
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0228790 A1

Smith et al.

US 20080228790A1

(43) Pub. Date: Sep. 18, 2008

(54)

(76)

(21)

(22)

(63)

AW Thread
Beginning

NONE

DATA STORAGE AND RETRIEVAL SYSTEM

David E.A. Smith, San Mateo, CA
(US); Anton R. Fleig, Ben
Lomond, CA (US)

Inventors:

Correspondence Address:
H. Michael Brucker
Suite 110,5855 Doyle Street
Emeryville, CA 94.608 (US)

Appl. No.: 12/075,192

Filed: Mar. 10, 2008

Related U.S. Application Data

Continuation of application No. 10/189,754, filed on
Jul. 3, 2002, now Pat. No. 7,356,540.

AW. Tree
Thead

Aloe

symbol block

NONE

ONE NONE

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/100; 707/E17.001

(57) ABSTRACT

A user based computer system for information storage and
retrieval in which information data items are stored in a per
sistent memory for later searching, retrieval and/or browsing
and related in the memory by a frame system wherein the
stored information includes primary information from out
side the system and additional information derived from pri
mary information and inherited from Stored information.

NCE

in SymID symbol block m nextline D symbol block

> symbol block symbolblock

NONE

symbol block symbol block

symbol block

NONE NONE

Patent Application Publication

Single Computer
Application
Program

Client Sever
Software Software

Sep. 18, 2008 Sheet 1 of 9 US 2008/0228790 A1

Component Cornponent

Component Communication
Software

Figure 1 a

Client
Computer

Client Software
Component

Component
Communication

Software
Network

Communication
Software

Client
Computer

Client Software
Cornponent

Component
Conn Thunication

Software
Network

Communication
Software

Figure 1C

Network
Cornmunication

Single Computer

Application
Application Program
Program

Server
Software Software

Component Component

Program Communication Software

Figure 1b

Server
Computer

Server Software
Component

Component
Corn Tunication

Software

Software

Patent Application Publication Sep. 18, 2008 Sheet 2 of 9 US 2008/0228790 A1

Frame
"Philadelphia"

Slot

"Birthplace"

Figure 2

US 2008/0228790 A1 Sep. 18, 2008 Sheet 3 of 9 Patent Application Publication

ENON

US 2008/0228790 A1

aNON -BNON]

ENONEINON
yoola loquºs !!!!—TG?D?T

apou TA\' [.

Patent Application Publication

Patent Application Publication Sep. 18, 2008 Sheet 5 of 9 US 2008/0228790 A1

Frame

rn slotFirst rn slott ast

m parentFrannelDN
m parent FramelD m parentFrannel D

First Sot m slotNext Second Sot m slotNext Last Slot

. . 4 'b- m 'N wr .
m slotBlink . . . ', . zy

, , , m slotBlink
> . . . '. In slotFlink . .

NONE '-. w
mslot Flink ,

Y m. slot Blink p

Slot List Head m_siotBlink. ;
rn slot Flink

m slot Flink

Figure 5

Patent Application Publication Sep. 18, 2008 Sheet 6 of 9 US 2008/0228790 A1

Sot

m valueFirst in valuelast

In parent SlotD
m parent Slot ID . m parent Slot ID

First Value m valueNext Second Value m valueNext Last Value

Figure 6

Patent Application Publication Sep. 18, 2008 Sheet 7 of 9 US 2008/0228790 A1

In framelD

Symbol Block
Frame Structure

John" mAVLID

m slot First m parent FrameID

Symbol Block
Slot Structure

AV node

"Birthplace"

m parent Slot ID

Value Structure

in frame|D m valueNext

Symbol Block
Frane Structure

"Philapdelphia"

Figure 7

Patent Application Publication Sep. 18, 2008 Sheet 8 Of 9 US 2008/0228790 A1

Last Used
Block

Free List
Head

Used Symbol Block

Used Symbol Block

Free Symbol Block

Used Symbol Block

Used Symbol Block

Free Symbol Block

Used Symbol Block

Last Used Symbol
Block

Figure 8

Patent Application Publication Sep. 18, 2008 Sheet 9 of 9 US 2008/0228790 A1

*... ww.
X

US 2008/022879.0 A1

DATA STORAGE AND RETRIEVAL SYSTEM

0001. The present invention relates to user-based com
puter systems for storing and retrieving information and, in
particular, to a computer system including software for caus
ing a persistent memory to function as an information storage
and retrieval system that receives primary information from
outside the system, generates additional information from the
primary information and stored information, and stores both
the primary and additional information in a frame system in
which the primary and additional information can be
searched, retrieved and/or browsed.

BACKGROUND OF THE INVENTION

0002. When personal computers first became available,
many consumers thought that they would be able to put infor
mation into them and easily find and retrieve it later. Except in
special cases, this promise remains unfulfilled. Computer
programs today are universally designed to manage only spe
cific types of information. Users who wish to store informa
tionina computer and retrieve it must use computer programs
specifically designed for particular information and are
restricted to managing just that information. Examples of
Such programs often found on desktop personal computers
are Intuit's Quicken (for personal financial information),
Symantec's Act (for sales contact information), cooking
recipe managers and "personal information managers'
(PIMs) for to-do lists, telephone numbers, addresses, and so
forth.
0003. It is usually impossible to add new information ele
ments related to the information for which the program is
designed if the program has not been specifically designed to
manage the additional elements. Because of this, competing
programs with otherwise similar capabilities are often effec
tively distinguished only by the suitability for the user's task
of the set of data elements that the programs manage. Using
present-day database technology (and this includes the more
recent object database technology), the data elements to be
manipulated must be specified within the Software programs
that manipulate them. These specifications determine the size
and format of the data being represented and the relationship
between data elements. This descriptive process, despite the
efforts represented by such products as Microsoft Access, is
difficult for nonprogrammers. This means that most computer
users are forced to try to find a program that can store and
retrieve just the particular information in which they are inter
ested.
0004 Computer users often resign themselves to using a
word processor to save collections of information in a "docu
ment.” While this is suitable for small amounts of informa
tion, the lack of an ability to display the information as any
thing other than a text document limits the effectiveness of
this solution for larger amounts of data.
0005 Known databases are characterized by a structure
designed to receive specific categories of information. In
order to enter information in non-specified categories, the
structure of the database must first be modified to permit entry
and storage of information in that previously unidentified
category. This is not always an easy task and frequently
discourages the inclusion of such information. For example,
if a database is structured to record names, addresses, tele
phone numbers and email addresses, it cannot record birth
days unless the structure of the database is modified to rede

Sep. 18, 2008

fine the table to include that category of information to the
structure. The addition of a new category of information that
might be applicable to only a few of the entries in a large
database is frequently avoided as not worth the bother.

BRIEF DESCRIPTION OF THE INVENTION

0006. The computer system of the present invention
addresses the aforementioned problems. The present inven
tion combines ideas drawn from research in artificial intelli
gence and from object-oriented technology to produce
uniquely flexible methods and apparatus for a computer pro
gram to store and retrieve information. The invention enables
a user to store, browse and retrieve information on a wide
variety of information topics for which the program was not
specifically designed.
0007. In the present invention, an improved computer
information storage and retrieval system and method are pro
vided using three primary elements: (1) a known data struc
ture used in a novel way; (2) a program to create additional
relationship information from primary relationship informa
tion; and (3) one of the several standard searching routines
known in the art. The invention permits a user to enter any
information desired at any time without the necessity of alter
ing the data structure (redefining a table). Furthermore, the
data entered is related according to relationships that are
known to and of importance to the user. In this way, the
database is personalized in a way that maximizes information
retrieval from the database. For example, with the present
invention, a database primarily intended to record names,
addresses, telephone numbers and email addresses can, at any
time and without any changes to the database structure, add
birth dates, social security numbers, birth places, type of
automobile owned, etc., to one or more of the entries. There
are no impediments to adding any category of information to
an entry, whether for one entry only, for several entries or for
all entries.

0008. At the same time, the database structure used in the
present invention makes efficient use of the storage medium
in which the data is persistently stored.
0009. The present invention uses a frame system to store
data. Frame systems were first introduced by Marvin Minsky
in 1975 (Minsky, Marvin (1975) “A frameworkfor represent
ing knowledge.” in P. Winston, ed., The Psychology of Com
puter Vision, McGraw-Hill, New York, pp. 211-280) in rela
tion to work then being conducted in Artificial Intelligence
(AI). Minsky defined frames in the following terms:

0010. A frame is a data structure for representing a
stereotyped situation, like being in a certain kind of
living room or going to a child's birthday party. Attached
to each frame are several kinds of information. Some of
this information is about how to use the frame. Some is
about what one can expect to happen next. Some is about
what to do if these expectations are not confirmed.

0011 We can thinkofa frame as a network of nodes and
relations. The “top levels of a frame are fixed, and
represent things that are always true about the Supposed
situation. The lower levels have many terminals—
“slots’ that must be filled by specific instances of data.
Each terminal can specify conditions its assignments
must meet. (The assignments themselves are usually
smaller “sub-frames.) Simple conditions are specified
by markers that might require a terminal assignment to
be a person, an object of Sufficient value, or a pointer to

US 2008/022879.0 A1

a Sub-frame of a certain type. More complex conditions
can specify relations among things assigned to several
terminals.

0012 Since Minsky published his work in 1975, others
have expanded, modified and continued using frames to Solve
specific problems, to advance the quest for automated reason
ing and translate one ontology into another.
0013 The present invention uses the frame concept in a

totally different way for a different purpose and with a differ
ent result. In the present invention, a frame system is used not
to solve a problem, but rather to direct the storage of infor
mation in a database in an efficient manner and with multiple
relationships created between data items. When primary
information (data statement containing a plurality of data
items) is entered into the database, the invention automati
cally generates one or more additional relationship state
ments between data items and then creates structural connec
tions between the data items—both those already in the
database and those being entered. Each data item entered is
either related to previously entered data items of a category, or
begins its own category, or both.
0014. The database of the present invention can be
searched using any one of the several search techniques well
known in the art. For efficiency and speed, an AVL tree can be
advantageously used, although, where appropriate, a simple
string search might Suffice. Searching a database of the
present invention is independent of the frame structure used
to organize and manage the data. Once the search locates data
that fits the search query, the frame structure once again
comes into play by being browsed to find the specific infor
mation sought. It is in the browse operation that the person
alization of the data structure has its greatest benefit.
0015. Accordingly, it is an object of the present invention
to provide a computer system for storing and retrieving infor
mation having a structure that permits any category of infor
mation to be entered by the user without alteration of the
database structure.
0016. It is a further object of the present invention to
provide a computer system for storing and retrieving infor
mation with the retrieval of information enhanced by gener
ating additional data relationships from primary information.
0017. It is still another object of the present invention to
provide a method for storing and retrieving information in a
computer memory that enables new categories of information
to be added without restructuring the database.
0018. These and other objects, aspects and features of the
present invention will be better understood from the follow
ing detailed description of the preferred embodiments when
read in conjunction with the appended drawing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

0.019 FIGS. 1A-1C are schematic illustrations of various
configurations of the components of the invention;
0020 FIG. 2 is a schematic illustration of a typical rela
tionship in a frame system between a frame, a slot and a value
for the slot;
0021 FIG. 3 is a schematic block diagram illustrating the
use of symbol blocks to store data item representations;
0022 FIG. 4 is a schematic block diagram illustrating a
small threaded AVL tree with links to the symbol blocks that
store the data item associated with each tree node:
0023 FIG. 5 is a schematic block diagram illustrating the
relationship between a frame and its slot structures;

Sep. 18, 2008

0024 FIG. 6 is a schematic block diagram illustrating the
relationship between a slot and its value structures;
0025 FIG. 7 is a schematic block diagram illustrating the
relationship between a frame and its slots and an AVL tree;
0026 FIG. 8 is a schematic block diagram illustrating the
logical organization of persistent storage for the fixed-size
storage segments used to store the data structures; and
(0027 FIG. 9 is an example of a client window.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0028. The computer program of the present invention has
two principal Software components: the data server Software
(server or server component) and the display client Software
(client or client component). These two components can be
incorporated in the same computer program or can be in
separate programs which can execute on the same computer
or on different computers that communicate with each other.
A server component can Support more than one client. These
alternative configurations are shown in FIGS. 1A-1C.

