identify the software applications that should be
evaluated together as a group based on the
identified relationship

v

Aggregate the behavior information and/for analysis
results of the identified software applications

v

Use the aggregated analysis results to determine
whether the collective behavior of the software
applications is benign or non-benign

FIG. 3

lysis and machine learning techniques to evaluate the collective behavior of two
or more sottware applications operating on the device. The processor may be
configured to monitor the activities of a plurality of software applications oper-

ating on the device, collect behavior information for each monitored activity,
¥ generate a behavior vector based on the collected behavior information, apply
the generated behavior vector to a classitier model to generate analysis informa-
tion, and use the analysis information to classify a collective behavior of the
i plurality of software applications.

WO 2016/040015 A1 |IWAT 00N T 0TSO0 O O

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, __
GW, KM, ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

Declarations under Rule 4.17:

with international search report (Art. 21(3))

WO 2016/040015 PCT/US2015/047489

TITLE

Methods and Systems for Aggregated Multi-Application Behavioral Analysis of

Mobile Device Behaviors
BACKGROUND

[0001] Cellular and wireless communication technologies have seen explosive growth
over the past several years. Wireless service providers now offer a wide array of
features and services that provide their users with unprecedented levels of access to
information, resources and communications. To keep pace with these enhancements,
consumer electronic devices (e.g., cellular phones, watches, headphones, remote
controls, etc.) have become more powerful and complex than ever, and now
commonly include powerful processors, large memories, and other resources that
allow for executing complex and powerful software applications on their devices.
These devices also enable their users to download and execute a variety of software
applications from application download services (e.g., Apple® App Store, Windows®
Store, Google® play, etc.) or the Internet.

[0002] Due to these and other improvements, an increasing number of mobile and
wireless device users now use their devices to store sensitive information (e.g., credit
card information, contacts, etc.) and/or to accomplish tasks for which security is
important. For example, mobile device users frequently use their devices to purchase
goods, send and receive sensitive communications, pay bills, manage bank accounts,
and conduct other sensitive transactions. Due to these trends, mobile devices are
quickly becoming the next frontier for malware and cyber attacks. Accordingly, new
and improved security solutions that better protect resource-constrained computing

devices, such as mobile and wireless devices, will be beneficial to consumers.

WO 2016/040015 PCT/US2015/047489

SUMMARY

[0003] The various embodiments include methods of using behavioral analysis or
machine learning techniques to evaluate the collective behavior of two or more
software applications operating on a computing device. The methods may include
analyzing a behavior in a computing device by monitoring, in a processor of the
computing device, activities of a plurality of software applications, collecting behavior
information for monitored activities of each of the plurality of software applications,
generating a behavior vector based on the collected behavior information, applying the
generated behavior vector to a classifier model to generate analysis information, and
using the analysis information to evaluate a collective behavior of the plurality of

software applications.

[0004] In an embodiment, generating the behavior vector based on the collected
behavior information may include generating an information structure that
characterizes the collective behavior of the plurality of software applications. In a
further embodiment, generating the behavior vector based on the collected behavior
information may include generating an information structure that characterizes a
relationship between the plurality of software applications. In a further embodiment,
monitoring the activities of the plurality of software applications may include
monitoring interactions between the plurality of software applications, and using the
analysis information to evaluate the collective behavior of the plurality of software
applications may include identifying two or more software applications that should be

evaluated together as a group.

[0005] In a further embodiment, the method may include monitoring additional
activities of the identified two or more software applications to collect additional
behavior information, generating a collective behavior vector that characterizes a
collective behavior of the identified two or more software applications based on the
collected additional behavior information, applying the generated collective behavior

vector to the classifier model to generate additional analysis information, and using

WO 2016/040015 PCT/US2015/047489

the additional analysis information to determine whether the collective behavior of the
identified two or more software applications is non-benign. In a further embodiment,
the method may include applying behavior vectors that each characterize a behavior of
the identified two or more software applications to the classifier model to generate
additional analysis information, aggregating the additional analysis information
generated for each behavior vector, and using the analysis results to determine
whether a collective behavior of the identified two or more software applications is

non-benign.

[0006] In a further embodiment, applying the generated behavior vector to the
classifier model to generate analysis information may include applying the generated
behavior vector to a multi-application classifier model. In a further embodiment,
generating the behavior vector based on the collected behavior information may
include generating a plurality of behavior vectors that each characterize a behavior of
one of the plurality of software applications, and applying the generated behavior
vector to the multi-application classifier model may include applying each of the
behavior vectors to the multi-application classifier model to generate the analysis

information.

[0007] In a further embodiment, applying the generated behavior vector to the multi-
application classifier model may include evaluating each test condition included in the
multi-application classifier model, computing a weighted average of each result of
evaluating test conditions in the multi-application classifier model, and determining
whether the collective behavior is non-benign based on the weighted average. In a
further embodiment, using the analysis information to classify the collective behavior
of the plurality of software applications may include categorizing the monitored
plurality of software applications, profiling each category of the plurality of software
applications, and generating performance numbers for each category of the plurality of

software applications.

WO 2016/040015 PCT/US2015/047489

[0008] Further embodiments may include a computing device having a processor
configured with processor-executable instructions to perform operations that include
monitoring activities of a plurality of software applications, collecting behavior
information for monitored activities of each of the plurality of software applications,
generating a behavior vector based on the collected behavior information, applying the
generated behavior vector to a classifier model to generate analysis information, and
using the analysis information to evaluate a collective behavior of the plurality of

software applications.

[0009] In an embodiment, the processor may be configured with processor-executable
instructions to perform operations such that generating the behavior vector based on
the collected behavior information may include generating an information structure
that characterizes the collective behavior of the plurality of software applications. In a
further embodiment, the processor may be configured with processor-executable
instructions to perform operations such that generating the behavior vector based on
the collected behavior information may include generating an information structure
that characterizes a relationship between the plurality of software applications. In a
further embodiment, the processor may be configured with processor-executable
instructions to perform operations such that monitoring the activities of the plurality of
software applications may include monitoring interactions between the plurality of
software applications, and such that using the analysis information to evaluate the
collective behavior of the plurality of software applications may include identifying

two or more software applications that should be evaluated together as a group.

[0010] In a further embodiment, the processor may be configured with processor-
executable instructions to perform operations that further include monitoring
additional activities of the identified two or more software applications to collect
additional behavior information, generating a collective behavior vector that
characterizes a collective behavior of the identified two or more software applications

based on the collected additional behavior information, applying the generated

WO 2016/040015 PCT/US2015/047489

collective behavior vector to the classifier model to generate additional analysis
information, and using the additional analysis information to determine whether the

collective behavior of the identified two or more software applications is non-benign.

[0011] In a further embodiment, the processor may be configured with processor-
executable instructions to perform operations that further include applying behavior
vectors that each characterize a behavior of the identified two or more software
applications to the classifier model to generate additional analysis information,
aggregating the additional analysis information generated for each behavior vector,
and using the analysis results to determine whether a collective behavior of the
identified two or more software applications is non-benign. In a further embodiment,
the processor may be configured with processor-executable instructions to perform
operations such that applying the generated behavior vector to the classifier model to
generate analysis information may include applying the generated behavior vector to a

multi-application classifier model.

[0012] In a further embodiment, the processor may be configured with processor-
executable instructions to perform operations such that generating the behavior vector
based on the collected behavior information may include generating a plurality of
behavior vectors that each characterize a behavior of one of the plurality of software
applications, and applying the generated behavior vector to the multi-application
classifier model may include applying each of the behavior vectors to the multi-

application classifier model to generate the analysis information.

[0013] In a further embodiment, the processor may be configured with processor-
executable instructions to perform operations such that applying the generated
behavior vector to the multi-application classifier model may include evaluating each
test condition included in the multi-application classifier model, computing a
weighted average of each result of evaluating test conditions in the multi-application
classifier model, and determining whether the collective behavior is non-benign based

on the weighted average.

WO 2016/040015 PCT/US2015/047489

[0014] In a further embodiment, the processor may be configured with processor-
executable instructions to perform operations such that using the analysis information
to classify the collective behavior of the plurality of software applications may include
categorizing the monitored plurality of software applications, profiling each category
of the plurality of software applications, and generating performance numbers for each

category of the plurality of software applications.

[0015] In a further embodiment, the computing device may include a behavior
observer hardware module configured to monitor use of computing device memory
and hardware events at a hardware level and output collected behavior information to
the processor. In such an embodiment, the processor may be configured with
processor-executable instructions to perform operations such that monitoring activities
of a plurality of software applications includes receiving the collected behavior

information from the behavior observer hardware module.

[0016] Further embodiments may include a non-transitory computer readable storage
medium having stored thereon processor-executable software instructions configured
to cause a computing device processor to perform operations of the aspect methods
described above. Further embodiments may include a computing device having

means for performing functions of operations of the aspect methods described above.
BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The accompanying drawings, which are incorporated herein and constitute part
of this specification, illustrate exemplary aspects of the invention, and together with
the general description given above and the detailed description given below, serve to

explain the features of the invention.

[0018] FIG. 1 is an architectural diagram of an example system on chip suitable for

implementing the various embodiments.

WO 2016/040015 PCT/US2015/047489

[0019] FIG. 2 is a block diagram illustrating example logical components and
information flows in an embodiment mobile device configured to determine whether a

particular mobile device behavior is benign or non-benign.

[0020] FIG. 3 is a process flow diagram illustrating a method of evaluating the
collective behavior of two or more software applications in accordance with an

embodiment.

[0021] FIG. 4 is a process flow diagram illustrating a method of determining the
relationship between two or more software applications in accordance with an

embodiment.

[0022] FIG. 5 1s a process flow diagram illustrating a method of determining whether
the collective behavior of two or more software applications is non-benign in

accordance with an embodiment.

[0023] FIG. 6 1s a process flow diagram illustrating a method of determining whether
the collective behavior of two or more software applications is non-benign in

accordance with another embodiment.

[0024] FIG. 7 is a process flow diagram illustrating another embodiment mobile
device method of generating an application-based or lean classifier models in the

mobile device.

[0025] FIG. 8 is an illustration of example boosted decision stumps that may be
generated by an embodiment server processor and used by a device processor to

generate lean classifier models.

[0026] FIG. 9 is a block diagram illustrating example logical components and
information flows in an observer module configured to perform dynamic and adaptive

observations in accordance with an embodiment.

WO 2016/040015 PCT/US2015/047489

[0027] FIG. 10 is a block diagram illustrating logical components and information
flows in a computing system implementing observer daemons in accordance with

another embodiment.

[0028] FIG. 11 is a process flow diagram illustrating an embodiment method for

performing adaptive observations on mobile devices.

[0029] FIG. 12 is a component block diagram of a mobile device suitable for use in an

embodiment.

[0030] FIG. 13 is a component block diagram of a server device suitable for use in an

embodiment.
DETAILED DESCRIPTION

[0031] The various embodiments will be described in detail with reference to the
accompanying drawings. Wherever possible, the same reference numbers will be
used throughout the drawings to refer to the same or like parts. References made to
particular examples and implementations are for illustrative purposes, and are not

intended to limit the scope of the invention or the claims.

[0032] In overview, the various embodiments include methods, and computing
devices configured to implement the methods, of using behavioral analysis and
machine learning techniques to evaluate the collective behavior of two or more
software applications operating on a computing device. For example, in an
embodiment, a computing device may be configured to monitor the activities of
software applications operating on the device, collect behavior information from the
monitored activities, generate a behavior vector based on the collected behavior
information, apply the behavior vector to a classifier model to generate analysis
information, use the analysis information to identify a relationship between the
software applications, identify the software applications that should be evaluated

together as a group based on the identified relationship, aggregate the analysis results

WO 2016/040015 PCT/US2015/047489

of the identified software applications, and use the aggregated analysis results to
determine whether the collective behavior of the software applications is benign or
non-benign. These operations improve the functioning of the computing device by
allowing the device to quickly and efficiently identify and respond to various
conditions or behaviors that may have a negative impact on the security, performance,
or power consumption characteristics of the device, and which would not otherwise be

detected by conventional behavior-based security solutions.

[0033] Computing devices may be equipped with a behavior-based security system
that uses behavioral analysis techniques to identify, prevent, and/or correct the
conditions, factors, and/or behaviors that often degrade a computing device’s
performance, power utilization levels, network usage levels, security and/or privacy
over time. For example, the behavior-based security system may be configured to
determine whether a software application is benign or non-benign (e.g., malicious,
performance degrading, etc.), and perform various operations to correct, heal, cure,
isolate, or otherwise fix the identified problems (e.g., behaviors determined to be non-

benign).

[0034] While such a behavior-based security system is generally very effective for
preventing the performance degradation of the computing device over time, malicious
software applications may evade detection by such systems by colluding or working in
concert to mask their operations. For example, when stealing information from a
user’s address book, a first malicious software application might access the address
book, encode the information, and store the encoded information in a generic or
discrete file. A second malicious application may then retrieve the encoded

information stored in the generic/discrete file and send the information to a server.

[0035] Typically, the behavior-based security system would be able to determine that
this sequence of operations (e.g., reading, storing, and transmitting address book data)
1s not consistent with normal operating patterns of the device, and classify this

behavior as a non-benign behavior. However, since the operations are performed by

WO 2016/040015 PCT/US2015/047489
10

multiple software applications working in concert, existing solutions often fail to

identify these operations as being a part of the same sequence or behavior.

[0036] Individually, the operations of accessing address data, encoding data, storing
the data in a file, and transmitting information stored in a file are not necessarily
indicative of a non-benign behavior. Rather, it is the collective or sequential
performance of these operations that is indicative of a non-benign behavior. Yet,
existing behavior-based solutions do not adequately characterize the relationships
between software applications. As a result, existing solutions often fail to accurately
identify the operations that should be evaluated together as part of a single behavior.
For these and other reasons, existing behavior-based security solutions are not
adequate for identifying and responding to behaviors and conditions caused by the
collective activities of a group of software applications, such as cyber attacks that

include multiple software applications working in concert.

