
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
27 December 2007 (27.12.2007) PCT WO 2007/149228 Al

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 9/50 (2006.01) kind of national protection available): AE, AG, AL, AM,

(21) International Application Number: AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CI,
PCT/US2007/013452 CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,

(22) International Filing Date: 6 June 2007 (06.06.2007) IN, I, G, KE, G, KM, KN, KP, KR, KZ, LA, LC, L,

(25) Filing Language: English LR, LS, L, LU, LY, MA, MD, ME, MG, MK, MN, MW,

(26) Publication Language: English MX, MY, MZ, NA, NG, M, NO, NZ, OM, PG, PH, PL,

(30) Priority Data: PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
11/41,46 19Jun 200 (1.06.006 US TJ, TM, TN, TR, T, TZ, UA, UG, US, UZ, VC, VN, ZA,

11/471,466 19 June 2006 (19.06.2006) US Z W
11/546,072 10 October 2006 (10.10.2006) US

(71) Applicant (for all designated States except US): (84) Designated States (unless otherwise indicated, for every
DISKEEPER CORPORATION [US/US]; 7590 N. kind of regional protection available): ARIPO (BW, GIL
Glenoaks Blvd., Burbank, California 91504 (US). GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(72) Inventors; and ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
(75) Inventors/Applicants (for US only): JENSEN, Craig European (AT, BE, BG, CI, CY, CZ, DE, DK, EE, ES, H,

[US/US]; 4245 Mesa Vista Drive, La Canada, California FR, GB, GR, HU, IF, IS, IT, LT, LU, LV, MC, MI, NL, PL,
91011 (US). STAFFER, Andrew [CA/US]; 13270 Alta PT, RO, SE, SI, SK, IR), OAPI (BF, BJ, CF, CG, CL CM,
Vista Way, Sylmar, California 91342 (US). THOMAS, GA, GN, GQ, GW, ML, MR, NE, SN, ID, IG).
Basil [IN/US]; 14537 Willowgreen Lane, Sylmar, Cali- Published:
fornia 91342 (US). CADRUVI, Richard [US/US]; 530 with international search report
Sonata Way #D, Simi Valley, California 93065 (US). before the expiration of the time limit for amending the

(74) Agents: POMERENKE, Ronald, M. et al.; 2055 Gate- claims and to be republished in the event of receipt of
(way Place, Suite 550, San Jose, California 945110 (US). amendments

k oi [Continued on next page]

