087053240 A1 |1 V0 000 0O 0 R0

O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O OO0 5O

International Bureau

(43) International Publication Date
8 May 2008 (08.05.2008)

(10) International Publication Number

WO 2008/053240 Al

(51) International Patent Classification:
GOIC 21/34 (2006.01) HO4L 12/56 (2006.01)
GOG6F 17/50 (2006.01) G060 10/00 (2006.01)

(21) International Application Number:
PCT/GB2007/050558

(22) International Filing Date:
18 September 2007 (18.09.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
0621508.1 30 October 2006 (30.10.2006) GB
(71) Applicant (for all designated States except US):
COTARES LIMITED [GB/GB]; 67 Narrow Lane,

Histon, Cambridge Cambridgeshire CB24 9YP (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): JONES, Alan, Henry
[GB/GB]; 67 Narrow Lane, Histon, Cambridge Cam-
bridgeshire CB24 9YP (GB).

(74) Agent: ROBINSON, John; Marks & Clerk, 4220 Nash
Court, Oxford Business Park South, Oxford Oxfordshire
0OX4 2RU (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(54) Title: METHOD OF AND APPARATUS FOR GENERATING ROUTES

Manchester

SN

Cambridge

Plateau routes

(57) Abstract: A method is provided of generating a plurality of diverse routes from a source to a destination in a weighted directed
graph. Such a method may be used for route planning or navigation with the weighted directed graph representing a road network,
but may also be used in other applications. A source routing tree is generated from the source to a first set of points of the graph,
which may comprise some or all of the points. A destination routing tree is generated from some or all of the points of the graph to
the destination. The trees are then combined to form the routes. For example, the sub-routes common to and transverses in the same
direction by the source and destination trees may be selected. The sub routes may then be formed into the routes by extending each
sub-route as necessary to the source and destination along the source and destination trees.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

Method of and Apparatus for Generating Routes

The present invention relates to a method of and an apparatus for generating a plurality

of diverse routes in a weighted directed graph.

The term “diverse routes” as used herein means routes which share the same links over
less than a predetermined proportion of their lengths, typically over less than 85% of

their lengths.

A graph G=<V,E> consists of a set of vertices (also known as points or nodes) V and a
set of edges (also known as arcs or links) E. An edge connects two vertices u and v; v is
said to be adjacent u. In a directed graph, each edge has a sense of direction fromu to v
and is written as an ordered pair <u,v> or u->v. In an undirected graph, an edge has no
sense of direction and is written as an unordered pair {u,v} or u<->v. An undirected
graph can be represented by a directed graph if every undirected edge {u,v} is

represented by two directed edges <u,v> and <v,u>.

Both directed and undirected graphs may be weighted. A weight is attached to each
edge. This may be used, for example, to represent the distance between two cities, the
driving time, the cost of the journey, the resistance of an electrical path or some other
quantity associated with the edge. The weight is sometimes called the /ength or cost of
the edge, particularly when the graph represents a map of some kind. The weight or

length of a path or a cycle is the sum of the weights or lengths of its component edges.

The methods described in this application are generally applicable to any domain where
the costs can be described by a weighted directed graph, and where there are no cycles
of negative cost in the graph. We will be using routeing on a road network in many of
our examples, but it should be understood that the techniques can equally well be
applied in other domains such as routeing of packets around a network of switching
points, or the finding of paths for wiring in an integrated circuit, printed circuit board or

a building.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

Road route planners are designed to find the optimum route from source A to
destination B. They define this as the single route with the minimum cost, where the
cost function is a simple weighted sum of times, junction delays, distances, financial
costs, type of road of the links that make up the route. The methods are often called
“shortest-path” where this is understood to mean shortest in the sum of the costs,
whatever they represent, not necessarily in metres. For a given cost function and road
graph, there exists a lowest cost going from A to B, and this be found by using well
known algorithms such as Dijkstra’s algorithm. In a degenerate case, there may be a
plurality of routes which share this globally lowest cost but the algorithms will find just
one of them. Dijkstra’s algorithm actually finds the optimum route from A to all nodes,
but variations on it are designed to terminate early and to explore preferentially in the
direction of B. The main constraint on the graph is that there should be no cycles with a
negative overall cost, which is simple enough to satisfy for a road network where all the

costs are positive.

Different route planners have slightly different road databases and cost functions. They
can come up with equally plausible routes from A to B, sometimes very different from
each other. It would be useful for a user to see all such plausible routes, particularly the

ones that are very different from each other.

It is also common for users to find that the recommended route is not the one that they
would have guessed or preferred, and so they try to make the route planner choose their
route so that they can compare the time and distance. This is achieved by adding
compulsory stops along the way, or by designating road links, junctions or areas that the
router is to avoid, or by changing the weightings of the cost function to favour quicker,
shorter, more motorway routes or other criteria. This can be quite time consuming, and
one is often left wondering if there are more good routes that other people would have

tried.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

As an example, consider travelling from Cambridge to Manchester. One route finder
suggests using the Al4, then M6, M56. Another uses the M6 toll. Yet another
recommends the A14 followed by the Al. These are all amongst the routes that a good

human planner would choose, but how would we find the others?

The basis of most single shortest path routers is some variation of Dijkstra’s
algorithm.

A good original reference to this algorithm is:

E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Matematik 1:269-271, 1959,

These algorithms maintain the lowest cost found so far to reach any node from the
source. They repeatedly select an active node (one whose outgoing links still need to be
explored) with a low cost (based on different heuristics, e.g. the A* algorithm), and
explore outgoing edges to see if they can reach another node at lower cost than so far

recorded.

A good original reference to this A* algorithm is:
P. E. Hart, N. J. Nilsson and B. Raphael. A4 formal basis for heuristic determination
of minimum path cost. 1EEE Transactions on Systems Science and Cybernetics, 4:100-

107, 1968.

If a node can be reached with a lower cost than that known so far, then each such node
is added to the list of active nodes. Once they terminate, these algorithms have in fact
found the lowest cost routes to a whole group of nodes (those with lower cost than the
destination), and have effectively computed a routeing tree (RT) from source to all
nodes that might be useful in getting to the destination. Whatever clever pruning is
performed on this tree, e.g. A* where the tree terminates in a roughly elliptical shape
with foci at the source and the destination, our methods can be used to convert it into a

diverse alternative route finding algorithm.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

EP 1 335 315 discloses a technique for planning multiple non-diverse paths in a
weighted non-directed graph. Dijkstra’s algorithm is used twice; once for providing a
routing tree from a start to all nodes of the graph and once for providing a routing tree
specifically from a goal to all nodes. The weights from both trees are then summed to
obtain the weight of going from the start to the goal via every node of the graph. Routes
are tested for the ability to be topologically transformed into each other in the presence
of obstacles so as to find topologically different paths. Such a technique is particularly

suitable for robotic guidance.

There is a class of algorithms designed to find the K shortest paths from source to
destination. Examples are Yen’s (Kth shortest paths with no constraints) and
Suurballe’s (shortest disjoint path pair). (J. Y. Yen. Another algorithm for finding the
K shortest loopless network paths. In Proc. of 41st Mtg. Operations Research Society
of America, volume 20, 1972; J. W. Suurballe, R. E. Tarjan. 4 Quick Method for
Finding Shortest Pairs of Disjoint Paths. Networks, 14:325336, pp 325-336, 1984.)

Yen’s algorithm is not useful for finding good alternative routes, as the Kth shortest
paths will simply be minor variations on the most optimum route. It works by
repeatedly running Dijkstra’s algorithm on a graph where edges and nodes are
prohibited, by effectively setting their cost to infinity. In a road network, this is a non-
starter for finding truly diverse routes as there is no way of knowing if the prohibited

node or link is vital to one of the good alternative routes.

Suurballe’s algorithm and others are designed to find edge- or node-disjoint paths.
These are unhelpful for finding good alternative routes because some road segments
may be shared between several of the diverse alternative routes that we would like to
find, which are therefore not disjoint. They work by running Dijkstra’s algorithm to
find a primary route, then altering all of the link costs, and running Dijkstra’s algorithm

again to find a backup route.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

For road route finding, we may not need such a mathematically rigorous definition of

the K routes.

For example, we can find successive routes by weighting against road links that have
been used in earlier routes. Unfortunately, such routes become progressively more
baroque as more links are weighted against, and in many cases, several of the good
routes will share a common beginning or ending, which is ruled out too early by this

technique.

We can alter the road link costs or the cost function itself in an effort to generate other
routes. This can be useful for expressing different user preferences such as a liking for
Motorways rather than back roads, but it will not present alternative routes that share
these characteristics, such as the choice between using the M6 or the M6 toll around

Birmingham.

While driving, some systems can alter the costs of a subset of the road links, and
recompute a route. This may be because the user has pressed a button to say that they
want a diversion, or because the system has received new traffic information that
changes the cost of using some links. In these cases, current systems would make
another run of a single routeing algorithm, and then guide the user on the new shortest
path (lowest cost) route. This will usually result in a short diversion around the affected
links, back onto the original route. This is a very different technique from ours as it
uses new costs for the links, and then looks again for the single most optimum route, not

for diverse choices.

US patent 6199009 discloses a technique for computing several routes based on the
different preference settings (quickest, shortest, combination) and allowing the user to
select between them. The problem with this approach is that in most cases the routes
will be similar or even identical to each other (e.g. the shortest route may also be the
quickest), and a radically different route that is perhaps 5% longer will just not be

shown.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

Known systems guide the driver along one selected route without showing any en-route
alternatives. Of course, if the driver strays from the selected route, then many
commercial systems will recompute a new route, and US patent 5675492 shows how to
precompute some alternatives and even display them. These will almost always be a
short diversion back onto the earlier selected route, and are not interpreted as a choice

for a completely different route.

According to a first aspect of the invention, there is provided a method of generating a
plurality of diverse routes from a source to a destination in a weighted directed graph,
comprising the steps of: generating a source routeing tree from the source to a first set
of points of the graph; generating a destination routeing tree from a second set of points
of the graph to the destination; and combining the source and destination trees to form

the routes.

The first set may comprise all of the points of the graph.

The second set may comprise all of the points of the graph.

The first and second sets may comprise points of the graph adjacent both the source and

the destination.

The first and second sets may comprise the same points.

The graph may comprise a set of links, each of which has a first priority of use, and a
second set of links, each of which has a second priority of use greater than the first
priority. The first set of points may comprise points interconnected by the links of the
first or second set in a first region of the graph containing the source and points
interconnected by the links of the second set but not of the first set in a second region of
the graph outside the first region. The second set of points may comprise points

interconnected by the links of the first or second set in a third region of the graph

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

containing the destination and points interconnected by the links of the second set but

not of the first set in a fourth region of the graph outside the third region.

The source and destination trees may be minimum cost trees.

The combining step may comprise selecting each sub-route common to and traversed in
the same direction by the source and destination trees. The source and destination trees
may include back-pointers and the sub-routes may be selected by finding sequences of
adjacent points which are pointed to by back-pointers of both the source and destination
trees. As an alternative, the points of the source and destination trees may be associated
with costs and the sub-routes may be selected by finding sequences of adjacent points
for which the sums of the costs from the source and destination trees are the same. The
combining step may further comprise extending each sub-route as necessary to the

source and destination along the source and destination trees to form one of the routes.

The method may further comprise assigning a measure of goodness to each route. The
measure may be a function of the length of the sub-route and the length of the route.
The measure may be a function of the difference between the length of the sub-route

and the length of the route.

The method may comprise selecting at least one via point which is not on any sub-route
or extended sub-route, calculating from the source and destination trees a minimum cost
route from the source via the at least one via point to the destination, and comparing the
or each calculated cost with the same sum of the costs for at least one of the selected
sub-routes. The method may comprise forming the difference between the or each
calculated cost and the same sum for the selected sub-route. The method may comprise
deselecting the or each via point for which the difference between the calculated cost

and the same sum is greater than a threshold.

The method may further comprise selecting only some of the routes in accordance with

the measure of goodness. The method may comprise selecting the N routes of highest

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

measure of goodness, where N is a positive integer. The measure may comprise
selecting at least some of the routes whose measures of goodness are greater than a

threshold.

The method may comprise storing at least one of the routeing trees.