[0037] In view of these limitations of existing systems, the various embodiments equip
computing devices with a behavior-based security system that is configured to
intelligently and efficiently identify and respond to non-benign behaviors caused by
the collective activities of a group of software applications, such as malicious software

applications that are colluding or working in concert.

[0038] In an embodiment, the behavior-based security system may be configured to
monitor the interactions between software applications, generate behavior vectors that
characterize the relationships between the software applications, and apply the
behavior vectors to classifier models to determine whether the applications are
colluding or working in concert. The behavior-based security system may then
identify the software applications that should be analyzed together as a group, apply
the behavior vectors of the identified applications to a classifier model, aggregate the
resulting information, and use the aggregated information to determine whether the
collective behavior of the applications is non-benign. Alternatively, the behavior-

based security system may identify the software applications that should be analyzed

WO 2016/040015 PCT/US2015/047489
11

together as a group, generate a behavior vector that characterizes the collective
behavior of the identified applications, and apply the generated behavior vector to the
same or different classifier model to determine whether the collective behavior of the

applications is non-benign.

[0039] The various embodiments improve the functioning of a computing device (e.g.,
a mobile computing device) for a number of reasons, some of which are explained in
and/or are evident from the detailed descriptions of the embodiments below. For
example, by intelligently identifying software applications that are colluding or
working in concert, and by evaluating the operations of the identified applications
together as part of a single device behavior, the various embodiments improve the
functioning of the computing device by allowing the device to identify and respond to
performance-degrading behaviors that would not otherwise be detected by
conventional behavior-based security solutions. Further, by aggregating behavior
information collected from multiple individual applications and monitoring the
interactions between multiple applications, the various embodiments improve the
functioning of the computing device by allowing the device to more accurately
characterize the relationships between software applications, profile categories of
software applications, better analyze the collective behavior of a group of software

applications, and better classify system level device behaviors.

[0040] In addition, the various embodiments provide a behavior-based security system
that allows a computing device to quickly and efficiently identify and respond to non-
benign device behaviors without having a significant negative or user-perceivable
impact on the responsiveness, performance, or power consumption characteristics of
the computing device. As such, the behavior-based security system is well suited for
inclusion and use in mobile devices and other resource constrained-computing
devices, such as smartphones, which have limited resources, run on battery power, and

for which performance and security are important.

WO 2016/040015 PCT/US2015/047489
12

[0041] Additional improvements to the functions, functionalities, and/or functioning of
computing devices will be evident from the detailed descriptions of the embodiment

provided below.

[0042] The term “performance degradation” is used in this application to refer to a
wide variety of undesirable operations and characteristics of a computing device, such
as longer processing times, slower real time responsiveness, lower battery life, loss of
private data, malicious economic activity (e.g., sending unauthorized premium SMS
message), denial of service (DoS), poorly written or designed software applications,
malicious software, malware, viruses, fragmented memory, operations relating to
commandeering the mobile device or utilizing the phone for spying or botnet
activities, etc. Also, behaviors, activities, and conditions that degrade performance for

any of these reasons are referred to herein as “not benign” or “non-benign.”

[0043] The terms “mobile computing device” and “mobile device” are used
interchangeably herein to refer to any one or all of cellular telephones, smartphones,
personal or mobile multi-media players, personal data assistants (PDA’s), laptop
computers, tablet computers, smartbooks, ultrabooks, palm-top computers, wireless
electronic mail receivers, multimedia Internet enabled cellular telephones, wireless
gaming controllers, and similar personal electronic devices which include a memory, a
programmable processor for which performance is important, and operate under
battery power such that power conservation methods are of benefit. While the various
embodiments are particularly useful for mobile computing devices, such as
smartphones, which have limited resources and run on battery, the embodiments are
generally useful in any electronic device that includes a processor and executes

application programs.

[0044] Generally, the performance and power efficiency of a mobile device degrade
over time. Recently, anti-virus companies (e.g., McAfee, Symantec, etc.) have begun
marketing mobile anti-virus, firewall, and encryption products that aim to slow this

degradation. However, many of these solutions rely on the periodic execution of a

WO 2016/040015 PCT/US2015/047489
13

computationally-intensive scanning engine on the mobile device, which may consume
many of the mobile device’s processing and battery resources, slow or render the
mobile device useless for extended periods of time, and/or otherwise degrade the user
experience. In addition, these solutions are typically limited to detecting known
viruses and malware, and do not address the multiple complex factors and/or the
interactions that often combine to contribute to a mobile device’s degradation over
time (e.g., when the performance degradation is not caused by viruses or malware).
For these and other reasons, existing anti-virus, firewall, and encryption products do
not provide adequate solutions for identifying the numerous factors that may
contribute to a mobile device’s degradation over time, for preventing mobile device
degradation, or for efficiently restoring an aging mobile device to its original

condition.

[0045] Further, modern mobile devices are highly configurable and complex systems.
As such, the features that are most important for determining whether a particular
device behavior is benign or non-benign (e.g., malicious or performance-degrading)
may be different in each mobile device. In addition, there are a large variety of factors
that may contribute to the degradation in performance and power utilization levels of a
mobile computing device over time, including poorly written or designed software
applications, malware, viruses, fragmented memory, background processes, etc. Due
to the number, variety, and complexity of these factors, it is often not feasible to
evaluate all of the factors that may contribute to the degradation in performance
and/or power utilization levels of the complex yet resource-constrained systems of
modern mobile computing devices. As such, it is difficult for users, operating
systems, and/or application programs (e.g., anti-virus software, etc.) to accurately and
efficiently identify the sources of problems. As a result, mobile device users currently
have few remedies for preventing the degradation in performance and power
utilization levels of a mobile device over time, or for restoring an aging mobile device

to its original performance and power utilization levels.

WO 2016/040015 PCT/US2015/047489
14

[0046] Currently, various solutions exist for modeling the behavior of a software
application operating/executing on a computing device, and these solutions may be
used along with machine learning techniques to determine whether a software
application is malicious or benign. However, existing solutions are not suitable for
use on mobile or resource-constrained devices because they require evaluating a very
large corpus of behavior information, do not generate behavior models dynamically to
account for device-specific and application-specific features of the computing device,
do not intelligently prioritize the features in the behavior model, are limited to
evaluating an individual application program or process, and/or require the execution
of computationally-intensive processes in the device. As such, implementing or
performing these solutions in a mobile or resource-constrained computing device may
have a significant negative and/or user-perceivable impact on the responsiveness,

performance, or power consumption characteristics of the device.

[0047] To provide better performance in view of these issues, computing devices (e.g.,
mobile devices, etc.) may be equipped with a behavior-based security system that is
configured to use behavioral analysis techniques to intelligently and efficiently
identity, prevent, correct, or otherwise respond to non-benign behaviors in the
computing device without having a significant, negative, or user perceivable impact
on the responsiveness, performance, or power consumption characteristics of the

device.

[0048] The behavior-based security system may include an observer process, daemon,
module, or sub-system (herein collectively referred to as a “module”) a behavior
extractor module, and an analyzer module. The observer module may be configured
to instrument or coordinate various application programming interfaces (APIs),
registers, counters, or other device components (herein collectively “instrumented
components”) at various levels of the computing device system (e.g., mobile device
system), collect behavior information from the instrumented components, and

communicate (e.g., via a memory write operation, function call, etc.) the collected

WO 2016/040015 PCT/US2015/047489
15

behavior information to the behavior extractor module. The behavior extractor
module may use the collected behavior information to generate behavior vectors that
each represent or characterize many or all of the observed events, conditions, tasks,
activities, and/or behaviors (herein collectively “behaviors™) associated with one or
more specific threads, processes, software applications, modules, or components of
the device. The behavior extractor module may communicate (e.g., via a memory
write operation, function call, etc.) the generated behavior vectors to the analyzer
module, which use the behavior vectors to perform behavior analysis operations,
which may include performing, executing, and/or applying data, algorithms, and/or
models to determine whether a software application or device behavior is benign or
non-benign (e.g., malicious, poorly written, performance-degrading, etc.). The
computing device processor may then perform various operations to correct, heal,
cure, isolate, or otherwise fix the identified problems (e.g., behaviors determined to be

non-benign).

[0049] While the above-described system is generally very effective for preventing
the degradation in performance and power utilization levels of a computing device
over time, cyber attacks are growing in sophistication and may circumvent or evade
detection by the behavior-based security system by using two or more software
applications to mask their malicious operations. For example, two colluding software
applications may coordinate their operations to steal a user’s private information (e.g.,
contacts, credit card numbers, etc.) and avoid detection by the behavior-based security
system. For example, a first colluding application may read and write the private
information in a designated portion of the device’s memory (or at a specific memory
location), and a second colluding application may read and transmit the information
stored in the memory location to a server. Since, individually, these are operations are
not indicative of malicious activity, existing behavior-based security systems may not
be able to accurately identify this sequence of operations as being associated with a

single non-benign behavior.

WO 2016/040015 PCT/US2015/047489
16

[0050] One way to detect and determine that a sequence of operations is associated
with a single behavior is by performing data flow tracking operations. Data flow
tracking solutions, such as FlowDroid, are generally effective tools for preventing
malicious software applications from evading detection. Briefly, data flow tracking
solutions monitor many or all of the data operations (reads, writes, data encoding, data
transmissions, etc.) in a computing system and attempt to identify the software
applications that are, individually or collectively, using the data improperly.
However, data flow tracking solutions require monitoring many of the data flows and
data operations in the computing system and/or require the execution of very complex
and power-intensive processes. As such, data flow tracking solutions are not suitable
for use in mobile devices, which are typically resource constrained systems that have
relatively limited processing, memory, and energy resources. In addition, modern
mobile devices are complex systems, and it is often not feasible to evaluate all of the
various data flows, data operations (reads, writes, data encoding, data transmissions,
etc.), processes, components, behaviors, or factors (or combinations thereof) that may
be malicious or otherwise contribute to the performance degradation of the mobile
device. For all these reasons, existing data flow tracking solutions are not suitable for

use in mobile and resource-constrained computing devices.

[0051] In view of these issues, the various embodiments may configure a device
processor (e.g., a mobile device processor, etc.) to identify, analyze, prevent, and/or
respond to collusion attacks and other conditions caused by the collective behavior of
a select group of software applications without monitoring data flows or performing
data flow tracking operations in the device. The device processor may accomplish
this without having a significant negative or user-perceivable impact on the
responsiveness, performance, or power consumption characteristics of the computing
device. As such, the various embodiments are particularly useful in mobile and
resource-constrained computing devices that include limited resources and for which

performance and battery life are important.

WO 2016/040015 PCT/US2015/047489
17

[0052] In the various embodiments, the device processor (or a behavioral-based
security system of the device) may be configured to monitor the interactions between
two or more software applications, generate relationship information (e.g., behavior
vectors, etc.) that identifies or characterizes the relationships between the monitored
applications, use the relationship information to identify the software applications that
should be evaluated together as a group, collect behavior information from each of the
identified applications, aggregate the behavior information collected from each of the
identified applications (e.g., in a behavior vector) and/or aggregate the results of
evaluating each identified application (e.g., via a classifier model). The device
processor may then use the aggregated information to evaluate the collective behavior

of the identified applications as a single device behavior.

[0053] By determining the nature of the relationships and interactions between
specific applications, the various embodiments allow the device processor to better
determine whether two or more applications are working together to hide their
malicious activities and/or whether the collective behaviors of a small or focused
group of software applications have an unexpected negative impact on the
performance characteristics of the computing device (e.g., due to one or more of the

application being poorly designed, etc.).

[0054] In some embodiments, the device processor may be configured to categorize
the monitored applications, profile or pre-profile select groups or categories of
applications, and/or generate performance numbers for categories of applications. The
performance numbers may include information suitable for use in identifying,
evaluating, and/or comparing various performance characteristics, such as energy
consumption, memory usage, bandwidth usage, CPU cycles, user experiences on
application performance, user interface (UI) responsiveness, and other similar
measurable characteristics of the individual applications, groups of applications, or
categories of applications. By using behavioral analysis techniques to profile or

generate performance numbers for the applications (or groups or categories of

WO 2016/040015 PCT/US2015/047489
18

applications), the various embodiments allow the device processor to better identify
and respond to applications or groups of applications that have an unexpected,
disproportionate, or negative impact on the performance and/or power consumption

levels of the computing device.

[0055] In the various embodiments, the computing device (e.g., mobile device, etc.)
may be equipped with a comprehensive behavioral monitoring and analysis system
configured to perform any or all of the operations discussed in this application. For
example, the behavioral monitoring and analysis system may include an observer
module, a behavior extractor module, and an analyzer module. The observer module
may be configured to monitor the operations (e.g., memory read/write operations),
interactions, relationships, and communications between select applications (or a
group of application). This may be accomplished by monitoring various instrumented
components, such as select portions of memory, select memory addresses, hardware
components, a ContentResolver API, etc. By monitoring these instrumented
components, the observer module may collect additional behavior information that

would not otherwise be collected by conventional behavior-based security systems.

[0056] The behavior extractor module may be configured to use the behavior
information (i.e., the information collected by the observer module) to generate
behavior vectors that characterize the relationships between the applications and/or
behavior vectors that represent or characterize the collective behavior of two or more
applications. Each behavior vector may be an information structure that includes or
encapsulates one or more “behavior features.” A behavior feature may be an abstract
number or symbol that represents all or a portion of an observed event, condition,
activity, operation, relationship, interaction, or behavior in the computing device.
Each behavior feature may be associated with a data type that identifies a range of
possible values, operations that may be performed on those values, the meanings of

the values, and other similar information. The data type may be used by the

WO 2016/040015 PCT/US2015/047489
19

computing device to determine how the corresponding behavior feature (or feature

value) should be measured, analyzed, weighted, or used.