-(54) Title: COMPUTER MICRO-JOBS

200

- MICRO-JOB SCHEDULER
- 110

AT, MICRO-JOB DIVISION ABBGB BR B

L COMPUTING LOGIC MtCRL M A MICRO-JOB
- ~~~JOB21121215

- 2052115

MICRO-JOB SCHEDULING
LOGIC

220

r (57) Abstract: Computer micro-jobs are disclosed. A computer job is divided into micro-jobs. In one embodiment, the micro-jobs
have a size that allows a particular micro-job to complete within an allotted time for which the particular micro-job owns a resource

Used to execute the micro-job. In one embodiment, the allotted time is a quantum. In one embodiment, an entire computer job is
Divided into micro-jobs and the computer job is then executed micro-job by micro-job until the entire computer job is complete.

'1Each of the micro-jobs may complete its execution within its quantum, in one embodiment. In one embodiment, the execution of
Sthe micro-jobs is allocated to times when needed resources comply with one or more idleness criteria. A software program executed
With micro-jobs may be run at all times while the computer is powered up without impacting the performance of other software
programs running on the same computer system.

W O 20 07/14 922 8 A 1 |1||Hi|||||H||||||||||||||||||||

For two-letter codes and other abbreviations, refer to the "Guid
ance Notes on Codes and Abbreviations" appearing at the begin
ning of each regular issue of the PCT Gazette.

WO 2007/149228 PCT/US2007/013452

COMPUTER MICRO-JOBS

FIELD OF THE INVENTION

[00011 The present invention relates to executing software applications in a computer

environment. In particular, embodiments of the present invention relate to dividing a

computer or input-output job of an application into micro-jobs and executing the micro

jobs.

BACKGROUND

[0002] In many multi-tasking operating systems, processes are broken up into several

threads. A thread is a piece of code executed by the operating system (O/S). The concept

of multi-threading is to allow several pieces of code (or threads) in one process to run

"concurrently." For example, if a word processor is running, the user can click on a "find

menu item" to cause a pop-up box to appear. This pop-up can be moved and manipulated

independent of the main word processor window. Thus, the pop-up does not render the

main word processor window inactive. This is an example of two different threads

running within the word processor process.

[00031 The concept of multi-tasking is similar to multi-threading in that it gives the

appearance of multiple pieces of code executing at the same time on a single computer

processor. A difference is that multi-tasking refers to more than one process running on

the computer and multi-threading refers to more than one thread running within the same

process as with the example above.

[00041 The appearance of more than one process or thread running concurrently is a

result of a multi-tasking scheduler scheduling threads to run in very small time

increments, which may be referred to as "quanta." A quantum is a time slice given to a

thread during which time that thread owns a CPU resource. The length of a quantum is in

the range of about 20 milliseconds to about 120 milliseconds on contemporary Operating

Systems. The exact times may vary depending on the hardware on which the O/S is

running. Further, the O/S can change the value of the quantum given to a particular

thread. For example, if a thread does not complete during its first quantum, the O/S might

increase or decrease the size of the quantum the next time the thread is scheduled to

execute.

[00051 Due to the small length of a quantum compared to the human perception of

time and by executing threads in a round robin fashion, it appears that threads run

-1-

WO 2007/149228 PCT/US2007/013452

concurrently. Contemporary multi-tasking O/S schedulers add priorities to threads and

various algorithms exist to optimally run the higher priority threads before the lower

priority threads. However, all threads are presented to the O/S scheduler for immediate

execution and the O/S scheduler to the best of its ability gets all the threads to complete

their execution as fast as it can based on their priority.

100061 However, a problem with scheduling in this manner is that computer

performance is poorer than might be expected. Often, a process hesitates or even freezes.

For example, a process that renders on a display screen based on user input is often

unable to render as the user inputs data because another process is consuming too much

processor time.

[00071 The approaches described in this section are approaches that could be pursued,

but not necessarily approaches that have been previously conceived or pursued.

Therefore, unless otherwise indicated, it should not be assumed that any of the

approaches described in this section qualify as prior art merely by virtue of their inclusion

in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The present invention is illustrated by way of example, and not by way of

limitation, in the figures of the accompanying drawings and in which like reference

numerals refer to similar elements and in which:

[00091 - FIG. 1 is a diagram of an architecture for executing micro-jobs, in accordance

with an embodiment of the present invention.

[0010] FIG. 2 is a diagram micro-scheduler that divides a computer job into micro

jobs, in accordance with an embodiment of the present invention.

[00111 FIG. 3 is a flowchart illustrating steps of a process of dividing a computer job

into micro-jobs, in accordance with an embodiment of the present invention.

[0012] FIG. 4 is a block diagram that illustrates a computer system upon which an

embodiment of the invention may be implemented.

DETAILED DESCRIPTION

[00131 In the following description, for the purposes of explanation, numerous

specific details are set forth in order to provide a thorough understanding of the present

invention. It will be apparent, however, that the present invention may be practiced

without these specific details. In other instances, well-known structures and devices are

-2-

WO 2007/149228 PCT/US2007/013452

shown in block diagram form in order to avoid unnecessarily obscuring the present

invention.

OVERVIEW

[00141 The majority of computers do not utilize all of their resource capacity 100% of

the time. This is typically true even of computers that seemingly are in high use twenty

four hours a day, seven days a week, as well as computers that are only turned on for a

portion of each day. Therefore, computer time and resources are wasted. For example,

over a twenty-four hour period, a computer system that is used quite heavily, and which

may have brief spikes in activity, may on average use only about five to twenty percent of

its resources.

[00151 A method, system, and apparatus are disclosed herein to utilize these unused

computer resources by dividing a computer job into micro-jobs. A micro-job may be a

very small sliver of computer code (e.g., a relatively small number of instructions). In one

embodiment, the size of a micro-job is such that it will finish execution within a time for

which the micro-job was allocated a processing resource. For example, the number of

operations in the micro-job is such that it will complete execution within a quantum, in