Client Component Overview
0029. The client presents an interface to the user. This user
interface accepts instructions to add, retrieve, modify, or
delete information items that the server component manages.
0030) Information is presented to the user on a computer
display monitor. Other displays that might be used include the
display on a mobile telephone, a tablet computer, or the dis
play on a Personal Data Assistant (PDA) device, such as a
Palm Pilot or Blackberry. In an alternative embodiment,
information can be presented to the user audibly by using
Voice-synthesis Software that takes input from the client com
ponent to control speakers connected to a Sound card control
ler in the computer.
0031. The user controls the client by using a keyboard or a
“mouse' pointing device connected to the computer execut
ing the client Software. In an alternative implementation, user
input could be received by the client component as messages
from a speech recognition program that processes commands
spoken by the user into a microphone connected to the Sound
card. The speech recognition program and the sound card
could be in the computer executing the client software or
could be in another computer that communicates electroni
cally with the computer executing the client software.
0032. In another embodiment, the user can control the
client by using the telephone touch tones via a telephone
connection to the client computer.

Server Component Overview
0033. The server component stores user data received
from the clients in a persistent storage system Such as a data
file system, manages the stored contents and retrieves stored
information to send to client components. Many of the new
capabilities of the data management system of the present
invention are a consequence of the design of the server com
ponent software.

Basic Server Data Structures

0034. The server component manages files containing six
different types of data structures:
0035 1. Data Item. This is a data object that completely
represents an item of user data. A data item may, for
example, be used to represent a last name, a phone number,

US 2008/022879.0 A1

a date, a paragraph of text, a picture, a Sound recording, or
even a piece of executable computer code.

0036 2. Symbol Block. This is a fixed-length data struc
ture used to store data items in the computer files managed
by the server. Data items that are too large to be stored in a
single symbol block are stored in a collection of symbol
blocks. In the preferred embodiment, a symbol block is
never used to store data from more than one data item.

0037 3. AVL Tree Node. This data structure is used to link
the data items in a data structure known as a “threaded AVL
tree.” The threaded AVL tree is used to rapidly search for
data items.

0038 4. Frame. One frame data structure exists for each
data item stored by the server component. The terms frame
and slot (used below) are taken from artificial intelligence
(AI) research. Frame systems are logical reasoning pro
grams that use the metaphor that objects are represented by
frames and that binary relations between objects are rep
resented by slots in one frame filled by another frame.

0039 5. Slot. Similar to the AI metaphor, slots are used to
represent a binary relationship between two data items

0040. 6. Value. These data structures are used to connect
slots that are contained in frames, to follow the AI meta
phor, to other frame data structures. The relationship of the
frame, slot, and value data structures can be seen in the
following example. What is to be stored is the relationship
John's birthplace is Philadelphia. This is a binary relation,
birthplace, between John and Philadelphia. John is repre
sented by a frame that has a slot for birthplace. In that slot
is a value that connects the slot to another frame that
represents Philadelphia. These structures are shown in
FIG 2.

0041 7.

Data Item

0042. The data item structure can be understood as a
“class' in the programming language in an object-oriented
programming language such as C++. The Information Work
bench software components treat data items as C++ objects
and manipulate them by calls to the data item member func
tions or “methods.” The data item class software must also
provide any data conversion routines that the application
requires—such as a routine to produce a procedure name if
the data item represents an executable procedure. An advan
tage of this approach is that the Software of the present inven
tion can be extended by merely altering the data item class
Software for new applications that manage new kinds of data
items.
0043. For a typical application, a C++ language definition
for a data item class would be required to have the function
ality of the member data variables and member functions
shown below.

Data Members

typedefenum {
IWD Text, f Text data
IWD Integer, if Integer numeric data
IWD Real, if Floating point numeric data
IWD Date, f Date data
IWD Time, f Time data
IWD FileID, File identifier
IWD InternetID, f Internet identifier

Sep. 18, 2008

-continued

Data Members

IWD JPEG, // JPEG format picture image data
IWD MP3, if MPC format sound data
IWDAVI, fi AVI format video clip
IWD None if Unknown data type
} IWDataType:

IWData Type m type:

0044) This enumerated type indicates the type of appli
cation that the data represented by the data item class
might be used for:

Typedefenum {
IWF Integer, if Integer numeric data
IWF Real, if Floating point numeric data
IWF DateTime, // System binary formatted Date and Time
IWF String, // ASCII text string
IWF Unicode, // Unicode text string
IWF Binary, // System formatted binary block
} IWDataFormat:

IWDataFormat m format:

0.045. This enumerated type indicates the internal
binary representation of the data represented by the data
item class.int m insize;

0046. This is the size, typically in bytes, of the memory
buffer used to contain the representation of the stored
data.

char * m plata;
0047. This is a pointer to the location in memory where
the representation of the data item is stored.

Member Functions

IWDataItem.();
0048 virtual -IWDataItem.();
0049. These are the C++ constructor and destructor func
tions for the data item class.
void SetType(const IWDataType type) m type=type:};
inline IWDataType GetType() const return m type:};
0050. There are member functions to store and to retrieve
a value that indicates the type of data represented by the data
item.
0051. For each type of data that a data item can represent,
there must be member functions to store and to retrieve that
type of data in the data item. The following three functions are
used to store and retrieve text character string data.
int GetBufferLength() const;
0052 Returns the size of the buffer required to store the
character string represented by the data item.
void GetData(char *p, int nBufSize) const;
0053 Stores a character string representation of the data
item in a buffer of size nBufSize at memory address p.
void SetData(char *p, int nBufSize):
0054 Reads the character string representation of size
nBufSize at memory address p and stores it in the data item
Structure.

0055. There are member functions to remove the informa
tion contents of a data item and to determine if a data item
contains no information.
bool Islempty() const;

US 2008/022879.0 A1

0056 Returns true if the data item structure contains no
information, false otherwise.
void Clear();
0057 Removes the information content from a data item
Structure.

0058 Data items will often be stored in sorted order to
permit rapid searching. Therefore, there are member func
tions for comparing two data items to determine which fol
lows the other in the chosen sorting order and to determine if
the content of two items match each other according to some
specified criteria to satisfy a data item search.
int Compare(const IWDataItem & b) const;
int Compare(const IWDataItem & a, const IWDataItem & b)
const;
0059 Returns 0 if the items match, -1 if data item repre
sented by a precedes b in the sort order, +1 otherwise.
int Compare(const IWDataItem & a, const IWDataItem & b,
int match len) const;
0060 Compares segments of length match len of data
items a and b, typically beginning at the start of the data
representation in each, and returns 0 if the segments match,
-1 if the segment of a precedes segment ofb in the sort order,
1 otherwise.
0061. In an alternative embodiment, the comparison of
data items might also make use of stored information about
the data types, such as their source, the time of their entry into
the database, the dates during which the data was valid, or
other information characterizing data. Such a comparison
might indicate that two data items are equivalent only if they
were valid on the same dates. In another alternative embodi
ment, a comparison might indicate that the two data items are
equivalent if their texts are close enough to each other as
measured by a technique such as counting the number of
mismatched letters.
bool Islembedded Match(const IWDataItem & a, const
IWDataItem & Sub):
0062 Returns true if the data represented by data item
structure sub can be found somewhere within the data repre
sented by data itema, false otherwise.
0063 Finally, data items may contain elements for use in
specific applications that identify their source, the time they
were last modified, their update history, the identification of
users with permission to modify them, and so forth.

Symbol Block
0064. The symbol block structure is a fixed size structure
used to store data item structures. If the data item to be stored
is too large to fit in the memory allocated for data in a single
symbol block, more than one symbol block is used. Each
symbol block has an identifier, unique among symbol blocks,
known as a “handle'. The handle of a symbol block is used to
locate the block in the persistent storage managed by the
server component. Data item symbol blocks contain refer
ences to other symbol blocks (the handle values) so that
symbol blocks can be organized in “linked lists.” FIG. 3
shows the use of symbol blocks to store data item represen
tations.
0065. Also shown in FIG. 3 is a block pointer set to
NONE. This is a special value that signifies that no block
exists. The special value NONE, as will be seen, is used in a
number of circumstances in the present invention software to
signify that nothing is referenced by a link pointer.
0066. A typical C++ definition for a class to represent a
symbol is shown below:

Sep. 18, 2008

class IWSymbol
{
public:
IWSymbol (void * data = NULL, int dsize = 0):
virtual -IWSymbol();
inline void setAVLID(unsigned long id) {m pBlock->m AVLID =
id:};
inline unsigned long getAVLID() { return m pBlock->m AVLID:};
inline void setID(unsigned long id) {m pBlock->m id = id:};
inline unsigned long getID() { return m pBlock->m id:};
inline void setNextLineID(unsigned long id) {m pBlock

>m nextLineID = id:};
inline unsigned long getNextLineID() { return m pBlock

>m nextLineID:};
inline void setFirstLineID(unsigned long id) {m pBlock

>m firstLineID = id:};
inline unsigned long getFirstLineID() { return m pBlock

>m firstLineID:};
void setData (void* pdata, int dsize):
inline const chargetData () { return m pBlock->m plata:};
inline int getSize() { return m pBlock->m size:};
static int GetSymbolDataSize();
inline int GetBlockCount() { return m pBlock->m nBlocks:};
inline void SetBlockCount(int count){m pBlock->m nBlocks =

count:};
inline void * getSymbolBlockPointer() { return m pBlock:};
static int getSymbolBlockSize();

protected:
static void SetSymbolDataSize(int nsize):

private:
struct tagSymbolBlock
{

unsigned long m AVLID:
unsigned long m id:
unsigned long m nextLineID;
unsigned long m firstLineID;
unsigned long m size;
intm nBlocks;
charm plata1;

}* m pBlock;

Member Functions

0067 IWSymbol (void*data=NULL, int dsize=0);
virtual -IWSymbol();
0068. The constructor allocates memory for the struct tag
SymbolBlock and puts its memory address in m pBlock. The
destructor deallocates the tagSymbolBlock memory.
inline Void setAVLID(unsigned long id) {m pBlock->m
AVLID=id:};
inline unsigned long getAVLID() { return m pBlock->m
AVLID:};
0069. The symbol blocks are also linked to another of the
server component data structures, the AVL tree node, men
tioned above and discussed in the next section. Each AVL tree
node also has an identifier, unique among AVL tree nodes,
also known as a “handle,” which is used to locate the node
data structure in the persistent storage managed by the server
component. These member functions are used to store and
retrieve the handle of the AVL tree node that this symbol
block is associated with.
inline void setID(unsigned long id) {m pBlock->m id=id:};
inline unsigned long getID() { return m pBlock->m id:};
0070 These member functions are used to store and
retrieve the handle of the symbol block.
inline int GetBlockCount() return m pBlock->m nBlocks;

US 2008/022879.0 A1

inline void SetBlockCount(int count){m pBlock->m
nBlocks-count:};
0071. These member functions are used to store and
retrieve the handle of the total number of symbol blocks in a
set of symbol blocks that are being used to store a data item.
inline void setFirsttLineID(unsigned long id) {m pBlock
>m firstLineID=id:};
inline unsigned long getFirstLineID() { return m pBlock
>m firstLineID:};
0072 These member functions are used to store and
retrieve the handle of the first symbol block in a sequence of
symbol blocks that are being used to store a data item.
inline void setNextLineID(unsigned long id) {m pBlock
>m nextIlineID=id:};
inline unsigned long getNextLineID() { return m pBlock
>m nextLineID:};
0073. These member functions are used to store and
retrieve the handle of the next symbol block in a sequence of
symbol blocks that are being used to store a data item.
static int GetSymbolDataSize();
0.074 This member function returns the maximum size of
the segment of a data item that can be stored in a symbol
block. Data item representations that are larger than this must
be divided and stored in more than segmented and stored in
more than one symbol block.
void setData(void* pdata, int dsize):
0075. This member function is used to copy a segment of
a data item representation into a symbol block. The memory
location of the segment being copied is given by pdata, and
size of the segment to be copied is given by dsize, which
cannot be greater than the size returned by GetSymbolData
Size();
inline const chargetdata() { return m pBlock->m plata:};
0076. This member function is used to retrieve the
memory address of the data item storage region in the symbol
block.
inline int getsize() { return m pBlock->m size:};
0077. This member function is used to retrieve the size of
the memory region actually used to store the data item cur
rently stored in this symbol block. This will be the same value
given as dsize when the function setData (void* pdata, int
dsize) was called to store the data segment in the symbol
block.
inline void* getSymbolBlockPointer() { return m pBlock:};
0078. This member function is used to retrieve the address
of the memory region allocated for the symbol block.

AVL Tree Node

0079. Each data item has associated with it an AVL tree
node structure. Each AVL node structure contains references
to other AVL node structures. The set of AVL node structures
associated with data items is organized as a “threaded AVL
tree.” This is an AVL tree in which each node also contains
links (the handle values) of the next AVL tree node and the
previous node in the data item sort order that the tree imple
ments. FIG. 4 shows a small threaded AVL tree with links to
the symbol blocks that store the data item associated with
each tree node.