[0057] The behavior extractor module may communicate (e.g., via a memory write
operation, function call, etc.) the generated behavior vectors to the analyzer module,
which may apply the behavior vectors to classifier models to determine the nature of
the relationships between software applications (e.g., whether two or more software
applications are working in concert, etc.) and/or to determine whether the collective

behavior of the applications is non-benign.

[0058] A classifier model may be a behavior model that includes data, entries,
decision nodes, decision criteria, and/or information structures that may be used by a
device processor to quickly and efficiently test or evaluate specific features, factors,
data points, entries, APIs, states, conditions, behaviors, software applications,
processes, operations, components, etc. (herein collectively “features”) or other
embodiments of the device’s behavior. A classifier model may also include
information that may be used by a device processor to determine the nature of the
relationships between software applications and/or the behaviors that to be monitored

in the computing device.

[0059] Each classifier model may be categorized as a full classifier model or a lean
classifier model. A full classifier model may be a robust data model that is generated
as a function of a large training dataset, which may include thousands of features and
billions of entries. A lean classifier model may be a more focused data model that is
generated from a reduced dataset that includes or prioritizes tests on the
features/entries that are most relevant for determining whether a particular computing
device behavior is not benign. A local classifier model may be a lean classifier model
that is generated in the mobile computing device. A device-specific classifier model
may be a local classifier model that includes a focused data model that includes/tests
only computing device-specific features/entries that are determined to be most

relevant to classifying an activity or behavior in that specific device. An application-

WO 2016/040015 PCT/US2015/047489
20

specific classifier model may be a local classifier model that includes a focused data
model that includes or prioritizes tests on the features/entries that are most relevant for
determining whether a particular software application (or a specific type of software

application) is non-benign.

[0060] A multi-application classifier model may be a local classifier model that
includes an aggregated feature set and/or decision nodes that test features relevant to
evaluating two or more software applications. For example, a multi-application
classifier model may include decision nodes that test conditions or features that are
most relevant for identifying or characterizing the relationship between two software
applications. As another example, a multi-application classifier model may include
decision nodes that test conditions or features that are most relevant for determining
whether the collective behavior of two software applications (or specific types of

software applications) is non-benign.

[0061] In some embodiments, the device processor may be configured to generate a
multi-application classifier model by combining two or more application-specific
classifier models. In other embodiments, the device processor may generate a multi-
application classifier model by identifying the device features that are most relevant
for identifying the relationships, interactions, and/or communications between two or
more software applications, identifying test conditions that evaluate the identified
device features, and generating the classifier model to include the identified test
conditions. In a further embodiment, the device processor may be configured to
determine the priority, importance, or success rates of the identified test conditions,
and to generate the classifier model so that the test conditions are ordered in

accordance with their priority, importance, or success rates.

[0062] In various embodiments, the device processor may be configured to generate
or use classifier models to determine the relationships between applications and/or to

determine whether the collective behavior of the applications is non-benign.

WO 2016/040015 PCT/US2015/047489
21

[0063] For example, in an embodiment, the device processor may be configured to
monitor the interactions between the software applications operating on the computing
device, generate behavior vectors that characterize the relationships between the
software applications, apply the behavior vectors to classifier models to generate
analysis information, and use the analysis information to determine whether the
applications are colluding or working in concert. The device processor may then
identity the software applications should be analyzed together as a group (e.g.,
colluding applications), apply the behavior vectors of the identified applications to the
same or different classifier model (or family of classifier models), aggregate the
resulting analysis information, and use the aggregated analysis information to

determine whether the collective behavior of the identified applications is non-benign.

[0064] As another example, the device processor may be configured to identify the
software applications should be analyzed together as a group, monitor the activities of
the identified applications, collect behavior information for each of the monitored
activities, generate a behavior vector that characterizes the collective behavior of the
identified applications based on the collected behavior information, apply the
generated behavior vector to a classifier model (or family of classifier models) to
generate analysis information, and use the analysis information to determine whether

the collective behavior of the identified applications is non-benign.

[0065] In some embodiments, the device processor may also be configured to use the
analysis information (i.e., results of applying a behavior vector to a classifier model)
to categorize the monitored software applications, to profile each category of software
applications, and/or to generating performance numbers for each category of software
applications. For example, the device processor may use the analysis information to
compute/estimate the amount of power consumed by a class of software applications
(e.g., games, social networking, news, finance, etc.). Further, by pre-profiling and
measuring the power consumption of each feature, the device processor may profile

the power consumption of all activities or applications operating on the device. The

WO 2016/040015 PCT/US2015/047489
22

device processor may use such information (e.g., estimates of power consumption) to
predict battery life, identify the class or classes of applications that are consuming a
significant amount the device’s available resources, and perform other similar
operations. The device processor may display such information to a user of the

computing device or use this information to better evaluate device behaviors.

[0066] The various embodiments may be implemented in a number of different
computing devices, including single processor and multiprocessor systems, and a
system-on-chip (SOC). FIG. 1 is an architectural diagram illustrating an example
system-on-chip (SOC) 100 architecture that may be used in computing devices
implementing the various embodiments. The SOC 100 may include a number of
heterogeneous processors, such as a digital signal processor (DSP) 101, a modem
processor 104, a graphics processor 106, and an application processor 108. The SOC
100 may also include one or more coprocessors 110 (e.g., vector co-processor)
connected to one or more of the heterogeneous processors 102, 104, 106, 108. Each
processor 101, 104, 106, 108, 110 may include one or more cores, and each
processor/core may perform operations independent of the other processors/cores. For
example, the SOC 100 may include a processor that executes a first type of operating
system (e.g., FreeBSD, LINIX, OS X, etc.) and a processor that executes a second
type of operating system (e.g., Microsoft Windows 8).

[0067] The SOC 100 may also include analog circuitry and custom circuitry 114 for
managing sensor data, analog-to-digital conversions, wireless data transmissions, and
for performing other specialized operations, such as processing encoded audio signals
for games and movies. The SOC 100 may further include system components and
resources 116, such as voltage regulators, oscillators, phase-locked loops, peripheral
bridges, data controllers, memory controllers, system controllers, access ports, timers,
and other similar components used to support the processors and clients running on a

computing device.

WO 2016/040015 PCT/US2015/047489
23

[0068] The system components/resources 116 and custom circuitry 114 may include
circuitry to interface with peripheral devices, such as cameras, electronic displays,
wireless communication devices, external memory chips, etc. The processors 101,
104, 106, 108 may be interconnected to one or more memory elements 112, system
components, and resources 116 and custom circuitry 114 via an interconnection/bus
module 124, which may include an array of reconfigurable logic gates and/or
implement a bus architecture (e.g., CoreConnect, AMBA, etc.). Communications may

be provided by advanced interconnects, such as high performance networks-on chip

(NoCs).

[0069] An operating system executing in one or more of the processors 101, 104, 106,
108, 110 may be configured to control and coordinate the allocation and use of
memory by the software applications, and partition the physical memory across the
multiple software applications. As such, the operating system may include one or
more memory management systems or processes (€.g., a virtual memory manager,
etc.) that manage the allocation and use of memory by the various software
applications, and ensure that the memory used by one process does not interfere with

memory already in use by another process.

[0070] In addition to the software-based memory management systems or processes
(e.g., OS VMM, etc.) discussed above, the SOC 100 may include one or more
hardware-based memory management systems, such as a central processing unit
(CPU) memory management unit (MMU) and a system MMU. The CPU MMU and
the system MMU may be hardware components that are responsible for performing
various memory related operations, such as the translation of virtual addresses to
physical addresses, cache control, bus arbitration, and memory protection. For
example, the CPU MMU may be responsible for providing address translation
services and protection functionalities to the main CPU (e.g., the application processor

108), and the system MMU may be responsible for providing address translation

WO 2016/040015 PCT/US2015/047489
24

services and protection functionalities to other hardware components (e.g., digital

signal processor 101, modem processor 104, a graphics processor 100, etc.).

[0071] The SOC 100 may also include a hardware-based memory monitoring unit
113, which may be a programmable logic circuit (PLC) that is configured to monitor
the access or use of the MMUs and memory elements 112 by software applications at
the hardware level and/or based on hardware events (e.g., memory read and write
operations, etc.). The hardware-based memory monitoring unit 113 may be separate
from, and operate independent of, the other hardware and software-based memory

management systems and MMU s of the device.

[0072] In various embodiments, the hardware-based memory monitoring unit 113
may be configured to monitor the access and use of the MMUs and memory elements
112 by the software applications to collect memory usage information, and compare
the collected memory usage information to memory usage patterns (which may be
programmed into the PLC) to identify relationships between applications and/or to
determine whether the use of memory by the software applications is indicative of a
suspicious or colluding behavior. The hardware-based memory monitoring unit 113
may then report the identified relationships and/or suspicious or colluding behaviors

to the observer or analyzer modules (e.g., via the processors 101, 104, 106, 108).

[0073] The SOC 100 may further include an input/output module (not illustrated) for
communicating with resources external to the SOC, such as a clock 118 and a voltage
regulator 120. Resources external to the SOC (e.g., clock 118, voltage regulator 120)
may be shared by two or more of the internal SOC processors/cores (e.g., DSP 101,

modem processor 104, graphics processor 106, applications processor 108, etc.).

[0074] The SOC 100 may also include hardware and/or software components suitable
for collecting sensor data from sensors, including speakers, user interface elements
(e.g., input buttons, touch screen display, etc.), microphone arrays, sensors for

monitoring physical conditions (e.g., location, direction, motion, orientation,

WO 2016/040015 PCT/US2015/047489
25

vibration, pressure, etc.), cameras, compasses, GPS receivers, communications
circuitry (e.g., Bluetooth®, WLAN, WiFi, etc.), and other well known components

(e.g., accelerometer, etc.) of modern electronic devices.

[0075] In addition to the SOC 100 discussed above, the various embodiments may be
implemented in a wide variety of computing systems, which may include a single

processor, multiple processors, multicore processors, or any combination thereof.

[0076] FIG. 2 illustrates example logical components and information flows in an
embodiment mobile computing device 102 that includes a behavior-based security
system 200 configured to use behavioral analysis techniques to identify and respond to
non-benign device behaviors. In the example illustrated in FIG. 2, the computing
device is a mobile computing device 102 that includes a device processor (i.e., mobile
device processor) configured with executable instruction modules that include a
behavior observer module 202, a behavior extractor module 204, a behavior analyzer
module 208, and an actuator module 210. Each of the modules 202-210 may be a
thread, process, daemon, module, sub-system, or component that is implemented in
software, hardware, or a combination thereof. In various embodiments, the modules
202-210 may be implemented within parts of the operating system (e.g., within the
kernel, in the kernel space, in the user space, etc.), within separate programs or
applications, in specialized hardware buffers or processors, or any combination
thereof. In an embodiment, one or more of the modules 202-210 may be implemented
as software instructions executing on one or more processors of the mobile computing

device 102.

[0077] The behavior observer module 202 may be configured to instrument
application programming interfaces (APIs), counters, hardware monitors, etc. at
various levels/modules of the device, and monitor the activities, conditions,
operations, and events (e.g., system events, state changes, etc.) at the various
levels/modules over a period of time. For example, the behavior observer module 202

may be configured to monitor various software and hardware components of the

WO 2016/040015 PCT/US2015/047489
26

mobile computing device 102, and collect behavior information pertaining to the
interactions, communications, transactions, events, or operations of the monitored and
measurable components that are associated with the activities of the mobile computing
device 102. Such activities include a software application’s use of a hardware
component, performance of an operation or task, a software application’s execution in
a processing core of the mobile computing device 102, the execution of process, the

performance of a task or operation, a device behavior, etc.

[0078] As a further example, the behavior observer module 202 may be configured to
monitor the activities of the mobile computing device 102 by monitoring the
allocation or use of device memory by the software applications. In an embodiment,
this may be accomplished by monitoring the operations of memory management
system (e.g., a virtual memory manager, memory management unit, etc.) of the
computing device. Such systems are generally responsible for managing the
allocation and use of system memory by the various application programs to ensure
that the memory used by one process does not interfere with memory already in use
by another process. Therefore, by monitoring the operations of the memory
management system, the device processor may collect behavior information that is
suitable for use in determining whether to two applications are working in concert,
such as whether two processes have been allocated the same memory space, are
reading and writing information to the same memory address or location, or are

performing other suspicious memory-related operations.

[0079] The behavior observer module 202 may collect behavior information pertaining
to the monitored activities, conditions, operations, or events, and store the collected
information in a memory (e.g., in a log file, etc.). The behavior observer module 202
may then communicate (e.g., via a memory write operation, function call, etc.) the

collected behavior information to the behavior extractor module 204.

[0080] In an embodiment, the behavior observer module 202 may be configured to

monitor the activities of the mobile computing device 102 by monitoring the

WO 2016/040015 PCT/US2015/047489
27

allocation or use of device memory at the hardware level and/or based on hardware
events (e.g., memory read and write operations, etc.). In a further embodiment, the
behavior observer module 202 may be implemented in a hardware module (e.g., the
memory monitoring unit 113 described above with reference to FIG. 1) for faster,
near-real time execution of the monitoring functions. For example, the behavior
observer module 202 may be implemented within a hardware module that includes a
programmable logic circuit (PLC) in which the programmable logic elements are
configured to monitor the allocation or use of computing device memory at the
hardware level and/or based on hardware events (e.g., memory read and write
operations, etc.) and otherwise implement the various embodiments. Such a hardware
module may output results of hardware event monitoring to the device processor
implementing the behavior extractor module 204. A PLC may be configured to
monitor certain hardware and implement certain operations of the various
embodiments described herein using PLC programming methods that are well known.
Other circuits for implementing some operation of the embodiment methods in a

hardware module may also be used.