The graph may comprise links associated with costs. The cost of traversing each of at
least some of the links may vary with a parameter of traversal. The cost of traversing
cach of the least some of the links may vary with the time of traversal. The first of the
generating steps to be performed may include calculating and storing the costs of the
links for the prevailing transversal parameter values and the stored costs may be used
during the second of the generating steps to be performed. The destination tree

generating step may be performed before the source tree generating step.

The routes may be ordered in accordance with at least one property of each route. The

property may be the measure of goodness.

The graph may represent a road network and the routes may be road routes.

The graph may represent an integrated circuit or a printed circuit and the routes may be

interconnections.

The graph may represent a wiring installation and the routes may be wiring

interconnections.

The method may further comprise choosing the order of placement of the
interconnections in accordance with the number of selected routes and/or the measure of
goodness. The interconnections with the lowest number of selected routes may be

placed first.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

The graph may represent a communications network and the routes may be

communication paths. The network may be an internet.

According to a second aspect of the invention, there is provided a method of navigation,
including generating road routes by a method according to the first aspect of the

invention.

The method may comprise presenting information about the road routes to a user. The
method may comprise presenting information about a choice of routes from a point
from which a plurality of the routes diverge when the user approaches the point. The

information may be displayed in a form representing a road sign.

The method may comprise offering guidance to a user along a selected one of the
routes. The method may comprise offering guidance, when the user leaves the selected

route, to the sub-route of the selected route.

According to a third aspect of the invention, there is provided a computer program for

performing a method according to the first or second aspect of the invention.

According to a fourth aspect of the invention, there is provided a computer-readable

medium carrying a program according to the third aspect of the invention.

According to a fifth aspect of the invention, there is provided transmission across a

communication path of a program according to the third aspect of the invention.

According to a sixth aspect of the invention, there is provided a computer programmed

to perform a program according to the third aspect of the invention.

According to a seventh aspect of the invention, there is provided a computer containing

a program according to the third aspect of the invention.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

10

According to an eighth aspect of the invention, there is provided an apparatus arranged

to perform a method according to the first or second aspect of the invention.

It is thus possible to provide a technique which generates a plurality of diverse routes
from a source to a destination in a weighted directed graph. It is necessary only to
generate two routeing trees irrespective of how many routes are required. Further, it is

not necessary to alter, for example, weighting or cost functions or individual link costs.

The invention will be further described, by way of example, with reference to the

accompanying drawings, in which:

Figure 1 illustrates a small hypothetical road network;

Figure 2 illustrates a source routeing tree generated by a method constituting an

embodiment of the invention;

Figure 3 illustrates a destination routeing tree generated by the method;

Figure 4 illustrates the result of combining the routeing trees of Figures 2 and 3;

Figure 5 illustrates the sub-routes or plateaux derived from Figure 4;

Figure 6 illustrates an example of a route derived from Figure 4;

Figure 7 illustrates a source routeing tree generated by the same or a similar method

constituting an embodiment of the invention;

Figure 8 illustrates a destination routeing tree generated by the method;

Figure 9 illustrates the result of combining the routeing trees of Figures 7 and §;

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

11

Figure 10 illustrates the diverse routes generated by the method with ranking in

accordance with a goodness factor;

Figure 11 illustrates a source routeing tree found by the same or a similar method for a

very simple graph;

Figure 12 illustrates a destination tree for the same graph;

Figure 13 illustrates the diverse routes generated by combining the routeing trees of

Figures 11 and 12;

Figure 14 illustrates an example of information display for displaying information about

the generated routes to a user;

Figure 15 illustrates a navigation display which may be presented to a user;

Figure 16 illustrates how a road junction may be analysed within the method;

Figure 17 is a block schematic diagram of an apparatus constituting an embodiment of

the invention;

Figure 18 illustrates priority roads in a small hypothetical road network;

Figure 19 illustrates a source routing tree generated by a modified method constituting

an embodiment of the invention;

Figure 20 illustrates a destination routing tree generated by the modified method;

Figure 21 illustrates the sub-routes or plateaux derived from combining the trees of

Figures 19 and 20; and

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

12

Figure 22 illustrates the diverse routes derived from the sub-routes of Figure 21.

For purposes of initial illustration and explanation, a simple hypothetical example of
diverse route generation will first be described. We will use a representation where all
we know is the distances between junctions along hypothetical roads. Figure 1 shows a

tiny subset of roads with their lengths annotated in tens of metres.

We will compute routes from the end of one road (the source node, subsequently
marked as “Source”) to the end of another (the destination node, subsequently marked
as “Dest”), and find not only the shortest route, but also several other routes that are
good diverse alternatives. Of course, on such a restricted network, the alternatives take
up many of the other roads, but on a real network with millions of nodes, we would still

find only the few best diverse alternatives amongst the billions of possibilities.

Our subsequent detailed implementation description uses a more complex road network,
which would be harder to draw, where a typical road is represented by two links, one in
each direction. We then encode the costs of going from each link to each possible
successor link, incorporating knowledge that includes turn delays, different conditions

in each direction and forbidden turns.

Thus we will show that our method works equally well for either a node-based or a link-
based representation. It should enhance any routeing algorithms that are based on the
computation of a shortest path (minimum cost) tree. It is independent of how those trees
were arrived at, working solely from the minimum cost values and the back pointers
that form the tree. From the computation of just two trees, it evaluates thousands of
possible routes to find a small subset that are all good alternatives, are each locally

optimal, and are globally diverse.

The first step is to compute the minimum cost tree from the source node to all other
nodes. This is typically performed using a variant of Dijkstra’s Algorithm or the A*

Algorithm, often enhanced by clever use of trunk roads, precomputation and graph

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

13

restrictions to speed up the computation or reduce the storage requirements. For our

example, we show the result of this as Figure 2.

At each end of each road segment, we have annotated the distance from the source to
that end using the shortest path. From each end of each road segment, there is exactly
one outgoing arrowhead that shows the way back towards the source using the shortest
path. We call this a back pointer. Note that for a source tree it will be in the opposite
direction to the direction of travel. These are computed and stored as a necessary part of

the Dijkstra’s or A* Algorithm.

For example, the shortest path from the source to the node marked as the destination
(distance 310) can be traced backwards by following the arrowheads back through the
nodes whose distances are 282, 245, 207, 197, 130, 85, 25, 14 and finally, 0. This is the
shortest path route from source to destination, and would be traced in just this way by

Dijkstra’s or the A* Algorithms.

The second step is to compute the minimum cost tree to the destination node from all
other nodes. This is just a variant of the previous algorithm and the output is shown as
Figure 3. This time, the annotations give the distance fo the destination node along the
shortest path, and the arrowheads, again exactly one from the end of each road, show

the way forward to the destination using the shortest path.

For example, the shortest path to the destination from the node at the top left with
distance 234 is found by following the arrowheads through the adjacent nodes whose
distances are 225, 215, 174, 113, 103, 65, 28, and 0. This tree also encodes the globally
shortest path, which is found by following the arrowheads from the source node through

to the destination node, and will always be identical to the one found from Figure 2.

Note the subtle difference between the trees, in that the first tree (Figure 2) encodes the
shortest path routes from a single node fo many others, while the second tree (Figure 3)

encodes the shortest path 7o a single node from many others.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

14

The next step in our method is, for each node, to add together the minimum costs from
cach tree. We call this the cost-sum. The result of this is shown in Figure 4. For
example, the number 471 at the top was arrived at by adding the corresponding numbers

218 and 253 from the tops of Figure 2 and Figure 3.

These numbers have a powerful interpretation. At any node P, they are the cost of the
shortest path route from the source node to the destination node via the node P. Thus we
have computed the set of shortest path routes from source to destination via any other
node in the graph. This in itself is a powerful result, but there are a huge number of such
routes, and mostly they will not be relevant when planning how to get from source to

destination.

We now observe that there are chains of adjacent nodes which have the same cost-sum.
Of course, the nodes that lie along the shortest path route from source to destination
must all have the same cost-sum, which is exactly the cost of the shortest path route.
However, there are other such chains. In this example, they have cost-sums of 310, 332,
335 and 395, and are highlighted with bold lines in Figure 5. We call each of the
maximal-length chains with the same cost-sum a plateau, as if the cost-sum represented

the height above some mythical plane.

To find these plateau chains, a variety of known algorithms could be used. We will

describe a typical example.

For this example, we begin by giving each node a single bit that indicates that we have
visited it, initially O for not-visited. We then scan over every node in turn, the order does
not matter. If it is marked as visited (1), we move on to the next node in the scan. If the
node is marked as not-visited (0), then we change that to 1 to indicate that we have
visited it. For each such newly-marked node, call it node Q, we begin a list of adjacent
nodes in the chain by adding just a reference to that node Q. We then follow the link

(arrowhead) in the source tree to an adjacent node, say node R1, and if it has the same

10

15

20

25

WO 2008/053240 PCT/GB2007/050558

15

cost-sum, we mark it as visited and we add a reference to R1 to the list and repeat for
R2 etc. When this has finished, we return to the node Q, and follow the link (arrowhead)
in the destination tree to an adjacent node S1. If the cost-sum at S1 is the same as for
node Q, then we add a reference to S1 to the list and mark S1 as visited. We then follow
the link (arrowhead) in the destination tree from S1 to a new node S2, and again, add it
to the list and mark it as visited if it has the same cost-sum as node Q. When this has
finished, we have a list that comprises all of the nodes in the chain that node Q is a part

of.

At this point we compute a goodness factor for the chain, and keep it in the list only if it
is one of the best n found so far, where n is typically 5, but could for example be 1000.

We will describe the goodness factor later.

We then continue to the next node in the scan.

A plateau is formed when the source and destination trees traverse a chain of road
segments in the same directions. This indicates that the chain is both useful for getting
away from the source, and for getting towards the destination. This is a powerful
indication that the chain may be useful for getting from the source to the destination.
Such chains tend to use the best roads in their vicinity, and are aligned to help in getting
from source to destination. On a real road network with millions of nodes, there are

many thousands of such chains, many of them very short.

To make a complete route out of a Plateau, we simply have to follow the arrowheads in
the source and destination trees back to the source and destination nodes themselves.
Figure 6 shows the relevant arrowheads for the plateau whose combined cost (call it
CC) was 395 in Figure 5. This route is the shortest path route from source to destination

that incorporates the plateau.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

16

For that plateau, its length (call it L) is simply the difference in the values at nodes A
and B from the source tree (221 — 170 = 51 from Figure 2) or the destination tree (225 —
174 =51 from Figure 3).

The shortest path route from source to plateau has a length (call it SP) equal to the
smaller of the values at A or B from the source tree (min(170,221) = 170 from Figure

2). So SP = 170.

The shortest path route from plateau to destination has a length (call it PD) equal to the
smaller of the values at A and B from the destination tree (min(225,174) = 174 from
Figure 3). So PD =174.

Thus the total length of the optimum route that incorporates the plateau is given by SP +
L + PD, which in this case is 170 + 51 + 174 = 395. This value must be exactly the
length of the shortest path route from source to destination via any one of the nodes in
the plateau, which we have already found as the combined cost CC from the combined

tree (Figure 4).

A useful plateau for getting from source to destination will tend to be longer than those
that are less useful, as it indicates a long stretch of route that is fast and well-aligned

compared to others in its vicinity. Thus we are looking for a larger value of L.

A useful plateau for getting from source to destination will tend to be part of a route that
is not too long, as we are not interested in long plateaux if they are found at a great
distance from both source and destination. Thus we are looking for a smaller value of

SP+ L+ PD.

Thus a good first estimate of the “goodness” of a plateau is the length of the plateau
minus the length of the route that the plateau is a part of, which is L — (SP + L + PD) = -
(SP + PD). In our example it is <170 + 174) = -344. In general, for more complex

10

15

20

25

WO 2008/053240

PCT/GB2007/050558

17

representations, it will be the cost of traversing the plateau minus the cost of the entire

route. This is a negative number.

To make this measure independent of the length units (or in general, the cost units), we
divide it by the length (cost) of the globally shortest path route, which in this case is
310. Thus our raw goodness (call it RG) is -344/310 =-1.11.

To make this more palatable to use, we can transform it by any function that preserves

its ordering. We call the resulting value the “goodness” or G for short.

