Title: SENP1 AS A MARKER FOR CANCER

Abstract: The present invention provides methods of detecting cancer cells by detecting the quantity of SENP1 and/or telomerase in a sample.
SENPI AS A MARKER FOR CANCER

Field of the invention

The present invention provides methods of detecting cancer cells by detecting the quantity of SENPI and/or telomerase in a sample.

BACKGROUND OF THE INVENTION

BRIEF SUMMARY OF THE INVENTION

The present invention provides data demonstrating that there is an association of bladder cancer, breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer and the quantity of SENPI
expression. Thus, SENP1 provides a useful marker for the detection of bladder cancer, breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer cancers.

In some embodiments, the present invention provides methods of detecting SENP1 expression in a biological sample. In some embodiments, the methods comprise determining the quantity of SENP1 in a biological sample from an individual having or suspected of having a cancer selected from the group consisting of breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

In some embodiments, the methods comprise determining the quantity of SENP1 in a biological sample from an individual; and recording a diagnosis of a cancer selected from the group consisting of breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

In some embodiments, the methods comprise determining the quantity of SENP1 in a biological sample from an individual, wherein the biological sample is selected from the group consisting of a breast biopsy, a colon biopsy, a kidney biopsy, a lung biopsy, an ovary biopsy, a pancreas biopsy, a small intestine biopsy, a bronchial lavage and a stool. In some embodiments, the methods further comprise recording a diagnosis of a cancer selected from the group consisting of breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

In some embodiments, the method further comprises obtaining the biological sample from the individual.

In some embodiments, the methods further comprise recording a diagnosis of a cancer selected from the group consisting of breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

In some embodiments, the quantity of SENP1 is detected by detecting a polynucleotide encoding SENP1 in the sample. In some embodiments, the sequence of the polynucleotide is determined. In some embodiments, the detection step comprises amplifying the polynucleotide in an amplification reaction. In some embodiments, the amplification reaction comprises at least two different oligonucleotides comprising a sequence at least 90% identical to at least 10
contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that during the amplification reaction the oligonucleotides prime amplification of at least a fragment of SEQ ID NO:1. In some embodiments, the amplification reaction is a quantitative amplification reaction. In some embodiments, the amplification product of the amplification reaction is detected in a step comprising hybridizing a detectably-labeled oligonucleotide to the product. In some embodiments, the detectably-labeled oligonucleotide comprises a fluorescent moiety. In some embodiments, the detectably-labeled oligonucleotide comprises a quencher moiety. In some embodiments, the amplification reaction comprises a template-dependent nucleic acid polymerase with 5'-3' exonuclease activity under conditions that allow the polymerase to fragment the detectably-labeled oligonucleotide. In some embodiments, the amplification reaction is a reverse transcriptase polymerase chain reaction (RT-PCR). In some embodiments, the RT-PCR reaction is a quantitative RT-PCR reaction. In some embodiments, the quantity of the polynucleotide is normalized.

In some embodiments, the quantity of SENP1 is determined by detecting a SENP1 polypeptide in the sample. In some embodiments, the polypeptide is detected by contacting the polypeptide with an antibody.

In some embodiments, SENP1 is detected by detecting SENP1 activity.

In some embodiments, the method further comprises determining the quantity of telomerase in the biological sample. In some embodiments, telomerase is detected by detecting telomerase activity. In some embodiments, telomerase activity is detected by detecting elongation of an oligonucleotide comprising two or more repeats of TTAGG.

In some embodiments, telomerase is detected by detecting a component of telomerase in the sample. In some embodiments, the component is human telomerase RNA (TERC). In some embodiments, the component is human telomerase reverse transcriptase protein (TERT). In some embodiments, telomerase is detected by detecting human telomerase reverse transcriptase protein (TERT) mRNA. In some embodiments, the method comprises amplifying a SENP1 polynucleotide and a telomerase polynucleotide in a multiplex amplification reaction. In some embodiments, the telomerase polynucleotide is
human telomerase RNA (TERC). In some embodiments, the telomerase
polynucleotide is human telomerase reverse transcriptase protein (TERT) mRNA.
In some embodiments, the method further comprises comparing the quantity of
SENP1 and telomerase in the sample to a SENP1 standard and a telomerase
standard, respectively, wherein the SENP1 standard represents SENP1 in non-
cancer cells and the telomerase standard represents telomerase quantities in non-
cancer cells. In some embodiments, the standards are pre-determined values.
In some embodiments, the individual is a human. In some embodiments, the
method further comprises recording a prognosis for cancer treatment and/or
survival for the individual. In some embodiments, the method further comprises
recording the progression of cancer in the individual.
The present invention also provides methods for identifying an SENP1 antagonist.
In some embodiments, the methods comprise contacting a plurality of agents to a
cell expressing SENP1, wherein the cell does not express telomerase and the cell
expresses a neoplastic phenotype, and selecting an agent that inhibits a neoplastic
phenotype, thereby identifying an SENP1 antagonist. In some embodiments, the
cell does not express TERT. In some embodiments, the methods further comprise
testing the effect of the selected agent on cancer cells selected from the group
consisting of breast cancer, colon cancer, kidney cancer, lung cancer, ovarian
cancer, pancreatic cancer, and small intestine cancer. In some embodiments, the
neoplastic phenotype is neoplastic cell growth. In some embodiments, the
neoplastic phenotype is expression of a polypeptide or RNA associated with
neoplastic growth. In some embodiments, the cell endogenously expresses SENP1.
In some embodiments, the cell comprises an exogenous expression cassette
encoding SENP1.
The present invention also provides methods of treating an individual having a
cancer. In some embodiments, the methods comprise administering to a human a
therapeutic amount of an antagonist of SENP1, wherein the individual has a cancer
characterized by increased expression of SENP1 compared to non-cancer cells. In
some embodiments, the cancer is selected from the group consisting of bladder
cancer, breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer,
pancreatic cancer, and small intestine cancer. In some embodiments, the antagonist
is identified by the steps of: contacting a plurality of agents to a cell expressing SENP1, wherein the cell does not express telomerase and the cell expresses a neoplastic phenotype, and selecting an agent that inhibits a neoplastic phenotype, thereby identifying an SENP1 antagonist. In some embodiments, a pharmaceutical composition is provided comprising an antagonist of SENP1 and a pharmaceutically acceptable carrier. In some embodiments an antagonist of SENP1 is provided for use in medicine. In some embodiments an antagonist of SENP1 is used in the manufacture of a medicament or for manufacturing a medicament for the treatment of cancer, in particular breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

Particularly preferred is bladder cancer.

The present invention also provides inhibitors of SENP1 protease activity. In some embodiments, the inhibitors comprise an amino acid sequence comprising Glu-Gln-Thr-Gly-Gly, or a mimetic thereof, wherein the final Gly terminates in an aldehyde.

In some embodiments, the inhibitor comprises a nuclear localization signal sequence. In some embodiments, the nuclear localization signal sequence comprises Pro-Lys-Lys-Thr-Gln-Arg-Arg.

The present invention also provides for determination of the quantity of SENP1 and telomerase in a biological sample from an individual. In some embodiments, the quantity of SENP1 is detected by detecting a polynucleotide encoding SENP1 in the sample. In some embodiments, the polynucleotide is RNA.

In some embodiments, the sequence of the polynucleotide is determined. In some embodiments, the detection step comprises amplifying the polynucleotide in an amplification reaction. In some embodiments, the amplification reaction comprises at least two different oligonucleotides comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that during the amplification reaction the oligonucleotides prime amplification of at least a fragment of SEQ ID NO:1. In some embodiments, the amplification reaction is a quantitative amplification reaction. In some embodiments, the amplification product of the amplification reaction is detected in a step comprising hybridizing a detectably-labeled oligonucleotide to the product. In some embodiments, the detectably-labeled oligonucleotide comprises a fluorescent
moiety. In some embodiments, the detectably-labeled oligonucleotide comprises a quencher moiety. In some embodiments, the amplification reaction comprises a template-dependent nucleic acid polymerase with 5'-3' exonuclease activity under conditions that allow the polymerase to fragment the detectably-labeled oligonucleotide.

In some embodiments, the amplification reaction is a reverse transcriptase polymerase chain reaction (RT-PCR). In some embodiments, the RT-PCR reaction is a quantitative RT-PCR reaction.

In some embodiments, the quantity of the polynucleotide is normalized.

In some embodiments, the quantity of SENP1 is determined by detecting a SENP1 polypeptide in the sample. In some embodiments, the polypeptide is detected by contacting the polypeptide with an antibody.

In some embodiments, SENP1 is detected by detecting SENP1 activity.

In some embodiments, telomerase is detected by detecting telomerase activity. In some embodiments, telomerase activity is detected by detecting elongation of an oligonucleotide comprising two or more repeats of TTAGG.

In some embodiments, telomerase is detected by detecting a component of telomerase in the sample. In some embodiments, the component is human telomerase RNA (TERC). In some embodiments, the component is human telomerase reverse transcriptase protein (TERT).

In some embodiments, telomerase is detected by detecting human telomerase reverse transcriptase protein (TERT) mRNA.

In some embodiments, the method comprises amplifying a SENP1 polynucleotide and a telomerase polynucleotide in a multiplex amplification reaction. In some embodiments, the telomerase polynucleotide is human telomerase RNA (TERC).

In some embodiments, the telomerase polynucleotide is human telomerase reverse transcriptase protein (TERT) mRNA.

In some embodiments, the methods further comprise comparing the quantity of SENP1 and telomerase in the sample to a SENP1 standard and a telomerase standard representing SENP1 and telomerase quantities in non-cancer cells. In some embodiments, the standards are pre-determined values.

In some embodiments, the individual is a human.
In some embodiments, the biological sample comprises a bodily fluid. In some embodiments, the bodily fluid is blood. In some embodiments, the bodily fluid is urine. In some embodiments, the sample is from a tissue biopsy. In some embodiments, the method further comprises obtaining a biological sample from the individual.

In some embodiments, the individual has or is suspected of having cancer. In some embodiments, the cancer is bladder cancer.

In some embodiments, the method further comprises recording a diagnosis of the presence or absence of cancer in the individual. In some embodiments, the method further comprises recording a prognosis for cancer treatment and/or survival for the individual. In some embodiments, the method further comprises recording the progression of cancer in the individual. In some of these embodiments, the cancer is bladder cancer.

The present invention also provides kits for detecting a cancer cell in a biological sample from an individual. In some embodiments, the kit comprises

a) at least one oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that when the oligonucleotide and a polynucleotide comprising SEQ ID NO:1 are submitted to an amplification reaction, the oligonucleotide primes amplification of at least a fragment of SEQ ID NO:1;

b) a detectably-labeled oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof;

c) at least one oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of:

i) human telomerase RNA (TERC);

ii) human telomerase reverse transcriptase protein (TERT) mRNA;

iii) a complement of TERC; or

iv) a complement of TERT;

such that when the oligonucleotide and TERC or TERT mRNA are submitted to an amplification reaction, the oligonucleotide primes amplification of at least a fragment of TERC or TERT mRNA; and
d) a detectably-labeled oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of:
 i) human telomerase RNA (TERC);
 ii) human telomerase reverse transcriptase protein (TERT) mRNA;
 iii) a complement of TERC; or
 iv) a complement of TERT.

In some embodiments, the kits comprise at least two different oligonucleotides comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that when the oligonucleotides and a polynucleotide comprising SEQ ID NO:1 are submitted to an amplification reaction, the oligonucleotides prime amplification of at least a fragment of SEQ ID NO:1; and at least two different oligonucleotides comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of:
 i) human telomerase RNA (TERC);
 ii) human telomerase reverse transcriptase protein (TERT) mRNA;
 iii) a complement of TERC; or
 iv) a complement of TERT;

such that when the oligonucleotides and TERC or TERT mRNA are submitted to an amplification reaction, the oligonucleotides prime amplification of at least a fragment of TERC or TERT mRNA.