[0081] Similarly, each of the modules 202-210 may be implemented in hardware
modules, such as by including one or PLC elements in an SoC with the PLC
element(s) configured using PLC programming methods to perform some operation of

the embodiment methods.

[0082] The behavior extractor module 204 may be configured to receive or retrieve the
collected behavior information, and use this information to generate one or more
behavior vectors. In the various embodiments, the behavior extractor module 204
may be configured to generate the behavior vectors to include a concise definition of
the observed behaviors, relationships, or interactions of the software applications. For
example, each behavior vector may succinctly describe the collective behavior of the
software applications in a value or vector data-structure. The vector data-structure

may include series of numbers, each of which signifies a feature or a behavior of the

WO 2016/040015 PCT/US2015/047489
28

device, such as whether a camera of the computing device is in use (e.g., as zero or
one), how much network traffic has been transmitted from or generated by the
computing device (e.g., 20 KB/sec, etc.), how many internet messages have been
communicated (e.g., number of SMS messages, etc.), and/or any other behavior
information collected by the behavior observer module 202. In an embodiment, the
behavior extractor module 204 may be configured to generate the behavior vectors so
that they function as an identifier that enables the computing device system (e.g., the
behavior analyzer module 208) to quickly recognize, identify, or analyze the

relationships between applications.

[0083] The behavior analyzer module 208 may be configured to apply the behavior
vectors to classifier modules to identify the nature of the relationship between two or
more software applications. The behavior analyzer module 208 may also be
configured to apply the behavior vectors to classifier modules to determine whether a
collective device behavior (i.e., the collective activities of two or more software
applications operating on the device) is a non-benign behavior that is contributing to
(or is likely to contribute to) the device’s degradation over time and/or which may

otherwise cause problems on the device.

[0084] The behavior analyzer module 208 may notify the actuator module 210 that an
activity or behavior is not benign. In response, the actuator module 210 may perform
various actions or operations to heal, cure, isolate, or otherwise fix identified
problems. For example, the actuator module 210 may be configured to stop or
terminate one or more of the software applications when the result of applying the
behavior vector to the classifier model (e.g., by the analyzer module) indicates that the

collective behavior of the software applications not benign.

[0085] In various embodiments, the behavior observer module 202 may be configured
to monitor the activities of the mobile computing device 102 by collecting information
pertaining to library API calls in an application framework or run-time libraries,

system call APIs, file-system and networking sub-system operations, device

WO 2016/040015 PCT/US2015/047489
29

(including sensor devices) state changes, and other similar events. In addition, the
behavior observer module 202 may monitor file system activity, which may include
searching for filenames, categories of file accesses (personal info or normal data files),
creating or deleting files (e.g., type exe, zip, etc.), file read/write/seek operations,

changing file permissions, etc.

[0086] The behavior observer module 202 may also monitor the activities of the
mobile computing device 102 by monitoring data network activity, which may include
types of connections, protocols, port numbers, server/client that the device is
connected to, the number of connections, volume or frequency of communications,
etc. The behavior observer module 202 may monitor phone network activity, which
may include monitoring the type and number of calls or messages (e.g., SMS, etc.)

sent out, received, or intercepted (e.g., the number of premium calls placed).

[0087] The behavior observer module 202 may also monitor the activities of the
mobile computing device 102 by monitoring the system resource usage, which may
include monitoring the number of forks, memory access operations, number of files
open, etc. The behavior observer module 202 may monitor the state of the mobile
computing device 102, which may include monitoring various factors, such as
whether the display is on or off, whether the device is locked or unlocked, the amount
of battery remaining, the state of the camera, etc. The behavior observer module 202
may also monitor inter-process communications (IPC) by, for example, monitoring
intents to crucial services (browser, contracts provider, etc.), the degree of inter-

process communications, pop-up windows, etc.

[0088] The behavior observer module 202 may also monitor the activities of the
mobile computing device 102 by monitoring driver statistics and/or the status of one
or more hardware components, which may include cameras, sensors, electronic
displays, WiFi communication components, data controllers, memory controllers,
system controllers, access ports, timers, peripheral devices, wireless communication

components, external memory chips, voltage regulators, oscillators, phase-locked

WO 2016/040015 PCT/US2015/047489
30

loops, peripheral bridges, and other similar components used to support the processors

and clients running on the mobile computing device 102.

[0089] The behavior observer module 202 may also monitor the activities of the
mobile computing device 102 by monitoring one or more hardware counters that
denote the state or status of the mobile computing device 102 and/or computing
device sub-systems. A hardware counter may include a special-purpose register of the
processors/cores that is configured to store a count value or state of hardware-related

activities or events occurring in the mobile computing device 102.

[0090] The behavior observer module 202 may also monitor the activities of the
mobile computing device 102 by monitoring the actions or operations of software
applications, software downloads from an application download server (e.g., Apple®
App Store server), computing device information used by software applications, call
information, text messaging information (e.g., SendSMS, BlockSMS, ReadSMS, etc.),
media messaging information (e.g., ReceiveMMS), user account information, location
information, camera information, accelerometer information, browser information,
content of browser-based communications, content of voice-based communications,
short range radio communications (e.g., Bluetooth, WiFi, etc.), content of text-based
communications, content of recorded audio files, phonebook or contact information,

contacts lists, etc.

[0091] The behavior observer module 202 may also monitor the activities of the
mobile computing device 102 by monitoring transmissions or communications of the
mobile computing device 102, including communications that include voicemail
(VoiceMailComm), device identifiers (DevicelDComm), user account information
(UserAccountComm), calendar information (CalendarComm), location information
(LocationComm), recorded audio information (RecordAudioComm), accelerometer

information (AccelerometerComm), etc.

WO 2016/040015 PCT/US2015/047489
31

[0092] The behavior observer module 202 may also monitor the activities of the
mobile computing device 102 by monitoring the usage of, and updates/changes to,
compass information, computing device settings, battery life, gyroscope information,
pressure sensors, magnet sensors, screen activity, etc. The behavior observer module
202 may monitor notifications communicated to and from a software application
(AppNotifications), application updates, etc. The behavior observer module 202 may
monitor conditions or events pertaining to a first software application requesting the
downloading and/or install of a second software application. The behavior observer
module 202 may monitor conditions or events pertaining to user verification, such as

the entry of a password, etc.

[0093] The behavior observer module 202 may also monitor the activities of the
mobile computing device 102 by monitoring conditions or events at multiple levels of
the mobile computing device 102, including the application level, radio level, and
sensor level. Application level observations may include observing the user via facial
recognition software, observing social streams, observing notes entered by the user,
observing events pertaining to the use of PassBook®, Google® Wallet, Paypal®, and
other similar applications or services. Application level observations may also include
observing events relating to the use of virtual private networks (VPNs) and events
pertaining to synchronization, voice searches, voice control (e.g., lock/unlock a phone
by saying one word), language translators, the offloading of data for computations,
video streaming, camera usage without user activity, microphone usage without user

activity, etc.

[0094] Radio level observations may include determining the presence, existence or
amount of any or more of user interaction with the mobile computing device 102
before establishing radio communication links or transmitting information,
dual/multiple subscriber identification module (SIM) cards, Internet radio, mobile
phone tethering, offloading data for computations, device state communications, the

use as a game controller or home controller, vehicle communications, computing

WO 2016/040015 PCT/US2015/047489
32

device synchronization, etc. Radio level observations may also include monitoring
the use of radios (WiF1, WiMax, Bluetooth, etc.) for positioning, peer-to-peer (p2p)
communications, synchronization, vehicle to vehicle communications, and/or
machine-to-machine (m2m). Radio level observations may further include monitoring

network traffic usage, statistics, or profiles.

[0095] Sensor level observations may include monitoring a magnet sensor or other
sensor to determine the usage and/or external environment of the mobile computing
device 102. For example, the computing device processor may be configured to
determine whether the device is in a holster (e.g., via a magnet sensor configured to
sense a magnet within the holster) or in the user’s pocket (e.g., via the amount of light
detected by a camera or light sensor). Detecting that the mobile computing device
102 is in a holster may be relevant to recognizing suspicious behaviors, for example,
because activities and functions related to active usage by a user (e.g., taking
photographs or videos, sending messages, conducting a voice call, recording sounds,
etc.) occurring while the mobile computing device 102 is holstered could be signs of

nefarious processes executing on the device (e.g., to track or spy on the user).

[0096] Other examples of sensor level observations related to usage or external
environments may include, detecting NFC signaling, collecting information from a
credit card scanner, barcode scanner, or mobile tag reader, detecting the presence of a
Universal Serial Bus (USB) power charging source, detecting that a keyboard or
auxiliary device has been coupled to the mobile computing device 102, detecting that
the mobile computing device 102 has been coupled to another computing device (e.g.,
via USB, etc.), determining whether an LED, flash, flashlight, or light source has been
modified or disabled (e.g., maliciously disabling an emergency signaling app, etc.),
detecting that a speaker or microphone has been turned on or powered, detecting a
charging or power event, detecting that the mobile computing device 102 is being
used as a game controller, etc. Sensor level observations may also include collecting

information from medical or healthcare sensors or from scanning the user’s body,

WO 2016/040015 PCT/US2015/047489
33

collecting information from an external sensor plugged into the USB/audio jack,
collecting information from a tactile or haptic sensor (e.g., via a vibrator interface,
etc.), collecting information pertaining to the thermal state of the mobile computing

device 102, etc.

[0097] To reduce the number of factors monitored to a manageable level, in an
embodiment, the behavior observer module 202 may be configured to perform coarse
observations by monitoring/observing an initial set of behaviors or factors that are a
small subset of all factors that could contribute to the computing device’s degradation.
In an embodiment, the behavior observer module 202 may receive the initial set of
behaviors and/or factors from a server and/or a component in a cloud service or
network. In an embodiment, the initial set of behaviors/factors may be specified in

machine learning classifier models.

[0098] Each classifier model may be a behavior model that includes data and/or
information structures (e.g., feature vectors, behavior vectors, component lists, etc.)
that may be used by a computing device processor to evaluate a specific feature or
embodiment of a computing device’s behavior. Each classifier model may also
include decision criteria for monitoring a number of features, factors, data points,
entries, APIs, states, conditions, behaviors, applications, processes, operations,
components, etc. (herein collectively “features”) in the computing device. The
classifier models may be preinstalled on the computing device, downloaded or
received from a network server, generated in the computing device, or any
combination thereof. The classifier models may be generated by using crowd

sourcing solutions, behavior modeling techniques, machine learning algorithms, etc.

[0099] Each classifier model may be categorized as a full classifier model or a lean
classifier model. A full classifier model may be a robust data model that is generated
as a function of a large training dataset, which may include thousands of features and
billions of entries. A lean classifier model may be a more focused data model that is

generated from a reduced dataset that includes/tests only the features/entries that are

WO 2016/040015 PCT/US2015/047489
34

most relevant for determining whether a particular activity is an ongoing critical
activity and/or whether a particular computing device behavior is not benign. As an
example, a device processor may be may be configured to receive a full classifier
model from a network server, generate a lean classifier model in the computing device
based on the full classifier, and use the locally generated lean classifier model to
classify a behavior of the device as being either benign or non-benign (i.e., malicious,

performance degrading, etc.).

[0100] A locally generated lean classifier model is a lean classifier model that is
generated in the computing device. That is, since modern computing devices (e.g.,
mobile devices, etc.) are highly configurable and complex systems, the features that
are most important for determining whether a particular device behavior is non-benign
(e.g., malicious or performance-degrading) may be different in each device. Further, a
different combination of features may require monitoring and/or analysis in each
device in order for that device to quickly and efficiently determine whether a
particular behavior is non-benign. Yet, the precise combination of features that
require monitoring and analysis, and the relative priority or importance of each feature
or feature combination, can often only be determined using information obtained from
the specific device in which the behavior is to be monitored or analyzed. For these
and other reasons, various embodiments may generate classifier models in the
computing device in which the models are used. These local classifier models allow
the device processor to accurately identify the specific features that are most important
in determining whether a behavior on that specific device is non-benign (e.g.,
contributing to that device’s degradation in performance). The local classifier models
also allow the device processor to prioritize the features that are tested or evaluated in
accordance with their relative importance to classifying a behavior in that specific

device.

[0101] A device-specific classifier model is a classifier model that includes a focused

data model that includes/tests only computing device-specific features/entries that are

WO 2016/040015 PCT/US2015/047489
35

determined to be most relevant to classifying an activity or behavior in a specific
computing device. An application-specific classifier model is a classifier model that
includes a focused data model that includes/tests only the features/entries that are most
relevant for evaluating a particular software application. By dynamically generating
application-specific classifier models locally in the computing device, the various
embodiments allow the device processor to focus its monitoring and analysis
operations on a small number of features that are most important for determining
whether the operations of a specific software application are contributing to an

undesirable or performance degrading behavior of that device.

[0102] A multi-application classifier model may be a local classifier model that
includes a focused data model that includes or prioritizes tests on the features/entries
that are most relevant for determining whether the collective behavior of two or more
specific software applications (or specific types of software applications) is non-
benign. A multi-application classifier model may include an aggregated feature set
and/or decision nodes that test/evaluate an aggregated set of features. The device
processor may be configured to generate a multi-application classifier model by
identifying the device features that are most relevant for identifying the relationships,
interactions, and/or communications between two or more software applications
operating on the computing device, identifying the test conditions that evaluate one of
identified device features, determining the priority, importance, or success rates of the
identified test conditions, prioritizing or ordering the identified test conditions in
accordance with their importance or success rates, and generating the classifier model
to include the identified test conditions so that they are ordered in accordance with
their determined priorities, importance, or success rates. The device processor may
also be configured to generate a multi-application classifier model by combining two

or more application-specific classifier models.