0080 Each AVL tree node that is associated with a data
item is also associated with a frame data structure, mentioned
above and discussed in the next section. Each frame structure
also has an identifier, unique among frame structures, known

Sep. 18, 2008

as a “handle,” which is used to locate the frame structure in the
persistent storage managed by the server component. A C++
language definition of the AVL tree node structure is shown
below:

enum cmp t {
MIN CMP = -1, i? less than
EQ CMP = 0, if equal to
MAX CMP = 1 if greater than

}:
fi AvlNode -- Class to implement an AVL Tree for IWSymbols

class AvNode
{
public:

. ----- Constructors and destructors:
AvlNode() : m io(NULL).m stored () { };
AvlNode(const AvlNode &);
AvlNode(IWDataItem &);
~AvlNode(void);
f/ Max number of subtrees per node
enum MAX SUBTREES = 23:
if Indices into a subtree array
enum dir t LEFT = 0, RIGHT = 1 };
// Query attributes:
if Get this node's data item contents
IWDataItem & getDataItem ();
// Query the balance factor, it will be a value between -1 ... 1
if where:
// -1 => left Subtree is taller than right subtree
if 0 => left and right Subtree are equal in height
// 1 => right Subtree is taller than left subtree
short Bal(void) const { return m stored.m Bal; }
?t Get the item at the top of the left/right subtree of this
// item (the result may be NULL if there is no such item).

unsigned long Subtree(dir t dir) const { return
m stored.m. SubTreeID dir: }

inline int decrementSymbolReferenceCount()
{m stored.m referenceCount-: return

m stored.m referenceCount:};
inline voi

incrementSymbolReferenceCount(){m stored.m referenceCount----:};
inline unsigned long getID() { return m stored.m id:};
inline void setID(const unsigned long id) {m stored.m id = id:};
inline unsigned long getSymbolNameID() { return

m stored.m. SymID:};
inline void setSymbolNameID(const unsigned long id) {

m stored.m. SymID = id:};
inline unsigned long getFrameID() { return m stored.m frameID:};
inline void setFrameID(const unsigned long id)

{m stored.m frameID = id:};
inline int getSymbolReferenceCount() { return

m stored.m referenceCount:};
inline void setSymbolReferenceCount(constint count)
{m stored.m referenceCount = count:};

inline unsigned long getNextNodeID() { return
m stored.m. NextNodeID:};

inline void setNextNodeID(unsigned long id)
{m stored.m. NextNodeID = id:};

inline unsigned long getLastNodeID() { return
m stored.m LastNodeID:};

inline void setLastNodeID(unsigned long id)
{m stored.m LastNodeID = id:};
if Perform a comparison of the given key string against the given
if item using the given criteria (min, max, or equivalence
if comparison). Returns:
?t EQ CMP if the keys are equivalent
// MIN CMP if this key is less than the item's key
// MAX CMP if this key is greater than item's key
cmp t Compare(const IWDataItem & data, cmp t cmp=EQ CMP, int

match len = 0,
bool wildcards = false);

bool IsBmbedded Match (const IWDataItem & a, const IWDataItem &
Sub):
private:

. ----- Private data

US 2008/022879.0 A1

-continued

struct stored node t
{

unsigned long m SubTree.IDIMAX SUBTREES); Subtree
handles

if Avl node handle
// Symbol block

unsigned long m id:
unsigned long m SymID;

handle
unsigned long m frameID; if Frame handle
unsigned long m NextNodeID; if Handle of

next AvNode
unsigned long m LastNodeID; if Previous

AvNode handle
intm referenceCount;
short m Bal:
struct stored node tC) :

m SymID(NONE),
m frameID(NONE),
m NextNodeID(NONE),

if Reference count
if node balance factor

m id(NONE),

m Bal(O)
{
m SubTreeIDLEFT = m SubTreeIDRIGHT =

NONE;

} m stored;
if Reset all subtrees to null and clear the balance factor
inline void Reset(void) {
m stored.m Bal = 0;
m stored.m. SubTreeIDLEFT =

m stored.m. SubTreeIDRIGHT= NONE:

Member Functions

0081. Av1 Node(); m io(NULL).m stored() { };
0082 Constructs a new AV 1 Node instantiation that has no
links to other structures.
AV 1 Node(const AV 1 Node & av 1);
0.083 Constructs a new AV 1 Node instantiation that is a
copy of the node av 1.
Av1 Node(IWDataItem & data):
0084 Constructs a new AV 1 Node instantiation that has no
links to other AV 1 Node structures, but that is linked to symbol
blocks storing a representation of the data item data.

~AV 1 Node(void);
0085. This is the destructor for an AV 1 Node.
short Bal(void) const return m stored.m Bal;
0.086 This member function returns node's balance factor,
which is the difference in height between the left and right
sub-trees.
unsigned long Subtree(dirt dir) const return m stored.m.
SubTreeID dir:}
0087. This member function returns handle of the node on
the left or right sub-tree specified by the argument dir.
IWDataItem & getDataItem();
0088. This member function returns a reference to the data
item structure, if any, associated with this tree node.

inline int getSymbolReferenceCount() { return
m stored.m referenceCount:};
inline void setSymbolReferenceCount(constint count)
{m stored.m referenceCount = count:};

inline int decrementSymbolReferenceCount()
{m stored.m referenceCount-:

Sep. 18, 2008

-continued

return m stored.m referenceCount:};
inline void
incrementSymbolReferenceCount(){m stored.m referenceCount----:};

0089. These member functions are used to store, to
retrieve, to increment, and to decrement the value of m ref
erence Count, the number of frame structures and slot struc
tures that are associated with the data item that corresponds to
this tree node.
inline unsigned long getID() { return m stored.m id:};
inline void setID(const unsigned long id) {m stored.m.
id=id:};
0090. These member functions are used to store and
retrieve the handle of this node.
inline unsigned long getSymbolNameID() { return m stored.
m SymID:};
inline void setSymbolNameID(const unsigned long id)
{m stored.m. SymID=id:};
0091. These member functions are used to store and
retrieve the handle of the first symbol block in the set of linked
symbol blocks used to store the representation of the data item
associated with this node.
inline unsigned long getFrameID() { return m stored.m.
frameID:};
inline Void setFrameID(const unsigned long id) {m stored.
m frameID=id:};
0092. These member functions are used to store and
retrieve the handle of the frame data structure associated with
this node.
inline unsigned long getNextNodeID() { return m stored.m.
NextNodeID:};
inline void setNextNodeID(unsigned long id) {m stored.m
NextNodeID=id:};
0093. These member functions are used to store and
retrieve the handle of the node that follows this in the order in
which the data items are sorted,
inline unsigned long getLastNodeID() { return m stored.m.
LastNodeID:};
inline void setLastNodeID(unsigned long id) {m stored.m.
LastNodeID=id:};
0094. These member functions are used to store and
retrieve the handle of the node that precedes this in the order
in which the data items are sorted,
cmp t Compare(const IWDataItem & data, int match
len=0);
0095. This member function is used to determine if the
data item represented by data should precede, be at the same
place, or follow in the sort order the data item associated with
this node. The return value is an enumerated type that indi
cates which of the three possible outcomes the comparison
found. The match len, when non-Zero, causes the compari
son to use only a segment of the represented data in the
comparison test. This usage corresponds to the usage of the
match lenparameter in the data item member function Com
pare(const IWDataItem & a, const IWDataItem & b, int
match len) described previously.
0096. In some cases, the result of the Compare function
can be computed correctly without having retrieved the all the
symbol blocks for a data item. Consequently, in some imple
mentations, speed may be improved if the comparison proce

US 2008/022879.0 A1

dure is executed to determine if a non-matching result is
already certain after retrieval of each symbol block of a multi
block data item.

bool Islembedded Match(const IWDataItem & a, const
IWDataItem & Sub):
0097. This member function is used to determine if the
data item represented by is included in the data item associ
ated with this node. This usage corresponds to the usage of
data item member function Islembedded Match described pre
viously.

Frame

0098. Each data item has associated with it a frame struc
ture. As mentioned previously, each frame structure also has
an identifier, unique among frame structures, known as a
“handle,” which is used to locate the frame structure in the
persistent storage managed by the server component. Each
frame structure also has one or more slot structures associated
with it. Slot structures have been mentioned previously and
will be described in more detail below. Slot structures also
have handles that are unique among slot structures. The slot
structures for a frame are joined in a linked list. Each frame
structure has stored in it the number of its slots and the handle
values of the first slot and last slot in its linked list of slots.
This relationship between a frame and its slots is shown in
FIG. 5. In addition, the ordering scheme for the slots in the
linked list is a property of the frame. Each frame structure
contains a value that specifies the ordering scheme for that
frame's slots.

0099. Although the slots are shown linked in a linked-list
structure in FIG. 5. Some applications may have very large
numbers of slots and it may be desirable to link them in an
alternative data structure. Such as an AVL tree, to improve
searching or sorting performance. In the case where the slots
are linked in a tree structure, the frame structure would have
a parameter that is the stored value of the handle of the route
node of the frame's slot tree. The slot structures themselves
would also have to be extended to include the necessary
additional tree parameters.
0100. The data members of a C++ definition for a frame
class are shown below. IWDataOrder is an enumerated type
whose elements correspond to Sorting orders, the different
ways that the application permits data items to be ordered—
Such as ascending alphabetical order, descending alphabeti
cal order, numerical order, and so forth. The data item mem
ber function Compare is used to determine the relative order
of two data items according to a particular sorting order.

Data Members

unsigned long m id: if Handle of this Frame
unsigned long m SymbolTreed; // Handle of Symbol Tree node
naming this frame
unsigned long m slotFirst; if Handle of the first slot of this
frame's slots
unsigned long m slotLast; if Handle of the last slot of this
frame's slots
unsigned int m slotCount; . Number of this frame's slots
IWDataOrder m slotOrder: if Order scheme for the slots

Sep. 18, 2008

Slot

0101 Each slot structure may have one or more value
structures associated with it. Value structures have been men
tioned previously and will be described in more detail below.
Value structures also have handles that are unique among
value structures. The relationship between a slot and its value
structures is shown in FIG. 6. The value structures for a slot
are joined in a linked list. Each slot structure has stored in it
the number of values it has and the handle values of the first
value and last value in its linked list of value structures. Slots
may also have no values, however. In this case, the value
count is Zero and the first and last value structure handles are
set to NONE. The ordering scheme for the values in the linked
list is a property of the slot and each slot structure has a
parameter that specifies the ordering scheme for that slot's
values.
0102 Although the slot values are shown in FIG. 6 in a
linked list, as mentioned for the slots in a frame. Some appli
cations may require the use of tree or other structures to
efficiently manage large numbers of slot values. In these
cases, the slot structure would be extended by the addition of
a value tree root handle and the value structures would be
extended by the addition of the necessary tree link param
eters.

0103 Slot structures are part of the mechanism used to
characterize the relationship between data items. Slot struc
tures may themselves also be associated with data items,
depending on the slot's type. To see how slots are used to
characterize relationships between data items, consider the
example relationship mentioned previously: John's birth
place is Philadelphia.
0.104 For this case, the server creates three data item struc
tures: John, birthplace, and Philadelphia. The relationship is
represented by creating two frames, one linked to the data
item for John and the other linked to the data item for Phila
delphia, and giving the John frame a slot linked to the data
item for birthplace. As the next section will describe, the slot
will be given a value structure that links it to the frame for
Philadelphia.

Slot Type
0105 To use this same mechanism to characterize the
relation Philadelphia is the birthplace of John, slots are given
a “type' to specify the kind of relation they are being used to
represent. The slot type employed for the relation John's
birthplace is Philadelphia is called an “instance is slot and
the slot type used for the relation Philadelphia is the birth
place of John is called an “instance of type slot. Both of these
slot types always have associated data items, in this case, the
data item for birthplace. John is a person is a relation that is
represented using a slot type without an associated data item.
The slot type used is called an “is a type of slot. The slot types
used by the server component to represent relationships are
shown in Table 1.

TABLE 1

List of slot types.

Data
Slot item Example of relation the slot
Types associated type is used to represent

Instance Yes John's phone number is 555
is 1212
Instances Yes John's friends are Karen and

US 2008/022879.0 A1

TABLE 1-continued

List of slot types.