one embodiment. A micro-job may be shorter in length than a quantum.

[00161 In one embodiment, an entire computer job is divided into micro-jobs and the

computer job is then executed micro-job by micro-job until the entire computer job is

complete. In contrast to attempting to run the computer job as quickly as possible given

current resource constraints or to scheduling the job to run "off-hours" to avoid

significantly impacting other jobs and applications, the computer job may be run on the

computer on an ongoing basis, but in such minute pieces that it may be imperceptible to

the user or other computer jobs. Thus, the job may be completely transparent to the user

and to other jobs and applications. The user does not need to schedule the job; with this

method it can be run at any time, including during performance-critical times.

[00171 In one embodiment, the micro-jobs are inserted for execution from time to

time based on selected criteria. In one embodiment, the execution of the micro-jobs is

spread out over time based on determining some time interval to space the micro-jobs out

by. The time interval does not need to be the same between each of the micro-jobs. In one

embodiment, the criterion for micro-job execution is based on resource availability. For

example, in order to execute a micro-job, a determination is made as to whether one or

more resources used by the micro-job comply with one or more idleness criteria. If the

idleness criteria are met, the micro-job is executed.

-3-

WO 2007/149228 PCT/US2007/013452

MICRO-JOBS

[00181 In one embodiment, the micro-jobs have a size that allows a particular micro

job to complete within an allotted time for which the particular micro-job owns a resource

used to execute the processing job. In one embodiment, each micro-job is such a size that

it will complete within its allotted time. However, it may be that some of the micro-jobs

are too large to complete execution within their allotted time.

[00191 In one embodiment, the allotted time is a quantum. As previously discussed, a

quantum is a time slice given to a portion of computer code (e.g., a thread) during which

time that code portion owns the CPU resource. As also previously discussed, different

operating systems used different quanta. Moreover, the quantum assigned to a particular

code portion may change based on circumstances during runtime. For example, an O/S

might increase or decrease the size of the quantum allotted to a thread. In one

embodiment, the computer job is divided into micro-jobs based on the size of the

quantum that is expected to be allocated to the computer job. In another embodiment, the

computer job is divided into micro-jobs based on the size of the quantum that has been

allocated to the computer job. The determination as to what portions of the computer job

should be split off as micro-jobs may be made either prior to runtime or during runtime.

100201 The micro-jobs are substantially smaller (for example, the smallest) work units

that can be completed as a single unit while safely allowing for a pause in execution until

the next micro-job executes, in accordance with one embodiment. By safely allowing for

a pause in execution, it is meant that the execution of a particular micro-job can be

delayed without affecting the outcome that results from execution of the all of the micro

jobs.

[0021] A micro-job may be a part of a thread. For example, a thread may be divided

into multiple micro-jobs. These micro-jobs may be scheduled similar to how a thread is

scheduled. However, as previously stated, a micro-job will complete its execution if

allowed to execute for a quantum or other time period for which it owns a processing

resource, in one embodiment.

[0022] A micro-job may only need a very small amount of resources (e.g., CPU time,

memory allocation) at any one time. Such minimal use of resources at any one time may

result in a stealthy process. Keeping the micro-jobs small allows the computer job to use

only a small amount of computer resources at one time. Thus, execution of a micro-job

consumes a sufficiently small amount of resources so as to not significantly impact

-4-

WO 2007/149228 PCT/US2007/013452

performance of other applications in the computer system, in accordance with one

embodiment of the present invention.

DIVIDING A COMPUTER JOB INTO MICRO-JOBS

I) APPLICATION DIVIDES ITS COMPUTER JOB INTO MICRO-JOBS

[0023] An application program divides its computer jobs into a plurality of micro

jobs, in one embodiment. As used herein, the term plurality means any number greater

than one. FIG. 1 is a diagram of an architecture 100 for executing micro-jobs, in

accordance with an embodiment of the present invention. Each MJS-enabled application

115(1) - 115(n) divides its computer job (or jobs) into micro-jobs 125 to execute. For

example, an application programmer can place calls at appropriate locations in the

application code that request permission from the MJS 110 to execute a micro-job 125,

which, in effect, divides the computer job into micro-jobs 125. As examples, the

computer job may perform maintenance such as backup, indexing, software updates, virus

and malware scans, and defragmentation. However, the MJS-enabled application 115(1)

115(n) may also be software other than maintenance.

[00241 Still referring to FIG. 1, the micro-job scheduler (MJS) 110 determines when

micro-jobs 125 can be executed. Applications that are enabled to work with an MJS are

referred to herein as MJS-enabled applications 115. In this embodiment, the MJS 110 has

an application program interface (API) 130 to allow a particular MJS-enabled application

115 (e.g., 115(1)) to request that one or more micro-jobs 125 be allowed to execute. The

API 130 also allows an MJS-enabled application 115 to specify by how much the micro

jobs 125 may be spread out, as will be discussed more fully below. An example API is

included herein below. However, the architecture 100 is not limited to the example API.

[00251 In one embodiment, the MJS 110 maintains a micro-job queue, such that the

MJS 110 can determine which micro-job 125 should be allowed to execute next. The

execution of micro-jobs 125 is timed by the MJS 110 so as to have negligible impact on

other applications.

[00261 The execution of the micro-jobs 125 can be specified by the MJS-enabled

application 115 in an API call or other method of communication between the application

and the MJS. When the scheduler 105 determines that the next micro-job 125 may

execute without impacting other jobs, the MJS 110 responds to the MJS-enabled

application 115 by instructing the MJS-enabled application 115(1) to execute the micro

job 125.

-5-

WO 2007/149228 PCT/US2007/013452

[00271 In one embodiment, computer resource utilization is monitored and analyzed

to determine whether resource utilization complies with one or more idleness criteria. The

MJS causes micro-jobs 125 to be executed when the one or more idleness criteria are

satisfied. Since, in one embodiment, the time required for a particular micro-job 125 to

execute is less than or equal to a quantum, any resources used by the micro-job 125 are