[0103] In various embodiments, the device processor may be configured to generate a

multi-application classifier model in response to determine that two or more

WO 2016/040015 PCT/US2015/047489
36

applications are colluding or working in concert or that applications should be
analyzed together as a group. The device processor may be configured to generate a
multi-application classifier model for each identified group or class of applications.
However, analyzing every group may consume a significant amount of the device’s
limited resources. Therefore, in an embodiment, the device processor may be
configured to determine the probability that an application is engaged in a collusive
behavior (e.g., based on its interactions with the other applications, etc.), and
intelligently generate the classifier models for only the groups that include software

applications for which there is a high probability of collusive behavior.

[0104] The behavior analyzer module 208 may be configured to apply the behavior
vectors generated by the behavior extractor module 204 to a classifier model to
determine whether a monitored activity (or behavior) is benign or non-benign. In an
embodiment, the behavior analyzer module 208 may classify a behavior as
“suspicious” when the results of its behavioral analysis operations do not provide

sufficient information to classify the behavior as either benign or non-benign.

[0105] The behavior analyzer module 208 may be configured to notify the behavior
observer module 202 in response to identifying the colluding software applications,
determining that certain applications should be evaluated as a group, and/or in
response to determining that a monitored activity or behavior is suspicious. In
response, the behavior observer module 202 may adjust the granularity of its
observations (i.e., the level of detail at which computing device features are
monitored) and/or change the applications/factors/behaviors that are monitored based
on information received from the behavior analyzer module 208 (e.g., results of the
real-time analysis operations), generate or collect new or additional behavior
information, and send the new/additional information to the behavior analyzer module

208 for further analysis/classification.

[0106] Such feedback communications between the behavior observer module 202

and the behavior analyzer module 208 enable the mobile computing device 102 to

WO 2016/040015 PCT/US2015/047489
37

recursively increase the granularity of the observations (i.e., make finer or more
detailed observations) or change the features/behaviors that are observed until a
collective behavior is classified as benign or non-benign, a source of a suspicious or
performance-degrading behavior is identified, until a processing or battery
consumption threshold is reached, or until the device processor determines that the
source of the suspicious or performance-degrading device behavior cannot be
identified from further changes, adjustments, or increases in observation granularity.
Such feedback communication also enable the mobile computing device 102 to adjust
or modify the behavior vectors and classifier models without consuming an excessive

amount of the computing device’s processing, memory, Or energy resources.

[0107] The behavior observer module 202 and the behavior analyzer module 208 may
provide, either individually or collectively, real-time behavior analysis of the
computing system’s behaviors to identify suspicious behavior from limited and coarse
observations, to dynamically determine behaviors to observe in greater detail, and to
dynamically determine the level of detail required for the observations. This allows
the mobile computing device 102 to efficiently identify and prevent problems without

requiring a large amount of processor, memory, or battery resources on the device.

[0108] In various embodiments, the device processor of the mobile computing device
102 may be configured to identify a critical data resource that requires close
monitoring, monitor (e.g., via the behavior observer module 202) API calls made by
software applications when accessing the critical data resource, identify a pattern of
API calls as being indicative of non-benign behavior by two or more software
applications, generate a behavior vector based on the identified pattern of API calls
and resource usage, use the behavior vector to perform behavior analysis operations
(e.g., via the behavior analyzer module 208), and determine whether one or more of

the software application is non-benign based on the behavior analysis operations.

[0109] In an embodiment, the device processor may be configured to identify APIs

that are used most frequently by software applications operating on the computing

WO 2016/040015 PCT/US2015/047489
38

device, store information regarding usage of identified hot APIs in an API log in a
memory of the device, and perform behavior analysis operations based on the

information stored in the API log to identify a non-benign behavior.

[0110] In the various embodiments, the mobile computing device 102 may be
configured to work in conjunction with a network server to intelligently and
efficiently identify the features, factors, and data points that are most relevant to
determining whether an activity or behavior is non-benign. For example, the device
processor may be configured to receive a full classifier model from the network
server, and use the received full classifier model to generate lean classifier models
(i.e., data/behavior models) that are specific for the features and functionalities of the
computing device or the software applications operating on the device. The device
processor may use the full classifier model to generate a family of lean classifier
models of varying levels of complexity (or “leanness™). The leanest family of lean
classifier models (i.e., the lean classifier model based on the fewest number of test
conditions) may be applied routinely until a behavior is encountered that the model
cannot categorize as either benign or not benign (and therefore is categorized by the
model as suspicious), at which time a more robust (i.e., less lean) lean classifier model
may be applied in an attempt to categorize the behavior. The application of ever more
robust lean classifier models within the family of generated lean classifier models may
be applied until a definitive classification of the behavior is achieved. In this manner,
the device processor can strike a balance between efficiency and accuracy by limiting
the use of the most complete, but resource-intensive lean classifier models to those

situations where a robust classifier model is needed to definitively classify a behavior.

[0111] In various embodiments, the device processor may be configured to generate
lean classifier models by converting a finite state machine representation/expression
included in a full classifier model into boosted decision stumps. The device processor
may prune or cull the full set of boosted decision stumps based on device-specific

features, conditions, or configurations to generate a classifier model that includes a

WO 2016/040015 PCT/US2015/047489
39

subset of boosted decision stumps included in the full classifier model. The device
processor may then use the lean classifier model to intelligently monitor, analyze

and/or classify a computing device behavior.

[0112] Boosted decision stumps are one level decision trees that have exactly one
node (and thus one test question or test condition) and a weight value, and thus are
well suited for use in a binary classification of data/behaviors. That is, applying a
behavior vector to boosted decision stump results in a binary answer (e.g., Yes or No).
For example, if the question/condition tested by a boosted decision stump is “is the
frequency of Short Message Service (SMS) transmissions less than x per minute,”
applying a value of “3” to the boosted decision stump will result in either a “yes”
answer (for “less than 3” SMS transmissions) or a “no” answer (for “3 or more” SMS

transmissions).

[0113] Boosted decision stumps are efficient because they are very simple and primal
(and thus do not require significant processing resources). Boosted decision stumps
are also very parallelizable, and thus many stumps may be applied or tested in
parallel/at the same time (e.g., by multiple cores or processors in the computing

device).

[0114] In an embodiment, the device processor may be configured to generate a lean
classifier model that includes a subset of classifier criteria included in the full
classifier model and only those classifier criteria corresponding to the features
relevant to the computing device configuration, functionality, and connected/included
hardware. The device processor may use this lean classifier model(s) to monitor only
those features and functions present or relevant to the device. The device processor
may then periodically modify or regenerate the lean classifier model(s) to include or
remove various features and corresponding classifier criteria based on the computing

device’s current state and configuration.

WO 2016/040015 PCT/US2015/047489
40

[0115] As an example, the device processor may be configured to receive a large
boosted-decision-stumps classifier model that includes decision stumps associated
with a full feature set of behavior models (e.g., classifiers), and derive one or more
lean classifier models from the large classifier models by selecting only features from
the large classifier model(s) that are relevant the computing device’s current
configuration, functionality, operating state and/or connected/included hardware, and
including in the lean classifier model a subset of boosted decision stumps that
correspond to the selected features. In this embodiment, the classifier criteria
corresponding to features relevant to the computing device may be those boosted
decision stumps included in the large classifier model that test at least one of the
selected features. The device processor may then periodically modify or regenerate
the boosted decision stumps lean classifier model(s) to include or remove various
features based on the computing device’s current state and configuration so that the
lean classifier model continues to include application-specific or device-specific

feature boosted decision stumps.

[0116] In addition, the device processor may also dynamically generate application-
specific classifier models that identify conditions or features that are relevant to
specific software applications (Google® wallet and eTrade®) and/or to a specific type
of software application (e.g., games, navigation, financial, news, productivity, etc.).
These classifier models may be generated to include a reduced and more focused
subset of the decision nodes that are included in the full classifier model (or of those
included in a leaner classifier model generated from the received full classifier
model). These classifier models may be combined to generate multi-application

classifier models.

[0117] In various embodiments, the device processor may be configured to generate
application-based classifier models for each software application in the system and/or
for each type of software application in the system. The device processor may also be

configured to dynamically identify the software applications and/or application types

WO 2016/040015 PCT/US2015/047489
41

that are a high risk or susceptible to abuse (e.g., financial applications, point-of-sale
applications, biometric sensor applications, etc.), and generate application-based
classifier models for only the software applications and/or application types that are
identified as being high risk or susceptible to abuse. In various embodiments, device
processor may be configured to generate the application-based classifier models
dynamically, reactively, proactively, and/or every time a new application is installed

or updated.

[0118] Each software application generally performs a number of tasks or activities
on the computing device. The specific execution state in which certain tasks/activities
are performed in the computing device may be a strong indicator of whether a
behavior or activity merits additional or closer scrutiny, monitoring and/or analysis.
As such, in the various embodiments, the device processor may be configured to use
information identifying the actual execution states in which certain tasks/activities are
performed to focus its behavioral monitoring and analysis operations, and better
determine whether an activity is a critical activity and/or whether the activity is non-

benign.

[0119] In various embodiments, the device processor may be configured to associate
the activities/tasks performed by a software application with the execution states in
which those activities/tasks were performed. For example, the device processor may
be configured to generate a behavior vector that includes the behavior information
collected from monitoring the instrumented components in a sub-vector or data-
structure that lists the features, activities, or operations of the software for which the
execution state is relevant (e.g., location access, SMS read operations, sensor access,
etc.). In an embodiment, this sub-vector/data-structure may be stored in association
with a shadow feature value sub-vector/data-structure that identifies the execution
state in which each feature/activity/operation was observed. As an example, the
device processor may generate a behavior vector that includes a

“location_background” data field whose value identifies the number or rate that the

WO 2016/040015 PCT/US2015/047489
42

software application accessed location information when it was operating in a
background state. This allows the device processor to analyze this execution state
information independent of and/or in parallel with the other observed/monitored
activities of the computing device. Generating the behavior vector in this manner also

allows the system to aggregate information (e.g., frequency or rate) over time.

[0120] In various embodiments, the device processor may be configured to generate
the behavior vectors to include information that may be input to a decision node in the
machine learning classifier to generate an answer to a query regarding the monitored

activity.

[0121] In various embodiments, the device processor may be configured to generate
the behavior vectors to include execution information. The execution information
may be included in the behavior vector as part of a behavior (e.g., camera used 5 times
in 3 second by a background process, camera used 3 times in 3 second by a
foreground process, etc.) or as part of an independent feature. In an embodiment, the
execution state information may be included in the behavior vector as a shadow
feature value sub-vector or data structure. In an embodiment, the behavior vector may
store the shadow feature value sub-vector/data structure in association with the

features, activities, tasks for which the execution state is relevant.

[0122] FIG. 3 illustrates a method 300 of using behavioral analysis techniques to
evaluate the collective behavior of two or more software applications in accordance
with an embodiment. Method 300 may be performed in a processing core of a mobile

or resource constrained computing device.

[0123] In block 302, the processing core may monitor the activities of software
applications operating on the device. In block 304, the processing core may collect
behavior information from the monitored activities. In block 306, the processing core
may generate a behavior vector based on the collected behavior information. In block

308, the processing core may apply the behavior vector to a classifier model (or

WO 2016/040015 PCT/US2015/047489
43

family of classifier models) to generate analysis information. In block 310, the
processing core may use the analysis information to identify a relationship between
the software applications. In block 312, the processing core may identify the software
applications that should be evaluated together as a group based on the identified
relationship. In block 314, the processing core may aggregate the behavior
information and/or analysis results of the identified software applications. In block
316, the processing core may use the aggregated analysis results to determine whether

the collective behavior of the software applications is benign or non-benign.

[0124] FIG. 4 illustrates a method 400 of using behavioral analysis techniques to
determine the relationship between software applications in accordance with an
embodiment. Method 400 may be performed in a processing core of a mobile or
resource constrained computing device. In block 402, the processing core may
monitor the interactions between the software applications operating on the computing
device. In block 404, the processing core may generate behavior vectors that
characterize the relationships between the software applications. In block 406, the
processing core may apply the behavior vectors to a classifier model (or family of
classifier models) to generate analysis information. In block 408, the processing core
may use the analysis information to determine the nature of the relationship between

the applications, such as whether the applications are colluding or working in concert.

[0125] FIG. 5 illustrates a method 500 of using behavioral analysis techniques to
determine whether the collective behavior of the identified applications is non-benign
in accordance with an embodiment. Method 500 may be performed in a processing
core of a mobile or resource constrained computing device. In block 502, the
processing core may identify the software applications that should be analyzed
together as a group (e.g., colluding applications, etc.). In block 504, the processing
core may apply the behavior vectors of the identified applications to a classifier model
(or family of classifier models). In block 506, the processing core may aggregate the

analysis information generated by each application of a behavior vector to the

WO 2016/040015 PCT/US2015/047489
44

classifier model. In block 508, the processing core may use the aggregated analysis
information to determine whether the collective behavior of the identified applications

1s non-benign.

[0126] FIG. 6 illustrates a method 600 of using behavioral analysis techniques to
determine whether the collective behavior of the identified applications is non-benign
in accordance with another embodiment. Method 600 may be performed in a
processing core of a mobile or resource constrained computing device. In block 602,
the processing core may identify the software applications should be analyzed
together as a group. In block 604, the processing core may monitor the activities of
the identified applications. In block 606, the processing core may collect behavior
information for each of the monitored activities. In block 608, the processing core
may generate a behavior vector that characterizes the collective behavior of the
identified applications based on the collected behavior information. In block 610, the
processing core may apply the generated behavior vector to a classifier model (or
family of classifier models) to generate analysis information. In block 612, the
processing core may use the analysis information to determine whether the collective

behavior of the identified applications is non-benign.