Data
Slot item Example of relation the slot
Types associated type is used to represent

8t Tom
Instance Yes Tom is a friend of John's
of
Transitive Yes Allen knows Tom.
Commutative Yes Tom's spouse is Karen
Pair Yes Tom's wife is Karen

Karen's husband is Tom
Type is No Phone number entries include

555-1212
Is a No 555-1212 is a phone number
type of
Is an No John has a phone number
attribute of

0106 The first four slot types shown in Table 1 are used to
represent a relation between a pair of data items that is named
by a third data item associated with the slot. The instance is
and instances are slot types have similar roles and are only
different to signal client programs to present the relation to
the user so that the number of the verb agrees with the number
of the Subject in an English language sentence. Additional slot
types can be defined to improve data presentation in non
English applications. The instance of type is used to represent
a relation between a pair of data items that can be derived
from an instance is relation by exchanging the roles of the two
items. Where John's phone number is 555-1212 is repre
sented with an instance is slot associated with the data item
phone number, 555-1212 is the phone number of John is
represented using an instance of slot associated with the data
item phone number. Commutative slot types are similar to
instance is and instance of slot types, but are used when the
binary relation being presented is necessarily true if the two
data items are exchanged. As shown in the Table 1, if Tom's
spouse is Karen, then Karen's spouse is Tom and this rela
tionship can be represented by using a commutative type slot
associated with a data item for spouse. Paired slot types are
like commutative, except that the second relationship has a
different name. For example, “wife' and “husband' are a pair
of relationships that might be represented by paired type slots.
The usefulness of paired type slots is that a look-up table can
be used to derive the data item for the slot for the relationship
that has the subject and the object reversed. The role of
transitive slot type is again similar to the role of the pair slot
type and differs only to signal client programs to present the
relation to the user without using the verb “is so that the data
item of the slot appears as a transitive verb. Transitive slots,
like pair type slots, generally use a different slot data item in
the relation that exchanges the Subject and the object (e.g.:
knows and is known by). Again, the client or a look-up table
can be used to find the data item for the slot for the reverse
relationship.
0107 The is a type of slot type is used to indicate that one
data item represents something that is a member of a set
represented by another data item, as in Denver is a city. The
type is slot type is used to represent the opposite relationship,
where a set represented by one data item includes something
represented by another data item, as in cities include Denver.
The is an attribute of slot type is used to represent the relation
between a data item that names a binary relationship and the

Sep. 18, 2008

data item that corresponds to one of two objects participating
in the relationship. For example, the is an attribute of slot type
would be used to represent the relation age is an attribute of
Tom.

0.108 Finally, all slots that the server component manages
are joined in a single linked list. As mentioned previously,
slots areassociated with data attributes and it is often useful to
be able to determine what attribute descriptions are in use.
This linked list is used to locate all the slots managed by the
server to retrieve the set of all attributes. In applications where
it is useful to be able to quickly access all of the stored slot
data structures, the slots can be organized in a tree or other
structure, rather than a linked list, so the set of the attribute
descriptions in use can be quickly retrieved.
0109 The relationship between slots and their values is
shown in FIG. 7.

0110. The slot types represent forms of information rec
ognizable by the system from which other forms (slot types)
of the information can be derived.

0111. The data members from a C++ definition for a slot
class are shown below:

0112 The IWDataOrder type is an enumerated type
whose elements correspond to the different ways that the
application permits data items to be ordered. Such as ascend
ing alphabetical order, descending alphabetical order,
numerical order, and so forth. The data item member function
Compare is used to determine the relative order of two data
items according to a particular sort order. The IWSlot Type
type is an enumerated type that has an element corresponding
to each of different slot implemented in the server component.

Data Members

Slot's Handle
// Handle of symbol tree object

unsigned long
unsigned long
for this slot
IWSlotType m type: // Slot type
unsigned long m slotNext; f Handle of next slot in the frame's
slot list
unsigned long
slot's value list
unsigned long
slot's value list
unsigned long

m id:
m SymbolTreeID;

m valueFirst: f Handle of the first value in the

m valueLast; f Handle of the last value in the

m valueCount; Count of values
unsigned long m slotFlink: f Handle of the next slot on the
linked list
unsigned long m slotBlink: // Handle of the previous slot on the
linked list unsigned long m parentFrameID; if Handle of the slot's
parent frame
IWDataOrder m valueOrder; // Storage order scheme for this slot's values

Value

0113 Value structures are used to link slots to the frame
associated with the second data item participating in the slot's
binary relationship. This relationship is shown in FIG.8. Each
value structure contains the handle of a single frame structure.
As mentioned previously, each value structure also has an
identifier, unique among value structures, known as a
“handle,” which is used to locate the value structure in the
persistent storage managed by the server component.

US 2008/022879.0 A1

0114. The data members from a C++ definition for a value
class are described below:

Data Members

0115 unsigned long m id:
0116. This member is the handle of the value structure.
unsigned long m parentSlotD;
0117. This member is the handle of the value structure's
parent slot.
unsigned long m nextValueID;
0118. This member is the handle of next value structure in
the parent slot's value list.
unsigned long m frameID;
0119. This member is the handle of the frame associated
with this value structure.

Storing Data
0120. An important role of the server component is to
manage the storage and retrieval of the data structures used to
represent data items and data item relationships in a persistent
medium. Typically the data structures are stored in the com
puter's file system on a disk drive. Alternative storage sce
narios include storage in a battery-powered memory system,
storage on magnetic tape, and storage on optical disks or
CD-ROM. In some applications, the data may be supplied to
the user in a read-only format, such as CD-ROM, and the
server manages only the retrieval of data structures.
0121. If the server component is implemented on a com
puter with a file system for persistent storage, the server
component would typically employ the computer's file sys
tem software to read and write the data structures to persistent
files.
0122 Generally, the computer and associated file system
cannot be guaranteed never to Sustain a power, software,
hardware, network or other failure that would cause transac
tions in progress to terminate abruptly. To prevent this from
leaving the server database corrupted to an extent that the
correct data structures cannot be retrieved, the server must
employ techniques to guarantee the standard ACID data
base properties. The ACID acronym denotes the properties of
(0123 Atomicity
0.124 Consistency
0.125 Isolation
0126. Durability

File Interface

0127. In a typical application, the server component uses
the computer's file system software to store and retrieve the
five types of structures: symbol blocks, AVL nodes, frames,
slots, and values. Each of these data structures has a fixed size
so they can be efficiently stored in five different files, or in five
different sections of a compound file in fixed-size segments.
Each of the data structures has an identifying handle, which
can be the index number of its segment in the storage file. If it
is convenient, several different structure types can also be
combined in a single file or single section of a compound file
if the storage segment size is set large enough to hold the
largest of the structures sharing the file.
0128. In many applications using the server, the same data
structures will often be stored and retrieved several times in a
short time interval. To improve the server's performance in
this situation, "caching software is employed, which main
tains a copy in memory of data structures that have been

Sep. 18, 2008

recently stored in or retrieved from the persistent storage
system. The cache system stores data structures in memory
blocks indexed by the structures identification handles.

Inserting Data

I0129. To understand the data storage functions of the
server component, it is useful to begin with the method for
simply storing three data items that represent a binary rela
tion, Such as John's age is 30. The data insertion procedure for
the relation will result in storage of a set of data structures
linked in the relationship shown in FIG. 7. A client compo
nent or some other program will send the server three data
structures called “insertion structures’ containing the infor
mation necessary to construct the three data items for John,
age, and 30 and the frame structures, slot structure, and value
structure that represent the relationship between the data
items.

0.130. An insertion structure must contain the information
of a data item structure and additional information specifying
what role the data item it represents plays in the relation
representation being constructed. The additional information
must include the type of slot to construct if the insertion
structure describes a slot. The additional information for slot
and value insertions may also include the position the new slot
or value will take in the slot linked-list of a frame or the value
linked-list of a slot structure.

I0131. In the preferred embodiment, insertion structures
are implemented as a C++ language class derived from the
data item class. Thus the insertion item class has all the
information of the data item class and the additional informa
tion given by the insertion item class data members shown in
Table 2.

TABLE 2

Insertion item class data members.

Member
Name Type Description

m slotType: IWSlotType Slot type indicator. This
must have a value that signifies
one of the slot types, such as
instance is, implemented in the
server component

m SiblingID; unsigned Handle of sibling item to
long insert next to

m parentID; unsigned Handle of parent item
long

m bBefore: bool True if item precedes
sibling

m SrcItemID: unsigned Temporary item handle
long Supplied by source

0.132. In the preferred embodiment of the server compo
nent, the insertion items are delivered as arguments to a
subroutine. Which insertion item refers to the frame, slot or
value to be created is understood from Subroutine's argument
order.

I0133. The very first step to inserting data is to notify the
cache system that an atomic transaction is beginning.
I0134. Then, starting with the insertion item for what will
become the frame for John in the relation John's age is 30, the
first step is to determine if the data item is already stored in the
symbol blocks of the database. This is accomplished by using

US 2008/022879.0 A1

an AVL tree search algorithm to search the symbol blocks
pointed to by the AVL tree nodestructures stored in persistent
Storage.

Step 1. Retrieve the AVL Tree Root Node.

0135 The AVL tree search begins by reading the handle of
the root node of the database's AVL tree from a designated
fixed location in the database's persistent storage. The root
AVL node structure is then retrieved from persistent storage.
The symbol block designated by the symbol block handle,
m SymID mentioned previously, from the retrieved node is
then retrieved.

Step 2. Retrieve the Data Item from the Symbol Blocks Des
ignated by the Current AVL Tree Node.
0136. If the data item corresponding to the retrieved AVL
node occupies more than a single symbol block, the symbol
block’s m n Blocks data member will be greater than 1 and
the m nextLineID data member will be an actual handle
rather than the special designated value NONE. The program
continues to retrieve stored symbol blocks designated by the
previously retrieved symbol block’s m nextLineID data
member until the number of symbol blocks retrieved is the
number in them nBlocks data member of the first block. The
data stored in storage regions of the symbol blocks is concat
enated in memory to construct the data item structure stored
in the set of symbol blocks.
Step 3. Compare the Retrieved Data Item with the Data Item
being Searched for.
0.137 The data item Compare member function is used to
compare the retrieved data item with the data item being
searched for.

0138 If the two match, the data item has been located in
persistent storage and the search is finished. The AVL tree
node for the data item that has been located contains the
handle of the frame for the data item. Because the frame
already exists, a new frame will not be created. The next step
in data insertion for this example is constructing the slot
information for the slot associated with the data item forage.
Step 4. If No Match, Retrieve a Sub-Tree Node that Becomes
the Current Node.

0139 If the data items do not match, the AVL tree node
from the left or right branch of the current node is retrieved.
The choice of left or right sub-tree is determined by the result
of the comparison. The data item being searched for either
precedes or follows the retrieved data item in the AVL tree's
sorting order. The return value of the Compare function indi
cates which is the case. The left or right sub-tree node is
selected, depending on whether the tree is ordered left-to
right or right-to-left. The sub-tree node handles are in the AVL
node data structure. The appropriate node is retrieved and
becomes the current node. The steps above are repeated,
starting from Step 2, until the data item is found or until there
is no sub-tree node to be retrieved after a comparison. This is
indicated by the presence of special value NONE as the
sub-tree node handle.

Frame Creation

0140. If the data item has not been located in the persistent
storage, a frame for it does not exist and a new frame must be

Sep. 18, 2008

created. This process begins with the construction of an AVL
tree node for the data item and storage of the data item in
symbol blocks.

Persistent Storage Structure
0.141. The logical organization of persistent storage for the
fixed-size storage segments used to store the data structures
managed by the invention is shown schematically in FIG. 8.
0142. A special segment in persistent storage is used to
store two numbers:
0.143 1. The handle, or index number, of the last persistent
storage segment in use.

0144. 2. The handle of an unused segment that exists in the
persistent storage before the last used segment, if one
exists. Free segments before the last used segment are
members of a linked list. Each segment contains the handle
of the next segment on the list. The last segment on the list
has the special value NONE for the handle of the next
segment. If there are no free segments before the last used
segment, the free-segment handle stored in the special
segment is set to the value NONE.

0145 When segments are freed, they are usually added to
the free-segment linked list and the total number of persistent
storage segments used for storage is not reduced.
0146 When a storage segment is needed, the first free
segment, if any, on the free-segment list is used. The free
segment handle in the special segment is then set to point to
the next free segment on the free-segment linked list. The
handle of this segment is retrieved from the newly assigned
segment. If there are no free segments on the free-segment
list, the next segment after the last-used segment is used. The
last-used segment handle in the special segment is then
increased by 1.