relinquished before the resources are needed by another job. Thus, resource utilization by

the micro-job 125 may go unnoticed and the micro-job 125 may be invisible to its

application's environment. In one embodiment, the MJS schedules micro-jobs 125 based

on time intervals. Time interval based scheduling is discussed below.

[0028] The MJS 110 also has a memory manager 140, in one embodiment. When the

MJS 110 initializes, it is allocated memory by the operating system, some of which it uses

for its own purposes and some of which it allocates to the MJS-enabled application 115.

When an MJS-enabled application 115(1) launches, it requests a memory allocation from

the MJS 110. The MJS 110 may determine how much memory to allocate to the MJS

enabled application 115(1) based on factors such as current computer system memory

utilization by all processes and the needs of the MJS-enabled application 115(1).

Memory requirements may be specific to each MJS-enabled application 115 and may be

programmed into the MJS-enabled application 115 by a computer software programmer.

II) SCHEDULER DIVIDES COMPUTER JOB INTO MICRO-JOBS

[0029] In one embodiment, an MJS 110 divides a computer job into micro-jobs 125.

Referring to FIG. 2, the MJS 110 has micro-job division logic 210, which divides the

computer job 205 into micro-jobs 125. The MJS 110 also have micro-job scheduling logic

220, which schedules the micro-jobs 125 for execution. For example, the MJS 110 may

work as a shell wrapped around application programs that are not MJS-enabled. Thus, in

this example, the shell MJS 110 is a complete software application through which any

executable can be run. Therefore, the shell MJS 110 automatically divides the computer

job from the executable into micro-jobs 125, in one embodiment. In other words, the

application programmer does not need to divide the application into micro-jobs 125, in

this embodiment.

[00301 The shell MJS 110 divides the computer job from the executable into micro

jobs 125 based on resource utilization, in one embodiment. The shell MJS 110 may

analyze the application and how the application runs to see what resources the application

uses. For example, the shell MJS 110 analyzes what resources the application uses and to

what degree the application uses the resources. For example, when a disk defragmenter

-6-

WO 2007/149228 PCT/US2007/013452

runs, the shell MJS 110 can determine what resources the applications use (e.g., CPU,

network, disk I/O). The shell MJS 110 automatically determines how to divide the

application into micro-jobs 125 based on this analysis, in one embodiment. The shell MJS

110 may also determine how to schedule the micro-jobs 125, based on this analysis.

[0031] The shell MJS 110 may use various parameters to determine how to divide the

computer job into micro-jobs 125 and/or determine how to schedule the micro-jobs 125

for execution. These parameters may be based on user input or established by the shell

MIS 110. For example, the user may specify that a particular application have a high

priority.

[0032] The shell MJS 110 schedules the micro-jobs 125 for execution based on time

intervals, in one embodiment.

[00331 In one embodiment, the MJS 110 is part of an operating system. In this

embodiment, the MJS 110 in the operating system may divide a computer job into micro

jobs 125.

SCHEDULING MICRO-JOBS BASED ON TIME INTERVALS

[00341 In one embodiment, micro-jobs 125 are executed based on time intervals. For

example, the MJS 110 schedules micro-jobs 125 based on time intervals. For example,

the MJS 110 spreads out execution of the micro-jobs 125 over time. For example, a

computer job might take 12 minutes to complete if not divided into micro-jobs 125.

However, if divided into micro-jobs 125, the execution of the entire computer job can be

spread out over 24 hours, with each particular micro-job 125 executing once every few

seconds.

[00351 As a particular example, if the quantum is 20 milliseconds the entire computer

job might be completed in about 36,000 quanta. Thus, the computer job is divided into

about 36,000 micro-jobs 125. The number of micro-jobs 125 might be slightly higher if

some of the micro-jobs 125 are smaller than a quantum. Given, a 20 ms quantum, over a

24-hour period there are 4,320,000 quanta. Therefore, the MJS 110 could execute one of

micro-jobs 125 every 120 quanta or every 2.4 seconds. In this particular example, the

micro-job enabled application would take 24 hours to complete, but it may be

undetectable even on extremely busy systems.

SCHEDULING MICRO-JOBS BASED ON EVENTS

[00361 In one embodiment, micro-jobs 125 are scheduled for execution based on

events. For example, the MJS 110 schedules micro-jobs 125 based on a number of

operations that occur. As another example, the MJS 110 schedules micro-jobs 125 based

-7-

WO 2007/149228 PCT/US2007/013452

on a number of quanta that occur. The different quanta may be of different sizes. Thus,

the MJS 110 spreads out execution of the micro-jobs 125 based on events, in one

embodiment.

RESOURCE-BASED SCHEDULING OF MICRO-JOBS

[00371 In one embodiment, the micro-jobs 125 are scheduled based on resource

utilization. For example, the MJS 110 is a resource-based scheduler, in one embodiment.

For example, the MJS 110 schedules micro-jobs 125 such that the micro-jobs 125 utilize

only idle resources. The MJS 110 determines whether resource utilization complies with

one or more idleness criteria to make scheduling decisions. As an example, the MJS 110

may analyze disk activity. If an application other than the application with the micro-job

125 is using the disk, then the MJS 110 waits until the other application is done to

schedule the micro-job 125. The MJS 110 continues to monitor the disk I/O utilization,

and allows another micro-job 125 to be scheduled if no other application is seeking access

to disk I/O. However, if another application seeks utilization of disk 1/0, then the MJS

110 will not allow another micro-job 125 to be scheduled, wherein the other application

can utilize the disk 1/0.

[00381 As another example, the MJS 110 may analyze network activity. If network

traffic is too high, the MJS 110 will not schedule any micro-jobs 125 until traffic slows. If

network traffic is low enough, then the MJS 110 schedules a micro job for execution. The

MJS 110 continues to check to make sure that network traffic stays low enough. If

network traffic stays low enough, another micro-job 125 may be scheduled. However, if

traffic gets too high, no further micro-jobs 125 are scheduled to execute.

[0039] The MJS 110 may make resource-based scheduling decisions based on any

type of computer resource and any combination of resources. In one embodiment, the

MJS 110 has multiple queues of micro-jobs 125 awaiting permission to execute. Each

queue may correspond to a particular resource. For example, there may be a queue for

micro-jobs 125 that need to utilize disk 11O, a queue for micro-jobs 125 that need to

utilize a network, a queue for micro-jobs 125 that need to utilize a CPU, etc. There may

also be one or more queues for micro-jobs 125 that utilize a combination of resources.

The MJS 110 deploys micro-jobs 125 when the particular resource or combination of