[0127] FIG. 7 illustrates an embodiment method 700 of using a family of lean
classifier model to classify a behavior of the computing device. Method 700 may be

performed by a processing core of a mobile or resource constrained computing device.

[0128] In block 702, the processing core my perform observations to collect behavior
information from various components that are instrumented at various levels of the
computing device system. In an embodiment, this may be accomplished via the
behavior observer module 202 discussed above with reference to FIG. 2. In block
704, the processing core may generate a behavior vector characterizing the
observations, the collected behavior information, and/or a computing device behavior.
Also in block 704, the processing core may use a full classifier model received from a

network server to generate a lean classifier model or a family of lean classifier models

WO 2016/040015 PCT/US2015/047489
45

of varying levels of complexity (or “leanness”). To accomplish this, the processing
core may cull a family of boosted decision stumps included in the full classifier model
to generate lean classifier models that include a reduced number of boosted decision

stumps and/or evaluate a limited number of test conditions.

[0129] In block 706, the processing core may select the leanest classifier in the family
of lean classifier models (i.e., the model based on the fewest number of different
computing device states, features, behaviors, or conditions) that has not yet been
evaluated or applied by the computing device. In an embodiment, this may be
accomplished by the processing core selecting the first classifier model in an ordered

list of classifier models.

[0130] In block 708, the processing core may apply collected behavior information or
behavior vectors to each boosted decision stump in the selected lean classifier model.
Because boosted decision stumps are binary decisions and the lean classifier model is
generated by selecting many binary decisions that are based on the same test
condition, the process of applying a behavior vector to the boosted decision stumps in
the lean classifier model may be performed in a parallel operation. Alternatively, the
behavior vector applied in block 530 may be truncated or filtered to just include the
limited number of test condition parameters included in the lean classifier model,

thereby further reducing the computational effort in applying the model.

[0131] In block 710, the processing core may compute or determine a weighted
average of the results of applying the collected behavior information to each boosted
decision stump in the lean classifier model. In block 712, the processing core may
compare the computed weighted average to a threshold value. In determination block
714, the processing core may determine whether the results of this comparison and/or
the results generated by applying the selected lean classifier model are suspicious. For
example, the processing core may determine whether these results may be used to
classify a behavior as either malicious or benign with a high degree of confidence, and

if not treat the behavior as suspicious.

WO 2016/040015 PCT/US2015/047489
46

[0132] If the processing core determines that the results are suspicious (e.g.,
determination block 714 = “Yes”), the processing core may repeat the operations in
blocks 706-712 to select and apply a stronger (i.€., less lean) classifier model that
evaluates more device states, features, behaviors, or conditions until the behavior is
classified as malicious or benign with a high degree of confidence. If the processing
core determines that the results are not suspicious (e.g., determination block 714 =
“No”), such as by determining that the behavior can be classified as either malicious
or benign with a high degree of confidence, in block 716, the processing core may use
the result of the comparison generated in block 712 to classify a behavior of the

computing device as benign or potentially malicious.

[0133] In an alternative embodiment method, the operations described above may be
accomplished by sequentially selecting a boosted decision stump that is not already in
the lean classifier model; identifying all other boosted decision stumps that depend
upon the same computing device state, feature, behavior, or condition as the selected
decision stump (and thus can be applied based upon one determination result);
including in the lean classifier model the selected and all identified other boosted
decision stumps that that depend upon the same computing device state, feature,
behavior, or condition; and repeating the process for a number of times equal to the
determined number of test conditions. Because all boosted decision stumps that
depend on the same test condition as the selected boosted decision stump are added to
the lean classifier model each time, limiting the number of times this process is
performed will limit the number of test conditions included in the lean classifier

model.

[0134] FIG. 8 illustrates an example boosting method 800 suitable for generating a
boosted decision tree/classifier that is suitable for use in accordance with various
embodiments. In block 802, a processor may generate and/or execute a decision
tree/classifier, collect a training sample from the execution of the decision

tree/classifier, and generate a new classifier model (h1(x)) based on the training

WO 2016/040015 PCT/US2015/047489
47

sample. The training sample may include information collected from previous
observations or analysis of computing device behaviors, software applications, or
processes in the computing device. The training sample and/or new classifier model
(h1(x)) may be generated based the types of question or test conditions included in
previous classifiers and/or based on accuracy or performance characteristics collected
from the execution/application of previous data/behavior models or classifiers in a
classifier module of a behavior analyzer module 208. In block 804, the processor may
boost (or increase) the weight of the entries that were misclassified by the generated
decision tree/classifier (h1(x)) to generate a second new tree/classifier (h2(x)). In an
embodiment, the training sample and/or new classifier model (h2(x)) may be
generated based on the mistake rate of a previous execution or use (h1(x)) of a
classifier. In an embodiment, the training sample and/or new classifier model (h2(x))
may be generated based on attributes determined to have that contributed to the
mistake rate or the misclassification of data points in the previous execution or use of

a classifier.

[0135] In an embodiment, the misclassified entries may be weighted based on their
relatively accuracy or effectiveness. In block 806, the processor may boost (or
increase) the weight of the entries that were misclassified by the generated second
tree/classifier (h2(x)) to generate a third new tree/classifier (h3(x)). In block 808, the
operations of blocks 804-806 may be repeated to generate “t” number of new

tree/classifiers (hy(x)).

[0136] By boosting or increasing the weight of the entries that were misclassified by
the first decision tree/classifier (h1(x)), the second tree/classifier (h2(x)) may more
accurately classify the entities that were misclassified by the first decision
tree/classifier (h1(x)), but may also misclassify some of the entities that where
correctly classified by the first decision tree/classifier (h1(x)). Similarly, the third
tree/classifier (h3(x)) may more accurately classify the entities that were misclassified

by the second decision tree/classifier (h2(x)) and misclassify some of the entities that

WO 2016/040015 PCT/US2015/047489
48

where correctly classified by the second decision tree/classifier (h2(x)). That is,
generating the family of tree/classifiers h1(x) - hy(x) may not result in a system that
converges as a whole, but results in a number of decision trees/classifiers that may be

executed in parallel.

[0137] FIG. 9 illustrates example logical components and information flows in a
behavior observer module 202 of a computing system configured to perform dynamic
and adaptive observations in accordance with an embodiment. The behavior observer
module 202 may include an adaptive filter module 902, a throttle module 904, an
observer mode module 906, a high-level behavior detection module 908, a behavior
vector generator 910, and a secure buffer 912. The high-level behavior detection
module 908 may include a spatial correlation module 914 and a temporal correlation

module 916.

[0138] The observer mode module 906 may receive control information from various
sources, which may include an analyzer unit (e.g., the behavior analyzer module 208
described above with reference to FIG. 2) and/or an application API. The observer
mode module 906 may send control information pertaining to various observer modes

to the adaptive filter module 902 and the high-level behavior detection module 908.

[0139] The adaptive filter module 902 may receive data/information from multiple
sources, and intelligently filter the received information to generate a smaller subset of
information selected from the received information. This filter may be adapted based
on information or control received from the analyzer module, or a higher-level process
communicating through an API. The filtered information may be sent to the throttle
module 904, which may be responsible for controlling the amount of information
flowing from the filter to ensure that the high-level behavior detection module 908

does not become flooded or overloaded with requests or information.

[0140] The high-level behavior detection module 908 may receive data/information

from the throttle module 904, control information from the observer mode module

WO 2016/040015 PCT/US2015/047489
49

906, and context information from other components of the computing device. The
high-level behavior detection module 908 may use the received information to
perform spatial and temporal correlations to detect or identify high level behaviors
that may cause the device to perform at sub-optimal levels. The results of the spatial
and temporal correlations may be sent to the behavior vector generator 910, which
may receive the correlation information and generate a behavior vector that describes
the behaviors of a particular process, application, or sub-system. In an embodiment,
the behavior vector generator 910 may generate the behavior vector such that each
high-level behavior of a particular process, application, or sub-system is an element of
the behavior vector. In an embodiment, the generated behavior vector may be stored
in a secure buffer 912. Examples of high-level behavior detection may include
detection of the existence of a particular event, the amount or frequency of another
event, the relationship between multiple events, the order in which events occur, time

differences between the occurrence of certain events, etc.

[0141] In the various embodiments, the behavior observer module 202 may perform
adaptive observations and control the observation granularity. That is, the behavior
observer module 202 may dynamically identify the relevant behaviors that are to be
observed, and dynamically determine the level of detail at which the identified
behaviors are to be observed. In this manner, the behavior observer module 202
enables the system to monitor the behaviors of the computing device at various levels
(e.g., multiple coarse and fine levels). The behavior observer module 202 may enable
the system to adapt to what is being observed. The behavior observer module 202
may enable the system to dynamically change the factors/behaviors being observed
based on a focused subset of information, which may be obtained from a wide verity

of sources.

[0142] As discussed above, the behavior observer module 202 may perform adaptive
observation techniques and control the observation granularity based on information

received from a variety of sources. For example, the high-level behavior detection

WO 2016/040015 PCT/US2015/047489
50

module 908 may receive information from the throttle module 904, the observer mode
module 906, and context information received from other components (e.g., sensors)
of the computing device. As an example, a high-level behavior detection module 908
performing temporal correlations might detect that a camera has been used and that
the computing device is attempting to upload the picture to a server. The high-level
behavior detection module 908 may also perform spatial correlations to determine
whether an application on the computing device took the picture while the device was
holstered and attached to the user’s belt. The high-level behavior detection module
908 may determine whether this detected high-level behavior (e.g., usage of the
camera while holstered) is a behavior that is acceptable or common, which may be
achieved by comparing the current behavior with past behaviors of the computing
device and/or accessing information collected from a plurality of devices (e.g.,
information received from a crowd-sourcing server). Since taking pictures and
uploading them to a server while holstered is an unusual behavior (as may be
determined from observed normal behaviors in the context of being holstered), in this
situation the high-level behavior detection module 908 may recognize this as a
potentially threatening behavior and initiate an appropriate response (e.g., shutting off

the camera, sounding an alarm, etc.).

[0143] In an embodiment, the behavior observer module 202 may be implemented in

multiple parts.

[0144] FIG. 10 illustrates in more detail logical components and information flows in
a computing system 1000 implementing an embodiment observer daemon. In the
example illustrated in FIG. 10, the computing system 1000 includes a behavior
detector 1002 module, a database engine 1004 module, and a behavior analyzer
module 208 in the user space, and a ring buffer 1014, a filter rules 1016 module, a
throttling rules 1018 module, and a secure buffer 1020 in the kernel space. The
computing system 1000 may further include an observer daemon that includes the

behavior detector 1002 and the database engine 1004 in the user space, and the secure

WO 2016/040015 PCT/US2015/047489
51

buffer manager 1006, the rules manager 1008, and the system health monitor 1010 in

the kernel space.

[0145] The various embodiments may provide cross-layer observations on computing
devices encompassing webkit, SDK, NDK, kernel, drivers, and hardware in order to

characterize system behavior. The behavior observations may be made in real time.

[0146] The observer module may perform adaptive observation techniques and
control the observation granularity. As discussed above, there are a large number (i.e.,
thousands) of factors that could contribute to the computing device’s degradation, and
it may not be feasible to monitor/observe all of the different factors that may
contribute to the degradation of the device’s performance. To overcome this, the
various embodiments dynamically identify the relevant behaviors that are to be
observed, and dynamically determine the level of detail at which the identified

behaviors are to be observed.

[0147] FIG. 11 illustrates an example method 1100 for performing dynamic and
adaptive observations in accordance with an embodiment. In block 1102, the device
processor may perform coarse observations by monitoring/observing a subset of a
large number of factors/behaviors that could contribute to the computing device’s
degradation. In block 1103, the device processor may generate a behavior vector
characterizing the coarse observations and/or the computing device behavior based on
the coarse observations. In block 1104, the device processor may identify subsystems,
processes, and/or applications associated with the coarse observations that may
potentially contribute to the computing device’s degradation. This may be achieved,
for example, by comparing information received from multiple sources with
contextual information received from sensors of the computing device. In block 1106,
the device processor may perform behavioral analysis operations based on the coarse
observations. In an embodiment, as part of blocks 1103 and 1104, the device
processor may perform one or more of the operations discussed above with reference

to FIGs. 2-10.

WO 2016/040015 PCT/US2015/047489
52

[0148] In determination block 1108, the device processor may determine whether
suspicious behaviors or potential problems can be identified and corrected based on
the results of the behavioral analysis. When the device processor determines that the
suspicious behaviors or potential problems can be identified and corrected based on
the results of the behavioral analysis (i.e., determination block 1108 = “Yes”), in
block 1118, the processor may initiate a process to correct the behavior and return to

block 1102 to perform additional coarse observations.

[0149] When the device processor determines that the suspicious behaviors or
potential problems cannot be identified and/or corrected based on the results of the
behavioral analysis (i.e., determination block 1108 = “No”), in determination block
1109 the device processor may determine whether there is a likelihood of a problem.
In an embodiment, the device processor may determine that there is a likelithood of a
problem by computing a probability of the computing device encountering potential
problems and/or engaging in suspicious behaviors, and determining whether the
computed probability is greater than a predetermined threshold. When the device
processor determines that the computed probability is not greater than the
predetermined threshold and/or there is not a likelihood that suspicious behaviors or
potential problems exist and/or are detectable (i.e., determination block 1109 = “No”),

the processor may return to block 1102 to perform additional coarse observations.