The function that we shall use hereafter is G = 100 — 99 R

It is chosen so that the optimum route has a goodness G of 99, routes where the route
outside the plateau is up to 85% of the optimum route length (RG = -0.85 or more
positive) have a value of G greater than 50, routes where the route outside the plateau is
about the same as the optimum route have a value of G around 1 (there are usually
thousands of these, they are all the minor variations on the globally optimum route), and

worse routes have a value less than 1, which can go rapidly negative.

The other chains shown in bold in Figure 5 have the following values:

cC SP L PD SP_+]|RG-- G
PD) (SP+PD)/310

395 170 51 174 344 111 ~64

335 99 136 100 ~199 -0.64 81

332 56 78 198 254 20.82 57

310 0 310 0 0 0 99

For presentation to the user, we can use the values of G as a threshold, and a value of
G>50 gives good results. If they wish to see more routes, we can always keep more,
down to some lower threshold, say G>10. Typically, this will be accomplished by the
user asking for more alternatives, or altering the threshold value for G. This should not

be necessary for the average user.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

18

In testing on the complete Great Britain road network, from Cambridge to Canterbury,
there is only one route with G > 50. This uses motorways for almost the entire length,
namely the M11, M25 and M2. For purposes of investigation, we relaxed the threshold,
but the routes with G < 50 were not at all appealing because those motorways are so

well aligned and bounded by poor roads in London to the West and the sea to the East.

For some applications, if there turn out to be many routes with G>50, then we may
choose to limit the number shown to avoid overloading the user, typically showing only
the 5 routes with the highest values of G. Again, the user can be allowed to change this
parameter if they so wish, but we find that the top 5 usually encompass the most
appealing routes. For a desktop route planner, we might show all routes with G > 50,

but when planning in a vehicle or on a PDA, we may show only the top 5.

In testing on the Great Britain network, an example of this would be Cambridge to
Manchester, where there are 8 good alternative routes with G > 50, but the top 5

probably encompass the most popular choices.

The function that is used to find the minimum cost route (in Dijkstra’s or A* Algorithm
for instance) can be much more complex that simply the distance travelled. In most
situations, it is in fact dominated by the time taken, but may also be influenced, for
example, by type of road, familiarity to the driver, financial costs, safety record in ways
that are already known. We would typically use the best available time-independent cost
function in the computation of the plateaux. It is simply a matter of labelling the roads
with the appropriate cost instead of the distance, and the rest of the algorithm including

the thresholding remains the same.

Time dependent information could be used in the computation of the plateaux, but care
would have to be taken that only one cost is associated with each road segment.

Otherwise the source and destination trees might have different costs for the same

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

19

segment, which would prevent us from identifying the chains using the Combined Cost

(CC) values. A method of overcoming this is presented below.

An alternative method for handling time-dependent information is to compute the good
alternative routes using the time-independent parts of the cost, and then compute the
time-dependent factors for presentation to the user. Time dependent factors include the
extra time taken due to congestion, variable toll costs and time-varying road charges. In
this way, a user can see how the good geographical routes have been affected by the
time-varying factors, and decide for themselves if a journey at another time might be
more appropriate, or which route they would still like to select. For example, a driver’s
usual route may have become five minutes slower than the optimum due to congestion,
but if they were given the choice, they may well wish to choose their usual route
anyway. On another day, they might make the choice another way. The computer will
never know enough to make this decision correctly under all circumstances, and so the
driver should be informed about the realistic choices with the computer having done the

hard work of estimating the distances, times, costs etc. of each choice.

If the costs are allowed to differ between the source and destination trees, perhaps
because they are time-dependent and the estimates of traversal time are necessarily
different, then we could not use the CC values to find the plateaux. An alternative is to
use the back-pointers in the source and destination trees (arrowheads in Figure 2 and
Figure 3) to identify the links which form the plateaux. That is, to find consecutive links
that are traversed in the same driving direction (but arrowheads in opposite directions)
in both the source and destination trees. Any link that has an arrowhead on it in one
direction in the source tree, and the other direction in the destination tree, is part of such
a chain, and the plateau is found by combining all adjacent links that also have that

property using a scan technique similar to that described above.

Once we have reduced the number of plateaux to the most interesting ones by using G
values, we can filter them in many other ways. For example, we may choose to order

them based upon user preferences (motorways, fewer junctions, lower tolls, driving

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

20

costs, familiarity). We can also show the user how historical and real-time traffic
information has altered our estimates of how long a journey will take, so that they can
see why some particular route has become the fastest today, and how it compares with
the others that they might be used to. The user, especially at the desktop, can be given
the ability to sort the good alternative routes by any of these factors at the click of a

mouse button.

We would typically present the advanced user with two controls for occasional use, one
which sets the threshold value that G must exceed (default 50), and one that limits the

number of alternatives displayed (default 5).

In our example above, the table shows that with a threshold of G > 50, we would only
recommend the routes generated from the plateaux with Combined Costs (CC) of 310,
332 and 335. Note that these happen to be the lowest values of the combined costs in
the table, but that need not always be the case. Also note that all these routes have a cost
that is within 10% of the globally optimum route, so other factors known only to the
driver may easily outweigh the little extra distances involved, and they will be glad to

have seen them all.

We would typically present the routes sorted in order of goodness, which conveniently
means that the first one will be the globally optimum route with goodness 99. We can
present other computed factors such as time, distance, cost in the columns of a table,

and allow the user to sort and display according to these other factors if they so wish.

There are already systems that can compute alternative routes at the request of the user,
either by disallowing the next link, or all links for some distance ahead in the planned
route, and then finding the single most globally optimum route given those new
constraints. They typically find a short diversionary route around the problem area, and
then head back onto the original route, although sometimes they may find an altogether
different route. Our technique could also be used at this time, and could present more

choices, but it may be inadvisable to distract the driver with such information. Rather,

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

21

our techniques could be made available as an extra option to complement the

diversionary function.

For purposes of further illustration and explanation, a relatively simple actual example
of a diverse route generating method is now described. This is illustrated in Figures 7 to
10, which are maps drawn to the same scale and extent. The example chosen is routes

from Cambridge, UK to Manchester, UK.

The first step is to compute the tree containing the best (minimum-cost) routes from

Cambridge to all other points. This is shown in Figure 7.

The tree has been simplified for printing, showing only its major branches, as the leaves
of the full tree would fill the land almost completely at this scale. Methods for
computing such trees are well-known in the art, and include the Dijkstra and A*

Algorithms.

The second step is to compute the tree containing the best (minimum-cost) routes to

Manchester from all other points. This is shown in Figure 8.

The third step is to find roads that are traversed in the same direction in both trees, that
is, away from Cambridge in Figure 7, and towards Manchester in Figure 8. Such roads
are not simply the overlap of the two trees, as the direction of traversal is important.

The resulting roads are shown in Figure 9.

The fourth step, whose output is shown in Figure 10, begins by selecting the chains of
roads from Figure 9 that are the longest, and generating complete routes from each by
linking their endpoints back to Cambridge using the source tree of Figure 7, and back to
Manchester using the destination tree of Figure 8. The routes are then ranked according
to their goodness (the cost of the overlapping chain minus the cost of the entire route),
and in this case, we have chosen to display the top five, numbered from 0 to 4 in order

of goodness.

10

15

20

WO 2008/053240 PCT/GB2007/050558

22

The final step in this embodiment is to display relevant information to the user, such as

that shown in Table 1.

Plateau ID | Description Duration Distance
0 Al4,A1,A57,M1,A628 2hrs 40min | 256km
1 Al14,M6,A556,M56,A5103 | 2hrs 41min | 284km
2 Al4,A1,A617,A623,A6 2hrs 55min | 249km
3 Al14,M1,A50,A500,M6 2hrs 50min | 290km
4 Al4,A1(M),A1,M62,A56 | 2hrs 53min | 297km

Table 1.

A more comprehensive example of a diverse route generator and its application in a
vehicle navigation system will now be described. Headings are provided for

convenience.

Routeing Trees

To find these uscful chains, we first look at routes from A to all nodes, and from all
nodes to B. We can compute the optimum routes from A to all nodes using Dijkstra’s
algorithm, and observe that these can be stored in a single tree structure, a Routeing
Tree from A (RTa), where each node or link contains a pointer to the previous one
along the optimum route. Figure 11 shows a simple example to illustrate such a tree.
The node or link can also contain the cost of the optimum route to that point. This tree
has a tendency to use roads that are locally optimal and that are aligned well for getting
away from A. By locally optimal, we mean that there are no minor diversions off those

routes that can lower the overall cost.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

23

We then compute a second Routeing Tree that stores the most optimum paths from all
nodes to B (RTb). This tree favours road segments that are locally fast and useful for
getting towards B and Figure 12 shows the resulting tree for the example illustrated in

Figure 11.

Combining Trees

Now, we combine the two RTs to find chains of nodes that are used in the same
direction in both trees. These chains are useful in travelling away from A, and for
travelling towards B. To generate a complete route from such a chain, we trace back to
A from the beginning of the chain using RTa, and trace forward to B from the end of the
chain using RTb. The resulting routes for the example of Figure 11 are illustrated in
Figure 13. This route will be locally optimal. That is, there does not exist any small
deviation from it which has a lower overall cost for getting from A to B. If there was
such a deviation from the chain, then the chain would have formed at the lower cost
deviated route, and if there was such a deviation from the traced ends of the route, then

the appropriate Routeing Tree (RTa or RTb) could not have been optimal.

Note that although the routes generated from these chains are locally optimal, they are
not globally optimal. There is, in general, only one globally optimal route, which is the
one found by single routers such as Dijkstra’s algorithm. The next most optimal route
will usually be a minor variation upon the first, with only a tiny increase in cost. For
example, on a three hour road journey that begins and ends in cities, there will be
potentially hundreds of small deviations through side roads that add mere minutes to the
computed journey time. All of their permutations will generate millions of routes with
journey times up to, say three hours and ten minutes. Only after that might we see the
first journey that used a very different route between the cities, and takes an extra 12
minutes. This journey will also have potentially millions of small variations that are all
just slightly more costly, but it will be a local optimum. Of course, even though it is the
one millionth shortest route, it may still be a completely viable alternative, as the

journey time estimates probably have an error of +-10 minutes, and if we are presented

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

24

with the choice, we can take into account other factors such as how pleasant we find the
route to drive, how familiar we are with it, the importance of financial cost versus time

on this occasion etc.

Of course, there are many such chains, although an upper bound on their number is the
number of edges in the graph, but they can be characterised by the length (in general,
the cost) of the overlapping chain of road segments (which we call a plateau), and the
length (cost) of road for the optimum route that uses that chain. The cost information
for this is already available in the RTs data, so this is a very efficient way to assess the
goodness of the alternative routes. We have found an appropriate goodness function
that not only orders the best diverse routes from the global optimum downwards, but
which also provides a dimensionless threshold to ascertain how many alternatives are

really useful.

Using this method, we can compute the N best diverse alternative routes from A to B in
a time which is dominated by running Dijkstra’s algorithm twice. We can assess and
order thousands of such routes in much less time than running Dijkstra’s algorithm,

although usually there will be less than a dozen with a goodness factor above the
threshold.

In some implementations of known single routers (shortest single path from A to B), it
may be desirable to use a variation of Dijkstra’s algorithm. These use special heuristics
to explore the nodes or edges in a better order, or to terminate earlier, or to explore
major roads only, or to explore outwards from source and destination simultaneously.
They do this in order to run faster or to use less memory. It should be understood that
our method of combining RTs to find plateaux is independent of how the RTs were
computed, so if these variations are appropriate, then our method can be applied to them
to yield diverse alternative routes while taking advantage of their better running time or

memory use characteristics.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

25

Cost Function

The cost function that is used to compute the best diverse alternative routes (the choice
routes) can incorporate any of the known factors. It may be sensitive to both time and
duration, can incorporate real-time or historical traffic information, can take into

account user preferences, and can use financial information such as road pricing.

However, in a preferred embodiment, we use a basic cost function that weights mostly
for time, with a small allowance for distance. This will generate most of the routes that
a person might consider for getting from A to B. We can then present them in a route
planner with data for each that gives the time, distance, financial cost, congestion
information, and any other parameters that can be computed such as number of turns,
safety. We can compute these for different times of day, days of week, different types
of vehicle, all very simply as we have only to consider the handful of choice routes
found in the first step. Now we have put the user in the loop so that they can quickly
see where each route goes, and make their decision based upon whatever weighting they

wish to give the different cost criteria.