resources is available. A particular micro-job 125 might require the use of two resources.

For example, the particular micro-job 125 might require use of a network resource and

disk resource. However, the particular micro-job 125 does not need CPU resource. Even

-8-

WO 2007/149228 PCT/US2007/013452

if the CPU resource utilization is currently high, the particular micro-job 125 can still be

scheduled and executed.

[00401 The MJS-enabled application 115 sends parameters to the MJS 110 to control

resource utilization, in accordance with an embodiment of the present invention. Control

of resource utilization includes, but is not limited to, disk I/O, CPU and network. For

example, the MJS-enabled application 115 can request a micro-job 125 be executed

pending any combination of threshold levels of the above three resources. Moreover, the

MJS-enabled application 115 can specify different resource threshold levels for different

micro-jobs 125. For example, the MJS-enabled application 115 specifies a different

resource threshold level with each micro-job 125, in accordance with one embodiment.

Therefore, fine-grained resource management is possible. When the MJS 110 calculates

resource utilization, it is the resource utilization of processes other than the MJS-enabled

application 115 that is measured, in accordance with one embodiment of the present

invention. The following example in which the CPU utilization threshold is set to 20

percent is used to illustrate. If CPU utilization is below 20 percent prior to allowing the

MJS-enabled application 115 to execute, CPU utilization may increase to over 20 percent

when the micro-job(s) execute. This increase beyond 20 percent is not considered a CPU

resource utilization violation, in this example. Similar principles apply to network and

disk I/O resources.

[00411 If the MJS 110 executes outside of the operating system, the MJS 110 self

limits in its own resource utilization, in one embodiment. For example, the MJS 110

monitors its own resource utilization and if its own resource utilization gets too high, the

MJS 110 makes a request to the operating system to stop scheduling the MJS 110 for a

period of time.

PROCESS FLOW

[0042] FIG. 3 is a flowchart illustrating steps of a process 300 for executing a

computer job by dividing the computer job into micro-jobs 125, in accordance with an

embodiment of the present invention. In step 302, the computer job is initiated. The

computer job may be from an MJS-enabled application 115. However, the computer job

does not have to be associated with an MJS-enabled application 115.

[0043] As an example, in step 302, an MJS-enabled application 115 program is

launched when the computer system is booted, in one embodiment. If the MJS-enabled

application 115 does not have a computer job to perform, the MJS-enabled application

115 sits in an idle state until it has a computer job to run. In this idle state, the MJS

-9-

WO 2007/149228 PCT/US2007/013452

enabled application 115 may perform some functions such as occasional monitoring. At

some point, the MJS-enabled application 115 has a computer job to perform, such as

defragmenting a storage medium, or scanning for viruses. The computer job could be to

defragment a single disk and the files stored on it, wherein the MJS-enabled application

115 defragments that disk on an ongoing basis.

[00441 A small amount of memory may be allocated to the MJS-enabled application

115 when it is launched. The amount that is allocated can be very small because the MJS

enabled application 115 typically only attempts to execute a single micro-job 125 at one

time. However, in some cases, the MJS-enabled application 115 might attempt to execute

multiple micro-jobs 125 without waiting for other processes to execute. For example, if

the MJS 110 determines that the required computer system resources are idle, the MJS

110 may allow the MJS-enabled application 115 to execute multiple micro-jobs 125 in a

row without another process utilizing the resources that are utilized by the micro-jobs

125.

[0045] In step 304, the computerjob is divided into micro-jobs 125. The size of a

particular micro-job 125 allows the particular micro-job 125 to complete within an

allotted time for which the particular micro-job 125 owns a resource used to execute the

processing job, in one embodiment. The micro-jobs 125 may be of a size such that

execution of the micro-jobs 125 utilizes a sufficiently small amount of resources so as to

not significantly impact performance of other jobs in the computer system. In one

embodiment, dividing the computer job into micro-jobs 125 comprises selecting the size

of the micro-jobs 125 such that each micro job 125 is able to complete execution within

an allotted time for which the computer job is given ownership of a resource used to

execute the micro job 125.

[00461 In one embodiment, the computer job is divided into micro-jobs 125 by an

application that owns the computer job. Dividing the computerjob into micro-jobs 125

may be accomplished by instructions within an MJS-enabled application 115. In general,

these instructions are decision points in the MJS-enabled application 115. For example,

the instructions can be API calls to the MJS 110 that request permission to execute a

micro-job 125. However, the MJS 110 can be integrated with the MJS-enabled

application 115, in which case the instructions could be calls to a scheduling function

within the MJS-enabled application 115. Other techniques might be used to-divide the

computer job into micro-jobs 125. For example, in one embodiment, the computer job is

divided into micro-jobs 125 by micro-job division logic in a shell MJS 110.

-10-

WO 2007/149228 PCT/US2007/013452

[0047] Step 306 is execution of the micro-jobs 125. In one embodiment, the entire

computer job is divided into micro-jobs 125 and the computer job is then executed micro

job 125 by micro-job 125 until the entire computer job is complete. For example, an

entire defragmentation job is divided into micro-jobs 125, which are executed one at a

time until the entire defragmentation job is complete. A particular micro job 125

completes its execution in less than or equal to the allotted time, in one embodiment.

[00481 Executing micro-job 125 by micro-job 125 is not limited to sequential one-by

one execution, although it includes sequential one-by-one execution. Multiple micro-jobs

125 could be executed at the same time. For example, if there are multiple CPUs,

different micro-jobs 125 could execute on different CPUs at the same time.

[0049] In one embodiment, the scheduling of the micro-jobs 125 is based on resource

utilization. In this embodiment, a determination is made, for each of the micro-jobs 125,

as to whether utilization of one or more resources of the computer system to be used by

the particular micro-job 125 satisfies one or more idleness criteria. The idleness criteria

for a particular resource may be based on one or more factors. For example, CPU

utilization is used as an idleness criterion for CPU resource utilization, in one

embodiment. Thus, the micro-jobs 125 are only executed at times when the resources of