In some embodiments, the kit further comprises reverse transcriptase. In some embodiments, the kit further comprises a thermostable DNA polymerase.

In some embodiments, the detectably-labeled oligonucleotides comprises a fluorescent moiety. In some embodiments, the detectably-labeled oligonucleotides comprises quencher moiety.

The present invention also provides reaction mixture. In some embodiments, the reaction mixture comprises:

a) at least one oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that when the oligonucleotide and a polynucleotide comprising SEQ ID NO:1 are submitted to an amplification reaction, the oligonucleotide primes amplification of at least a fragment of SEQ ID NO:1;
b) a detectably-labeled oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof;

c) at least one oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of:

 i) human telomerase RNA (TERC);
 ii) human telomerase reverse transcriptase protein (TERT) mRNA;
 iii) a complement of TERC; or
 iv) a complement of TERT;

such that when the oligonucleotide and TERC or TERT mRNA are submitted to an amplification reaction, the oligonucleotide primes amplification of at least a fragment of TERC or TERT mRNA; and

d) a detectably-labeled oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of:

 i) human telomerase RNA (TERC);
 ii) human telomerase reverse transcriptase protein (TERT) mRNA;
 iii) a complement of TERC; or
 iv) a complement of TERT.

In some embodiments, the reaction mixture comprises at least two different oligonucleotides comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that when the oligonucleotides and a polynucleotide comprising SEQ ID NO:1 are submitted to an amplification reaction, the oligonucleotides prime amplification of at least a fragment of SEQ ID NO:1; and at least two different oligonucleotides comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of:

 i) human telomerase RNA (TERC);
 ii) human telomerase reverse transcriptase protein (TERT) mRNA;
 iii) a complement of TERC; or
 iv) a complement of TERT;

such that when the oligonucleotides and TERC or TERT mRNA are submitted to an amplification reaction, the oligonucleotides prime amplification of at least a fragment of TERC or TERT mRNA.
In some embodiments, the reaction mixture further comprises a reverse transcriptase. In some embodiments, the reaction mixture further comprises a thermostable DNA polymerase. In some embodiments, the reaction mixture further comprises the detectably-labeled oligonucleotides comprises a fluorescent moiety. In some embodiments, the reaction mixture further comprises the detectably-labeled oligonucleotides comprises quencher moiety.

The present invention also provides for determination of the quantity of SENP1 and telomerase in a biological sample from an individual. In some embodiments, the quantity of SENP1 is detected by detecting a polynucleotide encoding SENP1 in the sample. In some embodiments, the polynucleotide is RNA.

In some embodiments, the sequence of the polynucleotide is determined. In some embodiments, the detection step comprises amplifying the polynucleotide in an amplification reaction. In some embodiments, the amplification reaction comprises at least two different oligonucleotides comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that during the amplification reaction the oligonucleotides prime amplification of at least a fragment of SEQ ID NO:1. In some embodiments, the amplification reaction is a quantitative amplification reaction. In some embodiments, the amplification product of the amplification reaction is detected in a step comprising hybridizing a detectably-labeled oligonucleotide to the product. In some embodiments, the detectably-labeled oligonucleotide comprises a fluorescent moiety. In some embodiments, the detectably-labeled oligonucleotide comprises a quencher moiety. In some embodiments, the amplification reaction comprises a template-dependent nucleic acid polymerase with 5'-3' exonuclease activity under conditions that allow the polymerase to fragment the detectably-labeled oligonucleotide.

In some embodiments, the amplification reaction is a reverse transcriptase polymerase chain reaction (RT-PCR). In some embodiments, the RT-PCR reaction is a quantitative RT-PCR reaction.

In some embodiments, the quantity of the polynucleotide is normalized.
In some embodiments, the quantity of SENP1 is determined by detecting a SENP1 polypeptide in the sample. In some embodiments, the polypeptide is detected by contacting the polypeptide with an antibody.

In some embodiments, SENP1 is detected by detecting SENP1 activity.

In some embodiments, telomerase is detected by detecting telomerase activity. In some embodiments, telomerase activity is detected by detecting elongation of an oligonucleotide comprising two or more repeats of TTAGG.

In some embodiments, telomerase is detected by detecting a component of telomerase in the sample. In some embodiments, the component is human telomerase RNA (TERC). In some embodiments, the component is human telomerase reverse transcriptase protein (TERT).

In some embodiments, telomerase is detected by detecting human telomerase reverse transcriptase protein (TERT) mRNA.

In some embodiments, the method comprises amplifying a SENP1 polynucleotide and a telomerase polynucleotide in a multiplex amplification reaction. In some embodiments, the telomerase polynucleotide is human telomerase RNA (TERC).

In some embodiments, the telomerase polynucleotide is human telomerase reverse transcriptase protein (TERT) mRNA.

In some embodiments, the methods further comprise comparing the quantity of SENP1 and telomerase in the sample to a SENP1 standard and a telomerase standard representing SENP1 and telomerase quantities in non-cancer cells. In some embodiments, the standards are pre-determined values.

In some embodiments, the individual is a human.

In some embodiments, the biological sample comprises a bodily fluid. In some embodiments, the bodily fluid is blood. In some embodiments, the bodily fluid is urine. In some embodiments, the sample is from a tissue biopsy. In some embodiments, the method further comprises obtaining a biological sample from the individual.

In some embodiments, the individual has or is suspected of having cancer.

In some embodiments, the cancer is bladder cancer.

In some embodiments, the method further comprises recording a diagnosis of the presence or absence of cancer in the individual. In some embodiments, the method
further comprises recording a prognosis for cancer treatment and/or survival for the individual. In some embodiments, the method further comprises recording the progression of cancer in the individual. In some of these embodiments, the cancer is bladder cancer.

5

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts a typical receiver-operator curve of SENP1 mRNA from telomerase negative bladder cancer patient urine sediment and from healthy subject's urine sediment.

10 Figure 2 depicts a receiver-operator curve of SENP1 normalized to the housekeeping gene protein phosphatase 1, catalytic subunit, alpha isoform (PP1CA).

Figures 3A and 3B depict the expression level of SENP1 and TERT relative to adjusted GAPDH expression in normal bladder tissue and bladder tumor tissue. For convenience of graphing on the same axis, TERT expression has been multiplied by a factor of 1x10^5.

15 Figures 4A and 4B depict the expression level of SENP1 and TERT relative to adjusted GAPDH expression in normal breast tissue and breast tumor tissue. For convenience of graphing on the same axis, TERT expression has been multiplied by a factor of 1x10^4.

20 Figures 5A and 5B depict the expression level of SENP1 and TERT relative to adjusted GAPDH expression in normal colon tissue and colon tumor tissue. For convenience of graphing on the same axis TERT expression has been multiplied by a factor of 1x10^3.

25 Figures 6A and 6B depict the expression level of SENP1 and TERT relative to adjusted GAPDH expression in normal kidney tissue and kidney tumor tissue. For convenience of graphing on the same axis, TERT expression has been multiplied by a factor of 1x10^4. Note that sample #3 has a value that falls off the linear scale shown.

30 Figures 7A and 7B depict the expression level of SENP1 and TERT relative to adjusted GAPDH expression in normal lung tissue and lung tumor tissue. For convenience of graphing on the same axis, TERT expression has been multiplied
by a factor of 1×10^4. Note that sample # 1 and #20 have values that fall off the linear scale as shown.

Figures 8A and 8B depict the expression level of SENP1 and TERT relative to adjusted GAPDH expression in normal ovarian tissue and ovarian tumor tissue. For convenience of graphing on the same axis, TERT expression has been multiplied by a factor of 1×10^5.

Figures 9A and 9B depict the expression level of SENP1 and TERT relative to adjusted GAPDH expression in normal pancreatic tissue and pancreatic tumor tissue. For convenience of graphing on the same axis, TERT expression has been multiplied by a factor of 1×10^5.

Figures 10A and 10B depict the expression level of SENP1 and TERT relative to adjusted GAPDH expression in normal pancreatic tissue (second set) and pancreatic tumor tissue (second set). For convenience of graphing on the same axis TERT expression has been multiplied by a factor of 1×10^4.

Figures 11A and 11B depict the expression level of SENP1 and TERT relative to adjusted GAPDH expression in normal small intestine tissue and small intestine tumor tissue. For convenience of graphing on the same axis TERT expression has been multiplied by a factor of 1×10^3.

DEFINITIONS

"SENPI" refers to a sentrin/SUMO-specific protease polypeptide or a polynucleotide encoding the polypeptide. Exemplary SENP1 polynucleotides include, e.g., Genbank accession number NM_014554 (SEQ ID NO:1). Exemplary SENP1 polypeptides include, e.g., the polypeptide depicted in Genbank accession number NP_055369 (SEQ ID NO:2). "SENPI" is intended to encompass allelic variants of those sequences specifically provided herein, as well as fragments and mutations thereof. SENP1 polynucleotides will generally be at least 90%, 95% or 99% identical to SEQ ID NO:1 or 90%, 95% or 99% identical to DNA sequences encoding SEQ ID NO:2. SENP1 polynucleotides include, e.g., mRNA encoding SENP1 polypeptides as well as DNA sequences (e.g., cDNA or genomic DNA) encoding SENP1 polypeptides. SENP1 polypeptides will generally be at least 90%, 95% or 99% identical to SEQ ID NO:2.
"Telomerase" refers to a ribo-protein complex that maintains the ends of chromosomes (telomeres) or polynucleotides encoding components of the ribo-protein. See, e.g., Shipp-Lentz et al., *Science* 247 (1990) 546; Greiden et al., *Nature* 337 (1989) 331. Telomerase includes two main components: telomerase reverse transcriptase protein (encoded by the gene, *TERT*) and the telomerase RNA component (encoded by the gene, *TERC*). The equivalent human components are known as TERT (e.g., protein sequence: NP_003210 (SEQ ID NO:3), encoded by, e.g., nucleotide sequence: NM_003219 (SEQ ID NO:4)) and TERC (NR_001566 (SEQ ID NO:5)). Splice variants of the RNA encoding TERT are intended to be encompassed by this definition.

"Contacting a plurality of agents to a cell" refers to contacting at least two agents to a cell or cells. While multiple agents may be contacted to one cell or pool of cells, the phrase also encompasses contacting a first agent to a first cell or pool of cells and a second agent to a second cell or pool of cells, e.g., such that each cell or pool of cell is contacted by a single agent.

"Determining the quantity of SENP1 or telomerase" refers to using any technique known to those of skill in the art to quantify the amount of SENP1 or telomerase polypeptide or polynucleotide (e.g., structural RNA, mRNA or cDNA) or SENP1 or telomerase activity in a sample.

A "neoplastic phenotype" refers to the phenotype of a neoplastic cell. Exemplary phenotypes include, e.g., cell growth on soft agar; anchorage independence; reduced contact inhibition and/or density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum independence; accumulation of tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis *in vivo*; mRNA and protein expression patterns of cells undergoing metastasis; and other characteristics of cancer cells.

An "amplification reaction" refers to any reaction (e.g., chemical or enzymatic) that results in increased copies of a template nucleic acid sequence or increased signal indicating the presence of the template nucleic acid. "Selective amplification" or "selectively amplifying" refers to amplification of particular sequences in a population of sequences.
The term "biological sample" encompasses a variety of sample types obtained from an organism and can be used in a diagnostic or monitoring assay. The term encompasses urine, urine sediment, blood, saliva, and other liquid samples of biological origin, solid tissue samples, such as a biopsy specimen or tissue cultures or cells derived therefrom and the progeny thereof. The term encompasses samples that have been manipulated in any way after their procurement, such as by treatment with reagents, solubilization, sedimentation, or enrichment for certain components. The term encompasses a clinical sample, and also includes cells in cell culture, cell supernatants, cell lysates, serum, plasma, biological fluids, and tissue samples.

An "antagonist" refers to a molecule which, when contacted to a cell expressing SENP1, inhibits SENP1 activity or expression. Antagonists are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of SENP1.