Frame and AVL Tree Node Handles

0147 The first step in frame creation is to get a handle for
the new frame and the AVL Tree node associated with it. This
is done by having the cache system take a frame handle from
the frame persistent storage free list or, if that is empty,
increase the persistent storage size and take the handle of an
added storage segment. A new tree node handle is taken from
the AVL node persistent storage free list or, if that is empty,
the persistent storage size is similarly extended and the handle
of an added storage segment is used

Data Item Storage

0.148. To store a new data item in symbol blocks, the first
step is to determine the amount of memory occupied by the
data item structure. This size is compared to the size of the
data storage region in a symbol block structure to determine
m nBlocks, the number of symbol blocks needed to store the
data item. Handles for free symbol blocks are removed by the
caching system from the symbol persistent storage free listor,
if that is empty, the persistent storage size is extended and the
handles of the added segments are used for the required new
symbol blocks.
014.9 The set of symbol structures to be used to store the
data item is constructed in memory. The mid handle values
of the symbol block structures are set to the handle values
acquired from persistent storage. The data item structure is
divided into segments that fit into a symbol block. One sym
bol block is chosen as the first block. The data item segments
are copied into the symbol block storage regions, starting

US 2008/022879.0 A1

with the first block. Each time a data segment is copied into a
symbol block, them size value for the symbol block is set to
the size of the segment copied into the block. The m AVLID
value of the first block is set to the new AVL node handle that
has been acquired. Them firstLineID values of all the blocks
are set to the handle of the first symbol block. Another block
is selected as the second block. The m nextLineID value of
the first block is set to the handle of the second block and the
second data item segment is copied into the data region of the
second block. This process is repeated until all the data seg
ments have been copied into symbol block structures. The
segments are copied into the symbol block structures in
memory. The m nextLineID value for the last symbol block
is set to NONE. Each of the symbol block structures in
memory is now sent to the cache Software to be transacted to
the to the persistent storage segment identified by the blocks
m id handle.

AVL Tree Node Storage

0150. To store an AVL tree node, the node structure is first
constructed in memory. The node's handle m id is set to the
new AVL node handle that has been acquired. The node's
frame handle m frameID is set to the newly acquired frame
handle and the node's symbol blockhandlem SymID is set to
the handle of the first symbol block used to store the data item.
The node's reference count m referenceCount is set to 1 for
the frame being created.
0151. Five parameters are determined by the node's posi
tion in the AVL tree that is stored in persistent storage. These
are the left and right sub-tree handles, the next node and
previous node handles for the thread that runs through the
tree, and the balance factor for the node, which is the differ
ence in height between the left and right sub-trees. These five
parameters are determined by the AVL tree node insertion
procedure. The well-known procedure is to search the tree for
the data item being inserted and then to proceed up the tree
along the search pathjust traveled, adjusting the node balance
factors and the tree handle and thread handle values. In this
procedure, the tree is searched by retrieving AVL nodes and
their data items from persistent storage. The data item Com
pare function is used to determine if the retrieved items pre
cede or follow the new data item in the tree sorting order.
0152. When the insertion procedure has determined the
five tree parameters for the new node, their values are set in
the memory copy of the node and the node is copied to the
cache system for transaction to the segment that corresponds
to its handle in persistent storage. Other nodes that have been
retrieved and adjusted according to the insertion procedure
are also sent to the cache system for transaction back to
persistent storage

Frame Item Storage

0153. The frame item structure is first constructed in
memory. The frame's handle value m id is set to the newly
acquired handle. The frame's AVL tree node handle m Sym
bolTree.ID is set to the handle of the new AVL node. Initially,
the frame has no slots, so its slot count m slotCount is set to
0 and first and last slot handles, m slotFirst and m slotLast,
are set to the special value NONE. If the insertion instructions
for this frame include a slot order, then the slot order param
eterm slotOrder is set appropriately. When the frame struc

Sep. 18, 2008

ture's values have been set, the structure is copied to the cache
system for transaction to the persistent storage segment des
ignated by its m idhandle.

Slot Item Storage

0154 The first step in slot construction is to acquire a new
persistent storage handle for a slot structure. If the slot is type
being constructed has an associated data item, then if the data
item and its AVL node are not already in persistent storage,
they must be created and inserted in persistent storage. The
procedure for this is the same as the procedure described
above for a frame's data item and AVL node, except that the
AVL node's m frameID parameter is set to NONE.
0155 If the data item has been previously put into persis
tent storage, then searching the stored AVL tree will locate it.
The AVL node for the data item is then retrieved from persis
tent storage and its m referenceCount value is increased by 1.
The AVL node structure is then copied back to its segment in
persistent storage.
0156 The slot item structure is first constructed in
memory. The slot's handle value m id is set to the newly
acquired slot persistent storage handle. The slot's type param
eterm type is set to the slot type taken from the slot insertion
structure. If the slot is associated with a data item, the slot's
AVL tree node handlem SymbolTreeID is set to the handle
of the data item's AVL node. The slot's parent frame handle
value m parentFrameID is set to the handle of the slot’s
parent frame.
0157 To insert the slot in the parent frame, the parent
frame structure is retrieved from persistent storage. If the
frame has no slots, then its m slotFirst and m slotLast values
are set to the handle of the slot being created. If the frame has
slots and the insertion item parameter m siblingID for the
slot being created is not NONE, then the new slot is to be
placed in a particular position in the frame's slot list. This is
accomplished by retrieving the frame's slot structures from
persistent storage, beginning with the slot with handle given
by the frame's m slotPirst parameter. The next slot in the list
is the slot with handle given by the just-retrieved slot’s
m slotNext parameter. Slots are retrieved until the slot having
the handle specified by the insertion structure’s m sibling ID
parameter is retrieved. If the insertion item parameter
m bBefore is true, the slot being created precedes the slot
with handle m sibling ID, otherwise, it follows it. If the cre
ated slot precedes, its m slotNext parameteris set to the value
ofm siblingID and if there was a previously retrieved slot, its
m slotNext parameter is set to the handle of the slot being
created. If there was no previously retrieved slot, the new slot
is the frame's first slot and the frame's m slotPirst parameter
is set to the handle of the new slot.

0158 If the insertion item parameterm bBefore is false,
the slot being created follows the slot with handle m sib
ling ID. The m slotNext parameter of them siblingID slot is
set to the handle of the newly created slot. If the created slot
is last, its m slotNext parameter is set to NONE and the
frame's m slotLast parameter is set to the handle of the newly
created slot.

0159. If the insertion structure’s m sibling ID parameter is
NONE, then the new slot is inserted in the frame's linked list
of slots according to the frame's default sort order, which is
designated by the frame's m slotOrderparameter. In this case
the insertion procedure is to retrieve the frame's slots from
persistent storage, retrieve the associated data items, if any,

US 2008/022879.0 A1

and use the data item Compare member function to determine
the correct position for the new slot in the frame's link list of
slots.
0160 To conclude the insertion of a slot into a frame, the
frame's slot count m slotCount is increased by 1 and then the
frame and any slot structures that have been retrieved and
modified are copied to the cache system for eventual transac
tion back to their respective segments in persistent storage.
0161 Initially, the new slot has no values, so its value
count m valueCount is set to 0 and first and last value
handles, m valueFirst and m value last, are set to the special
value NONE. If the insertion instructions for this slot include
a value order, then the value orderparameterm valueOrder is
set appropriately. The final step in slot creation is to set the
links to insert the slot in the database's linked list of all slots.
This is done by first retrieving from the cache system the first
slot handle from slot list-head segment in persistent storage.
If no slots exist in persistent storage, this parameter will be
NONE. If the parameter is not NONE, it is a slot handle and
the slot it designates is retrieved from persistent storage. The
m slot3link parameter of the newly created slot is set to
NONE and them slotFlink parameter of the new slot is set to
the value that was stored in the slot list-head. The slot list
head segment of persistent storage is set by the cache system
to the handle of the newly created slot. The slot structure that
was designated by the slot list-head has its m slotRlink
parameter set to the handle of the newly created slot and is
then copied to the cache system for transaction into its seg
ment in persistent storage.
0162. When creation of the new slot structure in memory

is finished, the structure is copied to the cache system for
transaction into the persistent storage segment designated by
its m idhandle.

Value Item Storage
0163 The first step in value construction is to acquire a
new persistent storage handle for a value structure. Each
value structure is associated with a frame. The frame is a
frame for the value's data item. If a frame for the value's data
item already exists, it is located by searching the AVL tree and
taking them frameID value from the data item's AVL node as
the frame's handle.
0164. If the data item has not been previously put into
persistent storage, then it is sent to the cache System storage,
a new AVL node is created and sent to the cache and a frame
is created as described above in the section on frame item
Storage.
0165. The value item structure is first constructed in
memory. The value structure's handlem id is set to the newly
acquired persistent storage handle. The value's parent slot
handle value m parentSlotID is set to the handle of the val
ue's parent slot.
0166 The procedure to insert a value in a parent slot is
similar to the procedure used to insert a slot in a parent frame.
The parent slot structure is first retrieved. If the slot has no
values, then its m valueFirst and m value last parameters are
set to the handle of the value being created. If the slot has
values and the insertion item parameterm siblingID for the
value being created is not NONE, then the new value is placed
in particular position in the slot's value list. This is accom
plished by retrieving the slot's value structures from persis
tent storage, beginning with the value with handle given by
the slot’s m valueFirst parameter. The next value in the list is
the value with handle given by the just-retrieved value's

Sep. 18, 2008

m valueNext parameter. Values are retrieved until the value
structure having the handle specified by the insertion struc
ture’s m siblingID parameter is retrieved. If the insertion
item parameterm bBefore is true, the value being created
precedes the value with handle m sibling ID, otherwise, it
follows it. If the created value precedes, its m valueNext
parameter is set to m siblingID and if there was a previously
retrieved value, its m valueNext parameter is set to the handle
of the value being created. If there was no previously retrieved
value, the new value is the slot's first value and the slot's
m valueFirst parameter is set to the handle of the new value.
0.167 If the insertion item parameterm bBefore is false,
the value being created follows the value with handle m sib
ling ID. The m valueNext parameter of the m sibling ID
value is set to the handle of the newly created value. If the
created value is last, its m valueNext parameter is set to
NONE and the slot’s m value last parameter is set to the
handle of the newly created value.
0168 If the insertion structure’s m sibling ID parameter is
NONE, then the new value is inserted in the slot's linked list
of values according to the slot's default sort order, which is
designated by the slot’s m valueOrderparameter. In this case,
the insertion procedure is to retrieve the slot's values from
persistent storage, retrieve the associated frame, and then the
data item designated by the frame. The data item Compare
member function is then used to determine the correct posi
tion for the new value in the slot's linked list of values.
(0169. To conclude the insertion of a value into a slot, the
slot's value count m valueCount is increased by 1 and then
the slot and any value structures that have been retrieved and
modified are copied to the cache. The creation of the new
value structure in memory is now finished and the structure is
copied to the cache segment designated by its m idhandle.
0170 This completes the construction of the set of frame,
slot, AVL node, and symbol block structures to store the
example relation John's age is 30. If no additional data were
to be stored to service this client request, cache software
system would be instructed to commit the created and altered
structures to persistent storage. As will be described below
the server must typically store several relations to service a
data insertion request, however. When this is the case all the
storage modifications necessary to service the request are
typically committed at once rather than relation by relation.

Insertion into Known Slots and Frames

0171 The foregoing section has described the creation of
a new frame, slot, and value combination. When a new slot is
to be added to a known frame, the frame handle is provided to
the server by the client component. Similarly, when a new
value is to be added to a known slot, the slot's handle is
provided for the server in the insertion item structure by the
client component.

Inserting Implications
0172. When a new representation of a relation is stored,
the server component also stores representations of what are
called “implied’ relations. Implied relations are deduced
from the original relation that is being inserted.
0173 For example, if the originally inserted relation is
John's Birthplace is Philadelphia, then the following are
implied relations:

(0174 Philadelphia is the birthplace of John
(0175 Birthplace is an attribute of John
(0176) Philadelphia is a Birthplace
(0177 Birthplace entries include Philadelphia

US 2008/022879.0 A1

0.178 Representations of these relations are stored by the
server in response to the instruction to add the relation John's
Birthplace is Philadelphia.
0179 The server uses the slot insertion item's slot type to
determine what implied relations will be created and stored.
Table 3 shows the frame, slot, and value structure combina
tions that the server recognizes, generates and stores for the
primary relation and its implications for different slot types.
The numbers 1, 2, and 3 in the table indicate which data item
is associated with the frame, slot, or value structure created
for the relation when the server is given insertion items
describing a frame data item (1), a slot data item (2) and slot
type, and a value data item (3). The first combination for each
slot type is the representation of the primary information
(relation) from the insertion item set delivered to the server.
The combinations that follow are the implications that are
also created and stored.