the computer system needed by the micro-jobs 125 are sufficiently idle. The idleness

criteria are based on resource thresholds, in one embodiment. For example, resource

thresholds may be used, wherein a micro-job 125 of an MJS-enabled application 115 only

executes if resource utilization by other processes is below a threshold specified by the

MJS-enabled application 115. The example API described below contains one example of

some resource threshold parameters. However, process 300 is not limited to these

resource threshold parameters.

[00501 In one embodiment, the scheduling of the micro-jobs 125 is based on time

intervals. In one embodiment, the execution of the computer job is spread over a period of

time. For example, the computer job might be spread out over several hours. Based on

how many micro-jobs 125 into which the computer job is divided, a determination can be

made as to how to spread the micro-jobs 125 out over time. The time between successive

micro-jobs 125 does not need to be uniform.

[00511 In one embodiment, an application program that initiated the computer job

runs on an on-going basis, continuing to run as long as the computer system remains

booted, but remains idle while no work needs to be performed. For example, a disk

defragmenter to virus detection application program continues to run. Thus, even if the

computer job completes, the application program continues to run in idle mode waiting

-11-

WO 2007/149228 PCT/US2007/013452

for the next segment of work. Thus, the application program does not need to be re

launched when it has another computer job to perform. As a result, the application

program does not consume additional resources that are typical of launching an

application program. When the application program determines that it has another

computer job to do, the computer job is divided into micro-jobs 125, and the micro-jobs

125 are executed over time. For example, a disk defragmenter application program may

determine that additional storage medium defragmentation should be done based on

changes to the computer's storage medium.

EXAMPLE API

[0052] An embodiment of the present invention is an API for allowing an MJS

enabled application 115 to interface with an MJS 110. The example API has the

following resource threshold parameters for CPU, disk, and network.

* CPU Utilization threshold

" Pending Disk I/O Count threshold

" Network Utilization threshold

[0053] The above parameters can be specified for each micro-job 125. In other words,

different micro-jobs 125 can be assigned different resource threshold parameters. For

example, for a micro-job 125 that uses the network, a network threshold may be used.

However, the network threshold could be zero for micro-jobs 125 that do not use the

network. Thus, fine-grained resource management is provided for, in accordance with an

embodiment of the present invention.

[00541 As a particular example, the MJS-enabled application 115 can request that a

particular micro-job 125 be executed only if the CPU utilization is below 50%, and the

1/0 Disk Utilization is below 40%, and network traffic is below 60%. Any combination

of the resource threshold factors can be used, including none at all. The CPU utilization

threshold differentiates between MJS's use of the CPU as opposed to that of any other

job, in accordance with an embodiment of the present invention.

[0055] The following two parameters are used to specify how frequently resource

utilization should be measured.

* CPU Utilization Window

-12-

WO 2007/149228 PCT/US2007/013452

* Network Utilization Window

[00561 The CPU Utilization Window parameter defines a time window over which

CPU utilization is calculated. For example, CPU utilization over the last n milliseconds is

averaged. The network utilization window defines a time window over which network

utilization is calculated. These parameters may be internal to the MJS 110. However, an

MJS-enabled application 115 may override these parameters. The pending disk I/O is

absolute at any point in time and thus it does not have to be calculated.

[0057] A mandatory idle time parameter may be passed from the MJS-enabled

application 115 to the MJS to control how the micro-jobs 125 are spread out over time.

The mandatory idle time parameter is optional. Furthermore, when used, the mandatory

idle parameter may have a value of zero.

0 Mandatory Idle Time

[00581 The MJS 110 keeps track of "idle time," which is defined as system idle time

after all micro-jobs 125 have executed. As previously mentioned, MJS-enabled

application 115(s) can queue up micro-jobs 125 with the MJS 110. When there are no

micro-jobs 125 on the MJS queue, the MJS 110 waits for the specified Mandatory Idle

Time and then wakes up and authorizes the MJS-enabled application 115(s) to perform

additional work. For example, an MJS-enabled defragmenter might first execute a

number of micro-jobs 125 to defragment a disk drive, and then be paused by the MJS

110. After the specified Mandatory Idle Time, the MJS 110 calls the MJS-enabled

defragmenter to authorize additional work. For example, the MJS-enabled defragmenter

might execute a clean-up job, such as releasing memory. Mandatory Idle Time can be a

default parameter that can be adjusted by an MJS-enabled application 115.

[00591 The following parameters relate to waiting to execute a micro-job 125 when

resource utilization is above a threshold.

* Wait Time

0 Maximum Wait Time

[0060] If the MJS 110 determines that resource utilization is currently too high to

execute a micro-job, the MJS 110 waits for the specified Wait Time and then re-checks

resource utilization. The Wait Time parameter can be increased each time the MJS 110

-13-

WO 2007/149228 PCT/US2007/013452

determines that resource utilization is too high. For example, the MJS 110 can increase

the Wait Time parameter until the Max Wait Time is reached. These parameters can be

specified by the MJS-enabled application 115 when it is first started. An MJS-enabled

application 115 can adjust these parameters during its ran time.

HARDWARE OVERVIEW

[0061] FIG. 4 is a block diagram that illustrates a computer system 400 upon which

an embodiment of the invention may be implemented. Steps of process 300 are stored as

instructions one or more of the computer-readable media of system 400 and executed on

the processor of computer system 400. Computer system 400 includes a bus 402 or other

communication mechanism for communicating information, and a processor 404 coupled

with bus 402 for processing information. Computer system 400 also includes a main

memory 406, such as a random access memory (RAM) or other dynamic storage device,

coupled to bus 402 for storing information and instructions to be executed by processor

404. Main memory 406 also may be used for storing temporary variables or other

intermediate information during execution of instructions to be executed by processor

404. Computer system 400 further includes a read only memory (ROM) 408 or other

static storage device coupled to bus 402 for storing static information and instructions for

processor 404. A storage device 410, such as a magnetic disk or optical disk, is provided

and coupled to bus 402 for storing information and instructions. The computer system