[0150] When the device processor determines that there is a likelihood that suspicious
behaviors or potential problems exist and/or are detectable (i.e., determination block
1109 = “Yes”), in block 1110, the device processor may perform deeper
logging/observations or final logging on the identified subsystems, processes or
applications. In block 1112, the device processor may perform deeper and more
detailed observations on the identified subsystems, processes or applications. In block
1114, the device processor may perform further and/or deeper behavioral analysis
based on the deeper and more detailed observations. In determination block 1108, the

device processor may again determine whether the suspicious behaviors or potential

WO 2016/040015 PCT/US2015/047489
53

problems can be identified and corrected based on the results of the deeper behavioral
analysis. When the device processor determines that the suspicious behaviors or
potential problems cannot be identified and corrected based on the results of the
deeper behavioral analysis (i.e., determination block 1108 = “No”), the processor may
repeat the operations in blocks 1110-1114 until the level of detail is fine enough to
identify the problem or until it is determined that the problem cannot be identified

with additional detail or that no problem exists.

[0151] When the device processor determines that the suspicious behaviors or
potential problems can be identified and corrected based on the results of the deeper
behavioral analysis (i.e., determination block 1108 = “Yes”), in block 1118, the device
processor may perform operations to correct the problem/behavior, and the processor

may return to block 1102 to perform additional operations.

[0152] In an embodiment, as part of blocks 1102-1118 of method 1100, the device
processor may perform real-time behavior analysis of the system’s behaviors to
identify suspicious behaviors from limited and coarse observations, to dynamically
determine the behaviors to observe in greater detail, and to dynamically determine the
precise level of detail required for the observations. This enables the device processor
to efficiently identify and prevent problems from occurring, without requiring the use

of a large amount of processor, memory, or battery resources on the device.

[0153] The various embodiments improve upon existing solutions by using behavior
analysis and/or machine learning techniques (as opposed to a permissions, policy, or
rules-based approaches) to monitor and analyze the collective behavior of a select
group of software applications. The use of behavior analysis or machine learning
techniques is important because modern computing devices are highly configurable
and complex systems, and the factors that are most important for determining whether
software applications are colluding may be different in each device. Further, different
combinations of device features/factors may require an analysis in each device in

order for that device to determine whether software applications are colluding. Yet,

WO 2016/040015 PCT/US2015/047489
54

the precise combination of features/factors that require monitoring and analysis often
can only be determined using information obtained from the specific computing
device in which the activity is performed and at the time the activity is underway. For
these and other reasons, existing solutions are not adequate for monitoring, detecting,
and characterizing the collective behavior of, or the relationships between, a plurality
of software applications in the computing device, in real-time, while the behavior is
underway, and without consuming a significant amount of the computing device’s

pI'OCGSSil’lg, memory, 0r pOwer resources.

[0154] The various embodiments (including, but not limited to, embodiments
discussed above with reference to FIGs. 1-11) may be implemented on a variety of
computing devices, an example of which is illustrated in FIG. 12 in the form of a
smartphone. A smartphone 1200 may include a processor 1202 coupled to internal
memory 1204, a display 1212, and to a speaker 1214. Additionally, the smartphone
1200 may include an antenna for sending and receiving electromagnetic radiation that
may be connected to a wireless data link and/or cellular telephone transceiver 1208
coupled to the processor 1202. Smartphones 1200 typically also include menu

selection buttons or rocker switches 1220 for receiving user inputs.

[0155] A typical smartphone 1200 also includes a sound encoding/decoding
(CODEC) circuit 1206, which digitizes sound received from a microphone into data
packets suitable for wireless transmission and decodes received sound data packets to
generate analog signals that are provided to the speaker to generate sound. Also, one
or more of the processor 1202, wireless transceiver 1208 and CODEC 1206 may
include a digital signal processor (DSP) circuit (not shown separately). In an
embodiment, the processor 1202 may be included in, a system-on-chip (SOC), such as
the SOC 100 illustrated in FIG. 1. In an embodiment, the processor 1202 may be the
application processor 108 illustrated in FIG. 1. In an embodiment, the processor 1202

may be a processing core (e.g., [P core, CPU core, etc.).

WO 2016/040015 PCT/US2015/047489
55

[0156] Portions of the embodiment methods may be accomplished in a client-server
architecture with some of the processing occurring in a server, such as maintaining
databases of normal operational behaviors, which may be accessed by a device
processor while executing the embodiment methods. Such embodiments may be
implemented on any of a variety of commercially available server devices, such as the
server 1300 illustrated in FIG. 13. Such a server 1300 typically includes a processor
1301 coupled to volatile memory 1302 and a large capacity nonvolatile memory, such
as a disk drive 1303. The server 1300 may also include a floppy disc drive, compact
disc (CD) or DVD disc drive 1304 coupled to the processor 1301. The server 1300
may also include network access ports 1306 coupled to the processor 1301 for
establishing data connections with a network 1305, such as a local area network

coupled to other broadcast system computers and servers.

[0157] The processors 1202, 1301 may be any programmable microprocessor,
microcomputer or multiple processor chip or chips that can be configured by software
instructions (applications) to perform a variety of functions, including the functions of
the various embodiments described below. In some mobile devices, multiple
processors 1202 may be provided, such as one processor dedicated to wireless
communication functions and one processor dedicated to running other applications.
Typically, software applications may be stored in the internal memory 1204, 1302,
1303 before they are accessed and loaded into the processor 1202, 1301. The
processor 1202, 1301 may include internal memory sufficient to store the application

software instructions.

99 ¢

[0158] As used in this application, the terms “component,” “module,” and the like are
intended to include a computer-related entity, such as, but not limited to, hardware,
firmware, a combination of hardware and software, software, or software in execution,
which are configured to perform particular operations or functions. For example, a
component may be, but is not limited to, a process running on a processor, a

processor, an object, an executable, a thread of execution, a program, and/or a

WO 2016/040015 PCT/US2015/047489
56

computer. By way of illustration, both an application running on a computing device
and the computing device may be referred to as a component. One or more
components may reside within a process and/or thread of execution, and a component
may be localized on one processor or core and/or distributed between two or more
processors or cores. In addition, these components may execute from various non-
transitory computer readable media having various instructions and/or data structures
stored thereon. Components may communicate by way of local and/or remote
processes, function or procedure calls, electronic signals, data packets, memory
read/writes, and other known network, computer, processor, and/or process related

communication methodologies.

[0159] Computer program code or “program code” for execution on a programmable
processor for carrying out operations of the various embodiments may be written in a
high level programming language such as C, C++, C#, Smalltalk, Java, JavaScript,
Visual Basic, a Structured Query Language (e.g., Transact-SQL), Perl, or in various
other programming languages. Program code or programs stored on a computer
readable storage medium as used in this application may refer to machine language

code (such as object code) whose format is understandable by a processor.

[0160] Many mobile computing devices operating system kernels are organized into a
user space (where non-privileged code runs) and a kernel space (where privileged
code runs). This separation is of particular importance in Android® and other general
public license (GPL) environments where code that is part of the kernel space must be
GPL licensed, while code running in the user-space may not be GPL licensed. It
should be understood that the various software components/modules discussed here
may be implemented in either the kernel space or the user space, unless expressly

stated otherwise.

[0161] The foregoing method descriptions and the process flow diagrams are
provided merely as illustrative examples, and are not intended to require or imply that

the steps of the various embodiments must be performed in the order presented. As

WO 2016/040015 PCT/US2015/047489
57

will be appreciated by one of skill in the art the order of steps in the foregoing
embodiments may be performed in any order. Words such as “thereafter,” “then,”
“next,” etc. are not intended to limit the order of the steps; these words are simply
used to guide the reader through the description of the methods. Further, any

99 66

reference to claim elements in the singular, for example, using the articles “a,” “an” or

“the” is not to be construed as limiting the element to the singular.

[0162] The various illustrative logical blocks, modules, circuits, and algorithm steps
described in connection with the embodiments disclosed herein may be implemented
as electronic hardware, computer software, or combinations of both. To clearly
illustrate this interchangeability of hardware and software, various illustrative
components, blocks, modules, circuits, and steps have been described above generally
in terms of their functionality. Whether such functionality is implemented as
hardware or software depends upon the particular application and design constraints
imposed on the overall system. Skilled artisans may implement the described
functionality in varying ways for each particular application, but such implementation
decisions should not be interpreted as causing a departure from the scope of the

present invention.

[0163] The hardware used to implement the various illustrative logics, logical blocks,
modules, and circuits described in connection with the embodiments disclosed herein
may be implemented or performed with a general purpose processor, a digital signal
processor (DSP), an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA) or other programmable logic device, discrete gate or
transistor logic, discrete hardware components, or any combination thereof designed
to perform the functions described herein. A general-purpose processor may be a
multiprocessor, but, in the alternative, the processor may be any conventional
processor, controller, microcontroller, or state machine. A processor may also be
implemented as a combination of computing devices, e.g., a combination of a DSP

and a multiprocessor, a plurality of multiprocessors, one or more multiprocessors in

WO 2016/040015 PCT/US2015/047489
58

conjunction with a DSP core, or any other such configuration. Alternatively, some

steps or methods may be performed by circuitry that is specific to a given function.

[0164] In one or more exemplary embodiments, the functions described may be
implemented in hardware, software, firmware, or any combination thereof. If
implemented in software, the functions may be stored as one or more processor-
executable instructions or code on a non-transitory computer-readable storage medium
or non-transitory processor-readable storage medium. The steps of a method or
algorithm disclosed herein may be embodied in a processor-executable software
module which may reside on a non-transitory computer-readable or processor-
readable storage medium. Non-transitory computer-readable or processor-readable
storage media may be any storage media that may be accessed by a computer or a
processor. By way of example but not limitation, such non-transitory computer-
readable or processor-readable media may include RAM, ROM, EEPROM, FLASH
memory, CD-ROM or other optical disk storage, magnetic disk storage or other
magnetic storage devices, or any other medium that may be used to store desired
program code in the form of instructions or data structures and that may be accessed
by a computer. Disk and disc, as used herein, includes compact disc (CD), laser disc,
optical disc, digital versatile disc (DVD), floppy disk, and blu-ray disc where disks
usually reproduce data magnetically, while discs reproduce data optically with lasers.
Combinations of the above are also included within the scope of non-transitory
computer-readable and processor-readable media. Additionally, the operations of a
method or algorithm may reside as one or any combination or set of codes and/or
instructions on a non-transitory processor-readable medium and/or computer-readable

medium, which may be incorporated into a computer program product.

[0165] The preceding description of the disclosed embodiments is provided to enable
any person skilled in the art to make or use the present invention. Various
modifications to these embodiments will be readily apparent to those skilled in the art,

and the generic principles defined herein may be applied to other embodiments

WO 2016/040015 PCT/US2015/047489
59

without departing from the spirit or scope of the invention. Thus, the present
invention is not intended to be limited to the embodiments shown herein but is to be
accorded the widest scope consistent with the following claims and the principles and

novel features disclosed herein.

WO 2016/040015 PCT/US2015/047489
60

CLAIMS
What is claimed is:

1. A method of analyzing a behavior of a computing device, comprising;:

monitoring, in a processor of the computing device, activities of a plurality of
software applications;

collecting behavior information for monitored activities of each of the plurality
of software applications;

generating a behavior vector based on the collected behavior information;

applying the generated behavior vector to a classifier model to generate
analysis information; and

using the analysis information to evaluate a collective behavior of the plurality

of software applications.

2. The method of claim 1, wherein generating the behavior vector based on the
collected behavior information comprises generating an information structure that

characterizes the collective behavior of the plurality of software applications.

3. The method of claim 1, wherein generating the behavior vector based on the
collected behavior information comprises generating an information structure that

characterizes a relationship between the plurality of software applications.

4. The method of claim 1, wherein:

monitoring the activities of the plurality of software applications comprises
monitoring interactions between the plurality of software applications; and

using the analysis information to evaluate the collective behavior of the
plurality of software applications comprises identifying two or more software

applications that should be evaluated together as a group.

5. The method of claim 4, further comprising:

WO 2016/040015 PCT/US2015/047489
61

monitoring additional activities of the identified two or more software
applications to collect additional behavior information;

generating a collective behavior vector that characterizes the collective
behavior of the identified two or more software applications based on the collected
additional behavior information;

applying the generated collective behavior vector to the classifier model to
generate additional analysis information; and

using the additional analysis information to determine whether the collective

behavior of the identified two or more software applications is non-benign.

6. The method of claim 4, further comprising;:

applying behavior vectors that each characterizes a behavior of the identified
two or more software applications to the classifier model to generate additional
analysis information;

aggregating the additional analysis information generated for each of the
behavior vectors; and

using the aggregated analysis information to determine whether the collective

behavior of the identified two or more software applications is non-benign.

7. The method of claim 1, wherein applying the generated behavior vector to the
classifier model to generate the analysis information comprises applying the generated

behavior vector to a multi-application classifier model.

8. The method of claim 7, wherein:
generating the behavior vector based on the collected behavior information
comprises generating a plurality of behavior vectors that each characterizes a behavior

of one of the plurality of software applications; and

WO 2016/040015 PCT/US2015/047489
62

applying the generated behavior vector to the multi-application classifier model
comprises applying each of the plurality of behavior vectors to the multi-application

classifier model to generate the analysis information.

9. The method of claim 7, wherein applying the generated behavior vector to the
multi-application classifier model comprises:

evaluating each test condition included in the multi-application classifier
model;

computing a weighted average of each result of evaluating test conditions in the
multi-application classifier model; and

determining whether the collective behavior is non-benign based on the

weighted average.

10. The method of claim 1, wherein using the analysis information to classify the
collective behavior of the plurality of software applications comprises:
categorizing the monitored plurality of software applications;
profiling each category of the plurality of software applications; and
generating performance numbers for each category of the plurality of software

applications.