0180. Some entries indicate the use of a fourth data item
(4). The fourth data item is used for the slot when the primary
relation is represented by a Transitive or Pair type slot. An
example is the primary relation Jane's husband is Bill, which
can be presented with a pair type slot having the implication
Bill's wife is Jane. Depending on the application, the auxil
iary data item for wife can be delivered to the server by the
client component or the server can use a previously loaded
lookup-table of data item pairs to generate the fourth data
item for the wife slot. The situation is similar for Transitive
slots, such as would be used for Jack knows biology. The
reverse relation, Biology is known by Jack requires a data
item for is known by, which can received from the client
component or generated by the server from a predefined
lookup table.
0181. The last row in the table indicates that the implica
tion of a relation Such as Age is an attribute of Tom is the
relation Tom's age is unknown. The server component repre
sents the age is unknown relation by a slot, forage, that has no
value items attached to it.

TABLE 3

Server actions to store implied relations.

Frame Slot Value
Insertion Slot Data Data Data
Type Item Slot Type Item Item

Instance is 1 instance is 2 3
Instances are instances are

3 instance of 2
2 Type is None 3
3 s a type of None 2
2 s an attribute of None

Instance of 1 instance of 2 3
3 instance is 2
2 Type is None
1 s a type of None 2
2 s an attribute of None 3

Commutative 1 Commutative 2 3
3 Commutative 2
2 Type is None 3
3 s a type of None 2
2 s an attribute of None
2 s an attribute of None 3

Pair 1 Pair 2 3
3 Pair 4
2 Type is None 3
4 Type is None
4 s an attribute of None 3
3 s a type of None 2

Sep. 18, 2008

TABLE 3-continued

Server actions to store implied relations.

Frame Slot Value
Insertion Slot Data Data Data
Type Item Slot Type Item Item

2 Is an attribute of None
Transitive 1 Pair 2 3

3 Pair 4
2 Type is None 3
4 Type is None
4 Is an attribute of None 3
3 Is a type of None 2
2 Is an attribute of None

Type is 1 Type is None 3
3 Is a type of None

Is a type of 1 Is a type of None 3
3 Type is None

Is an attribute of 1 Is an attribute of None 3
3 Instance is 1 None

Inserting Inherited Information

0182. In addition to the implications described above,
when new information (a representation of a relation) is
stored, the server component stores representations of what
are called “inherited' relations. Inherited relations are
deduced by combining the new relation and its implied rela
tions with relations that are already stored in the server's
persistent storage.
0183 For example, suppose that the relation cheese is a
dairy product has been previously stored by the server and
that the new relation to be entered is Swiss cheese is a cheese.
Swiss cheese inherits the is a dairy product relation from
cheese so the server creates and stores the relation Swiss
cheese is a dairy product.
0.184 As with implications, the server uses the slot inser
tion item's slot type to determine what implied relations will
be created and stored. Table 4 shows the actions taken to store
the inherited consequences of each of the different slot types.

TABLE 4

Server actions to store inherited relations.

Type of New Slot Server Actions

Instance is f the frame exists and has
Instances are Type is slot, then the new slot and
Instance of its value are also added to every
Transitive rame that is linked through a
Commutative value structure to the Type is slot.
Pair
Is a type of Locate the frame linked to

he value structure and add every
instance is slot with its values from
hat frame to the new frame. For
each addition, also create and store
all the implied relationships.

Type is Locate the frame linked to
he value structure and add to that
rame every Instance is slot of the
new frame with its values. For
each addition, also create and store
all the implied relationships.
Create an Instance is slot
from the data item associated with
then new frame and add it to every
frame linked by a value structure

Is an attribute of

US 2008/022879.0 A1

TABLE 4-continued

Server actions to store inherited relations.

Type of New Slot Server Actions

to the Is an attribute of slot. For
each addition, also create and store
all the implied relationships.

Circular References

0185. Circular references are permitted in relations stored
by the server. When the server is storing inherited is a type of
and type is relations, it searches the tree formed by frames
connected by these slot types to determine if the relationship
to be inserted already exists. This simply prevents the server
from looping forever as a consequence of requests to store
two relations such as A is a B and B is an A.

Synonyms

0186 Under certain circumstances, a user may need to
repeatedly access the same frame. A “to-do list' frame is an
example of a frame that might be frequently accessed. Frame
synonyms provide a short-cut method of accessing a particu
lar frame. A frame synonym is simply an alternative, usually
short and easy-to-remember, name for a frame. When search
text is entered that is recognized as a synonym, the actual
frame name replaces the search text and an exact-match
search is performed. The available or frequently used frame
synonyms may be displayed in a drop-down list by the user
interface for easy access. Multiple synonyms may be
assigned to the same frame if desired. The use of synonyms
can greatly facilitate access to frequently needed information.
0187. Many implementations of frame synonyms are pos
sible. The synonym list may be managed on the client, if
client-specific synonyms are desired. In this case, the trans
lation from synonym to frame name is performed by the client
and the server is unaware of the existence of the synonym.
Alternatively, synonyms may be placed in a so-called “syn
onyms are type slot and managed by the server. In this case,
the same synonyms can be made available to all users. Care
must be taken in the server software not to perform synonym
translation except on the initial search text provided from a
client. When expanding a synonyms are slot, for example, the
actual synonym should be displayed, not the name of the
frame represented by the synonym.

Retrieving Information

0188 The server provides two basic mechanisms to send
information to a client: returning search results and respond
ing to requests for frame or slot expansions.

Searches

0189 In the present invention, the user (including access
ing software) need not have knowledge of or have access to
the structure of the stored data in order to begin a search. In
contrast, with a relational database, the user or accessing
software must know or discover what tables exist and what
the names of the columns of interest in each table are before
a query can be formulated. Queries not referencing the data
base structure correctly are rejected by the relational database

14
Sep. 18, 2008

system. No Such prior knowledge of the content or structure
of data space to be searched is required in the present inven
tion.
0190. Once a search returns an element from the database
in the present invention, the user (including accessing soft
ware) is able to use the returned element as the starting point
for further examination of the data space by following
(browsing) the connecting relationships in the frame system
between the returned element and related elements resident in
the database. Again, this exploration is allowed without prior
knowledge of what relationships may exist. By contrast, to
perform further explorations after an initial query in a prior art
relational database requires the formulation of yet another
query, requiring the same degree of foreknowledge of the
relational structure as did the first.
0191 The server component of the present invention per
forms the search of the data items that have been stored in
persistent storage. To initiate a search, the client sends a
search command to the server with a specification of the
search type and a data item that describes the search target.
0.192 Searches are performed by comparing the supplied
target data item with items retrieved from the server's persis
tent storage. In the preferred embodiment, the server can
perform the following types of comparisons between the
retrieved data items and the target data item:
0193 1. Find items that exactly match the target item.
0194 2. Find items that match the target item for the length
of the target item. Given a target item of ab, this type of
search would return all the data items beginning with the
character String 'ab' Such as able, abcess, and abercrom
bie.

0.195 3. Find items that include the target item. Given a
target item of ab, this type of search would return all the
data items in which the character string 'ab' appears—
such as able, dabble, and crab.

0.196 4. Find items that match a target item that is defined
using “wildcards.” If a wildcard “*” is defined such that *
matches any length string of any characters, then a search
for a target data item abc would return items such as
abercrombie, but notable.

0.197 The server returns the set of frame structures asso
ciated with the matching data items in response to a search
request.
0198 Different search procedures are employed for
included targets than for the other three target types.
0199 The search for a target item that is included in
another item is carried out as follows:

(0200 Step 1. Starting with the root node of the AVL
tree, descend the right sub-tree by retrieving right sub
tree nodes until the bottom of the tree is reached. This
bottom node becomes the "current node.” Note that in
Some implementations, this step may be replaced by
simply having stored the handle of the bottom right
node. The purpose of this step is to get the handle of the
node at one end of the thread that runs through the
threaded AVL tree. The other end of the thread could be
found by descending from the tree root through left
sub-trees. Since the procedure to find included items is
to follow the thread from one end to the other, it can
begin from either end of the thread.

0201 Step 2. Retrieve the data item associated with the
current node. Using the data item Ishmbedded Match
function, test if the target data item is included in the
retrieved data item. If the target data item is included,

US 2008/022879.0 A1

retrieve the frame whose handle is designated by the
current node m frameID. The retrieved frame item and
data item are used to construct a message that is sent to
the client component that requested the search. A new
AVL node is then retrieved, whose handle is designated
by the current node's m NextNodeID value. This node
becomes the current node and this step is repeated until
the current node's m NextNodeID is NONE.

0202 In some embodiments, the client requesting the
search will designate the handle of the AVL tree node where
the search is to begin. In those cases, Step 1 of the procedure
above is eliminated. Also in some embodiments, the client's
search request specifies a limit on the number of data items or
on the data Volume that the search is to return. In these cases,
the server maintains a running count of the number of data
items or of the data volume and terminates the search when
the client's limit is reached. The client can resume the search
with another request that specifies the starting node handle for
the search.

0203 The search for a target item that is not included in
another item is carried out as follows:

0204 Step 1. Beginning with the root node of the AVL
tree, follow the procedure described in the previous
Inserting Data section. In that procedure, AVL nodes are
retrieved and the data item Compare function is used to
compare the retrieved item with the target item. The
return value of the Compare function is used to deter
mine which sub-tree to descend for the next AVL node
retrieval. If no matching nodes are found in the tree, the
search is terminated.

0205 Step 2. The first matching node found is desig
nated as the current node. If a matching node is found, it
may not be the only one in the tree. To return the match
ing data items to the client in the tree sort-order, the AVL
thread is followed from the current node by retrieving
the node whose handle is given by the current node's
m LastNodeID. The data item Comparefunction is used
to test if the retrieved node matches the target data item.
If it does, the retrieved node becomes the current node.
This step is repeated until the retrieved node does not
match the target.

0206 Step 3. Now, similar to step 2 of the included
search procedure described above, the search follows
the thread back from the current node, testing retrieved
data items and sending matching data items with their
handles back to the client. This is done by retrieving the
data item associated with the current node. The data item
Compare function is used to test if the retrieved data item
satisfies the match criteria with the target data item. If
there is a match, the frame having the handle designated
by the current node's m frameID is retrieved and the
frame item and data item are used to construct a message
that is sent to the client component that requested the
search. A new AVL node is then retrieved, whose handle
is designated by the current node's m NextNodeID
value. This node becomes the current node and this step
is repeated until the current node's m NextNodeID is
NONE or until the target data item and match criteria are
Such that no matching node can exist following the
retrieved node in the AVL tree sort order.

0207. Once search results are reported, further explora
tion of the stored data items is conducted by browsing
the frame structure to locate related data items. Thus, the
frame structure is used to easily store data, the data is

15
Sep. 18, 2008

searched independent of the frame structure to locate
target data and the frame structure is again used to locate
data related to the target data.

Frame Expansion

0208 Clients can request that the server send them infor
mation describing the slots of a frame. In response to Such a
request, the server retrieves the frame structure for the desig
nated frame from persistent storage. Slots are then retrieved
from persistent storage, starting with the slot with handle
given by the frame's m slotFirst value. If the slot is a type that
has an associated data item, the AVL node associated with this
slot, designated by the slot’s m SymbolTree.ID parameter, is
retrieved. Then the slot's data item is retrieved, as described
previously, starting with the symbol block designated by the
AVL node's m SymID parameter. The slot information and
data item are then used to construct a message describing the
slot that is sent to the client component.
0209. After the first slot is retrieved and the message dis
patched to the client, the next slot handle is given by the
m slotNext parameter of the current slot. This new slot is
retrieved and the associated data item, if any, is again
retrieved to construct another slot description message that is
dispatched to the client. This is repeated until descriptions of
all of the frame's slots have been dispatched to the requesting
client. As with searches, in Some implementations, the cli
ent's request may include a starting slot handle or limitations
on the number of items or the data volume that can be
returned.

Slot Expansion

0210 Clients can also request that the server send them
information describing the values of a slot. This request is
satisfied with a procedure that is very similar to that used for
sending the slots of a frame. In response to the request, the
server retrieves the structure for the designated slot from
persistent storage. Values are then retrieved from persistent
storage, starting with the value with handle given by the slot's
m valueFirst parameter. To retrieve the data item associated
with the value, the frame with handle given by the value's
m frameID parameter is retrieved. The AVL node associated
with that frame, designated by the frame's m SymbolTreeID
parameter, is retrieved. Then, the frame's data item is
retrieved, as described previously, starting with the symbol
block designated by the AVL node's m SymID parameter.
The value structure information and data item are then used to
construct a message describing the value that is sent to the
client component.
0211. After the first value is retrieved and the message
dispatched to the client, the next value's handle is given by the
m valueNext parameter of the current value structure. This
value structure is retrieved and the associated data item is
retrieved to construct another value description message that
is dispatched to the client. This process is repeated until
descriptions of all of the slot's values have been dispatched to
the requesting client. As with frame expansions and searches,
in Some implementations, the client's request may include a
starting value handle or limit for the number of items or the
data volume that can be returned.