As used herein, the terms "nucleic acid," "nucleotide," "polynucleotide" and "oligonucleotide" refer to primers, probes, oligomer fragments to be detected, oligomer controls and unlabeled blocking oligomers and is generic to polydeoxyribonucleotides (containing 2-deoxy-D-ribose), to polyribonucleotides (containing D-ribose), and to any other N-glycoside of a purine or pyrimidine base, or modified purine or pyrimidine bases.

A nucleic acid, nucleotide, polynucleotide or oligonucleotide can comprise phosphodiester linkages or modified linkages including, but not limited to phosphotriester, phosphoramidate, siloxane, carbonate, carboxymethyl ester, acetamide, carbamate, thioether, bridged phosphoramidate, bridged methylene phosphonate, phosphorothioate, methylphosphonate, phosphorodithioate, bridged phosphorothioate or sulfone linkages, and combinations of such linkages. The terms encompass peptide-nucleic acids (PNAs) and intercalating nucleic acids (INAs).

A nucleic acid, nucleotide, polynucleotide or oligonucleotide can comprise the five biologically occurring bases (adenine, guanine, thymine, cytosine and uracil) and/or bases other than the five biologically occurring bases. These bases may
serve a number of purposes, e.g., to stabilize or destabilize hybridization; to promote or inhibit probe degradation; or as attachment points for detectable moieties or quencher moieties. For example, a polynucleotide of the invention can contain one or more modified, non-standard, or derivatized base moieties, including, but not limited to, N⁶-methyl-adenine, N⁶-tert-butyl-benzyl-adenine, imidazole, substituted imidazoles, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxymethyl)uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylinomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D mannosylqueosine, 5'-methoxy-carbomethoxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methyl ester, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, 2,6- diaminopurine, and 5-propynyl pyrimidine. Other examples of modified, non-standard, or derivatized base moieties may be found in U.S. Patent Nos. 6,001,611, 5,955,589, 5,844,106, 5,789,562, 5,750,343, 5,728,525, and 5,679,785, each of which is incorporated herein by reference in its entirety.

Furthermore, a nucleic acid, nucleotide, polynucleotide or oligonucleotide can comprise one or more modified sugar moieties including, but not limited to, arabinose, 2-fluoroarabinose, xylose, and hexose.

It is not intended that the present invention be limited by the source of a nucleic acid, nucleotide, polynucleotide or oligonucleotide. A nucleic acid, nucleotide, polynucleotide or oligonucleotide can be from a human or non-human mammal, or any other organism, or derived from any recombinant source, synthesized in vitro or by chemical synthesis. A nucleic acid, nucleotide, polynucleotide or oligonucleotide may be DNA, RNA, cDNA, DNA-RNA, locked nucleic acid (LNA), peptide nucleic acid (PNA), a hybrid or any mixture of the same, and may
exist in a double-stranded, single-stranded or partially double-stranded form. The nucleic acids of the invention include both nucleic acids and fragments thereof, in purified or unpurified forms, including genes, chromosomes, plasmids, the genomes of biological material such as microorganisms, e.g., bacteria, yeasts, viruses, viroids, molds, fungi, plants, animals, humans, and the like.

There is no intended distinction in length between the terms nucleic acid, nucleotide, polynucleotide and oligonucleotide, and these terms will be used interchangeably. These terms include double- and single-stranded DNA, as well as double- and single-stranded RNA. While oligonucleotides may be any length, they may have fewer than 500 nucleotides, e.g., 5-100, 10-100, 10-30, 15-30, or 15-50 nucleotides.

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refer to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfoxonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refer to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB
Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule predominantly (e.g., at least 50% of the hybridizing molecule) to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA). Polynucleotide primers specifically hybridize to a polynucleotide template in an amplification reaction (e.g., at an annealing temperature of about 60°C) when the primers amplify the template in a reaction mixture comprising a complex mixture of polynucleotides (e.g., isolated from a cell) to produce an amplification product that is at least the most predominant amplification product and is preferably the only significant (e.g., representing at least 90-95% of all amplification products in the sample) amplification product of the reaction.

The phrase "stringent hybridization conditions" refers to conditions under which a probe will predominantly hybridize to its target subsequence in a complex mixture of nucleic acids. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, *Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes*, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, stringent conditions are selected to be about 5-10°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength pH. The Tm is the temperature (under defined ionic strength, pH, and nucleic acid concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also
be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, optionally 10 times background hybridization. Exemplary stringent hybridization conditions can be as follows: 50% formamide, 5x SSC, and 1% SDS, incubating at 42°C, or, 5x SSC, 1% SDS, incubating at 65°C, with wash in 0.2x SSC, and 0.1% SDS at 65°C.

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides that they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary “moderately stringent hybridization conditions” include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 1X SSC at 45°C. A positive hybridization is at least twice background.

Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. For PCR, a temperature of about 36°C is typical for low stringency amplification, although annealing temperatures may vary between about 32°C and 48°C depending on primer length. For high stringency PCR amplification, a temperature of about 62°C is typical, although high stringency annealing temperatures can range from about 50°C to about 65°C, depending on the primer length and specificity. Exemplary cycle conditions for both high and low stringency amplifications include, but are not limited to, a denaturation phase of about 30 seconds to about 2 minutes at 90°C - 95°C, an annealing phase of about 5 seconds to about 2 minutes at 50°C - 70°C, and an extension phase of about 1 minute to about 5 minutes at about 70°C.

“Antibody” refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon,
which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kDa) and one "heavy" chain (about 50-70 kDa). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, for example, pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab')_2, a dimer of Fab which itself is a light chain joined to V_H-C_H1 by a disulfide bond. The F(ab')_2 may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab')_2 dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region (see Fundamental Immunology (Paul ed., 3d ed. 1993). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty et al., Nature 348 (1990) 552-554).

For preparation of monoclonal or polyclonal antibodies, any technique known in the art can be used (see, e.g., Kohler & Milstein, Nature 256 (1975) 495-497; Kozbor et al., Immunology Today 4 (1983) 72; Cole et al., pp. 77-96 in Monoclonal Antibodies and Cancer Therapy (1985)). Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab
fragments that specifically bind to selected antigens (see, e.g., McCafferty et al., Nature 348 (1990) 552-554; Marks et al., Biotechnology 10 (1992) 779-783).

The phrase “specifically (or selectively) binds” to an antibody or “specifically (or selectively) immunoreactive with,” when referring to a protein or peptide, refers to a binding reaction that is determinative of the presence of the protein in a heterogeneous population of proteins and other biologics. Thus, the specified antibodies bind to a particular protein at least two times the background and do not substantially bind in a significant amount to other proteins present in the sample. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. For example, polyclonal antibodies raised against SENP1 can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with SENP1 and not with other proteins, except for polymorphic variants and alleles of SENP1. This selection may be achieved by subtracting out antibodies that cross-react with SENP1 molecules from other species or that cross-react with non-SENP1 proteins. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, Antibodies, A Laboratory Manual (1988), for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity). Typically a specific or selective reaction will be at least twice background signal or noise and more typically more than 10 to 100 times background.

The terms “identical” or "100% identity,” in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same sequences. Two sequences are "substantially identical" or a certain percent identity if two sequences have a specified percentage of amino acid residues or nucleotides that are the same (i.e., 60% identity, optionally 65%, 70%, 75%, 80%, 85%, 90%, or 95% identity over a specified region, or, when not specified, over the entire sequence), when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using one of the following sequence comparison algorithms or by manual
alignment and visual inspection. The invention provides oligonucleotides that are substantially identical to at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 40, 50, or more contiguous nucleotides of SENP1 polymers or telomerase polymers or complements thereof.

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window", as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 5 to 600, usually about 10 to about 100, more usually about 15 to about 50 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman, *Adv. Appl. Math.* 2 (1970) 482c, by the homology alignment algorithm of Needleman and Wunsch, *J. Mol. Biol.* 48 (1970) 443, by the search for similarity method of Pearson and Lipman, *Proc. Nat'l. Acad. Sci. USA* 85 (1988) 2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Ausubel et al., *Current Protocols in Molecular Biology* (1995 supplement)).

Two examples of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., *Nuc. Acids Res.* 25 (1977) 3389-3402, and Altschul et al., *J. Mol. Biol.* 215 (1990) 403-410, respectively. Software for performing BLAST analyses is publicly available through the National Center for
Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length \(W \) in the query sequence, which either match or satisfy some positive-valued threshold score \(T \) when aligned with a word of the same length in a database sequence. \(T \) is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased.

Cumulative scores are calculated using, for nucleotide sequences, the parameters \(M \) (reward score for a pair of matching residues; always \(> 0 \)) and \(N \) (penalty score for mismatching residues; always \(< 0 \)). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity \(X \) from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters \(W, T, \) and \(X \) determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (\(W \)) of 11, an expectation (\(E \)) or 10, \(M=5, N=-4 \) and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (\(E \)) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff, Proc. Natl. Acad. Sci. USA 89 (1989) 10915) alignments (\(B \)) of 50, expectation (\(E \)) of 10, \(M=5, N=-4 \), and a comparison of both strands. Either program is run with the low complexity filter "off".

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul, Proc. Natl. Acad. Sci. USA 90 (1993) 5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (\(\text{P(N)} \)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test
nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001.

DETAILED DESCRIPTION OF THE INVENTION

I. Introduction

Not all tumors of a given cancer type contain detectable levels of telomerase activity. See, e.g., Shay, J.W. and Bacchetti, S. Eur. J. Cancer, 33 (1997) 787-791; Yan, P. et al. Cancer Res. 59 (1999) 3166-3170. In general, 50-100% of tumors of different types have measurable telomerase activity (Bryan, T.M., Nature Medicine 3 (1997) 1271-1274; Kim, N.W. et al. Science 266 (1994) 2011-2015; Bacchetti, S. and Counter, C.M. Int. J. Oncology 7 (1995) 423-432). Thus, while this failure to detect telomerase activity could be due to an inability to measure low levels, it is more likely that expression of telomerase may be sufficient to cause cancer, but it is not necessary. That is, some tumors may not express active telomerase.

Interestingly, cancers are largely epithelial in origin, which may account for the generally high percentages of tumors which are telomerase positive. However, if telomeres of tumors in some populations of patients are maintained by a telomerase-independent mechanism, this sets the upper limit of obtainable sensitivity for any telomerase-based assay designed to diagnose or monitor recurrence of a cancer. Certain tumors would escape detection using telomerase as the only cancer marker.

The inventors recognized a need for a method of detecting tumors that do not express telomerase. The present invention is based in part on the discovery that
increased expression of SENP1 is a useful marker to identify cancers that do not have detectable telomerase levels. Thus, by detecting both SENP1 and telomerase in a sample, it is possible to detect a significant number of cancers. Accordingly, the present invention provides methods of detecting the presence of cancer cells in a biological sample by determining the quantity of SENP1 and telomerase in the sample.

In addition, the present invention is based in part on the discovery that increased expression of SENP1 is a useful marker to identify cancer, including, e.g., bladder cancer, breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, small intestine cancer, and bladder cancer. Moreover, the inventors have shown that the use of both SENP1 and telomerase as markers can allow for greater sensitivity and specificity for detecting selected cancers rather than use of either marker alone. Accordingly, the present invention provides methods of detecting the presence of cancer cells in a biological sample by determining the quantity of SENP1 and, optionally telomerase, in the sample.

Thus, in some embodiments of the invention, both SENP1 and telomerase are detected, wherein an increase in either marker indicates the presence of, e.g., bladder cancer, breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, small intestine cancer, or bladder cancer.

This invention relies on routine techniques in the field of recombinant genetics. Basic texts disclosing the general methods of use in this invention include Sambrook et al., Molecular Cloning, A Laboratory Manual (3rd ed. 2001); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Current Protocols in Molecular Biology (Ausubel et al., eds., 2002).