We believe that this will become particularly important if road user charging becomes
commonplace, as it will not be possible to balance time, distance and charges in a way
that is correct for all journeys, and certainly not for all users. Even the same user on the
same day may have different priorities depending upon whether they have a fixed
deadline for completing their journey, are becoming tired, or are just short of cash.
They may normally prefer a much shorter non-motorway route, but might change their

mind if the alternatives involve a lot of turns.

Choice Presentation

Another problem with known route planners is that the user may wonder why some

other route was not recommended. By showing them the alternative routes along with

their characteristics, it is easy for the user to see how their alternative route compares to

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

26

the best, and to make an appropriate choice. For example, the usual route may be
subject to unusually high congestion, or an alternative route may have become

preferable because of the construction of a bypass.

In a route planning tool, we could highlight the different routes using different colours,
and present a text box with relevant details about each route such as time, cost etc. An
example of such a text box for the Cambridge to Manchester routes described
hereinbefore is shown in Figure 14. Selecting a route on the map could highlight the
relevant line in the text box, and selecting a line in the text box could highlight the
relevant route on the map. In this way, a user could make their choice of route with as

much information as we can give.

Instead of presenting the choice routes all at once in a route planning tool, we can
consider other user interfaces. For example, for en-route guidance we would not wish
to distract the driver with maps showing the alternatives. Rather, we can compute the
points in the journey where a choice can be made, which we call Choice Points, and
inform the driver as they approach them. For the example of the six best routes from
Cambridge to Manchester, the driver will be presented with choices at most three times
during their journey. Further, these can be presented with a relevant subset of the
information available, perhaps as a junction diagram, rather like roadside junction
signage as illustrated in Figure 15. Such diagrams are commonly used in car navigation
systems, and show the driver the correct turn to make to stay on the optimum route.
Our system would differ when a choice point was approached. We would show the
junction diagram with both the optimum route and any other choice routes highlighted.
We would augment this with information such as a brief summary of the roads used, the
relative times to their destination, and the financial costs. These could be shown in the
form of a road sign (and should be no more distracting than that), and can also be read
out using voice synthesis. It could take the form of “At roundabout take first exit for
M6 and M56, or for ten minutes longer and seven pounds cheaper, take second exit for

M1 and A6”. This could be especially useful where traffic information has been taken

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

27

into account and the user may be wondering why the optimum route is not the one that

they expected. The time or cost saved will make this clear to them.

The Choice Points themselves are straightforward to find once the Choice Routes are
known, by following the small number of Choice Routes from the Source Link to the
Destination Link. We begin with the Source Link, which is found at the beginning of
every Choice Route. If the next link on every Choice Route is the same, then we move
on to that. If the next link is different on different routes, then we have reached a choice
point, and follow each route separately as if we had just begun again at the source link.
We finish when each route arrives at the Destination Link. We can either compute all
of the Choice points as we begin the journey, or we can compute them as we go, always

keeping at least one known in advance.

There are other methods that could be used to compute the choice points, such as
marking all of the links used by one Choice Route, then marking each other Choice
Route, noting where it encounters changes from marked to unmarked nodes (a choice
point) and back to marked points (a point of convergence). Any of these methods can
be used to determine the choice points, and can be chosen according to the precise needs

of the application.

Constructive, not Destructive

An important property of our method is that it is constructive, finding all the good roads
simultaneously, and assessing them using the very best weightings in the cost function
and without having to blindly alter the cost elements of individual road links. Methods
that alter the weightings or individual cost elements to cause the most optimum route to
become less optimum can never be sure that they have not also lowered the optimality

of the other good routes, as yet unknown, which will therefore never be found.

We believe that our method is the first such method to be discovered, as all the others

that we have found in our research involve the alteration of the weightings or the costs

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

28

of using individual road elements. Some even operate by disallowing one or more road
elements used by previously found routes, equivalent to artificially giving them a cost

of infinity.

Representation of Road Graph

There are a variety of representations that can be used for the weighted directed graph.
For road networks for example, we may represent junctions as nodes in the graph, and
road links between them as edges in the graph. To represent the costs of traversing the
roads, for example the distance and average time taken to traverse a length of road
between junctions, we can assign costs to the edges. To represent the costs of passing
through a junction, for example the time taken to proceed straight on, or to turn left or
right, we can assign costs to a node that are dependent on the edge used to reach the
node, and the edge used to leave that node. Many variations on this representation are

possible, and our methods should be applicable to all of them.

For this implementation, we use a representation that is particularly fast for computing
the routeing trees. This representation does not represent road junctions as nodes.
Instead, each edge is uni-directional, so a stretch of two-way road is represented by two
edges, one for each direction of travel, and these strictly form the nodes of the graph.
This allows us to encode different delays for each direction of travel, which may be

important at times of congestion. We call each edge a Link.

To encode the properties of junctions, each Link has a set of pointers to the next Links
that can be reached from it in the graph. These are called the NextLinks. These
NextLink pointers are strictly the edges of the graph. Associated with each such pointer
are the costs (in time, distance, financial cost etc.) of moving from the original Link to
the next one. Our implementation chooses to use the time taken to move from the
midpoint of one Link edge to the midpoint of another (NextLinkTime), but others may
choose to use the beginning of the Links, or their ends, it makes no difference to the

outcome. We store the length of each Link (in LinkDistance), and compute the distance

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

29

from the middle of one link to the middle of the next by adding the lengths and dividing
by two. In this way, we have encoded both the cost of traversing a length of road, and
the costs of using the junction for a particular turn, in one NextLink, which makes
computing all of the optimum routes from a source edge or node to other edges or nodes

particularly efficient.

For computing optimum routes #o a particular destination Link rather than from a source
Link, we give each Link a set of PrevLinks, which encode the costs of entering that
Link from all possible predecessor Links, that is, the segments of road from which it can
be entered. There is some redundancy here, as every Prevlink has a corresponding
NextLink, so we use more memory than some representations, but we have a lower

running time.

Figure 16 shows a picture of a road junction, where the side road is one-way towards
the junction. The section of road marked A is represented by two links, marked 1 and 3,
as it is a two-way road. Similarly, road segment B is represented by two links, 2 and 4.
Road segment C is only represented by one link, 5, as it is a one-way road towards the

junction.

Now, vehicles travelling towards the junction on road segment A can only continue on
to segment B, so there is only one NextLink (arrow) emanating from link 1, which
points to link 2. Similarly, vehicles travelling towards the junction on road segment B
can only continue on segment A, so there is a NextLink emanating from link 4 which
points to link 3. Vehicles travelling on road segment C towards the junction can turn
onto either segment A or segment B travelling away from the junction, so the
corresponding link 5 has two NextLinks emanating from it, pointing to links 2 and 3.
An important factor here is that the NextLinks can be enumerated from the link from

which they emanate, not from the links that they point towards.

The PrevLinks are the inverse of the NextLinks, and are again enumerated from the link

that they emanate from. They indicate the links from which vehicles may enter this

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

30

link. For example, vehicles may enter road segment A at this junction from either road

segment B or C, so link 3 has PrevLinks that point to link 4 and to link 5.

This link data is stored as a set of files, one for each type of information, that can easily
be mapped into memory for efficient access. Each link is given a simple integer ID,
length 32 bits, from 0 upwards, which is then used as an offset into various files. We
shall use linkID 435 as an example. The length of link 435 will be found at the 435"
16-bit word of file LinkDistance, encoded as the length in metres in 16 bits. The links
that can be reached from link 435, its NextLinks, have 32-bit linkIDs in a file called
NextLinks. The 435" 32-bit word in file NextLinkIndex gives the offset in the file
NextLinks where the linkIDs of the next links will be found, contiguously. The number
of them is found at the 435" 8-bit word in file NextLinkCount. The time taken to move
to a particular NextLink is given in the file NextLinkTime, also indexed by
NextLinkIndex and NextLinkCount.

We also add a Master file that stores the number of links (nLinks), the number of
NextLinks (nNextLinks) and the number of PrevLinks (nPrevLinks). In general,
nPrevLinks = nNextLinks.

Here are the file definitions so far, with the number of elements in the file given in

square brackets after the file name, followed by the type of each element:

File descriptions:

Master|3]: INT32: Contains the number of links (nLinks) and the number of next-links
(nNextLinks), and prev-links (nPrevLinks) and maybe other top level information about
how the files were generated etc. So far, all three fields are INT32.

All the other files are simple arrays. A link is defined by its link index, an integer
between 0 and nLinks-1, which indexes all of the arrays contained in files whose length
is a multiple of [nLinks].

NextLinkIndex|nLinks]: INT32: Contains the offset in the NextLinks file where the

next links can be found

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

31

NextLinkCount[nLinks]: INT8: Contains the number of next links
NextLinks[nNextLinks]: INT32: Contains the next links (by index) that can be
accessed from one link

A similar set of 3 files called PrevLink... encode the routeing tree for destination
routeing.

PrevLinkIndex|nLinks]: INT32: Contains the offset in the NextLinks file where the
next links can be found

PrevLinkCount|[nLinks]: INT8: Contains the number of next links
PrevLinks|nPrevLinks]: INT32: Contains the next links (by index) that can be
accessed from one link

LinkType[nLinks]: INTS8: The type of the road link. 0 is fast, 255 is slow.
NextLinkTime[nNextlinks]: INT32: The incremental time (milliseconds) taken to get
from the middle of this link to the middle of the next link (including junction delay)
PrevLinkTime[nPrevlinks]: INT32: The incremental time (milliseconds) taken to get
from the middle of the previous link to the middle of this link (including junction delay)

LinkDistance[nLinks]: INT16: The incremental distance (metres) when using this link

Routeing, Algorithm, Source Tree

The routeing algorithm that we use (a version of Dijkstra’s algorithm) to construct the
min-cost routes from a given link to all other links (the Source Routeing Tree) is as

follows:

Begin with all links having a min-cost which is the minimum cost found so far for
reaching that link. Make it infinity for all links except the origin of the route (the origin
link), for which the min-cost is zero. Construct a variable length list of active nodes,
those for which we have not yet explored all of their outgoing links. Populate this list

initially with the source link alone.

REPEAT this:

If the active list is empty, then we have finished and we return.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

32

Otherwise remove the first active link from the list of active links and call it linkP.

It has a min-cost costP that we know we can reach it with.

For each outgoing link linkPN, add the incremental cost costPN of going from linkP to
linkN, and see if it is less than the min-cost (costN) stored with the outgoing link. If so,
update costN with the lower value, update the back-pointer of linkN to refer to linkP,
and add linkN onto the list of active links (if it is not already there).

When this algorithm terminates, we have constructed the Routeing Tree.

Storage of Routeing Tree

In our implementation, we may wish to re-use previously computed Routeing trees, so
we store each one in the filing system as three files. Different trees are distinguished by
using a trailing integer value <n> on each file. For example, TTBackIndex1 contains
the back pointers for tree 1. By convention, the trees for the currently selected source
and destination links are stored in files where n is 0 and 1. Again, the file lengths are

given in square brackets after the file name:

File descriptions:

TTMaster<n>[4]: A series of INT32s: nLinks, fromSource (0O=dest, 1=source),
rootLinkIndex, rootSubnodelndex.

TTBackIndex<n>[nLinks]: INT32: The link that was used to get to this link at lowest
cost, for tree <n>. Works for Next or Prev (source or destination) trees.
TTMinCost<n>[nLinks]: INT32: The minimum cost found to get to this link, for tree

<n>

Tracing back the Optimum Route

To find the optimum route from the source link linkA to the destination link linkB, we

need only use the TTBackIndexO file. For example, suppose that linkB had ID 678,123.
The link that led us to linkB along the optimum route is found at offset 678,123 in the

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

33

file TTBackIndex0. Suppose this link had ID 1,456,789. The link that led us to this one
along the optimum route is found at offset 1,456,789 in the file TTBackIindex0. We
keep repeating this until the link ID extracted from the file matches the linkID of the
source link linkA. Then we have extracted all of the link IDs of the optimum (shortest)
path in reverse order. This is a common way of extracting the shortest path once

Dijkstra’s algorithm has terminated.

This extraction also works to find the shortest path from linkA to any other link linkC in
the graph, so long as we have allowed the Routeing Algorithm to run until there were no
more active nodes. If the routeing algorithm was terminated early, then we can only use

the tree to find the optimum route to a subset of the nodes in the graph.