Deleting Information
0212. Items are deleted from persistent storage by sending
a deletion request to the server. The deletion request specifies

US 2008/022879.0 A1

the type of object to be deleted frame, slot, or value—and
includes the handle of the item to be deleted. If the server
component enforces inheritance consistency requirements on
deletions, then the server first determines if the requested
deletion operation violates those requirements.

Inheritance Inconsistency

0213. The server's inheritance consistency checks are
intended to prevent storage of inconsistent relations that
would be undesirable in Some applications.
0214. An inheritance inconsistency can be created, for
example, by inserting the two relations cheese is a dairy
product and cheddar cheese is a cheese and then deleting the
inherited relation, cheddar cheese is a dairy product, which
the server will have created. The inheritance inconsistency is
that the group cheese has property is a dairy product that a
member of the group cheddar cheese does not share. Such an
inconsistency may, of course, have no consequences for some
applications. Depending on the application's requirements,
the server can either proceed with the deletion or reject the
request and send the client an error message. Again, depend
ing on the application's requirements, the client component
can respond to the rejected deletion request by:
0215 1. Sending the server a deletion request with the
additional instruction to ignore the consistency checks.

0216 2. Deleting either the relation cheddar cheese is a
cheese or the relation cheese is a dairy product to eliminate
the inconsistency.

0217. If the inheritance consistency requirements for the
application have been satisfied, the deletion procedure can go
forward according to the implication consistency require
ments of the application.

Deletion Implication Consistence

0218. In general, the goal of maintaining consistent impli
cations when deleting items is to leave the set of stored
relations such that the relations remaining after the deletion
could have been created from nothing by Some combination
of additions alone. This is more desirable in Some applica
tions than others and the server component program can
easily be modified to perform different implication deletions
than those discussed here—or to do no implication deletions
at all.

0219. An example where items can be deleted to maintain
consistent implications starts with the stored relation (infor
mation) Jack's age is 40. As described above, when this
relation is stored, four other relations are also stored:

0220 40 is the age of Jack
0221 Jack's attributes include age
0222 40 is an age
0223) Age entries include 40.

0224 Simply removing the value for 40 from the slot for
age in the frame Jack would leave the following set of rela
tions stored:

0225. Jack's age is unknown
0226 40 is the age of Jack
0227 Jack's attributes include age
0228 40 is an age
0229 age entries include 40.

Sep. 18, 2008

0230. Obviously, 40 is not the age of Jack if Jack's age is
unknown. A better result would be also to delete the second,
fourth, and fifth relations to leave the set:

0231 Jack's age is unknown
0232 Jack has an age

0233. This set of relations could have resulted from storing
the relation Jack's age is unknown in an empty database.
0234. The deletions the server makes to maintain consis
tent implications depend on the object—frame, slot, or
value being deleted and on the slot type of the relation that
is the primary target of the deletion.
0235 Table 5 shows the actions taken by the server in
response to a request for the deletion of a value in a relation.
The set of additional deletions is determined by the type of the
slot in the target relation from which a value is being deleted.
The numbers 1, 2, and 3 in Table 5 correspond to the frame
data item, the slot data item (if any) and the value data item of
the target relation. For each target slot type, Table 5 indicates
that the value item in the target relation is to be deleted by
showing a line through the number of the value data item
(e.g.: 3). The implications of each target relation are also
shown in Table 5, with lines through the numbers of the data
items associated with frame, slot, or value structures that are
to be deleted.

0236. Some of the deletion rules shown Table 5 leave slots
as placeholders or mnemonics, so that a client user can more
easily fill in the empty values at a future time. This choice is
convenient for some applications and can be modified as
convenient for a particular program application.
0237 While empty slots are maintained by the server, in a
typical implementation of the server, frames without slots are
deleted, along with the associated AVL node and data item,
because they have no relationships with other data items.

TABLE 5

Server actions to Service a request to delete a value.

Frame Slot Value
Target Relation Data mplication Data Data
Slot Type Item Relation Slot Type Item Item

Instance is 1 instance is 2 3.
Instances are instances are

3 instance O 2.
2 Type is None 3.
3 s a type o None 2.

Delete this slot if it
is empty.

2 s an attribute of None 1
Instance of 1 instance O 2 3.

3 instance is 2
2 Type is None 1
1 s a type o None 2
2 s an attribute of None 3

Commutative 1 Commutative 2 3.
3 Commutative 2 l
2 Type is None 3.
3 s a type o None 2.

Delete this slot if it
is empty.

2 s an attribute of None l
Delete this slot if it
is empty.

2 s an attribute of None 3.
Delete this slot if it
is empty.

Pair 1 Pair 2 3.
3 Pair 4 l
2 Type is None 3.

US 2008/022879.0 A1

TABLE 5-continued

Server actions to service a request to delete a value.

Frame Slot Value
Target Relation Data Implication Data Data
Slot Type Item Relation Slot Type Item Item

4 Type is None l
4 Is an attribute of None 3
3 Is a type of None 2.
2 Is an attribute of None 1

Transitive 1 ransitive 2 3
3 ransitive 4 1
2 type is None 3
4 type is None l
4 Is an attribute of None 8
3 Is a type of None 2
2 Is an attribute of None 1

Type is 1 Type is None 3.
3 Is a type of None l

Delete this slot if it
is empty

Is a type of 1 Is a type of None 3.
3 Type is None l

Is an attribute of 1 Is an attribute of None 3
3 Instance is l None

0238 Table 6 shows the actions taken by the server in
response to a request for the deletion of a slot in a relation. The
set of additional deletions is determined by the type of the slot
in the target relation from which a slot is being deleted. The
numbers 1, 2, and 3 in Table 6 correspond to the frame data
item, the slot data item (if any) and the value data item of the
target relation. For each target slot type, Table 6 indicates the
items to be deleted by showing a line through the number of
the associated data item or through the slot type name.

TABLE 6

Server actions to Service a request to delete a slot.

Target Frame Slot Value
Relation Slot Data mplication Data Data
Type Item Relation Slot Type Item Item

Instance is 1 instance is 2. 3.
Instances are instances are

3 instance of 2.
2 Type is None 3.
3 s a type of None 2.
2 s an attribute None

of
Instance of 1 instance of 2. 3.

3 instance is 2. l
2 Type is None
1 s a type of None 2.
2 s an attribute None 3.

of
Commutative 1 Commutative 2. 3

3 Commutative 2. l
2 Type is None 3.
3 s a type of None 2.
2 s an attribute None

of
2 s an attribute None 3.

of
Pair 1 Pair 2. 3

3 Pair 4 l
2 Type is None 3.
4 Type is None l
4 s an attribute None 3

of
3 s a type of None 2.

17
Sep. 18, 2008

TABLE 6-continued

Server actions to service a request to delete a slot.

Target Frame Slot Value
Relation Slot Data Implication Data Data
Type Item Relation Slot Type Item Item

2 Is an attribute None 1
of

Transitive 1 Transitive 2. 3.
3 Transitive 4 l
2 Type is None 3.
4 Type is None
4 Is an attribute None 3.

of
3 Is a type of None 2.
2 Is an attribute None

of
Type is 1 pe is None 3.

3 Is a type of None l
Is a type of 1 is a type ef None 3.

3 Type is None l
Is an attribute 1 As an attribesfe None 3.
of ef

3 Instance is None

0239. If the server is requested to delete a frame, the pro
cedure is to delete all of the values and their implications, as
described in Table 5, and the all of the slots with their impli
cations, as described in Table 6. Since the frame then has no
slots, the frame, its AVL node and its data item are deleted.

Editing Information

0240. The server satisfies edit requests by simply first
executing the deletion procedure for the item being edited and
then executing an insertion procedure to insert the new data
item. The deletion procedure may be rejected for failing con
sistency checks, discussed in the description of data deletion
above, if these are implemented.

Client Communication

0241 The server component of the present invention can
be used in a network environment serving multiple clients
executing on different nodes in the network. In such an envi
ronment, the server can act as a “subscription server, main
taining a description of items that have been sent to the clients
to service their requests and sending them update messages if
any of the items that the clients have been sent change.
0242. In this mode, several users can have their clients
display a set of relations and any modification of those rela
tions made by any user will be sent to all the clients for
display. This way, the system of the present invention acts as
a means for a group of users to share information.
0243 The communication between the server and clients
is typically implemented with network communication soft
ware. In the preferred embodiment, this communication is
implemented between the client and server by using
Microsoft DCOM software. An obvious alternative would be
to use communication Software based on the Object Manage
ment Group's CORBA software standard, or based on web
service such as XML/SOAP. Other standard or non-standard

US 2008/022879.0 A1

Software communication mechanisms can be used to provide
communication between the server and its clients.

Multiple Execution Threads
0244. The server is typically implemented as a computer
program that has multiple execution threads. This permits the
server to use one thread to receive client commands and a
second thread to service them. The advantage of this approach
is that it permits the clients to send a command to the server to
terminate execution of a search or an expansion that is in
progress. The server can receive the search termination com
mand and interrupt the other thread executing it.
0245. It is also often convenient to have the server create a
separate thread to manage the delivery of information to each
client. In a network environment, this decouples the clients
from each other because the delivery thread for a fast client
can proceed while the delivery thread for a slow client waits.
0246. In one embodiment, the client and server are both
portions of a single program that executes on a machine
running the MS-DOS operating system. In this implementa
tion, the server component of the program periodically
checks for keyboard input signaling it to terminate a search
that is in progress.

Transactions

0247. As mentioned previously, to ensure the integrity of
the stored data, the server breaks up interactions with the
persistent storage system into atomic transactions. The natu
ral atomic unit for this is a client command. This means that
either the storage consequences of a client command are
completely stored in persistent storage, with all their effects
on implied relations and inheritances, or no change is made to
persistent storage.

Command Interface

0248. A typical set of commands supported by the server is
shown in Table 7.

TABLE 7

Typical server commands.

Command Description

Open Open a database file in a file system or
region in a persistent storage system that
contains a set of stored data structures of the
invention. A designator for the file or region
o be opened must be supplied by the client.

Close Close a database file in a file system or
region in a persistent storage system that
contains a set of stored data structures of the
present invention.

Add insert a data item (with implications
and inheritances) into the data in persistent
Storage.

Edit Edit a data item in persistent storage.
As mentioned previously, this is equivalent to
a combination of Delete and Add. An item
handle and a new data item must be provided
by the client.

Delete Delete an item (with its implications
and inherited relations) from persistent
storage. An item handle must be provided.

Expand Send this client the slots from a parent
rame or the values from a parent slot. An
item handle for the parent must be provided
by the client. This command also causes the

Sep. 18, 2008

TABLE 7-continued

Typical server commands.

Command Description

server to send the client notification of any
changes in the value or slot descriptions sent
to the client.
This command causes the server to stop
sending the client notifications of changes in
a frame, slot, or value item.

Stop This command directs the server to stop
Expansion Servicing an Expand command from the

client.
This command directs the server to
search for data items that match a certain
criteria. The server sends descriptions of the
matching frames to the client. After the
search is concluded, the server will continue
to send the client notification of changes in
the frames returned as search results. The
client can halt these notifications with a
Cancel Subscription command.

Stop This command directs the server to halt
Search a search in progress that the client has

requested.
In a multiple-client environment, this
command informs the server that a client is
disconnecting. The server stops sending item
updates to the client.

Cancel
Subscription

Search

Disconnect

Compacting Persistent Storage
0249. The server's storage system is used to store five
different types of objects: symbol blocks, AVL tree nodes,
frames, slots, and values. As mentioned previously, these
structures can be stored in fixed length segments and unused
storage region segments can be added to a linked list of free
segments. It may become desirable, however, to reduce the
total persistent storage region occupied by moving all of the
free segments to one end, reassigning them for use in some
other application. To accomplish this, data occupying seg
ments in the region being released is moved to blocks taken
from the linked list of free blocks.
0250. The structure being moved from one storage seg
ment to another has its handle value set to the value appro
priate for the destination segment and then it can be copied to
its new location. All the stored data structures that contain
references to the old location must be updated as well. In
addition, all of the operations to move a structure must be
taken together as an atomic transaction to prevent corruption
of the stored data in the event of a power, or some other,
failure.
0251 Table 8 lists by data structure type the method to
locate all the references to a data structure that is being
moved.