II. Detection and Quantification of SENP1 and/or Telomerase

The present invention provides for any methods of quantifying SENP1 and/or telomerase polymucleotides (including SENP1 mRNA, SENP1 cDNA, TERT mRNA, TERT cDNA, TERC RNA, TERC cDNA, etc.) and/or SENP1 and/or telomerase polypeptides and/or the activity of SENP1 and/or telomerase known to those of skill in the art either sequentially or simultaneously in one or multiple assays. Exemplary approaches for detecting SENP1 or telomerase detection
include, e.g., (a) detection of SENP1 or telomerase polynucleotides, including using polynucleotide hybridization and/or amplification reaction-based assays; (b) detection of SENP1 or telomerase proteins, including using affinity agent-based assays involving an agent that specifically binds to a SENP1 or telomerase polypeptide or polynucleotide; and/or (c) detection of SENP1 or telomerase activity. All of these methods allow for subsequent direct or indirect quantification of the detected targets, i.e., SENP1 and telomerase.

Typically, the cancer-associated SENP1 polynucleotides or polypeptides detected herein will be at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to SEQ ID NO:1 or to those polynucleotides encoding SEQ ID NO:2 or to one or more of the SENP1 sequences available, e.g., from GenBank (see, e.g., SENP mRNA sequence at NM_014554 and the SENP1 polypeptide at NP_055369). Similarly, telomerase polynucleotides (e.g., TERT RNA or TERC) or polypeptides (e.g., TERT) detected herein will be at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a telomerase polynucleotide or polypeptide. The detected SENP or telomerase polynucleotides or polypeptides can represent functional or nonfunctional forms of the cancer-associated polynucleotide or polypeptide, or any variant, derivative, or fragment thereof. Typically, the level and/or presence of cancer-associated polynucleotides or polypeptides in a biological sample will be detected.

Methods of detecting telomerase expression may include the same type methods as used for detecting SENP1 (e.g., both telomerase and SENP1 polynucleotides are detected) or different methods (e.g., SENP1 polynucleotides and telomerase activity are detected). However, for user convenience, it can be desirable to use the same detection assay for both telomerase and SENP1. For example, in some embodiments, quantitative multiplex reverse transcription-polymerase chain reaction (RT-PCR) reactions can be used to quantify both SENP1 and telomerase expression in a sample. In some embodiments, real-time quantitative RT-PCR is performed.
A. Detection of mRNA Expression

Detection assays may be carried out on preparations containing mRNA or cDNA generated from isolated mRNA in a manner that reflects the relative levels of mRNA transcripts in the sample. Methods of detecting telomerase RNA have been described and can generally be adapted for detecting SENP1. See, e.g., U.S. Patent Nos. 6,582,964; 5,846,723; 6,607,898; U.S. Patent Publication No. 2002/0012969; and Angelopoulou et al., Anticancer Res. 23 (2003) 4821-4829.

1. Amplification-based Assays
 a. Detection methods

Although any type of amplification reaction can be used, in some embodiments, PCR is used to amplify DNA templates. The PCR primers will typically be designed to specifically hybridize to the SENP1 polynucleotide, e.g., under conditions used in a PCR reaction. For example, primers typically hybridize in standard PCR buffers (such as, but not limited to, those containing 50 mM bicine, pH 8.0, 115 mM potassium acetate, 8% glycerol, 3 mM manganese acetate, 200
uM each deoxyadenosine triphosphate, deoxyctydine triphosphate, deoxyguanosine triphosphate, and 500 uM of deoxyuridine triphosphate, 2 Units of uracil N-glycosylase (UNG), 10 Units of DNA polymerase, 200 nM each primer, forward and reverse, and optionally a polynucleotide probe) at about 60° C. Generally, primers are designed and/or tested to avoid significant homology or hybridization to other polynucleotides likely to be found in the biological sample (e.g., in the human genome). Alternative methods of amplification (e.g., LCR, SDA, RCA, Q-Beta, etc.) have been described and can also be employed.

In some embodiments, SENP1 or telomerase RNA can be detected using reverse transcriptase polymerase chain reaction (RT-PCR). RT-PCR methods are well known to those of skill (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds., 2002)). Amplification methods employed to detect SENP1 polynucleotides may involve a quantitative PCR methodology such as, for example, the real-time PCR, including quantitative RT-PCR. Methods of quantitative amplification are disclosed in, e.g., U.S. Patent Nos. 6,180,349; 6,033,854; and 5,972,602, as well as in, e.g., Gibson et al., Genome Research 6 (1996) 995-1001; DeGraves, et al., Biotechniques 34 (2003) 106-110, 112-115; Deiman B. et al., Mol Biotechnol. 20 (2002) 163-179.

To quantify the amount of specific RNA in a sample, a standard curve may be generated from run-off transcription of a plasmid containing the gene of interest. Standard curves may be generated using the threshold values (Ct) values determined in the real-time PCR, which are related to the initial cDNA concentration used in the assay. In addition, a standard curve may be generated for a standard polynucleotide (e.g., a previously quantified sequence). This permits standardization of initial RNA content of a biological sample to the amount of standard for comparison purposes. See, e.g., The PCR Technique: Quantitative PCR, J. Larrick (ed.) 1997.

One method for detection of amplification products is the 5' nuclease PCR assay (using e.g., COBAS TaqMan 48 Analyzer™ (Roche Molecular Systems, Pleasanton, CA)). See, e.g., Holland et al., Proc. Natl. Acad. Sci. USA 88 (1991) 7276-7280; Lee et al., Nucleic Acids Res. 21 (1993) 3761-3766; U.S. Patent Nos. 6,214,979; 5,804,375; 5,487,972; and 5,210,015. This assay detects the
accumulation of a specific PCR product by hybridization and cleavage of a doubly labeled fluorogenic probe during the amplification reaction. The fluorogenic probe may consist of an oligonucleotide (e.g., that hybridizes to a SENP1 or telomerase polynucleotide or its complement) labeled with both a fluorescent reporter dye and a quencher dye. During PCR, this probe is cleaved by the 5'-nuclease activity of DNA polymerase if, and only if, it hybridizes to the segment being amplified. Cleavage of the probe generates an increase in the fluorescence intensity of the reporter dye.

In some embodiments, the enzymes with 5' nuclease activity are thermostable and thermoactive nucleic acid polymerases. Such thermostable polymerases include, but are not limited to, native and recombinant forms of polymerases from a variety of species of the eubacterial genera Thermus, Thermatoga, and Thermosipho. For example, Thermus species polymerases that can be used in the methods of the invention include Thermus aquaticus (Tag) DNA polymerase, Thermus thermophilus (Tth) DNA polymerase, Thermus species Z05 (Z05) DNA polymerase, Thermatoga maritima DNA polymerase, Thermatoga neapolitana DNA polymerase and Thermus species sps17 (sps17), as described in U.S. Pat. Nos. 5,405,774, 5,352,600, 5,079,352, 4,889,818, 5,466,591, 5,618,711, 5,674,738, and 5,795,762.

Another method of detecting amplification products that relies on the use of energy transfer is the "molecular beacon probe" method described by Tyagi and Kramer (Nature Biotechnol. 14 (1996) 303-309), which is also the subject of U.S. Pat. Nos. 5,119,801 and 5,312,728. This method employs oligonucleotide hybridization probes that can form hairpin structures. On one end of the hybridization probe (either the 5' or 3' end), there is a donor fluorophore, and on the other end, an acceptor moiety. In the case of the Tyagi and Kramer method, this acceptor moiety is a quencher, that is, the acceptor absorbs energy released by the donor, but then does not itself fluoresce. Thus, when the beacon is in the open conformation, the fluorescence of the donor fluorophore is detectable, whereas when the beacon is in hairpin (closed) conformation, the fluorescence of the donor fluorophore is quenched. When employed in PCR, the molecular beacon probe, which hybridizes to one of the strands of the PCR product, is in "open conformation," and
fluorescence is detected, while those that remain unhybridized will not fluoresce (Tyagi and Kramer, Nature Biotechnol. 14 (1996) 303-306. As a result, the amount of fluorescence will increase as the amount of PCR product increases, and thus may be used as a measure of the progress of the PCR. Those of skill in the art will recognize that other methods of quantitative amplification are also available.

Other types of probes useful for real time PCR methods include Scorpion™ probes, which are available in "uni-labeled" and "bi-labeled" formats from Proligo, C (Boulder, CO). See, also, Bates et al., Mol. Plant Pathol. 2 (2001) 275-280.

In still another example, two primers and a probe of the invention may be used to detect and quantify a target nucleic acid using nucleic acid sequence-based amplification (NASBA). In some NASBA methods, three enzymes are used, including reverse transcriptase, T7 RNA polymerase, and RNase H. The final amplification product is single-stranded RNA with a polarity opposite that of the nucleic acid to be detected. The amplified RNA product can be detected in some embodiments through the use of a target-specific capture probe bound to magnetic particles in conjunction with a ruthenium-labeled detector probe and an instrument (NucliSens Reader; bioMérieux) capable of measuring electrochemiluminescence (ECL). Alternatively, RNA amplified by NASBA can specifically be detected in real time by including molecular beacon probes in the amplification reaction, as described above. Further guidance on use of the primers and probes of the invention may be found in articles by Compton, Nature 350 (1991) 91-92 and Kievits et al., J. Virol. Methods 35 (1991) 273-286.

Another example of methods that use a nucleic acid primer and a probe to detect and quantify a target nucleic acid involves the use of nanoparticles. In such methods, two oligonucleotides, such as a primer or probe of the invention, that can hybridize to different regions of a nucleic acid to be detected are covalently linked to a nanoparticle. The nanoparticles are contacted with a target nucleic acid under hybridization conditions. If the nucleic acid is present, the nucleic acid will bind to the oligonucleotides attached to the nanoparticles, producing a large molecular weight complex that can be detected. The complex can be detected by any method known to one of skill in the art without limitation. In certain embodiments, the complex is detected by precipitation of the complex. Further guidance on methods
of using nanoparticles in connection with the primers and probes of the invention may be found in Taton et al., Science 289(2000) 1757-1760 and U.S. Patent Nos. 6,506,564, 6,495,324, 6,417,340, 6,399,303, and 6,361,944.

In yet another example, rolling circle amplification ("RCA") can be used as part of a method for detecting and quantifying a target nucleic acid. In certain embodiments of RCA methods, a DNA circle is amplified by polymerase extension of a complementary primer. Any of the primers or probes of the invention can be used in such methods. Methods of circularizing DNA are well known in the art, and include, for example, ligating the ends of a DNA molecule together under conditions which favor intramolecular ligation. The single-stranded product concatamer product can then be detected by any method of detecting a nucleic acid known to one of skill in the art without limitation. For example, the concatamer product can be detected using a detectably-labeled probe of the invention. Other examples of methods of detecting a nucleic acid of known sequence are extensively described herein. In other embodiments of RCA, a second primer can be used that is complementary to the concatamer product. This primer allows exponential amplification of the sequences present in the circular DNA template. The products of the amplification can still be detected, for example, by using a detectably-labeled probe of the invention. Further guidance on using the primers and probes of the invention in RCA methods for detecting a target nucleic acid may be found in U.S. Patent Nos. 6,344,329, 6,350,580, 6,221,603, 6,210,884, 5,648,245, and 5,714,320 and WO95/35390.

In another example of such methods, a target nucleic acid can be detected and quantified using Strand Displacement Amplification ("SDA"). In such methods, amplified nucleic acids are detected by incorporation of a single-stranded primer that comprises a fluorescent moiety, a quencher moiety, and an engineered restriction site separating the two moieties. One of skill in the art can easily recognize how to modify any of the primers or probes of the invention for use in SDA.