Routeing Algorithm, Destination Tree

The routeing algorithm that we use (a version of Dijkstra’s algorithm) to construct the
min-cost routes from all links to a given link (the Destination Routeing Tree) is as

follows:

Begin with all links having a min-cost which is the minimum cost found so far for
travelling from that link to the destination link. Make it infinity for all links except the
destination of the route (the destination link), for which the min-cost is zero. Construct
a variable length list of active nodes, those for which we have not yet explored all of

their incoming links. Populate this list initially with the destination link alone.

REPEAT this:

If the active list is empty, then we have finished and we return.

Otherwise remove the first active link from the list of active links and call it linkQ.

It has a min-cost costQ that we know we can reach the destination with.

For each incoming link 1inkNQ, add the incremental cost costNQ of going from linkN
to 1inkQ, and see if it is less than the min-cost (costN) stored with the incoming link. If

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

34

so, update costN with the lower value, update the back-pointer of linkN to refer to
linkQ, and add linkN onto the list of active links (if it is not already there).

When this algorithm terminates, we have constructed the Routeing Tree.

Tracing back the Optimum Route

To find the optimum route from the source link linkA to the destination link linkB using
the Destination Tree, we need only use the TTBackIndex1 file. For example, suppose
that linkA had ID 238,345. The link that linkA preceded along the optimum route is
found at offset 238,345 in the file TTBackIndex1. Suppose this link had ID 1,432,876.
The link this one preceded along the optimum route is found at offset 1,432,876 in the
file TTBackIndex1. We keep repeating this until the link ID extracted from the file
matches the linkID of the destination link linkB. Then we have extracted all of the link
IDs of the optimum (shortest) path in forward order. This is a common way of

extracting the shortest path once Dijkstra’s algorithm has terminated.

Note that this path will be identical to the one extracted from the Source Routeing Tree
in the section above. It does not matter if Dijkstra’s algorithm is run from the source
node outwards or the destination node inwards, it will always find the single shortest
path route from linkA to linkB. However, the Routeing trees that are a by-product of
Dijkstra’s algorithm are very different. The only route that they share completely in

common is the global shortest-path route.

This extraction also works to find the shortest path from any other link linkC in the
graph to linkB, so long as we have allowed the Routeing Algorithm to run until there
were no more active nodes. If the routeing algorithm was terminated early, then we can

only use the tree to find the optimum route to a subset of the nodes in the graph.

Combining Routeing Trees

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

35

Once we have computed the tree RTa from the source link linkA, and RTb to the

destination link linkB, we also have a wealth of cost information.

For example, to find the cost of going from linkA to linkB along the global optimum
route, we look at offset <linkA> in the TTMinCostl file that contains the min-costs for

the destination Routeing Tree.

We can also look at offset <linkB> in the TTMinCostO file that contains the min-costs

for the source Routeing Tree. This value will be the same.

Now, what if we are interested in some other link linkC. The cost at offset <linkC> in
the file TTMinCostl is the cost of the minimum cost route from linkC to the destination
linkB. The cost at offset <linkC> in the file TTMinCost0 is the cost of the minimum
cost route from the source link linkA to linkC. If we add these two quantities together,

we have found the cost of the minimum cost route from linkA via linkC to linkB.

Thus, without any further iteration, we have found the cost of going from linkA via any
other link linkC in the graph to linkB. We can also rapidly trace the optimum route for
display or other purposes by using the back pointers contained in the files
TTBackIndexO0 and TTBacklndexl. This is a very powerful result, as we have
effectively computed a whole set of alternative routes (as many as there are links in the
graph to go via) along with their costs. Of course, these are only a tiny subset of all of
the possible routes, as they are constrained to follow the globally optimal route from

linkA to linkC, and the globally optimal route from linkC to linkB.

Plateaux

Now we observe that the routes are not unique. There will be some links, say linkP and
linkQ, where going from linkA to linkB via linkP generates exactly the same route as
going from linkA to linkB via linkQ. This happens when the route between linkP and

linkQ in one Routeing Tree (say the Source Routeing Tree RTa) is identical to the route

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

36

between linkP and 1inkQ in the other Routeing tree (RTb). That is, the sections of road

between linkP and linkQ have been used consecutively by both trees.

These are exactly the “good” chains of roads that we are interested in as part of diverse
alternative routes. They are the chains that appear consecutively in both trees. We can
attempt to find them by comparing the way that links are entered and left in each tree, or

we can use the sum of the costs from RTa and RTb.

The chains are identified by the cost of going from linkA to linkB on mincost routes via
any of the links in the chain being the same cost. For this reason, we call such a chain a

plateau, as the sum of the costs is constant along the links that it is composed of.

The next two subsections give alternative methods for finding the links that are part of
plateaux, which may have different advantages according to the properties of the cost
function, and the memory and processor architecture on which the methods are
implemented. It will also be apparent that these methods can be adapted to different

graph representations, means of storing the flags, and properties of the cost functions.

Finding Plateau Links from Combined Costs

To find all of the plateaux, we scan through all of the linkIDs. For each one, we look at
the links pointed to by the BackIndex in each tree (RTa and RTb), and see if the sum of
costs is the same on both of them. If they are the same, then we flag this link as part of
a plateau. The flags are stored, as usual, in a memory mapped file. It is called
TCFlags01, and contains eight bits per link. It is initalised to have all bits set to 0 (flags
unset) at the beginning of this procedure. We use the least significant bit (bit7) as the
flag showing if the link with that offset has been identified as part of a plateau.

Here is the file definition for the flags, with the number of elements in the file given in

square brackets after the file name, followed by the type of each element:

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

37

File description:

TCFlags01[nLinks]: A series of INT8’s used as flags when combining RTs denoted by
0and 1.

Once this scan is complete, we have flagged all links that are part of a chain (using

bit7), excluding the end two links.

This method only works if the cost values are integers, so that rounding errors do not
spoil the equality that we are looking for. Further, it only works if the cost for
traversing a link in the tree is always the same, no matter what order the tree was
constructed in. This is true in general, but if, for example, the link costs are time-
dependent and traversed at slightly different times in the two trees, then this method will

not work, and an alternative method based on back pointers must be used instead.

Finding Plateau Links from Back Pointers

To find all of the plateaux, we scan through all of the linkIDs. For each value of linkID,
say linkP, we see if that link has a back pointer in the Source Tree. All links except the
source link will have a valid pointer. Suppose that it points to linkQ. We then mark
linkQ as having a source pointer by setting a nominated bit (say bit5 in the TCFlags01
file) at the byte in the TCFlagsO1 file whose offset is the ID linkQ. We also see if linkP
has a back pointer in the destination tree. If it does, say linkR, then we set a different
bit (say bit4 in the TCFlagsO1 file) at the byte whose offset is the ID linkR. If we set
either of the flags at bit4 and bit5, we look at the other, and if it is also set, then we
know that this link is part of a plateau and we can also set the plateau bit (bit7) as in the

costs method.

Once this scan is complete, we have again flagged all links that are part of a chain

(using bit7), excluding the end two links.

Gathering the Plateau Links

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

38

We now need to find the chains themselves, and characterise them. We do this with

another scan through all of the links.

For each link, we check to see if it has been flagged as part of a plateau (using bit7). If
it has, we look at bit6 to see if it has already been processed. If it has not, then we mark
it as processed (using bit6), and trace back in both the source and destination trees for as
long as the links encountered are also marked as part of a plateau. We mark all such
links as processed using bit 6 so that we will not process any links in this plateau if we

encounter them again in later stages of the scan.

As we trace the plateau in this way, we could gather information about the plateau for
later use, such as its length and the cost of traversing it, but in this particular
implementation, we will only use costs as the basis for selecting the best plateau, which
are already stored in the TTMinCost files, so we do not need to compute them again.
Rather, we note the linkIDs of the ends of the plateau, linkIDps being the end of the
plateau nearest the source, and linkIDpd being the end of the plateau nearest the
destination. For each plateau that we have thus found, we extend one link closer to
source and destination from the ends (if possible), and compute the difference in the
mincosts for those links looked up from either RTa or from RTb (the results have to be
identical as the plateau forms a connected part of each tree). This is what we take as the

cost for traversing the plateau.

Goodness Criteria

Now, as we scan, we want in general to reject the shorter plateaux, and keep the longer
ones. We also want to favour plateaux that form parts of routes that are not too long. If
we are going from Cambridge to Manchester, we are probably not interested in a long

plateau that is in Scotland, which can sometimes form from certain alignments of roads.

To select only the plateaux that are of greater interest, we compute a “goodness” value,

which we arrange to have higher values for the plateaux that we are interested in. We

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

39

will then keep a note of the end links of the plateaux with the highest n goodness values,
where n is greater than the number that we could possibly want to display to the user,
say 100. The goodness could be computed in any way, using any of the properties of

routes such as length, financial cost, types of road, distance from source or destination.

In this implementation, we choose to base the goodness value on cost (as used to
compute the mincost). We want a higher goodness for the plateaux that have a greater
cost difference between their ends, as they represent longer parts of the Routeing Trees
that have been pulled into coincidence, and hence represent longer stretches of road that
are locally useful in getting from linkA to linkB. However, we also want lower
goodness values for plateaux that form routes from linkA to linkB that have higher

overall costs.

Thus a simple goodness value is just the overall cost of traversing the plateau minus the
cost of the route from linkA to linkB using the plateau. This is in general negative, and
is in fact the negation of the cost of the route using the plateau that is not contained
within the plateau itself. Thus, we are preferentially keeping the plateaux whose routes

have the least cost contained outside of the plateau.

As we complete each scan of a plateau, we compute its goodness, and save the top n
(typically 100) that we find in a sorted list. We know that we only have to save the
details of a plateau if its goodness is greater than the plateau with the lowest goodness

in the list, which we then replace.

Best Plateaux Selection

The goodness value that we have defined has now put the plateaux in the order in which

we would want to show them to a user, but how many should we show?

To do this, we need to transform the goodness value into something that can rate the

plateaux routes on a scale that is independent of the source and destination links, and of

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

40

the costs and scale of the road graph. To do this, we first make the goodness
dimensionless by dividing it by the cost of the globally minimum cost route (GMCost).

Call this the raw goodness.

To review, raw goodness is the negative of the cost of the route involving the plateau
that is not part of the plateau, divided by the cost of the globally mincost route
(GMCost).

This raw goodness will have a value of zero for the globally minimum cost route, as

there is zero cost outside the plateau.

Now consider any tiny deviation from the globally minimum cost route (which is itself
a plateau for its whole length) can only involve a tiny plateau, as no two plateaux can
ever contact each other. The cost that is outside the tiny deviation will be just slightly
lower that the GMCost, so the raw goodness will be a negative number that is slightly

greater than -1, e.g. -0.994, -0.987, -0.992 etc.

Now, what about a plateau whose traversal cost is roughly identical to GMCost. If it
extends very close to the source and destination link, then it will have little cost outside
of itself, and so the raw goodness will be just slightly more negative than 0, perhaps
0.027, 0.012, 0.023 etc. If it is far enough from the source and destination link that the
costs outside of the plateau are comparable with the GMCost, then the raw goodness
will be roughly -1. If it closer, such that the costs outside the plateau are half that of the
GMCost, then it will have a raw goodness of-0.5.

To make these values easier to understand, we convert them monotonically to another
range, where 0 (the best) maps to 99, -0.5 maps to 90, -0.85 maps to 50, and -1 maps to
zero. This is only used for display to the user, where the values between about 20 and

99 span the range of poor to good routes.

The function used is: goodness = 100 — (99

- rawigoodness)

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

41

To select automatically the minimum set of diverse alternative routes that are worthy of
consideration, we set the goodness cut-off point at 50 (or -0.85 in raw goodness), and

via display or otherwise make the user aware of only these choices.

For Cambridge to Manchester, this selects just six routes (our test database pre-dates the

M6 toll).

Success Criteria

To be considered a success, our method must onl/y come up with routes that seem
reasonable, nothing outlandish. We could put limits on the time or length of journeys to
achieve this, but the goodness factor outlined above seems to make this extra step

unnecessary, at least in this application.