400 can have any number of processors 404. For example, computer system 400 is a

multi-processor system, in one embodiment. The processor 404 can have any number of

cores. In one embodiment, the processor 404 is a multi-core processor 404. Computer

system 400 can be used in a hyper-threaded machine.

[00621 Computer system 400 may be coupled via bus 402 to a display 412, such as a

cathode ray tube (CRT), for displaying information to a computer user. An input device

414, including alphanumeric and other keys, is coupled to bus 402 for communicating

information and command selections to processor 404. Another type of user input device

is cursor control 416, such as a mouse, a trackball, or cursor direction keys for

communicating direction information and command selections to processor 404 and for

controlling cursor movement on display 412. This input device typically has two degrees

of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the

device to specify positions in a plane.

[0063] The invention is related to the use of computer system 400 for implementing

the techniques described herein. According to one embodiment of the invention, those

-14-

WO 2007/149228 PCT/US2007/013452

techniques are performed by computer system 400 in response to processor 404 executing

one or more sequences of one or more instructions contained in main memory 406. Such

instructions may be read into main memory 406 from another machine-readable medium,

such as storage device 410. Execution of the sequences of instructions contained in main

memory 406 causes processor 404 to perform the process steps described herein. In

alternative embodiments, hard-wired circuitry may be used in place of or in combination

with software instructions to implement the invention. Thus, embodiments of the

invention are not limited to any specific combination of hardware circuitry and software.

[0064] The term "machine-readable medium" as used herein refers to any medium

that participates in providing data that causes a machine to operate in a specific fashion.

In an embodiment implemented using computer system 400, various machine-readable

media are involved, for example, in providing instructions to processor 404 for execution.

Such a medium may take many forms, including but not limited to, non-volatile media,

volatile media, and transmission media. Non-volatile media includes, for example,

optical or magnetic disks, such as storage device 410. Volatile media includes dynamic

memory, such as main memory 406. Transmission media includes coaxial cables, copper

wire and fiber optics, including the wires that comprise bus 402. Transmission media can

also take the form of acoustic or light waves, such as those generated during radio-wave

and infrared data communications. All such media must be tangible to enable the

instructions carried by the media to be detected by a physical mechanism that reads the

instructions into a machine.

100651 Common forms of machine-readable media include, for example, a floppy

disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD

ROM, any other optical medium, punchcards, papertape, any other physical medium with

patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EPROM, any other memory

chip or cartridge, a carrier wave as described hereinafter, or any other medium from

which a computer can read.

[00661 Various forms of machine-readable media may be involved in carrying one or

more sequences of one or more instructions to processor 404 for execution. For example,

the instructions may initially be carried on a magnetic disk of a remote computer. The

remote computer can load the instructions into its dynamic memory and send the

instructions over a telephone line using a modem. A modem local to computer system

400 can receive the data on the telephone line and use an infrared transmitter to convert

the data to an infrared signal. An infrared detector can receive the data carried in the

infrared signal and appropriate circuitry can place the data on bus 402. Bus 402 carries

-15-

WO 2007/149228 PCT/US2007/013452

the data to main memory 406, from which processor 404 retrieves and executes the

instructions. The instructions received by main memory 406 may optionally be stored on

storage device 410 either before or after execution by processor 404.

[00671 Computer system 400 also includes a communication interface 418 coupled to

bus 402. Communication interface 418 provides a two-way data communication coupling

to a network link 420 that is connected to a local network 422. For example,

communication interface 418 may be an integrated services digital network (ISDN) card

or a modem to provide a data communication connection to a corresponding type of

telephone line. As another example, communication interface 418 may be a local area

network (LAN) card to provide a data communication connection to a compatible LAN.

Wireless links may also be implemented. In any such implementation, communication

interface 418 sends and receives electrical, electromagnetic or optical signals that carry

digital data streams representing various types of information.

(00681 Network link 420 typically provides data communication through one or more

networks to other data devices. For example, network link 420 may provide a connection

through local network 422 to a host computer 424 or to data equipment operated by an

Internet Service Provider (ISP) 426. ISP 426 in turn provides data communication.

services through the world wide packet data communication network now commonly

referred to as the "Internet" 428. Local network 422 and Internet 428 both use electrical,

electromagnetic or optical signals that carry digital data streams. The signals through the

various networks and the signals on network link 420 and through communication

interface 418, which carry the digital data to and from computer system 400, are

exemplary forms of carrier waves transporting the information.

[00691 Computer system 400 can send messages and receive data, including program

code, through the network(s), network link 420 and communication interface 418. In the

Internet example, a server 430 might transmit a requested code for an application program

through Internet 428, ISP 426, local network 422 and communication interface 418.

[00701 The received code may be executed by processor 404 as it is received, and/or

stored in storage device 410, or other non-volatile storage for later execution. In this

manner, computer system 400 may obtain application code in the form of a carrier wave.

[0071] In the foregoing specification, embodiments of the invention have been

described with reference to numerous specific details that may vary from implementation

to implementation. Thus, the sole and exclusive indicator of what is the invention, and is

intended by the applicants to be the invention, is the set of claims that issue from this

application, in the specific form in which such claims issue, including any subsequent

-16-

WO 2007/149228 PCT/US2007/013452

correction. Any definitions expressly set forth herein for terms contained in such claims

shall govern the meaning of such terms as used in the claims. Hence, no limitation,