In a first amplification reaction used in SDA, the primer is used to amplify a target nucleic acid in the presence of, for example, thio-dCTP, thereby incorporating the primer into the amplification product. Then, a restriction endonuclease can be used
to nick the restriction site in the primer. The restriction endonuclease cannot cut both strands of the amplification product because of the incorporation of thio-dCTP in the amplification product. Finally, the 3' end of the primer created by the nick can be used to prime a new polymerization reaction, thereby displacing the portion of the strand 3' to the nick from the template strand. Displacement of the strand separates the fluorescent moiety from the quencher moiety, thereby preventing quenching of fluorescence emitted by the fluorescent moiety. A SENP1 or telomerase polynucleotide can thereby be detected and/or quantified by measuring the presence and/or amount of fluorescence. Further guidance on selection and modification of primers and probes for use in SDA may be found in Little et al., *Clin. Chem.* 45 (1999) 777-784, and U.S. Patent Nos. 6,528,254 and 6,528,632.

In another example, a SENP1 or telomerase polynucleotide may be detected and quantified using transcription-mediated amplification (“TMA”). TMA is an RNA transcription amplification system that uses RNA polymerase and reverse transcriptase to amplify the nucleic acids to be detected. In the method, a primer of the invention with a promoter for RNA polymerase is used to prime reverse transcription of a target RNA. The RNase activity of reverse transcriptase then degrades the RNA template, releasing the cDNA strand. Second strand synthesis is primed with a second primer of the invention and catalyzed by reverse transcriptase. RNA polymerase then recognizes the promoter synthesized in the second strand and catalyzes multiple cycles of RNA transcription from the second strand. The RNA product can then be detected or can serve as template for another round of amplification.

The RNA product of TMA can then be detected and quantified by any method known to one of skill in the art. In certain embodiments, the RNA product can be detected with a probe of the invention. In other embodiments, the RNA product can be detected with a probe of the invention that has been labeled with an acridine-ester label (Gen-Probe, Inc., San Diego, CA). Such labels can be chemically removed from unhybridized probe while labels on hybridized probes remain undisturbed. Thus, in such embodiments, presence of a target nucleic acid can be detected by detecting the presence of the acridine-ester label. Further guidance in using the primers and probes of the invention in TMA-based methods
may be found in Arnold et al., Clin. Chem. 35 (1989) 1588-1594; Miller et al., J. Clin. Microbiol. 32 (1994) 393-397; and U.S. Patent Nos. 6,335,166 and 6,294,338. In other embodiments, any assay known by one of skill in the art that uses a single nucleic acid primer or probe that can hybridize to a nucleic acid to detect the nucleic acid can be used to detect a SENP1 or telomerase polynucleotide. For example, a SENP1 or telomerase polynucleotide can be detected using a primer to initiate a primer extension reaction. Successful extension of the primer by a nucleic acid polymerase indicates the presence of the SENP1 or telomerase polynucleotide. Other examples of single primer or probe detection methods that describe methods that can be used as described or adapted by one of skill in the art to detect a SENP1 or telomerase polynucleotide can be found in U.S. Patent Nos. 6,440,707, 6,379,888, 6,368,803, 6,365,724, 6,361,944, 6,352,827, 6,326,145, 6,312,906, 6,268,128, 6,261,784, 6,177,249, 6,140,055, 6,130,047, 6,124,090, 6,121,001, 6,110,677, 6,054,279, 6,022,686, 5,981,176, 5,958,700, 5,945,283, 5,935,791, 5,919,630, 5,888,739, 5,888,723, 5,882,867, 5,876,924, 5,866,336, 5,856,092, 5,853,990, 5,846,726, 5,814,447, 5,808,036, 5,800,989, 5,795,718, 5,792,614, 5,710,028, 5,683,875, 5,683,872, 5,679,510, 5,641,633, 5,597,696, 5,595,890, 5,571,673, 5,547,861, 5,525,462, 5,514,546, 5,491,063, 5,437,977, 5,294,534, 5,118,605, 5,102,784, 4,994,373, 4,851,331, 4,767,700.

b. Primers of the invention

Exemplary oligonucleotide primers may comprise a sequence at least 70%, 75%, 80%, 85%, 90%, 95% or 100% identical to at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 40, 50, or other number of contiguous nucleotides of SENP1 polynucleotides or telomerase (e.g., TERC or TERT) polynucleotides or complements thereof. The length and composition of the probe can be chosen to give sufficient thermodynamic stability to ensure hybridization of the probe to the template nucleic acid under the appropriate reaction conditions, which depend on the detection method to be performed. For example, probes with modified, non-standard, or derivatized nucleotides may be longer or shorter than those with conventional nucleotides while having similar thermodynamic hybridization
properties. Examples of such non-standard bases may be found in U.S. Patent Nos. 6,320,005, 6,174,998, 6,001,611, and 5,990,303. As another example, probes with G/C-rich sequences may anneal to target sequences at higher temperatures that a probe of similar length with A/T-rich sequences.

5

c. Probes of the invention

Exemplary detectably-labeled oligonucleotide probes may comprise a sequence at least 70%, 75%, 80%, 85%, 90%, 95% or 100% identical to at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 40, 50, or other number of contiguous nucleotides of SENPI polynucleotides or telomerase (e.g., TERC or TERT) polynucleotides or complements thereof.

In addition to the probe nucleotide sequence as described herein, the probe can comprise additional nucleotide sequences or other moieties that do not inhibit the methods of the instant invention. In some embodiments of the invention, the probe can comprise additional nucleotide sequences or other moieties that facilitate the methods of the instant invention. For instance, the probe can be blocked at its 3' terminus to prevent undesired nucleic acid polymerization priming by the probe. Also, moieties may be present within the probe that stabilize or destabilize hybridization of the probe or probe fragments with the nucleotide sequence. The probes of the invention can also comprise modified, non-standard, or derivatized nucleotides as defined above.

In certain embodiments of the invention, the probe can comprise a detectable moiety. The detectable moiety can be any detectable moiety known by one of skill in the art without limitation. Further, the detectable moiety can be detectable by any means known to one of skill in the art without limitation. For example, the detectable moiety can be detectable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means.

A variety of detectable moieties that can be used to detect the probes of the invention, as well as methods for their linkage to the probe, are known to the art and include, but are not limited to, enzymes (e.g., alkaline phosphatase and horseradish peroxidase) and enzyme substrates, radioactive moieties, fluorescent moieties, chromophores, chemiluminescent labels, electrochemiluminescent labels,
such as Origin™ (Igen, Rockville, MD), ligands having specific binding partners, or any other labels that may interact with each other to enhance, alter, or diminish a signal. Of course, if a 5' nuclease reaction is performed using a thermostable DNA polymerase at elevated temperatures, in some embodiments, the detectable moiety is not degraded or otherwise rendered undetectable by such elevated temperatures. In certain embodiments, the detectable moiety can be a fluorescent moiety. The fluorescent moiety can be any fluorescent moiety known to one of skill in the art without limitation. In some embodiments, fluorescent moieties with wide Stokes shifts are used, allowing for the use of fluorometers with filters rather than monochrometers and increasing the efficiency of detection. In certain embodiments, the fluorescent moiety can be selected from the group consisting of fluorescein-family dyes (Integrated DNA Technologies, Inc., Coralville, IA), polyhalofluorescein-family dyes, hexachlorofluorescein-family dyes, coumarin-family dyes (Molecular Probes, Inc., Eugene, Or), rhodamine-family dyes (Integrated DNA Technologies, Inc.), cyanine-family dyes, oxazine-family dyes, thiazine-family dyes, squaraine-family dyes, chelated lanthanide-family dyes, and BODIPY®-family dyes (Molecular Probes, Inc.). In some embodiments, the fluorescent moiety is 6-carboxyfluorescein (FAM™)(Integrated DNA Technologies, Inc.). Other examples of fluorescent moieties that can be used in the probes, methods, and kits of the invention can be found in U.S. Patent Nos. 6,406,297, 6,221,604, 5,994,063, 5,808,044, 5,880,287, 5,556,959, and 5,135,717. In other embodiments, the detectable moiety can be a detectable moiety other than a fluorescent moiety. Among radioactive moieties, ³²P-labeled compounds are preferred. Any method known to one of skill in the art without limitation may be used to introduce ³²P into a probe. For example, a probe may be labeled with ³²P by 5' labeling with a kinase or by random insertion by nick translation. Detectable moieties that are enzymes can typically be detected by their activity. For example, alkaline phosphatase can be detected by measuring fluorescence produced by action of the enzyme on appropriate substrate compounds. Where a member of specific binding partners is used as detectable moieties, the presence of the probe can be detected by detecting the specific binding of a molecule to the member of the specific binding partner. For example, an antigen can be linked to the probe,
and a monoclonal antibody specific for that antigen can be used to detect the presence of the antigen and therefore the probe. Other specific binding partners that can be used as detectable moieties include biotin and avidin or streptavidin, IgG and protein A, and numerous other receptor-ligand couples well-known to the art. Still other examples of detectable moieties that are not fluorescent moieties can be found in U.S. Patent Nos. 5,525,465, 5,464,746, 5,424,414, and 4,948,882. The above description of detectable moieties is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, 125I may serve as a radioactive moiety or as an electron-dense reagent. Horseradish peroxidase may serve as enzyme or as antigen for a monoclonal antibody. Further, one may combine various detectable moieties for desired effect. For example, one might label a probe with biotin, and detect its presence with avidin labeled with 125I, or with an anti-biotin monoclonal antibody labeled with horseradish peroxidase. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.

The method of linking or conjugating the detectable moiety to the probe depends, of course, on the type of detectable moiety or moieties used and the position of the detectable moiety on the probe.

The detectable moiety may be attached to the probe directly or indirectly by a variety of techniques. Depending on the precise type of detectable moiety used, the detectable moiety can be located at the 5' or 3' end of the probe, located internally in the probe's nucleotide sequence, or attached to spacer arms of various sizes and compositions to facilitate signal interactions. Using commercially available phosphoramidite reagents, one can produce oligonucleotides containing functional groups (e.g., thiols or primary amines) at either terminus via an appropriately protected phosphoramidite, and can attach a detectable moiety thereto using protocols described in, for example, Innis et al. (eds.), PCR Protocols: A Guide to Methods and Applications, 1990).

Methods for introducing oligonucleotide functionalizing reagents to introduce one or more sulfhydryl, amino or hydroxyl moieties into the oligonucleotide probe sequence, typically at the 5' terminus are described in U.S. Pat. No. 4,914,210. A
5' phosphate group can be introduced as a radioisotope by using polynucleotide kinase and [gamma-\(^{32}\)P]ATP to provide a reporter group. Biotin can be added to the 5' end by reacting an aminothymidine residue or alkylamino linker, introduced during synthesis, with an N-hydroxysuccinimide ester of biotin. Other methods of attaching a detectable moiety, including a fluorescent moiety, to the probe can be found in U.S. Patent No. 5,118,802.

It is also possible to attach a detectable moiety at the 3' terminus of the probe by employing, for example, polynucleotide terminal transferase to add a desired moiety, such as, for example, cordycepin \(^{35}\)S-dATP, and biotinylated dUTP.

Oligonucleotide derivatives are also detectable moieties that can be used in the probes, methods and kits of the present invention. For example, etheno-dA and etheno-A are known fluorescent adenine nucleotides which can be incorporated into an oligonucleotide probe. Similarly, etheno-dC is another analog that could be used in probe synthesis. The probes containing such nucleotide derivatives can be degraded to release mononucleotides that are much more strongly fluorescent than the intact probe by, for example, a polymerase's 5' to 3' nuclease activity.

In certain embodiments of the invention, a probe can be labeled with more than one detectable moiety. In certain of such embodiments, each detectable moiety can be individually attached to different bases of the probe. In other embodiments, more than one detectable moiety can be attached to the same base of the probe.

In certain embodiments, the detectable moiety can be attached to the 5' end of the probe. In other embodiments, the detectable moiety can be attached to the probe at a residue that is within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, about 35, about 40 residues or other number of residues from the 5' end of the probe. The detectable moiety can be attached to any portion of a residue of the probe. For example, the detectable moiety can be attached to a sugar, phosphate, or base moiety of a nucleotide in the probe. In other embodiments, the detectable moiety can be attached between two residues of the probe.