The set of diverse alternative routes should include a/l those that we knew about as
good routes from our own experiences, or at least minor variations on them (as the
routeing database does not perfectly reflect the user’s view of costs, but is roughly
correct over the longer stretches).

The set of diverse alternative routes should include each of the best single routes
computed by other route planners such as (for Great Britain) Microsoft AutoRoute,

ALK CoPilot, Medion Navigator, ISYS Personal Navigator.

We have found that the methods outlined above yield a set of diverse alternative routes
that meet these criteria, whether the source and destination are many hundreds of miles
apart, or just ten miles apart. If the source and destination are fairly close together (say
1 mile), then the routes cannot be very diverse, so only a few routes of almost identical
length but good diversity might be suggested. If they are so close together that one
would only ever conceive of one route, then only one route, the globally mincost, will
be suggested. Of course, many others will have been generated by our method, but only

one will have a goodness of greater than 50.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

42

Plateau Algorithm Costs

The scans involved in finding, classifying and sorting the plateaux are in general at least
one hundred times faster than running Dijkstra’s algorithm or its variants, so this entire
phase takes much less time than the finding of the single optimum route. Thus the
overall cost of our method is approximately that of running a single route-finder twice,
plus some fraction of that. As a rule of thumb then, it will take between 2 and 3 times
longer than finding the single shortest path route, but we will have considered many

thousands, and selected our best few for display to the user.

Use of Other Criteria

Our example implementation uses a cost function that is 100 times the time in seconds
plus the length in metres. Thus if we could save 1 minute of a journey (60 seconds) by
driving an extra 1km, we would consider each route about even. This seems a good
general setting to generate a good set of choices. It is weighting heavily towards the

quickest route.

To favour shorter routes, we might 10 times the time in seconds plus the length in

metres, which gives almost identical choices.

Ignoring time completely, by using pure distance as the cost function, does work, and
we get a different set of choices. In most cases, all of the routes are quite a lot slower,

but we still get a diverse set of choices of similar cost (distance in this case).

There is no reason why we should not include anything else in the cost function that
might be used for a single-router. These include financial cost (petrol, wear-and-tear,
road pricing, tolls), historical and real-time congestion information, safety, weather,
type of road, areas to avoid, familiarity to the driver and many others. Some of these

will change as the journey progresses, and we may wish to adapt to their new values.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

43

For example, the phrase dynamic routeing is used to describe systems where route
choices are made according to the latest congestion information that is being fed to the
vehicle. To use such information, we could update the delays on the links in the
database that are affected by congestion or other factors, and re-run our method. This is

what single-routers do when new information is made available.

We have another, more interesting approach available. Since we have a set of good
diverse routes already computed, we can assess each one according to the new cost
criteria in a fraction of the time that it would take to run a single router. We can then

use these new cost criteria to re-order the routes for displaying to the user.

We can also check each of the diverse routes for cost and duration at different times of
day, and provide the user with the optimum time to make their journey, or even the
optimum days. If this were done by re-running a single-router for every ten minutes of
every day of the week (1000 times), the time taken could be prohibitive (4000 seconds
= 66 minutes). Our method, of selecting the set of diverse routes first and then
assessing them using the time-varying cost parameters, will run in a tiny fraction of the
time, probably about 12 seconds on this scale. It is rather analogous to a person looking
at a route planning map and selecting the likely routes to use based on road type (speed)
and direction, then assessing them individually for their properties with the aid of a
computer to do the hard work of adding up all the costs. This is far less work for the
computer than if it had to assess the costs of all possible optimal routes to come up with

the least cost.

There will be some types of dynamic information where a major recomputation will be
necessary, and so we would see our system as an addition to existing techniques. For
example, if new information came in during a journey that showed a large delay ahead,
before any other diverse routes left the current route, then we would fall back on
existing technology to compute a single route around the new obstruction. Of course,
once this was done, we could continue and compute the diverse routes from where we

currently are to the destination, and offer a choice where appropriate.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

44

An important feature of this choice routeing is the information that it gives to the user.
In many cases where a single-router is run, the user does not understand how the
optimum route compares to one that they might have chosen. Indeed, in most cases,
both routes will have very similar costs. If we show the user the relative times and
distances, then they can make the choice to use the route that they prefer, or follow the
newly recommended route. What we will have avoided is the uncertainty that the user
might have done something wrong, such as picked the wrong destination, set the wrong

preferences etc.

If the optimum route suggested has been made because of unusual congestion, then this
can be made apparent to the user at the (very few) choice points by showing them both
options, the original best route, and the one that is recommended today, with the journey
time information for each. Indeed, we may even highlight if the journey time is

significantly different from the usual.

For example, suppose a route involving the M6 is subject to an extra 20 minutes delay.
This may now make a route up the M1 some five minutes faster. A single router would
automatically guide the user up the M1 route, whereas our method would allow them to
make an informed choice to stay on the M6 (that they may prefer for other reasons) and

sacrifice the five minutes.

This information could be given in the common forms of voice prompts, or schematic
junction displays (just like road signs). The difference with our system, is that at critical
parts of the journey, the guidance does not just give the single route to be followed, but
gives two or more options (very rarely more than two) with some information about

their relative journey times. Examples of this are shown in Figure 15.

Performance

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

45

In order to speed up the routeing computations, we can save the Routeing Trees both to
and from recently selected links in the graph. This is an extension of saving recently
entered locations for easy recall, sometimes called a “favourites” list. If one end of a
route is on the list, then we do not have to compute either of its Routeing Trees. The
best single route to or from any other node can be found immediately by a backtrace
through the tree. If both ends of a route are on the list, then we can recall both Routeing
Trees that are necessary for our Choice Routeing, and no longer need to run Dijkstra’s
algorithm. Thus we can come up with the diverse alternative routes quicker than a

conventional router could compute the single best route.

The trees can be saved by keeping the files in which their costs and back pointers have
been computed, or if an alternative implementation has been used, then new file formats
could be defined for the storage of this information. If storage is at a premium, then
strictly only one of either the back pointers or the costs need to be stored, as a scan
through the routeing database can be used to reconstruct the other without the need to

run a full routeing algorithm again.

Time Dependent Routeing

Where the speeds of the links may vary with the time of day, where road pricing
changes with time, or where real-time traffic information is available, a conventional
router will run something similar to Dijkstra’s algorithm to find the best route, where
the link costs have been altered to reflect the latest time-dependent information, and

where they are sensitive to the time that the links are expected to be traversed.

Our technique could be used in just the same way, running Dijkstra’s algorithm twice
with the latest cost information. The choice routes that take much longer than the
globally optimal route might be using time-dependent information for slightly earlier or
later times than their expected time of traversal, because there is no longer a unique

journey time from Source to Destination, but rather a small range of journey times.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

46

This is unlikely to be a problem as there is some inherent variability in journey times

and predicted traffic levels anyway.

To remove this uncertainty in the expected time of traversal, we can take the few best
generated routes, and quickly reassess them individually against the time-varying cost

parameters, getting the most accurate result possible.

This then suggests a further technique. Instead of using the time-dependent cost
parameters in the first routeing runs, we could use a basic cost function, such as time
(congestion-free) and distance alone. Once we have found the few choice routes using
this basic cost function, we re-assess each of them against the new time-varying criteria,
and simply re-order them for presentation to the user. In this way, we can be quicker to
react to changes, we can make clear to the user why one route has been chosen rather
than another, and we can additionally show the user the choices that are almost as good

as the best route.

If the cost function has changed radically due to the time varying or other cost
parameters, then the choice routes computed under the restricted cost function may no
longer include the globally optimum route under the full cost criteria. In this case, we
can run our choice routeing algorithm in both modes, a restricted cost function and the
full cost function. We can then choose to display to the user the best routes from each,
so that they see both the very best routes currently available, and how they compare

with the ones that they might have chosen based on time and distance alone.

The use of the full time-dependent cost function could be counter-productive in some
circumstances. Under severe congestion, the time-dependent optimal routes are likely
to involve more minor roads, along which there are no traffic sensors or reports. These
roads appear to be free-flowing, where in reality they may be clogged, so the chosen
routes may not be optimum after all. Thus we would always recommend that at least
some of the choice routes computed without the time-dependent information, but

reassessed with the time-dependent information, should be displayed so that the user

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

47

can choose to stay on the major routes if they so wish. This could also be the safer
option in the case of severe weather where the emergency services will be attempting to

keep the major routes moving, and will be attending breakdowns.

Other Cost Factors

The RTs using the basic cost function do not have to be re-computed when the other
cost factors are varied. When we re-assess cach of the diverse alternative routes, we can
use new weightings in the cost function, and new cost factors on the road links, to give
us a new ordering of the routes for presentation to the user. Indeed, a good desktop
interface should allow the user to sort the alternative routes by time, distance, financial
cost, type of road, number of turns etc. as they explore their options. This does not
necessarily require any recomputations, as those factors can be computed and stored

along with the alternative routes when they are first generated.

It is not yet known whether it will be possible to define a useful cost function when road
user charging becomes more commonplace. The problem is that the tradeoff between
speed of journey and cost may vary according to the importance of punctuality at the
destination, which varies from day to day in an unpredictable manner. It may also be
the case that the tradeoff varies according to how late the driver is setting off on their
journey. Ifthey are early, they may not wish to pay the charges for a faster route, but if

they are running late, then charges may be more acceptable.

Our techniques of computing the Choice Routes using only basic cost parameters (time
and distance), would allow us to show the driver a choice of sensible routes along with
their estimated durations and costs, allowing the driver to make the decision for
themselves taking into account all of the extra information that the route planner might
never know. This is sometimes called “putting the human in the loop” and can make
the resulting system much simpler and more comfortable to use, as the users are making
the complex tradeoffs for themselves, while the computer is doing the hard work of

estimating the journey times, distances, costs etc.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

48

Traffic Planning

The Choice Routes do not have to be used singly. If we have journey information in the
form of Origins and Destinations of journeys, we can use the choice routes to allocate
traffic to all of the links used in those routes in proportion to the goodness of the routes.
When calibrated against real data by the adjustment of the parameters used in the
goodness computation, the use of a Choice Routeing algorithm at the heart of such tools
may give a more accurate prediction of traffic patterns than with current tools based on

flow or single-route algorithms.

Methods of this type may also be applied to the routeing of wires, conductors or cables,
for example in buildings, aircraft, printed circuit boards and integrated circuits. When
finding a route for a wire, there are a few differences from the case for road routes,

particularly the routeing of wiring nets, and the additional variable of placement order.

Wiring Nets

There may be several points from which a wire can originate, and several endpoints, any
one of which is a sufficient destination. More complex are signal nets, where a wire is
required to connect at least one point from each of several sets of points. We will call all
of these points origins, as there is no direction of flow as there is with traffic, so there is
no clear concept of origin or destination. Similar techniques to Dijkstra’s algorithm are
often used, perhaps starting from several origin points simultaneously, and keeping the
usual values of minimum cost and back pointer at each node that is traversed,
terminating and tracing back the optimum routes when all of the origin points have been
joined. There are many variations of these techniques, but so long as they have the
underlying architecture of a minimum cost and a back pointer at each node, we can
apply our technique to add together separate routeing trees from each origin node, find
the chains of identical cost-sum (the plateaux), and generate several alternative Choice

Routes (or signal nets) by tracing them back to the origins.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

49

Placement Order

Another important difference between road routeing and wiring routeing is that for
wiring, we are not usually interested in optimising the path of a single wire, but of a
whole collection. This brings in the problem of the order in which we should try to route
the individual wires. Again, there are many variations, but a common technique is to
find routes and fix the positions of some of the wires (called placing those wires), and
then if a further wire has problems such as congested paths, we take up some wires that
have been placed, adding them to the list of unrouted wires, route the new wire, and
then continue. This technique of rip-up and re-route is very expensive computationally,
and may still terminate with quite poor routes. Various known enhancements try to
estimate which signal wires are going to be the most difficult to place by looking at
their lengths or the width of routeing channels along their rough path, or can observe
areas of congestion as they arise, and try to avoid clogging them up further by

weighting the cost function against them.