element, property, feature, advantage or attribute that is not expressly recited in a claim

should limit the scope of such claim in any way. The specification and drawings are,

accordingly, to be regarded in an illustrative rather than a restrictive sense.

-17-

WO 2007/149228 PCT/US2007/013452

CLAIMS

What is claimed is:

1. A machine-implemented method comprising the steps:

dividing a computer job into a plurality of micro-jobs, wherein dividing the

computer job comprises selecting the size of the micro-jobs based on an

allotted time for which the computer job is given ownership of a resource;

and

executing the computer job by causing the plurality of micro-jobs to use the

resource to execute.

2. The method of Claim 1, wherein selecting the size of the micro-jobs comprises

selecting the size of the micro-jobs such that each micro job is able to complete execution

within an allotted time for which the computer job is given ownership of a resource used

to execute the micro job.

3. The method of Claim 2, wherein the computer job is completed by completing

execution of each of the individual micro jobs in less than or equal to the allotted time.

4. The method of Claim 1, wherein executing the computer job

comprises:

determining when one or more resources required to run a particular micro-job

comply with one or more idleness criteria; and

in response to a determination that utilization of the one or more resources

required to run the particular micro-job complies with one or more

idleness criteria, causing the particular micro-job to execute to completion

within the allotted time.

5. The method of Claim 1, wherein executing the computer job

comprises:

determining a length of time to wait between execution of successive micro-jobs.

-18-

WO 2007/149228 PCT/US2007/013452

6. The method of Claim 5, wherein determining the length of time is

based on the number of micro-jobs into which the computed job is divided

and a period of time over which the computer job is to be spread out over.

7. The method of Claim 1, wherein executing the computer job

composes:

waiting a time interval between execution of successive micro-jobs.

8. The method of Claim 1, wherein executing the computer job

composes:

waiting a number of operations to between execution of successive micro-jobs.

9. The method of Claim 1, wherein executing the computer job

composes:

waiting a number of quanta to between execution of successive micro-jobs.

10. The method of Claim 1, wherein at least two of the quanta are of a

different size from each other.

11. The method of Claim 1, wherein at least one of the micro-jobs

comprises a portion of a thread.

12. The method of Claim 1, wherein the allotted time is a quantum.

13. A machine-implemented method comprising the steps:

splitting off a micro-job from a computer job that is to execute under control of an

operating system that allocates an amount of time for which code portions

are given ownership of a resource, wherein the size of the micro job is

selected such that the micro job is expected to complete execution within

the allotted time; and

causing the micro-job to execute to completion within the allotted time, wherein

the micro-job relinquishes ownership of the resource no later than the end

of the allotted time.

-19-

WO 2007/149228 PCT/US2007/013452

14. The method of Claim 13, further comprising:

splitting off a plurality of micro-jobs from the computer job, wherein the size of

each of the micro jobs is selected such that each micro job is expected to

complete execution within the allotted time; and

causing each micro-job to execute to completion within the allotted time for the

respective micro job, wherein each micro-job relinquishes ownership of

the resource no later than the end of the allotted time for the respective

micro job.

15. The method of Claim 13, wherein causing each micro-job to execute causes the

computer job to complete.

16. The method of Claim 13, wherein causing the micro-job to execute

to completion comprises:

determining when one or more resources required to run the micro-job comply

with one or more idleness criteria; and

in response to a determination that utilization of the one or more resources

required to run the micro-job complies with one or more idleness criteria,

causing the micro-job to execute to completion within the allotted time.

17. The method of Claim 13, wherein the step of splitting off a micro-job comprises:

determining a number of operations of the computer job that can be executed,

using the resource, within the allotted time; and

spitting off less than or equal the number of operations from the computer job to

form the micro-job.

18. The method of Claim 13, wherein the micro-job comprises a portion

of a thread.

19. The method of Claim 13, wherein the allotted time is a quantum.

20. A machine-implemented method comprising the steps of:

dividing, into a plurality of micro-jobs, a computer job that is to execute under

control of an operating system that allocates an amount of time for which

code portions are given ownership of a resource, wherein dividing the

-20-

WO 2007/149228 PCT/US2007/013452

computer job comprises selecting the size of the micro-jobs based on an

amount of time for which the computer job is given ownership of a

resource; and

spreading execution of the computer job over a period of time.

21. The method of Claim 20, wherein the step of spreading execution of the computer

job comprises determining a length of time to wait between execution of two successive

micro-jobs of the computer job.

22. The method of Claim 21, wherein determining a length of time is based on a

number of micro-jobs into which the computer job is divided and the time period over

which the computer job is to be spread out over.

23. The method of Claim 20, wherein the step of spreading execution of

the computer job over a period of time comprises:

determining when one or more resources required to run a particular micro-job

comply with one or more idleness criteria; and

in response to a determination that utilization of the one or more resources

required to run the particular micro-job complies with one or more

idleness criteria, causing the particular micro-job to execute to completion

within the allotted time.

24. The method of Claim 21, wherein the step of spreading execution of the computer

job comprises waiting a length between execution of two successive micro-jobs of the

computerjob.

25. The method of Claim 21, wherein the step of spreading execution of the computer

job comprises waiting a number of operations between execution of two successive

micro-jobs of the computer job.

26. The method of Claim 21, wherein the step of spreading execution of the computer

job comprises waiting a number of quanta between execution of two successive micro

jobs of the computer job.

-21-

WO 2007/149228 PCT/US2007/013452

27. The method of Claim 21, wherein at least two of the quanta are of a different size

from each other.

28. The method of Claim 21, wherein at least one of the micro-jobs

comprises a portion of a thread.

29. The method of Claim 21, wherein the allotted time is a quantum.

-22-

	Abstract
	Description
	Claims
	Drawings