In certain embodiments of the invention, the probe can comprise a fluorescent moiety and a quencher moiety. In such embodiments, the fluorescent moiety can be any fluorescent moiety known to one of skill in the art, as described above.
Further, the quencher moiety can be any quencher moiety known to one of skill in the art without limitation. In certain embodiments, the quencher moiety can be selected from the group consisting of fluorescein-family dyes, polyhalofluorescein-family dyes, hexachlorofluorescein-family dyes, coumarin-family dyes, rhodamine-family dyes, cyanine-family dyes, oxazine-family dyes, thiazine-family dyes, squaraine-family dyes, chelated lanthanide-family dyes, BODIPY®-family dyes, and non-fluorescent quencher moieties. In certain embodiments, the non-fluorescent quencher moieties can be BHQ™-family dyes, Iowa Black™, or Dabcyl (Integrated DNA Technologies, Inc.). Other examples of specific quencher moieties include, for example, but not by way of limitation, TAMRA (N,N,N’,N’-tetramethyl-6-carboxyrhodamine) (Molecular Probes, Inc.), DABCYL (4-(4’-dimehtylaminophenylazo)benzoic acid), Iowa Black™ (Integrated DNA Technologies, Inc.), Cy3™ (Integrated DNA Technologies, Inc.) or Cy5™ (Integrated DNA Technologies, Inc.). In a preferred embodiment, the quencher moiety is Cy5™. Other examples of quencher moieties that can be used in the probes, methods, and kits of the invention can be found in U.S. Patent Nos. 6,399,392, 6,348,596, 6,080,068, and 5,707,813, each of which is hereby incorporated by reference in its entirety.

In certain embodiments, the quencher moiety can be attached to the 3' end of the probe. In other embodiments, the quencher moiety can be attached to the probe at a residue that is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, about 35, about 40 or other number of residues from the 5' end of the probe. In a preferred embodiment, the fluorescent moiety is attached to the 5' end of the probe and the quencher moiety is attached to a residue that is within about 9 residues of the 5' end of the probe. The quencher moiety can be attached to any portion of a residue of the probe. For example, the quencher moiety can be attached to a sugar, phosphate, or base moiety of a nucleotide in the probe. In other embodiments, the quencher moiety can be attached between two residues of the probe.

While not intending to be bound to any particular theory or mechanism of action, it is believed that when the probe is intact, a photon emitted by the fluorescent moiety can be absorbed and thus quenched by the quencher moiety. The quencher moiety
then either releases the energy of the photon as a photon of different wavelength or as heat. Thus, the quencher moiety can also be a fluorescent moiety. As described above, this phenomenon is termed fluorescence resonance energy transfer ("FRET"). Cleaving the probe between the fluorescent moiety and quencher results in a reduction in quenching of the fluorescent moiety’s emitted fluorescence by the quencher moiety.

Generally, transfer of energy between the fluorescent moiety and the quencher moiety depends on the distance between the fluorescent moiety and the quencher moiety and the critical transfer distance of the particular fluorescent moiety-quencher moiety pair. The critical transfer distance is both characteristic and constant for a given fluorescent moiety paired with a given quencher moiety. Further, the spatial relationship of the fluorescent moiety in reference to the quencher moiety can be more sensitively determined when the critical transfer distance of the fluorescent moiety-quencher moiety pair is close to the distance between the fluorescent moiety and the quencher moiety. Accordingly, the skilled practitioner can select the fluorescent moiety and the quencher moiety to have a critical transfer distance that is close to the distance separating the fluorescent moiety from the quencher moiety on the probe. Critical transfer distances of particular fluorescent moiety-quencher moiety pairs are well known in the art and can be found, for example, in an article by Wu and Brand, *Anal. Biochem.* 218 (1994) 1-13.

Other criteria for section of particular fluorescent moiety-quencher moiety pairs include, for example, the quantum yield of fluorescent emission by the fluorescent moiety; the wavelength of fluorescence emitted by the fluorescent moiety; the extinction coefficient of the quencher moiety; the wavelength of fluorescence, if any, emitted by the quencher moiety; and the quantum yield of fluorescent emission, if any, by the quencher moiety. In addition, if the quencher moiety is also a fluorescent moiety, the quencher moiety and the fluorescent moiety can be selected so that fluorescence emitted by one can easily be distinguished from fluorescence emitted by the other. Further guidance on the selection of particular fluorescent moiety-quencher moiety pairs may be found in a review article by Klostermeier and Millar, *Biopolymers* 61 (2002) 159-179.
Exemplary combinations of fluorescent moieties and quencher moieties that can be used in this aspect of the invention include, but are not limited to the fluorescent moiety rhodamine 590 and the quencher moiety crystal violet. A preferred combination of fluorescent and quencher moieties is the fluorescent moiety 6-carboxyfluorescein and the quencher moiety Cy5™. Other examples of fluorescent moiety-quencher moiety pairs that can be used in the probes, methods, and kits of the invention can be found in U.S. Patent No. 6,245,514. Examples of molecules that can be used as both fluorescent or quencher moieties in FRET include fluorescein, 6-carboxyfluorescein, 2’7’-dimethoxy-4’5’-dichloro-6-carboxyfluorescein, rhodamine, 6-carboxyrhodamine, 6-carboxy-X-rhodamine, and 5-(2’-aminoethyl)aminonaphthalene-1-sulfonic acid (EDANS). Whether a fluorescent moiety is a donor or an acceptor is defined by its excitation and emission spectra, and the fluorescent moiety with which it is paired. For example, FAM™ is most efficiently excited by light with a wavelength of 488 nm, and emits light with a spectrum of 500 to 650 nm, and an emission maximum of 525 nm. Accordingly, FAM™ is a suitable fluorescent moiety for use with, for example, with TAMRA as quencher moiety, which has at its excitation maximum 514 nm.

2. **Hybridization-Based Assays**

Methods of detecting and/or quantifying the level of SENP1 or telomerase polynucleotides (RNA or cDNA made therefrom) using nucleic acid hybridization techniques are known to those of skill in the art (see, Sambrook et al., (1989) *Molecular Cloning: A Laboratory Manual*, 2d Ed., vols 1-3, Cold Spring Harbor Press, New York). Biological samples can be screened using a SENP1 or telomerase-specific probe. Such probes correspond in sequence to a region of the SENP1 or telomerase RNA, or their complement. Under defined conditions, specific hybridization of such a probe to test nucleic acid is indicative of the presence of the SENP1 or telomerase polynucleotide in a sample. Defined conditions will be sufficient to allow for hybridization of the probe to its target without significantly hybridizing to other polynucleotides in a complex mixture (e.g. genomic DNA from a cell). If desired, more than one probe may be used on the same test sample. The probe may comprise as few as 8, 15, 20, 50 or 100 or
other number of nucleotides of the SENP1 or telomerase RNA sequence or its complement or may comprise as many as 500, 1 kb or the entire RNA sequence or its complement. In some embodiments, the probe is between 12 and 100 nucleotides, or 16-50 nucleotides or 18-40 nucleotides long.

One method for evaluating the presence, absence, and/or quantity of SENP1 or telomerase polynucleotides involves a Northern blot: mRNA is isolated from a given biological sample, separated by electrophoresis and transferred from the gel to a solid support (e.g., a nitrocellulose membrane). Labeled SENP1 or telomerase probes are then hybridized to the membrane to identify and/or quantify the mRNA.

Expression of SENP1 or telomerase polynucleotides can also be analyzed by other techniques known in the art, e.g., dot blotting, in situ hybridization, RNase protection, probing DNA microchip arrays, and the like.

An alternate method that is quite useful when large numbers of different probes are to be used is a "reverse" dot blot format, in which the amplified sequence contains a label, and the probe is bound to the solid support. This format would be useful if the assay methods of the present invention were used as one of a battery of methods to be performed simultaneously on a sample. In this format, the unlabeled probes are bound to the membrane and exposed to the labeled sample under appropriately stringent hybridization conditions. Unhybridized labeled sample is then removed by washing under suitably stringent conditions, and the filter is then monitored for the presence of bound sequences.

Both the forward and reverse dot blot assays can be carried out conveniently in a microtiter plate; see U.S. Patent Application No. 07/695,072 and U.S. Patent No. 5,232,829. The probes can be attached to bovine serum albumin (BSA), for example, which adheres to the microliter plate, thereby immobilizing the probe.

Another example of a method of using a probe of the invention to detect a SENP1 or telomerase polynucleotide is described in U.S. Patent No. 6,383,756, which provides a method for detecting a nucleic acid bound to a membrane.

In another example, a SENP1 or telomerase polynucleotide can be detected using branched-DNA-based methods. In such methods, a dendrimer monomer is constructed of two DNA strands that share a region of sequence complementarity located in the central portion of each strand. When the two strands anneal to form
the monomer the resulting structure has a central double-stranded center bordered by four single-stranded ends. A dendrimer can be assembled from monomers by hybridization of the single stranded ends of the monomers to each other, while still leaving many single-stranded ends free. These free single-stranded ends can have the sequences of any of the primers or probes of the invention. A dendrimer can be detectably-labeled with any detectable moiety known to one of skill in the art without limitation, as described above in connection with the probes of the invention.

Dendrimers can then be used as a probe, in, for example, the "dot blot" assays described below. In addition, a dendrimer can be used as a probe in any method known to one of skill in the art in which the probe is directly detected. A probe is directly detected when the presence of the probe can be determined without any subsequent reaction or modification, such as a dot blot or Southern hybridization. Further guidance on the selection and use of dendrimers as probes may be found in U.S. Patent Nos. 6,261,779 and in Nilsen et al., J. Theoretical Biology 187 (1997) 273-284; Capaldi et al., Nucleic. Acids Res., 28 (2000) 21e; Wang et al., J. Am. Chem. Soc. 120 (1998) 8281-8282; and Wang et al., Electroanalysis 10 (1998) 553-556.

B. Detection of SENP1 DNA

In some cases, it will be advantageous to detect and analyze genomic DNA encoding SENP1. For example, it can be useful to determine the structure and/or nucleotide sequence of a genomic sequence encoding SENP1 or comprising SENP1 regulatory sequences to identify mutations associated with cancer or other diseases. Similarly, SENP1 cDNA sequences can be analyzed and/or nucleotide sequenced.

In some cases, SENP1 genomic sequences are analyzed to identify polymorphisms (e.g., variants) between commonly occurring alleles and alleles associated with cancer. Types of molecular analyses include, but are not limited to: RFLP analysis, PCR-based analyses, SNP analyses, etc.
C. Detection and quantification of SENP1 or telomerase polypeptides

In addition to the detection of SENP1 or telomerase polynucleotides, one can also use affinity assays such as immunoassays to detect SENP1 or telomerase polypeptides. Immunoassays will typically be used to quantify SENP1 or telomerase polypeptides in a sample. A general overview of the applicable technology can be found in Harlow & Lane, Antibodies: A Laboratory Manual (1988).

Methods of producing polyclonal and monoclonal antibodies that react specifically with SENP1 or telomerase polypeptides are known to those of skill in the art (see, e.g., Coligan, Current Protocols in Immunology (1991); Harlow & Lane, supra; Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986); and Kohler and Milstein, Nature 256 (1975) 495-497. Such techniques include antibody preparation by selection of antibodies from libraries of recombinant antibodies in phage or similar vectors, as well as preparation of polyclonal and monoclonal antibodies by immunizing rabbits or mice (see, e.g., Huse et al., Science 246 (1989) 1275-1281; Ward et al., Nature 341 (1989) 544-546).

SENP1 and/or telomerase polypeptides may be used to produce antibodies specifically reactive with SENP1 or telomerase, respectively. For example, a recombinant SENP1 or an antigenic fragment thereof, is isolated and purified, e.g., following recombinant expression in eukaryotic or prokaryotic cells. The product is then injected into an animal capable of producing antibodies. Either monoclonal or polyclonal antibodies may be generated, for subsequent use in immunoassays to measure the protein.