Choice Routeing for Placement Order

Our technique of Choice Routeing can provide an important factor for choosing the
order in which wires are placed. By computing the choice routes for each wire before
any are placed, we can see which have only one good route available (like Cambridge to
Canterbury in the roads case), and which have several good routes (like Cambridge to
Manchester). It then makes sense to place the wires with fewer choice routes first,
because if they block some of the routes for later wires, those later wires will have other
good alternatives available. Further, our goodness value can be used so that we are not
only taking into account how many good routes are available, but also how good they
cach are. A typical implementation will, for each wiring net, add up the goodness values
of the top ten routes that are above a threshold (say a minimum goodness of 20), and
then route the wires with the lowest sum first. Of course, this technique does not replace

the known techniques, as we may still have to rip-up and re-route some nets, but we will

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

50

sort the unplaced nets by the amount of choice available, always placing those with the
least choice first, which should speed up the time to find a solution, and more
importantly, will improve the final result by keeping the wiring nets shorter overall, or

not requiring such wide routeing channels.

Figure 17 shows an example of a navigation apparatus in the form of a computer 10
with a program memory 11, such as a ROM, flash memory, a hard disk drive and/or an
optical disk drive, installed in a vehicle such as an automobile. However, such an
apparatus is not limited to use in vehicles and may be attached to or installed in other
objects. For example, such an apparatus may be installed in a cellular or mobile
telephone, for example of the type which receives information about its geographical

location and about the current time.

The vehicle comprises vehicle electronics 12, which monitor and control many of the
systems on board the vehicle. The computer 10 is thus able to receive information

about various aspects of the current state of the vehicle.

The vehicle is further provided with a GPS receiver 13 for determining the location of
the vehicle and the current time from signals received from the GPS via an aerial 14.
This information is also supplied to the vehicle electronics 12, for example so as to

provide the function of a satellite navigation or “Sat Nav” system.

The computer 10 is also provided with an output device 15 for providing a human-
perceivable output. The output device 15 is illustrated in the form of a display, for
example forming part of the Sat Nav system or of an in-vehicle entertainment system,
but may alternatively or additionally comprise an audio output device such as a

loudspeaker.

Although the computer 10, the program memory 11 and the receiver 13 are shown as
separate items in Figure 17, they may be embodied by a single apparatus which may

also include the display 15.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

51

Restricted search using road types

A common means of making route computations faster is to restrict the search to a
subset of roads that are generally faster or more useful when sufficiently far from the
origin or destination of the journey. We will call them priority roads and the subset is
arranged to also include junctions, slip roads etc. to ensure that they are fully connected.
A set of such roads is shown in Figure 18. The techniques of choice routing, where the
source and destination trees are combined to find chains of road links that are traversed
in the same direction in each tree, will still work successfully with such restricted trees.
However, in the case of Choice Routing, it is not necessary to cover the slower local

roads at both origin and destination in both trees.

For the source tree, as we search outwards from the source, we can use all road types
until some limits are reached and then switch to only considering faster roads. An
example source tree is shown in Figure 19. The limits are best determined by noting the
costs at which the faster roads are first encountered and then allowing an extra cost (in
time and distance) and perhaps a percentage overrun. For example, using time only, we
might use an overrun of 20% plus ten minutes. If we encounter the first fast road at
thirteen minutes from the origin, we would then allow the local roads to be used until
the minimum cost surface had reached (13 * 1.2) + 10 = 25.6 minutes. If we used a
more graded road classification, we could have several thresholds such as local to urban

to interurban to trunk road searches.

For the source tree, as it approaches the destination, a conventional use of the road types
would detect that we were getting close (say within 30 minutes as the crow flies at
50mph, which is 25 miles) and use this to switch to searching the slower road types
again. There is an additional problem here as none of the priority roads may come
within 25 miles of the destination. Thus we might never switch back to local routing
and we would miss the destination entirely. To guard against this, some more

sophisticated scheme could be used to switch back to local routing at some larger range.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

52

This is what is conventionally done and then choice routing could combine the source

and destination trees in the usual way.

However, in choice routing, we have a better option. We do not require the source tree
to reach the destination or to explore local roads in its vicinity as that would only be a
small part of the plateaux. Thus, we have a source tree that explores all the local roads
in the vicinity of the source but ever fewer road types as we move away from the
source, perhaps missing the destination if it does not lie on one of the faster road types.
Now we compute the destination tree in a similar fashion, this time exploring all the
local roads in the vicinity of the destination and ever fewer road types as we move away
from the destination, perhaps missing the source if it does not lie on one of the faster
road types. An example is shown in Figure 20. Next, we combine these trees in our
usual way. For the good fast roads aligned usefully between source and destination, we
will find that they are in both trees and traversed in the same direction, so the plateaux
will form as usual. An example is shown in Figure 21. One difference is that no plateau
will necessarily reach all the way from source to destination but the longest will stop
short at each end because the local roads were not explored in both trees. This is not a
problem though, as we first find the longest plateaux and we generate the optimal routes
from them in the usual way, tracing back to the source using the source tree (which will
use the local roads in the vicinity of the source) and tracing back to the destination in
the destination tree (which will use the local roads in the vicinity of the destination), so
we still obtain complete routes using local roads at each end. An example is shown in

Figure 22.

This method has two advantages over trying to compute a source or destination tree
with slower roads used at both source and destination. Firstly, we reduce the
computation overheads from two slow road type searches in each tree to just one for
each tree, so choice routing becomes more efficient and closer to the costs of just
running a conventional router. Secondly, the decision on when to switch from slow
roads to a faster road type is much easier when moving away from the origin in the

source tree, or away from the destination in the destination tree. This is because we can

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

53

notice how many roads of the higher types we have encountered and use that as part of
the switching criteria. This can easily be done several times for a hierarchy of faster
road types. A conventional router would have higher overheads when moving towards
the destination in the source tree, because of the occasional difficult case where slower
road types must be used for the last 30 miles, but which is not known in advance. Thus,
the conventional router would switch at this worst case distance all of the time. For the
common cases though, where slower road types might only be necessary for the last 5

miles, switching to slower road types at 30 miles distance is very wasteful.

Time dependency in Throughroute Trees

If we have time dependent information, such as the average road speeds for each five
minute period of each day, we can still compute our source and destination trees and
combine them in the usual way. For example, if we are given an arrival time, that is, a
time of day to arrive at the destination, we would first compute the destination tree,
estimating and storing the time of day at which we would traverse each road link in just
the same way that we estimate the cost function, and computing the time taken and cost
to traverse each link using the average speed for that time of day. Once the destination
tree had reached the source, we would have an estimate of the necessary departure time
from the source. We could then use this departure time to construct the source tree,
again using the estimated time of day at which each link is encountered to obtain the
average speed for that time of day and so take into account the variation in traffic
speeds. We can then combine these trees in our usual way, to obtain the plateaux, and
grade then according to our goodness function. This will work adequately, but could be
better. The problem is that a particular sequence of road segments that is not on the
globally optimal route may have a time estimate for their traversal which is at a slightly
different time in the source tree than it is in the destination tree. This may cause minor
variations in the route taken, which could break the resulting plateau into two and
downgrade it in the goodness criterion, all because of a minor variation which is

irrelevant to the overall journey.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

54

To avoid these minor variations, we fix the estimated time of traversal from the first tree
that we compute. That is, for each road link, we not only store the cost at which we have
reached it, but also the estimated time at which we traverse it. We then use those times
when we compute the next tree, rather than compute them afresh. In this way, the time
dependent costs of traversing each link will be identical in both trees and there will not
be any minor variations in the routes taken, so the long plateaux will not be broken by

small irrelevant differences between the trees.

A slight variation on this implementation would be to store the cost of traversal of each
link in the first tree, rather than the time of traversal. Then these costs would be used in
the computation of the second tree, rather than computing them afresh. This technique
could be used with any cost function which might vary between the two trees, whether
because of differences in time of traversal, or route followed so far, or for any other

reasons.

Guidance after Choice Points

Once the choice routes are known, we can assess each for a range of different criteria
that we may or may not want to include in the original cost function. For example, we
may not want the roads used to change because of the weather but we may be very
interested in how the different choices compare, especially if one route is predicted to
be dry while another may be wet. Without further route computation, we can compute
and display these other criteria for each choice route and display the routes in an order
according to them, such as best weather first, or lowest carbon emissions, or good

spread of stopping places.

Once the choice routes are known, we can also compute the junctions at which one or
more choices diverge. As described hereinbefore, we can present these choices along
with information about their properties to the driver well in advance of the junction so

that the driver can simply choose which way they want to go and drive along it.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

55

If the driver has requested route guidance, how should that work at the choice point?
Presentation of the choices as a road sign is a good substitute for the usual junction
diagram with one exit highlighted, and the audio guidance could similarly offer two or

more options as this is being done well in advance of the junction.

The driver could now choose a route that they wished to be guided on by selecting one
of the routes, by some conventional interface such as a button, touchscreen, or by voice
command. However, we can offer a new method. Because we know that the junction is
a place where choices are to be made, we can interpret the driver’s behaviour there as a
positive choice between routes. If the vehicle moves away from the junction on one of
the choice routes, we interpret that as a selection by the driver. But how do we now
perform guidance? We can simply use the choice route itself and, at each further
junction, guide the driver to the next road segment on that route. But what happens if

the driver deviates from that route?

A conventional guidance system would recompute the optimal route from the current
position to the destination and resume guidance along that. Our problem is that this new
optimal route may not be the chosen choice route, so the driver would find themselves
not being guided along the way that they had chosen. Once the driver was far enough
along the chosen route that they were on the plateau, then we know that the optimal
route to the destination is indeed the choice route itself but, until the route reaches the
plateau section, there will in general be a more optimal route that does not use the

plateau. This then gives us one possible solution.

After the driver leaves the junction, we switch guidance to a point that is on the plateau
for the chosen route and only once that point has been passed do we resume guidance to
the destination. We could use any point on the plateau, such as the beginning, middle or
end, but, to allow this intermediate guidance point to be dropped as soon as possible, we
recommend that the first road segment reached on the plateau is used. When the driver
passes that point, we switch guidance back to the destination as that will now be along

the choice route anyway. There is also the possibility that there is another choice point

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

56

before the first plateau is reached. In that case, we simply make the next choice point
the temporary destination for the guidance and, again, switch guidance back to the

destination once that point is passed.

There is still the possibility that the driver does not pass through the intermediate
guidance point, which is a problem faced by conventional systems where waypoints or
vias can be added to a journey, so any of the conventional solutions can be used. For
example, if the driver strays from the route that we are guiding them along and the
newly computed optimal route to the via becomes one that moves away from the final
destination for some distance (or cost), as known from the destination tree, then we can
cancel the guidance to the via as if it had been reached and continue guidance from the
next choice point after that via or the beginning of the plateau on the route with the

highest goodness, whichever would have been reached first.

With these techniques, we can now allow the driver to make their choice between the
routes that we have presented just by driving along one or another of them and yet we

can still offer guidance if required, even if they stray off the guided route.

Fast Diversionary Search

Once the source tree and destination tree have been combined, we have computed the
cost (or time, or distance) of going from source to destination via any node in the
combined tree. This can be useful in itself for finding routes that involve particular
places of interest as the route via any node can be traced back in the two trees without

having to run a routing algorithm again.

This can be particularly important if we wish to consider the cost of going via any of a
large number of nodes. An example of this is where we want to look for good stopping
places on a journey. For a chosen route, we can find all points of interest (perhaps
restaurants, toilet facilities, petrol stations, rest areas) that lie within some distance from

it as the crow flies. We call this a proximity search and there are well-known techniques

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

57

for doing this. One technique is to compute the perpendicular distance to each link on
the route to find the minimum perpendicular distance, and another is to compute the
straight-line distance to each junction on the route to find a lower bound on the driving
distance. Typically, we might find all restaurants within a Skm band on either side of
the route, or all petrol stations within a 1km circle of any junction on the route. Now,
although the restaurants or petrol stations are close as the crow flies, they could involve
a large amount of extra driving (perhaps 10km out and back from the next motorway
junction), or they could involve very little extra driving (leaving at one junction and

travelling in parallel to the next).

The extra driving time and distance do not require a new route computation to find
them. If we look at the combined tree, we already have the cost of going from source to
destination via the link that the restaurant lies on. Thus we have the time and distance of
the optimal route from source to destination via that link. This will, in general, be higher
than the via cost of the nearby choice route, which is available as the cost of going via
any link on the plateau for that route, and will, in general, be a minor diversion off that
choice route. More importantly, it will in many cases be the minimal diversion from the
choice route to go via that restaurant, whether that is by going out and back on the same

road, or going out on one and back on another.