TABLE 8

Procedures to locate references to stored data structures.

Data
Structure Procedure to Locate All Stored References

Symbol Every symbol block has a reference to the first
Block node used to store its data item. By following the

linked list from the first node, a block's predecessor
in the linked list of the data item's blocks can be
found.

US 2008/022879.0 A1

TABLE 8-continued

Procedures to locate references to stored data structures.

Data
Structure Procedure to Locate All Stored References

The first block is referenced by the other
blocks for the data item. As stated above, these can
be found by following the linked list of symbol
blocks. A first block is also referenced by the AVL
tree node whose handle is given by the block's
m SymbolTreeId parameter.

AVL An AVL tree node is referenced by a frame
Tree structure, a symbol block, possibly a number of slot
Node structures, and by two other AVL tree nodes.

The frame structure has the handle given by
the node's m frameID parameter.
The symbol block has the handle given by the
node's m SymID parameter.
The node is referenced by its neighbors on the
AVL tree thread, whose handles are given by the
node's m NextNodeID and m LastNodeID parameters. The
node is referenced as a sub-tree by its AVL tree
parent, which will be one of these two thread
neighbors.
Any slots associated with the node's data item
will contain references to the node. The parent
rames of these slots will referenced by the value
structures of the is an attribute of slot of the frame
with handle given by the node's m frameID parameter.

Frame A frame structure is referenced by the AVL
tree node whose handle is given by the frame's
m SymbolTreeId parameter.
A frame is also referenced by value structures.
As a consequence of inserting relations as a set with
heir implications, these values are the children of

slots whose parent frames are referenced by values
hat are the children of slots of this frame.

Slot Slots are referenced by their parent frame,
whose handle is given by the slot's m parentFrameID
barameter.

Slots may also by referenced by a previous
sibling slot of the parent frame. This previous
sibling can be located by following the slot linked
ist from the first slot referenced by the parent
rame's m slotFirst parameter.
Slots are also referenced by their nearest
neighbors on the linked list of all slots. These
neighbors handles are given by the slot's m slotFlink
and m slotBlink parameters.

Value Values are referenced by their parent slot,
whose handle is given by the slot's m parentSlotID
parameter.
Values may also by referenced by a previous
sibling value of the parent slot. This previous
sibling can be located by following the value linked
list from the first value referenced by the parent
slots m valueFirst parameter.

Client Description
0252. The number of possible user interfaces that can pro
vide access to data that is maintained in a database of the
present invention is virtually unlimited. Application-specific
interfaces can be created for particular domains that reflect
the peculiarities of that domain. A general-purpose interface
has been constructed that provides access to the basic func
tions and reflects the unique structure of the database.
0253) The general-purpose interface allows the user to
enter search text to be found in the database. The search may
be specified as one of three types:
0254 Search for items that begin with <search texts
0255 Search for items that include <search texts
0256 Search for items that exactly match Csearch texts

Sep. 18, 2008

0257. Other search types are possible. These are simply
presented to demonstrate the capability of Supporting alter
native matching criteria.
0258 Matching items are displayed in a column at the left
edge of the client area of the application window. The user
may elect to expand one of the items to reveal its slots.
0259. The general-purpose interface presents the informa
tion retrieved in a multi-line indented format. A sample dis
play image of this interface is shown in FIG.9. In this format,
the frame is presented on the first line, with slots listed below
and indented one level. Here is an example:

Iomega

0260 Is a
0261 Products are
0262. Address is
0263. Phone number is
0264. If values are shown, they are listed below the slot
with which they are associated and indented two levels. Here
is an example:

Iomega

0265 Is a
0266 Products are

0267 Jaz drive
0268 Zip drive
0269 Jaz cartridges
(0270 Zip cartridges

0271 Address is
0272 Phone number is
0273. In the above example, the “Products are slot is said
to have been expanded.
0274 Values can be expanded to reveal the slots of the
frame to which they refer. For example:

Iomega

0275 Is a
0276 Products are
(0277 Jaz drive

0278 Price is
(0279. Availability is

0280 Zip drive
0281 Jaz cartridges
0282. Zip cartridges

0283. Address is
0284 Phone number is
0285. These slots can in turn be expanded to reveal their
values. This process can continue indefinitely, allowing the
user to browse through the available information. Facilities
are provided to allow the user to:

0286 Enter new facts into the database
0287 Delete values, slots, or entire frames from the
database

0288 Modify the text of a frame, slot, or value
0289 Expand and contract items displayed
0290 Select an item to become the new “root' item.
(The root item is the leftmost item displayed.)

0291 Scroll to view information which is off-screen
0292 Abort retrieval if the number of items retrieved is
too large

0293 Export data in a format which can be later
restored

US 2008/022879.0 A1

0294 Import data from other formats generated by
other tools such as spreadsheets and relational databases

0295 Export data in a format which can be readby other
tools such as spreadsheets

0296. The user interface client program may subscribe or
“express interest in' information maintained by the server.
The server then publishes (sends) updates to clients who have
expressed interest in an item that has been changed. This
allows the client to display changes to items of interest in real
time as they are modified by other clients. Clients may, of
course, also express a loss of interest for an item in which they
were previously interested.
0297. A unique feature of the present invention is that the
action of addition, removal, and modification of slots
assigned to a frame is published by the server to clients who
have expressed interest in the frame. This would be analogous
to a relational database informing its users in real time that a
column has been added to a table. In addition, the structure of
the data items allows clients to be constructed that can auto
matically accommodate the change.
0298. The publish-and-subscribe capability of the system,
combined with the robust capabilities for accommodating
change enabled by the structure of the information, makes
'groupware' applications that allow sharing of information
in real time relatively easy to design and construct.
0299 The client and the server identify information items

(i.e., frames, slots, and values) using handles. The handle
value is assigned by the server and is guaranteed to refer only
to the designated data item.
0300 When a client adds a new item to the database, the
client sends an insertion request to the server containing a
temporary handle associated with the new data item. The
server responds with a message containing the temporary
handle and the server-assigned handle to replace the tempo
rary handle. Thereafter, all communication between the client
and the server uses the server-supplied handle.
0301 Of course, various changes, modifications and alter
ations in the teachings of the present invention may be con
templated by those skilled in the art without departing from
the intended spirit and scope thereof. As such, it is intended
that the present invention only be limited by the terms of the
appended claims.
What is claimed is:
1. In a user-based computer system for causing a persistent

memory to function as an information storage and retrieval
system that receives and stores information, the combination
comprising:

a computer-readable medium storing a server computer
program that, when executed by a computer, manages
the persistent memory to receive and store information
in a frame system that can be browsed at a later time.

2. The system of claim 1 wherein the information received
and stored in the persistent memory includes primary infor
mation from outside the persistent memory.

3. The system of claim 2 wherein said server computer
program, when executed by a computer, derives additional
information from primary information, and

the information stored in the persistent memory that can be
browsed at a later time includes primary information and
additional information.

4. The system of claim 3 wherein said server computer
program, when executed by a computer, is capable of deriving
further additional information from the primary information
and information stored in the persistent memory before the

20
Sep. 18, 2008

primary information and wherein the information stored in
the persistent memory that can be browsed at a later time
includes further additional information.

5. The system of claim 2 wherein said server computer
program, when executed by a computer, is capable of deriving
further additional information from the primary information
and information stored in the persistent memory before the
primary information and wherein the information stored in
the persistent memory for browsing at a later time includes
further additional information.

6. The system of claim 2 wherein:
said primary information includes a plurality of data items;
the frame system includes frames, slots and values;
the data items of said primary information stored in the

persistent memory for browsing at a later time are
related to each other by a particular frame-slot-value
relationship.

7. The system of claim 3 wherein:
said primary information includes a plurality of data items;
the frame system includes frames, slots and values;
the data items of said primary information stored in the

persistent memory for browsing at a later time are
related to each other by a particular frame-slot-value
relationship; and

the additional information is said data items of the primary
information related to each other by different frame
slot-value relationships.

8. The system of claim 4 wherein:
said primary information includes a plurality of data items;
the frame system includes frames, slots and values;
the data items of said primary information stored in the

persistent memory for browsing at a later time are
related to each other by a particular frame-slot-value
relationship;

the additional information is said data items of the primary
information related to each other by different frame
slot-value relationships; and

the further additional information is at least one data item
of said primary information related by a frame-slot
value relationship to at least one data item stored in the
persistent memory before the primary information.

9. The system of claim 1 wherein said server computer
program, when executed by a computer, searches and identi
fies information in the persistent memory independently of
the frame system.

10. The system of claim 3 wherein said server computer
program, when executed by a computer, searches and identi
fies information in the persistent memory independently of
the frame system.

11. The system of claim 4 wherein said server computer
program, when executed by a computer, searches and identi
fies information in the persistent memory independently of
the frame system.

12. The system of claim 9 wherein said server computer
program, when executed by a computer, browses the infor
mation in the persistent memory using the frame system.

13. The system of claim 10 wherein said server computer
program, when executed by a computer, browses the infor
mation in the persistent memory using the frame system.

14. The system of claim 11 wherein said server computer
program, when executed by a computer, browses the infor
mation in the persistent memory using the frame system.

US 2008/022879.0 A1

15. The system of claim 1, further comprising:
a computer-readable medium storing a client computer

program that, when executed by a computer, provides a
user interface for entering information from outside the
persistent memory to the persistent memory where it is
managed by said server program and for receiving infor
mation from the persistent memory and making it avail
able to a user.

16. The system of claim 15 wherein:
said server computer program, when executed by a com

puter, searches and retrieves information in the persis
tent memory independently of the frame system: and

said client computer program, when executed by a com
puter, provides a user interface from which commands
can be directed to said server program to search in and
retrieve information from the persistent memory.

17. The system of claim 15 wherein;
said server computer program, when executed by a com

puter, browses the information in the persistent memory
using the frame system; and

said client computer program, when executed by a com
puter, provides a user interface from which commands
can be directed to said server program to browse infor
mation using the frame system.

18. The system of claim 16 wherein;
said server computer program, when executed by a com

puter, browses the information in the persistent memory
using the frame system; and

said client computer program, when executed by a com
puter, further provides a user interface from which the
information in the persistent memory can be browsed
using the frame system.

19. The system of claim 1 wherein said server computer
program, when executed by a computer, browses the infor
mation in the persistent memory using the frame system.

20. In a method of storing information in and retrieving
information from a computer's persistent memory, the step
comprising:

(a) storing primary information from outside the persistent
memory in a frame system in the persistent memory for
later browsing.

21. In the method of claim 20, the further step comprising:
(b) searching independently of the frame system for infor

mation in the persistent memory.
22. In the method of claim 21, after step (b), the further step

comprising:
(c) browsing the information in the persistent memory

using the frame system.
23. In the method of claim 22 wherein step (c) is initiated at

a location within the frame system based on information
located by step (b).

Sep. 18, 2008

24. In the method of claim 20, the further steps comprising:
(b) generating additional information from the primary

information; and
(c) storing the additional information in the frame system

of the persistent memory for later browsing.
25. In the method of claim 24, after step (c), the further step

comprising:
(d) searching independently of the frame system for infor

mation in the persistent memory.
26. In the method of claim 25, after step (d), the further step

comprising:
(e) browsing the information in the persistent memory

using the frame system.
27. In the method of claim 25 wherein step (e) is initiated at

a location within the frame system based on information
located by step (d).

28. In the method of claim 20, the further steps comprising:
(b) generating further additional information from the pri
mary information and information previously stored in
the persistent memory;

(c) storing the further additional information in the frame
system of the persistent memory for later browsing.

29. In the method of claim 28, after step (c), the further step
comprising:

(d) searching independently of the frame system for infor
mation in the persistent memory.

30. In the method of claim 28, after step (d), the further step
comprising:

(e) browsing the information in the persistent memory
using the frame system.

31. In the method of claim 30 wherein step (e) is initiated at
a location within the frame system based on information
located by step (d).

32. In the method of claim 20, the further steps comprising:
(b) generating additional information from the primary

information;
(c) generating further additional information from the pri
mary information and information previously stored in
the persistent memory; and

(d) storing the additional information and the further addi
tional information in the frame system of the persistent
memory for later browsing.

33. In the method of claim 32, after step (d), the further step
comprising:

(e) searching independently of the frame system for infor
mation in the persistent memory.

34. In the method of claim 33, after step (e), the further step
comprising:

(f) browsing the information in the persistent memory
using the frame system.

35. In the method of claim 35 wherein step (f) is initiated at
a location within the frame system based on information
located by step (e).