Monoclonal antibodies and polyclonal sera can be collected and titered against the immunogen protein in an immunoassay, for example, a solid phase immunoassay with the immunogen immobilized on a solid support. Typically, polyclonal antisera with a titer of 10^4 or greater are selected and tested for their cross reactivity against non-SENP1 or telomerase proteins, using a competitive binding immunoassay. Specific polyclonal antisera and monoclonal antibodies will usually bind with a K_d of at least about 0.1 mM, more usually at least about 1 μM, optionally at least about 0.1 μM or better, and optionally 0.01 μM or better.
Once SENP1 and/or telomerase-specific antibodies are available, SENP1 or telomerase polypeptides can be detected by a variety of immunoassay methods. For a review of immunological and immunoassay procedures, see *Basic and Clinical Immunology* (Stites & Terr eds., 7th ed. 1991). Moreover, the immunoassays of the present invention can be performed in any of several configurations, which are reviewed extensively in *Enzyme Immunoassay* (Maggio, ed., 1980); and Harlow & Lane, *supra*.

SENP1 and/or telomerase polypeptides can be detected and/or quantified using any of a number of well recognized immunological binding assays (see, e.g., U.S. Pat. Nos. 4,366,241; 4,376,110; 4,517,288; and 4,837,168). For a review of the general immunoassays, see *Methods in Cell Biology: Antibodies in Cell Biology*, volume 37 (Asai, ed. 1993); *Basic and Clinical Immunology* (Stites & Terr, eds., 7th ed. 1991). Immunological binding assays (or immunoassays) typically use an antibody that specifically binds to a protein or antigen of choice (in this case the SENP1 or telomerase polypeptides or antigenic subsequence thereof). The antibody (e.g., anti-SENP1 or anti-telomerase) may be produced by any of a number of means well known to those of skill in the art and as described above.

Immunoassays also often use a labeling agent to specifically bind to and label the complex formed by the antibody and antigen. The labeling agent may itself be one of the moieties comprising the antibody/antigen complex. Thus, the labeling agent may be a labeled SENP1 or telomerase polypeptide or a labeled anti-SENP1 or anti-telomerase antibody. Alternatively, the labeling agent may be a third moiety, such a secondary antibody, that specifically binds to the antibody/SENP1 or antibody/telomerase complex (a secondary antibody is typically specific to antibodies of the species from which the first antibody is derived). Other proteins capable of specifically binding immunoglobulin constant regions, such as protein A or protein G may also be used as the label agent. These proteins exhibit a strong non-immunogenic reactivity with immunoglobulin constant regions from a variety of species (see, e.g., Kronval et al., *J. Immunol.* 111 (1973) 1401-1406; Akerstrom *et al.*, *J. Immunol.* 135 (1985) 2589-2542). The labeling agent can be modified with a detectable moiety, such as biotin, to which another molecule can specifically
bind, such as streptavidin. A variety of detectable moieties are well known to those skilled in the art.

Throughout the assays, incubation and/or washing steps may be required after each combination of reagents. Incubation steps can vary from about 5 seconds to several hours, optionally from about 5 minutes to about 24 hours. However, the incubation time will depend upon the assay format, antigen, volume of solution, concentrations, and the like. Usually, the assays will be carried out at ambient temperature, although they can be conducted over a range of temperatures, such as 10° C to 40° C.

Immunoassays for detecting SENP1 or telomerase polypeptides in samples may be either competitive or noncompetitive. Noncompetitive immunoassays are assays in which the amount of antigen is directly measured. In "sandwich" assays, for example, the anti-SENP1 or anti-telomerase antibodies can be bound directly to a solid substrate on which they are immobilized. These immobilized antibodies then capture SENP1 or telomerase polypeptides present in the test sample. The SENP1 or telomerase polypeptide thus immobilized is then bound by a labeling agent, such as a second anti-SENP1 or anti-telomerase antibody bearing a label. Alternatively, the second antibody may lack a label, but it may, in turn, be bound by a labeled third antibody specific to antibodies of the species from which the second antibody is derived. The second or third antibody is typically modified with a detectable moiety, such as biotin, to which another molecule specifically binds, e.g., streptavidin, to provide a detectable moiety.

In competitive assays, the amount of SENP1 or telomerase polypeptide present in the sample is measured indirectly by measuring the amount of a known, added (exogenous) SENP1 or telomerase polypeptide displaced (competed away) from an anti-SENP1 or anti-telomerase antibody by the unknown SENP1 or telomerase polypeptide present in a sample. In one competitive assay, a known amount of SENP1 or telomerase polypeptide is added to a sample and the sample is then contacted with an antibody that specifically binds to the SENP1 or telomerase polypeptide. The amount of exogenous SENP1 or telomerase polypeptide bound to the antibody is inversely proportional to the concentration of SENP1 or telomerase polypeptide present in the sample. In some embodiments, the antibody is
immobilized on a solid substrate. The amount of SENP1 or telomerase polypeptide bound to the antibody may be determined either by measuring the amount of SENP1 or telomerase polypeptide present in a SENP1/antibody or telomerase/antibody complex, or alternatively by measuring the amount of remaining uncomplexed protein.

Western blot (immunoblot) analysis can also be used to detect and quantify the presence of SENP1 or telomerase polypeptides in the sample. The technique generally comprises separating sample proteins by gel electrophoresis on the basis of molecular weight, transferring the separated proteins to a suitable solid support, (such as a nitrocellulose filter, a nylon filter, or derivatized nylon filter), and incubating the sample with the antibodies that specifically bind SENP1 or telomerase. The anti-SENP1 or anti-telomerase antibodies specifically bind to the SENP1 or telomerase on the solid support. These antibodies may be directly labeled or, alternatively, may be subsequently detected using labeled antibodies (e.g., labeled sheep anti-mouse antibodies) that specifically bind to the anti-SENP1 or anti-telomerase antibodies.

One of skill in the art will appreciate that it is often desirable to minimize non-specific binding in immunoassays. Particularly where the assay involves an antigen or antibody immobilized on a solid substrate it is desirable to minimize the amount of non-specific binding to the substrate. Means of reducing such non-specific binding are well known to those of skill in the art. Typically, this technique involves coating the substrate with a proteinaceous composition. In particular, protein compositions such as bovine serum albumin (BSA), nonfat powdered milk, and gelatin are widely used.

The particular label or detectable group used in the assay is not a critical aspect of the invention, as long as it does not significantly interfere with the specific binding of the antibody used in the assay. The detectable group can be any material having a detectable physical or chemical property. Such detectable labels have been well-developed in the field of immunoassays and, in general, most any label useful in such methods can be applied to the present invention. Thus, a label is any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Useful labels in the
present invention include magnetic beads, fluorescent dyes, radiolabels, enzymes, and colorimetric labels such as colloidal gold or colored glass or plastic beads.

D. Detection and quantification of SENP1 or telomerase activity

The quantity of SENP1 or telomerase can also be determined by detecting the activity of the proteins. SENP1 is a protease that removes sentrins from proteins. See, e.g., U.S. Patent No. 6,596,527; Gong et al., *J Biol Chem.* 275 (2000) 3355-3359; and Bailey et al., *J Biol Chem.* 279 (2004) 692-703. For instance, SENP1 activity can be detected by detecting removal of sentrins from a known amount of sentrinized protein in the sample.

Telomerase activity can be measured by any number of assays known in the art. See, e.g., Hiyama et al., *Cancer Lett.* 194 (2003) 221-233. For example, TRAP (telomeric repeat amplification protocol) can be used for detecting telomerase activity with a high sensitivity by using PCR. See, Kim N. W. et al., *Science* 206 (1994) 2011-2015; Piatyszek M. A. et al., *Meth. Cell Sci.* 17 (1995) 1-15; Woodring et al., *Nuc. Acids Res.* 23 (1995) 3794-3795; U.S. Patent Nos. 6,551,774; 6,391,554; and 5,837,453. This method involves the detection of telomerase by a single primer extension assay system and is roughly divided in three steps. First, telomerase is extracted from cells. Then, an extension reaction of a TTAGGG chain by the telomerase is carried out and the reaction products are amplified by PCR using two primers. Finally, the amplified products are electrophoresed to detect the telomerase activity by confirming ladders in autoradiography.

Another variation of TRAP is called telomeric extension-PCR (PTEP). See, e.g., Chen et al., *Biotechniques* 35 (2003) 158-162. Similar to TRAP, this method is based on PCR amplification following the in vitro telomerase reaction, while the in vitro telomerase reaction here is prematurely, rather than randomly, terminated.

Apart from this, the telomeric extension products are used as initial primers, instead of as templates, to trigger the amplification with a specially constructed plasmid
DNA as the template that cannot be directly amplified with the telomerase primer. The end product is a specific DNA fragment that reflects telomerase activity. Those of skill in the art will recognize that other methods can also be used to detect telomerase activity. See, e.g., U.S. Patent Publication No. 2002/0025518.

III. Quantification Standards For Assays Of The Inventions

In many embodiments of the invention, the quantity of SENP1 or telomerase in a biological sample is compared to one or more standard values. In general, the standard value will represent the quantity of SENP1 or telomerase found in biological samples from a healthy individual (e.g., not diagnosed with cancer and/or not containing a significant number of cancer cells). Different standard values will be appropriate depending on a number of factors. For example, the quantity of SENP1 or telomerase in a sample from a healthy individual can vary depending on the method used for quantifying SENP1 or telomerase. Moreover, the standard value can vary depending on the proportion of false positives and false negatives that will be provided in a diagnostic assay. For example, if the standard value is set at a low value, the number of false negatives will decrease but the proportion of false positives (those without cancer that are scored as having cancer cells) will increase. Thus, a user can compare SENP1 or telomerase quantity in a sample to different standard values depending on the tolerance for false negative or false positive results. In some cases, the standard value will be determined based on the average, median, or other statistical calculation based on a plurality of samples either known to lack cancer cells or known to contain cancer cells. The standard value need not be recalculated for each assay, but can be a pre-determined single value or range. The standard value can be stored in a computer memory and accessed as necessary. In other embodiments, the standard value is determined for each biological sample each time a set of biological samples are processed. In these cases, the standard value is the quantity of SENP1 or telomerase in a sample known, or at least suspected, to not contain cancer cells. In some embodiments, these standard samples will be collected from the same individual as is tested for cancer. For example, a solid tumor and a non-cancer-containing sample can be obtained from
the same individual and the quantity of SENP1 and/or telomerase in the non-cancer-containing sample can form the basis of the standard value. In other embodiments, the standard samples will be obtained from another individual or individuals.

In some cases, the quantities of SENP1 or telomerase (both from the biological sample of interest and the non-cancer standard) are normalized to a second value. Normalization is useful, for example, to remove or minimize error introduced by a user or assays into the amounts detected or to minimize error caused by varying numbers of cells in a sample. Normalization is typically based on a value that incorporates some of the same errors. For example, the quantity of a second transcript in the same biological sample can be used to normalize SENP1 or telomerase values. Typically, the second transcript is known or suspected not to be effected by the presence or absence of cancer cells in the sample. Exemplary "normalizing transcripts" (also known as transcripts of "housekeeping genes") include, but are not limited to, the following human proteins: protein phosphatase 1, catalytic subunit, alpha isoform (PPP1CA), TATA box binding protein (e.g., M55654), HPRT1 (e.g., M26434), β-glucuronidase, β2-microglobulin, phosphoglycerol kinase 1 (e.g., NM_000291), β-actin (e.g., NM_001101), transferrin receptor (e.g., NM_003234), glyceraldehyde-3-phosphate dehydrogenase (e.g., NM_002046), human serum albumin (e.g., NM_000477), tubulin, hypoxantine phosphoribosyltransferase (e.g., NM_000194), mitochondrial ribosomal protein L32 (e.g., NM_031903), 28S RNA, 18S RNA, 5-aminolevulinate synthase, and porphobilinogen deaminase. See also, LightCycler h-Housekeeping Gene Selection Set (Roche Applied Sciences, catalog no. 3310159); Thellin, O. et al., *J. Biotechnol.* 75 (1999) 291; Warrington, J.A. et al., *Physiol. Genomics* 2 (2000) 143. Those of skill in the art will recognize that many house keeping genes, among others, will provide equivalent normalizing values. Values can be normalized according to any generally known statistical methods, including by simply dividing values by the quantity of the normalizing transcript or protein.
IV. Recording A Diagnosis, Prognosis Or Stage Of Cancer

The methods of the invention may involve recording the quantity of SENP1 and/or telomerase in a sample and/or a diagnosis, prognosis, or stage of cancer, including, e.g., bladder cancer, breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

This information may be recorded as text or data and may be stored in a computer readable form. Such a computer system typically comprises major subsystems such as a central processor, a system memory (typically RAM), an input/output (I/O) controller, an external device such as a display screen via a display adapter, serial ports, a keyboard, a fixed disk drive via a storage interface and a floppy disk drive operative to receive a floppy disc, and a CD-ROM (or DVD-ROM) device operative to receive a CD-ROM. Many other devices can be connected, such as a network interface connected via a serial port.