11. A computing device, comprising:
a processor configured to:
monitor activities of a plurality of software applications;
collect behavior information for monitored activities of each of the
plurality of software applications;
generate a behavior vector based on the collected behavior information;
apply the generated behavior vector to a classifier model to generate

analysis information; and

WO 2016/040015 PCT/US2015/047489
63

use the analysis information to evaluate a collective behavior of the

plurality of software applications.

12. The computing device of claim 11, wherein the processor is configured with
processor-executable instructions to perform operations such that generating the
behavior vector based on the collected behavior information comprises generating an
information structure that characterizes the collective behavior of the plurality of

software applications.

13. The computing device of claim 11, wherein the processor is configured with
processor-executable instructions to perform operations such that generating the
behavior vector based on the collected behavior information comprises generating an
information structure that characterizes a relationship between the plurality of

software applications.

14. The computing device of claim 11, wherein the processor is configured with
processor-executable instructions to perform operations such that:

monitoring the activities of the plurality of software applications comprises
monitoring interactions between the plurality of software applications; and

using the analysis information to evaluate the collective behavior of the
plurality of software applications comprises identifying two or more software

applications that should be evaluated together as a group.

15. The computing device of claim 14, wherein the processor is configured with
processor-executable instructions to perform operations further comprising:
monitoring additional activities of the identified two or more software

applications to collect additional behavior information;

WO 2016/040015 PCT/US2015/047489
64

generating a collective behavior vector that characterizes the collective
behavior of the identified two or more software applications based on the collected
additional behavior information;

applying the generated collective behavior vector to the classifier model to
generate additional analysis information; and

using the additional analysis information to determine whether the collective

behavior of the identified two or more software applications is non-benign.

16. The computing device of claim 14, wherein the processor is configured with
processor-executable instructions to perform operations further comprising:

applying behavior vectors that each characterizes a behavior of the identified
two or more software applications to the classifier model to generate additional
analysis information;

aggregating the additional analysis information generated for each of the
behavior vectors; and

using the aggregated analysis information to determine whether the collective

behavior of the identified two or more software applications is non-benign.

17. The computing device of claim 11, wherein the processor is configured with
processor-executable instructions to perform operations such that applying the
generated behavior vector to the classifier model to generate the analysis information
comprises applying the generated behavior vector to a multi-application classifier

model.

18. The computing device of claim 17, wherein the processor is configured with
processor-executable instructions to perform operations such that:

generating the behavior vector based on the collected behavior information
comprises generating a plurality of behavior vectors that each characterizes a behavior

of one of the plurality of software applications; and

WO 2016/040015 PCT/US2015/047489
65

applying the generated behavior vector to the multi-application classifier model
comprises applying each of the plurality of behavior vectors to the multi-application

classifier model to generate the analysis information.

19. The computing device of claim 17, wherein the processor is configured with
processor-executable instructions to perform operations such that applying the
generated behavior vector to the multi-application classifier model comprises:

evaluating each test condition included in the multi-application classifier
model;

computing a weighted average of each result of evaluating test conditions in the
multi-application classifier model; and

determining whether the collective behavior is non-benign based on the

weighted average.

20. The computing device of claim 11, wherein the processor is configured with
processor-executable instructions to perform operations such that using the analysis
information to classify the collective behavior of the plurality of software applications
comprises:

categorizing the monitored plurality of software applications;

profiling each category of the plurality of software applications; and

generating performance numbers for each category of the plurality of software

applications.

21. The computing device of claim 11, further comprising a behavior observer
hardware module configured to monitor use of computing device memory and
hardware events at a hardware level and output collected behavior information to the
processor, wherein the processor is configured with processor-executable instructions

to perform operations such that monitoring activities of the plurality of software

WO 2016/040015 PCT/US2015/047489
66

applications comprises receiving the collected behavior information from the behavior

observer hardware module.

22. A non-transitory computer readable storage medium having stored thereon
processor-executable software instructions configured to cause a processor to perform
operations comprising:

monitoring activities of a plurality of software applications;

collecting behavior information for monitored activities of each of the plurality
of software applications;

generating a behavior vector based on the collected behavior information;

applying the generated behavior vector to a classifier model to generate
analysis information; and

using the analysis information to evaluate a collective behavior of the plurality

of software applications.

23. The non-transitory computer readable storage medium of claim 22, wherein the

stored processor-executable software instructions are configured to cause a processor
to perform operations such that generating the behavior vector based on the collected
behavior information comprises generating an information structure that characterizes

the collective behavior of the plurality of software applications.

24. The non-transitory computer readable storage medium of claim 22, wherein the

stored processor-executable software instructions are configured to cause a processor
to perform operations such that generating the behavior vector based on the collected
behavior information comprises generating an information structure that characterizes

a relationship between the plurality of software applications.

WO 2016/040015 PCT/US2015/047489
67

25. The non-transitory computer readable storage medium of claim 22, wherein the
stored processor-executable software instructions are configured to cause a processor
to perform operations such that:

monitoring the activities of the plurality of software applications comprises
monitoring interactions between the plurality of software applications; and

using the analysis information to evaluate the collective behavior of the
plurality of software applications comprises identifying two or more software

applications that should be evaluated together as a group.

26. A computing device, comprising:

means for monitoring activities of a plurality of software applications;

means for collecting behavior information for monitored activities of
each of the plurality of software applications;

means for generating a behavior vector based on the collected behavior
information;

means for applying the generated behavior vector to a classifier model to
generate analysis information; and

means for using the analysis information to evaluate a collective

behavior of the plurality of software applications.

27. The computing device of claim 26, wherein means for generating the behavior
vector based on the collected behavior information comprises means for generating an
information structure that characterizes the collective behavior of the plurality of

software applications.

28. The computing device of claim 26, wherein means for generating the behavior
vector based on the collected behavior information comprises means for generating an
information structure that characterizes a relationship between the plurality of

software applications.

WO 2016/040015 PCT/US2015/047489
68

29. The computing device of claim 26, wherein:

means for monitoring the activities of the plurality of software applications
comprises means for monitoring interactions between the plurality of software
applications; and

means for using the analysis information to evaluate the collective behavior of
the plurality of software applications comprises means for identifying two or more

software applications that should be evaluated together as a group.

30. The computing device of claim 29, further comprising:

means for monitoring additional activities of the identified two or more
software applications to collect additional behavior information;

means for generating a collective behavior vector that characterizes the
collective behavior of the identified two or more software applications based on the
collected additional behavior information;

means for applying the generated collective behavior vector to the classifier
model to generate additional analysis information; and

means for using the additional analysis information to determine whether the

collective behavior of the identified two or more software applications is non-benign.

WO 2016/040015 PCT/US2015/047489
113
J
104 106 108 110
\ \ \ \
\ \ \ \
Modem Graphics Applications

Processor Processor Processor Coprocessor

I I I 124

)
Interconnection/Bus
System
Digital Signal Mernory Analog and Components
Memory | | Monitoring Custom
Processor : o and
Unit Circuitry
Resources
/ / / / /
/ / / / A /
101 112 113 114 116
A J
Voltage
11§~ Clock 120~ Regulator

FIG. 1

WO 2016/040015 PCT/US2015/047489

2/13
200
%
(
2Q2
—P Behavior Observer Module
Behavior
204 Information
Behavior Extractor Module
Behavior
208 Vectors
Behavior Analyzer Module
210 l
Actuator Module
_

FIG. 2

WO 2016/040015

PCT/US2015/047489

3/13

302~

Monitor the activities of software applications
operating on the device

'

304 ~

Collect behavior information for monitored activities
of each of the software applications

v

306~

Generate one or more behavior vectors based on
the collected behavior information

y

308 ~

Apply the behavior vectors to a classifier model
(or family of classifier models) to generate analysis
information

'

310~

Use the analysis information to identify a
relationship between the software applications

y

312~

Identify the software applications that should be
evaluated together as a group based on the
identified relationship

y

314~

Aggregate the behavior information and/or analysis
results of the identified software applications

y

316~

Use the aggregated analysis results to determine
whether the collective behavior of the software
applications is benign or non-benign

FIG. 3

yo

WO 2016/040015 PCT/US2015/047489
4/13

yo

402 ~ Monitor the interactions between software
applications
404 Generate behavior vectors that characterize the
~ relationships between the software applications

l

Apply the behavior vectors to a classifier model (or
406~{ family of classifier models) to generate analysis
information

l

Use the analysis information to determine the
408 ~4 relationship between the applications (e.g., whether
the applications are colluding or working in concert)

FIG. 4

WO 2016/040015 PCT/US2015/047489
5/13

yO

Identify the software applications should be
analyzed together as a group

I

Apply the behavior vectors of the identified
504~ applications to a classifier model (or family of
classifier models) to generate analysis information

I

Aggregate the analysis information generated by
506 ~ each application of a behavior vector to the
classifier model

I

Use the aggregated information to determine
508~ whether the collective behavior of the applications
iS non-benign

502 ~

FIG. 5

WO 2016/040015

PCT/US2015/047489

6/13

602~

Identify the software applications should be
analyzed together as a group

l

604 ~

Monitor the activities of the identified software
applications

l

606~

Collect behavior information for each of the
monitored activities

l

608 ~

Generate a behavior vector that characterizes the
collective behavior of the identified applications
based on the collected behavior information

l

610~

Apply the generated behavior vector to a classifier
model (or family of classifier models) to generate
analysis information

l

612~

Use analysis information to determine whether the
collective behavior of the applications is non-
benign

FIG. 6

yO

WO 2016/040015 PCT/US2015/047489

713

702 ~

Perform observations to collect behavior information from various
components (e.g., APIs, registers, etc.) instrumented at various
levels of the mobile device system

I

704 ~

Generate a behavior vector characterizing the observations or
collected behavior information, and generate a family of lean
classifier models locally in the mobile device

yo

F

706 ~

Select the next lean classifier model in a family of lean classifier
models generated locally in the mobile device

'

708 ~

Apply the generated behavior vector to each boosted decision stump
in the selected lean classifier model

I

710 ~

Compute a weighted average of the results of applying the behavior
vector to each boosted decision stump in the locally generated lean
classifier model

I

712 ~

Compare the computed weighted average to a threshold value

Are results Yes

suspicious?

716 ~

Use the result of the comparison to classify a behavior of the mobile
device

FIG. 7

WO 2016/040015 PCT/US2015/047489
8/13

Training Weighted Weighted Weighted
Sample Sample Sample Sample

FIG. 8

WO 2016/040015 PCT/US2015/047489

9/13
Legend
— — — » Control
From High-Level,
Kernel, Driver APIs, From API/Analyzer
etc.
I
I
L¢ ¢J e v 9%
Adaptive Filter ¢ ———— Observer Mode
|
l |
904 :
Throttler :
I
I
v 908
High-Level Behavior Detection
Context
914 916 —
Spatial Temporal
Correlation Correlation

l 210 212
Behavior Vector Secure Buffer
Generator

FIG. 9

WO 2016/040015 PCT/US2015/047489
10/13
1000 234
Analyzer |[€——
|
1002 Query | 1004
? Behavior
Vectors
Behavior | Database
> Detector Engine
Log
Statistics
Observer
User Space Mode
Kernel Space Ring Buffer API
i A A 4 1008
1016 Filter L
A (Rules |
| | Rules
Manager
‘Throttling
1018 Rules y
Query
1006 | Response Battery Status,
) \ 4 Available Memory,
Secure ete.
ceo Buffer
Manager System
Health
1020 Data for Analyzer Monitor
B ‘]
1010

Secure Buffer

FIG. 10

WO 2016/040015

110

0

1102
\

11/13

PCT/US2015/047489

c

Perform Coarse Observations

1103

y

Generate a Behavior Vector Characterizing the
Course Observations

1104

y

Identify Processes/Applications/Sub-Systems

1118
{

Fix Problem

(e.g., Restrict Process,
Prevent Access, etc.)

o\

~1114

1106 l
Perform Behavior Analysis Based on the
Coarse Observations and Using a Locally
Generated Lean Classifier Module
-
1108
Problem Identified?
No
1109 Is there
a Likelihood of
a Problem?

Yes

Enable Deeper Logging For Identified 1110

Processes/Applications/Sub-Systems

Perform Finer Observations Via the
) ~ 1112
Deeper Logging
Perform Deeper Analysis Based on
the Finer Observations Using the
Locally Generated Lean Classifier
Module
\),

FIG. 11

/////////////////

000000000000

|
4
b

WO 2016/040015 PCT/US2015/047489
13/13

1300 1305

1301 1302
)]

Eerv A

%

1306 —
1303 1]
1304 -1

\
\
|

\
1

VA

[T
[T
[T

[T
T

[Tl
[T
[T

[T

[Tl

L1]]
L]
L]
[1 1]

FIG. 13

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/047489

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/30 GO6F11/34
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, INSPEC, COMPENDEX, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

paragraphs [0017],
[0056]
figures 1-4, 6

[0019],

21 August 2014 (2014-08-21)
paragraphs [0003] - [0016],
[0024], [0029] - [0073],
[0113], [0127], [0128]
figures 2A, 2B, 3-5, 7, 11

[0020] -
[0078] -

X US 2013/247187 Al (HSIAO HSU-CHUN [US] ET 1-30
AL) 19 September 2013 (2013-09-19)
[0022] -

X WO 2014/126779 Al (QUALCOMM INC [US]) 1-30

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

12 November 2015

Date of mailing of the international search report

23/11/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Johansson, U1f

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/047489
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2013247187 Al 19-09-2013 CN 104205111 A 10-12-2014
EP 2828789 Al 28-01-2015
JP 2015511047 A 13-04-2015
KR 20140137003 A 01-12-2014
US 2013247187 Al 19-09-2013
US 2014123289 Al 01-05-2014
WO 2013142228 Al 26-09-2013
WO 2014126779 Al 21-08-2014 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - wo-search-report
	Page 85 - wo-search-report