Thus we can filter the restaurants found by the proximity search and keep only those
that add less than some threshold amount to our overall journey cost. Of course, we do
not need to use the same cost function that was used to construct the trees. The trees can
also contain the cumulative time, distance, safety or other factors, in addition to the cost
function that they are minimising, and then these can be used in the thresholding. For
example, we may find all those restaurants that do not add more than ten minutes to our
estimated driving time. To do this without using the combined tree would involve
running a routing algorithm twice for each node found by the proximity search, which
would complicate the code, take an uncomfortably long time, and consume precious
CPU and memory resources. Instead, we simply have to look up the combined costs,

time or distance that have already been stored in the source and destination trees, and

WO 2008/053240 PCT/GB2007/050558

58

summed in the combined tree. For those that we still consider viable, we can trace back
the route from their nearest link in the source and destination trees to obtain the
diversionary route without having to run an expensive routing algorithm. These routes
can then be assessed for their road types, congestion, weather or whatever else the

driver might consider important.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

59

CLAIMS:

1. A method of generating a plurality of diverse routes from a source to a
destination in a weighted directed graph, comprising the steps of: generating a source
routeing tree from the source to a first set of points of the graph; generating a
destination routeing tree from a second set of points of the graph to the destination; and

combining the source and destination trees to form the routes.

2. A method as claimed in claim 1, in which the first set comprises all of the points
of the graph.
3. A method as claimed in claim 1 or 2, in which the second set comprises all of

the points of the graph.

4. A method as claimed in claim 1, in which the first and second sets comprise

points of the graph adjacent both the source and the destination.

5. A method as claimed in any one of the preceding claims, in which the first and

second sets comprise the same points.

6. A method as claimed in claim 1, in which the graph comprises a first set of
links, each of which has a first priority of use, and a second set of links, each of which

has a second priority of use greater than the first priority.

7. A method as claimed in claim 6, in which the first set of points comprises points
interconnected by the links of the first or second set in a first region of the graph
containing the source and points interconnected by the links of the second set but not of

the first set in a second region of the graph outside the first region.

8. A method as claimed in claim 6 or 7, in which the second set of points

comprises points interconnected by the links of the first or second set in a third region

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

60

of the graph containing the destination and points interconnected by the links of the

second set but not of the first set in a fourth region of the graph outside the third region.

9. A method as claimed in any one of the preceding claims, in which the source

and destination trees are minimum cost trees.

10. A method as claimed in any one of the preceding claims, in which the
combining step comprises selecting each sub-route common to and traversed in the

same direction by the source and destination trees.

11. A mecthod as claimed in claim 10, in which the source and destination trees
include back-pointers and the sub-routes are selected by finding sequences of adjacent

points which are pointed to by back-pointers of both the source and destination trees.

12. A method as claimed in claim 10, in which the points of the source and
destination trees are associated with costs and the sub-routes are selected by finding
sequences of adjacent points for which the sums of the costs from the source and

destination trees are the same.

13. A method as claimed in any one of claims 10 to 12, in which the combining step
further comprises extending each sub-route as necessary to the source and destination

along the source and destination trees to form one of the routes.

14. A method as claimed in claim 13 when dependent on claim 12, comprising
selecting at least one via point which is not on any sub-route or extended sub-route,
calculating from the source and destination trees a minimum cost route from the source
via the at least one via point to the destination, and comparing the or each calculated

cost with the same sum of the costs for at least one of the selected sub-routes.

15. A method as claimed in claim 14, comprising forming the difference between

the or each calculated cost and the same sum for the selected sub-route.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

61

16. A method as claimed in claim 15, comprising deselecting the or each via point
for which the difference between the calculated cost and the same sum is greater than a

threshold.

17. A method as claimed in any one of the preceding claims, further comprising

assigning a measure of goodness to each route.

18. A method as claimed in claim 17 when dependent directly or indirectly on claim
13, in which the measure is a function of the length of the sub-route and the length of

the route.

19, A method as claimed in claim 18, in which the measure is a function of the

difference between the length of the sub-route and the length of the route.

20. A method as claimed in any one of claims 17 to 19, further comprising selecting

only some of the routes in accordance with the measures of goodness.

21. A method as claimed in claim 20, comprising selecting the N routes of highest

measure of goodness, where N is a positive integer.

22. A method as claimed in claim 20, comprising selecting at least some of the

routes whose measures of goodness are greater than a threshold.

23. A method as claimed in any one of the preceding claims, comprising storing at

least one of the routeing trees.

24. A method as claimed in any one of the preceding claims, in which the graph

comprises links associated with costs.

10

15

20

25

WO 2008/053240 PCT/GB2007/050558

62

25. A method as claimed in claim 24, in which the cost of traversing each of the at

least some links varies with a parameter of traversal.

26. A method as claimed in claim 25, in which the cost of traversing each of the at

least some links varies with the time of traversal.

27. A method as claimed in claims 25 or 26, in which the first of the generating
steps to be performed includes calculating and storing the costs of the links for the
prevailing transversal parameter values and the stored costs are used during the second

of the generating steps to be performed.

28. A method as claimed in claim 27, in which the destination tree generating step is

performed before the source tree generating step.

29. A method as claimed in any one of the preceding claims, in which the routes are

ordered in accordance with at least one property of each route.

30. A method as claimed in claim 29 when dependent directly or indirectly on claim

17, in which the property is the measure of goodness.

31. A method as claimed in any one of the preceding claims, in which the graph

represents a road network and the routes are road routes.

32. A method as claimed in any one of claims 1 to 30, in which the graph represents

an integrated circuit or a printed circuit and the routes are interconnections.

33. A method as claimed in any one of claims 1 to 30, in which the graph represents

a wiring installation and the routes are wiring interconnections.

10

15

20

25

30

WO 2008/053240 PCT/GB2007/050558

63

34. A method as claimed in claim 32 or 33 when dependent directly or indirectly on
claim 20, further comprising choosing the order of placement of the interconnections in

accordance with the number of selected routes and/or the measures of goodness.

35, A method as claimed in claim 34, in which the interconnections with the lowest

numbers of selected routes are placed first.

36. A method as claimed in any one of claims 1 to 30, in which the graph represents

a communication network and the routes are communication paths.

37. A method as claimed in claim 36, in which the network is an internet.

38. A method of navigation, including generating road routes by a method as

claimed in claim 31.

39. A method as claimed in claim 38, comprising presenting information about the

road routes to a user.

40. A method as claimed in claim 39, comprising presenting information about a
choice of routes from a point from which a plurality of routes diverge when the user

approaches the point.

41. A method as claimed in claim 40, in which the information is displayed in a

form representing a road sign.

42. A method as claimed in any one of claims 38 to 41, comprising offering

guidance to a user along a selected one of the routes.

43. A method as claimed in claim 42 when dependent directly or indirectly on claim
13, comprising offering guidance, when the user leaves the selected route, to the sub-

route of the selected route.

10

15

WO 2008/053240 PCT/GB2007/050558

44,

64

A computer program for performing a method as claimed in any one of the

preceding claims.

45.

46.

47.

48.

49.
43.

A computer-readable medium carrying a program as claimed in claim 44.

Transmission across a communication path of a program as claimed in claim 44.

A computer programmed to perform a program as claimed in claim 44.

A computer containing a program as claimed in claim 44.

An apparatus arranged to perform a method as claimed in any one of claims 1 to

WO 2008/053240 PCT/GB2007/050558
1/15

Figure 1. Distances

WO 2008/053240 PCT/GB2007/050558
2/15

218

Source

Figure 2. Source Tree

WO 2008/053240 PCT/GB2007/050558
3/15

253

Figure 3. Destination Tree

WO 2008/053240 PCT/GB2007/050558
4/15

471

388

310
Source

Figure 4. Combined Tree

WO 2008/053240 PCT/GB2007/050558
5/15

471

310
Source

Figure 5. Plateaux

WO 2008/053240 PCT/GB2007/050558
6/15

Source

Figure 6. Plateau Goodness

WO 2008/053240 PCT/GB2007/050558

7/15

Manchester

Cambridge
L
A
Figure 7 Source tree from Cambridge
Manchester
& \"‘1\ "-'._;.

Cambridge

Figure § Destination tree to Manchester

WO 2008/053240 PCT/GB2007/050558
8/15

Manchester

Cambridge

Figure § Combination tree

Manchester

N

>

Cambridge

Figure!{ Plateau routes

PCT/GB2007/050558

WO 2008/053240

9/15

g1 biz

ARLE

TR

g 01 ¥V WOoIJ sa1not
rewndo £jesog

sapou [Je wol g
01 saynoi Teumdo

z

SopoU [[e 01 Y WOLJ
sonol [ewndo

WO 2008/053240 PCT/GB2007/050558

10/15
Sort by: | familiarity motorway time distance tolls
e om omm— e ATA/AL/AG06/A6 3hrs 13min 1534mis £4.00
e onomm oo e ATAJATIASTIAG2S 3hrs 21min 162mls £4.00
e AL4/MI/AG 3hrs 20min 172mls £10.00
A14/M6 toli/M6 3hrs 0lmin 178mls £14.00
| m—— - A14/M6 3hrs 06min 180mls £10.00
Fig 14
(r)

Tum left, 1* exit, Manchester

r "y
M1/AB
+ 15min
£6

M6
2hrs
£10

\> <)

Fiﬁ |5

WO 2008/053240 PCT/GB2007/050558
11/15

NextLinks PrevLinks

F;‘j 16

WO 2008/053240

PCT/GB2007/050558
12/15
Y/ (4
|3
GPS [
receiver
5 10
Other | — /2
Display Computer electronic
systems

f
Memory [!

Figure17

WO 2008/053240 PCT/GB2007/050558
13/15

Source

\J

Degtinatiory

WO 2008/053240 PCT/GB2007/050558
14/15

N ¢

‘ F{5 20

L §i

w: o

Dégtinatiofy

Fiﬂli

\ T

WO 2008/053240 PCT/GB2007/050558
15/15

Source

=

PSR

L

=

Destination

INTERNATIONAL SEARCH REPORT

international application No

PCT/GB2007/050558

A. CLASSIFICATION O]

INV.
ADD.

SUBJECT MATTER

G01C21/34 GO6F17/50

HO4L1
G06Q10/00 :

2/56

According to tnternational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

G01C GO6F HO4AL GO6Q

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, IBM-TDB, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6 377 551 B1 (LUO GANG [CA] ET AL) 1-10,13,
23 April 2002 (2002-04-23) 18-30,
36,37,
44-49
column 4, l1ines 12-21; figure 2
column 4, Tlines 47-b3; figure 3
column 8, Tines 13-32; figure 15
column 8, line 64 - column 9, line 8;
figure 17
X US 2004/039520 Al (KHAVAKH ASTA [UST ET 1-10,13,
AL) 26 February 2004 (2004-02-26) 18-31,
38-49
paragraph [0035]; figures 2,3
paragraphs [0105], [0108]; figure 12
paragraphs [00921, [0139]1 - [0143]
paragraphs [0166], [0167]; figure 21
)

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the ait which is not
considered to be of particular relevance

*E" earfier document but published on or after the international
filing date

L document which may throw doubts on priorily claim(s) or
which is cited to estabiish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
fater than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underiying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

y document of particular relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combinad with one or more other such docu~
meEts, ﬁuch combination being ebvious to a person skilled
inthe ant.

& document member of the same patent famify

Date of the actual completion of the international search

3 December 2007

Date of mailing of the international search report

11/12/2007

Name and maifing address of the 1SA/

European Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016

Authorized officer

Jakob, Clemens

Fomn PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2007/050558

C(Continuation), DOCUMENTS CONSIDERED TO BE RELEVANT

Gategory*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant 1o claim No.

A

US 6 401 234 B1 (ALPERT CHARLES JAY [US]
ET AL) 4 June 2002 (2002-06-04)
abstract; figure 4

32-35

Form PCT/SA/210 (continuation of second shest) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Informatlon on patent family members

International application No

PCT/GB2007/050558
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 63775651 Bl 23-04-2002 NONE

US 2004039520 Al

26-02-2004 NONE

US 6401234 B1

04-06-2002 NONE

Fom PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - wo-search-report
	Page 82 - wo-search-report
	Page 83 - wo-search-report