The computer system also be linked to a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

The computer system can comprise code for interpreting the results of quantification of SENP1 or telomerase in a biological sample. Thus in an exemplary embodiment, the genotype results are provided to a computer where a central processor is executes a computer program for determining a diagnosis, prognosis or determination of the stage of a particular cancer, e.g., selected from bladder cancer, breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

V. Diagnosing Cancer

The present methods can be used in the diagnosis, prognosis, classification, and treatment of a number of types of cancers. A cancer at any stage of progression can be detected, such as primary, metastatic, and recurrent cancers. Information

The present invention provides methods for determining whether or not a mammal (e.g., a human) has cancer, whether or not a biological sample contains cancerous cells, estimating the likelihood of a mammal developing cancer, and monitoring the efficacy of anti-cancer treatment in a mammal with cancer. Such methods are based on the discovery that cancer cells have an elevated level of SENP1 polynucleotide and/or polypeptide. Accordingly, by determining whether or not a cell contains elevated levels of SENP1 or telomerase, it is possible to determine whether or not the cell is cancerous. Further, the presence of cancerous cells can be determined indirectly, e.g., in certain embodiments a biological sample that does not itself contain cancerous cells, but which has been taken from an animal with cancerous cells elsewhere in its body, may contain elevated levels of SENP1 or telomerase reflecting the presence of the cancerous cells.

In numerous embodiments of the present invention, the level and/or presence of SENP1 or telomerase will be detected in a biological sample, thereby detecting the presence or absence of cancerous cells in the biological sample, or, in certain embodiments, in the mammal from which the biological sample was removed. In some embodiments, the biological sample will comprise a tissue sample from a
tissue suspected of containing cancerous cells. For example, in an individual
suspected of having bladder cancer, bladder tissue is biopsied, or urine is obtained.
In other embodiments, the quantity of SENP1 or telomerase is determined in a
bodily fluid (e.g., urine sediment (see, e.g., Melissourgou et al., Urology 62 (2003)
362-367), saliva, blood, semen, etc.). In some embodiments, the quantity of
SENP1 in a biopsy from a tissue selected from breast, colon, kidney, lung, ovarian,
pancreatic, and small intestine is used to detect cancer in that tissue. In some
embodiments, the quantity of SENP1 in a bronchial lavage is determined, e.g., to
diagnose lung cancer. In some embodiments, the quantity of SENP1 is determined
from a stool sample, e.g., to diagnose colon or small intestine cancer. In other
embodiments, a tissue sample known to contain cancerous cells, e.g., from a tumor,
will be analyzed for SENP1 or telomerase levels to determine information about
the cancer, e.g., the efficacy of certain treatments, the survival expectancy of the
animal, etc. Often, the methods will be used in conjunction with additional
diagnostic methods, e.g., detection of other cancer markers, etc.
Further, the present methods may be used to assess the efficacy of a course of
treatment. For example, in a mammal with cancer from which a biological sample
has been found to contain an elevated amount of a SENP1 or telomerase, the
efficacy of an anti-cancer treatment can be assessed by monitoring SENP1 or
telomerase levels over time. For example, a reduction in SENP1 or telomerase
levels in a biological sample taken from a mammal following a treatment,
compared to a level in a sample taken from the mammal before, or earlier in, the
treatment, indicates efficacious treatment.
The methods detecting cancer can comprise the detection of one or more other
cancer-associated polynucleotide or polypeptides sequences. Accordingly, SENP1
or telomerase can be used either alone, together or in combination with other
markers for the diagnosis or prognosis of cancer.
The methods of the present invention can be used to determine the optimal course
of treatment in a mammal with cancer. For example, the presence of an elevated
level of SENP1 or telomerase can indicate a reduced survival expectancy of a
mammal with cancer, thereby indicating a more aggressive treatment for the
mammal. In addition, a correlation can be readily established between levels of
SENP1 or telomerase, or the presence or absence of a diagnostic presence of
SENP1 or telomerase (i.e., a quantity of SENP1 or telomerase over the standard
value), and the relative efficacy of one or another anti-cancer agent. Such analyses
can be performed, e.g., retrospectively, i.e., by detecting SENP1 or telomerase
levels in samples taken previously from mammals that have subsequently
undergone one or more types of anti-cancer therapy, and correlating the SENP1 or
telomerase levels with the known efficacy of the treatment.

In making a diagnosis, prognosis, risk assessment or classification, based on
expression of SENP1 and/or telomerase, the quantity of SENP1 and/or telomerase
expression may be compared to a standard value, as discussed above. In some
cases, a diagnosis or prognosis of cancer can be made if SENP1 and/or telomerase
expression in the biological sample is higher than the standard value. In some
cases, the quantity of SENP1 and/or telomerase expression in the biological sample
is at least 10% more, 25% more, 50% more, 75% more, 90% more, 2-fold, 3-fold,
5-fold, 10-fold, 50-fold, or more than 100-fold compared to the standard value (or a
value representing SENP1 and/or telomerase expression in a non-cancer containing
sample).

VI. Sample Preparation and Nucleic Acid Amplification

Samples are generally derived or isolated from subjects, typically mammalian
subjects, more typically human subjects. Essentially any technique for acquiring
these samples is optionally utilized including, e.g., biopsy, scraping, venipuncture,
swabbing, or other techniques known in the art.

Methods of storing specimens, culturing cells, isolating and preparing nucleic acids
from these sources are generally known in the art and many of these are described
further in the references and/or examples provided herein.

To further illustrate, prior to analyzing the target nucleic acids described herein,
those nucleic acids may be purified or isolated from samples that typically include
complex mixtures of different components. Cells in collected samples are typically
lysed to release the cell contents. For example, cells in urine sediment can be lysed
by contacting them with various enzymes, chemicals, and/or lysed by other
approaches known in the art. In some embodiments, nucleic acids are analyzed
directly in the cell lysate. In other embodiments, nucleic acids are further purified
or extracted from cell lysates prior to detection. Essentially any nucleic acid
extraction methods can be used to purify nucleic acids in the samples utilized in the
methods of the present invention. Exemplary techniques that can be used to
purifying nucleic acids include, e.g., affinity chromatography, hybridization to
probes immobilized on solid supports, liquid-liquid extraction (e.g., phenol-
chloroform extraction, etc.), precipitation (e.g., using ethanol, etc.), extraction with
filter paper, extraction with micelle-forming reagents (e.g., cetyl-trimethyl-
ammonium-bromide, etc.), binding to immobilized intercalating dyes (e.g.,
ethidium bromide, acridine, etc.), adsorption to silica gel or diatomic earths,
adsorption to magnetic glass particles or organo silane particles under chaotropic
conditions, and/or the like. Sample processing is also described in, e.g., US Pat.
Nos. 5,155,018, 6,383,393, and 5,234,809.

To further exemplify, unmodified nucleic acids can bind to a material with a silica
surface. Many of the processes that are optionally adapted for use in performing
the methods of the present invention are described in the art. To illustrate,
Vogelstein et al., Proc. Natl. Acad. Sci. USA 76 (1979) 615-619 describes the
purification of nucleic acids from agarose gels in the presence of sodium iodide
describes the purification of nucleic acids from bacteria on glass dust in the
presence of sodium perchlorate. In DE-A 3734442 nucleic acids are isolated on
glass fiber filters. The nucleic acids bound to these glass fiber filters are washed
and then eluted with a methanol-containing Tris/EDTA buffer. A similar
procedure is described in Jakobi et al., Anal. Biochem. 175 (1988) 196-201. In
particular, Jakobi et al. describes the selective binding of nucleic acids to glass
surfaces in chaotropic salt solutions and separating the nucleic acids from
contaminants, such as agarose, proteins, and cell residue. To separate the glass
particles from the contaminants, the particles can be centrifuged or fluids can be
drawn through the glass fiber filters. In addition, the use of magnetic particles to
immobilize nucleic acids after precipitation by adding salt and ethanol is described
In this procedure, the nucleic acids are agglutinated along with the magnetic
particles. The agglutinate is separated from the original solvent by applying a magnetic field and performing one or more washing steps. After at least one wash step, the nucleic acids are typically dissolved in a Tris buffer. Magnetic particles in a porous glass matrix that is covered with a layer that includes, e.g., streptavidin can also be utilized in certain embodiments of the invention. These particles can be used, e.g., to isolate biotin-conjugated nucleic acids and proteins. Ferrimagnetic, ferromagnetic, and superparamagnetic particles are also optionally utilized. Magnetic glass particles and related methods that can be adapted for using in performing the methods described herein are also described in, e.g., WO 01/37291.

Via. Preferred embodiments of the invention

Particularly preferred embodiments of the invention are described in the following. A preferred embodiment of the invention is a method of detecting SENP1 expression in a biological sample, the method comprising the steps of determining the quantity of SENP1 in a biological sample from an individual having or suspected of having a cancer selected from the group consisting of breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

The method may optionally comprise the step of obtaining the biological sample from the individual before determining the quantity of SENP1 in the biological sample. Preferably, the method further comprises the step of recording a diagnosis of a cancer selected from the group consisting of breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

In a preferred embodiment, the quantity of SENP1 is determined by detecting a polymucleotide encoding SENP1 in the sample. Therefore, preferably the step of determining the quantity of SENP1 comprises the step of detecting a polymucleotide encoding SENP1 in the sample. This detection step may comprise amplifying the polymucleotide in an amplification reaction. Preferably, the
amplification reaction comprises at least two different oligonucleotides comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that during the amplification reaction the oligonucleotides prime amplification of at least a fragment of SEQ ID NO:1.

Preferably, the amplification product of the amplification reaction is detected in a step comprising hybridizing a detectably-labeled oligonucleotide to the product. Preferably, the amplification reaction comprises a template-dependent nucleic acid polymerase with 5'-3' exonuclease activity under conditions that allow the polymerase to fragment the detectably-labeled oligonucleotide.

In a preferred embodiment, the method may further comprise the step of determining the quantity of telomerase in the biological sample. Preferably, the method further comprises the step of comparing the quantity of SENP1 and telomerase in the sample to a SENP1 standard and a telomerase standard, respectively, wherein the SENP1 standard represents SENP1 in non-cancer cells and the telomerase standard represents telomerase quantities in non-cancer cells.

In summary, in a preferred embodiment of the invention, a method of detecting SENP1 expression is provided in a biological sample from an individual having or suspected of having a cancer selected from the group consisting of breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer, the method comprising determining the quantity of SENP1 in the biological sample by

a) amplifying a polynucleotide encoding SENP1 in the biological sample in an amplification reaction, and

b) detecting the amount of the amplification product of step a) to detect SENP1 expression in the biological sample.

Preferably, the amplification reaction comprises at least two different oligonucleotides comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that during the amplification reaction the oligonucleotides prime amplification of at least a fragment of SEQ ID NO:1.
Preferably, the (amount of the) amplification product of the amplification reaction is detected in a step comprising hybridizing a detectably-labeled oligonucleotide to the product. Preferably, the amplification reaction further comprises a template-dependent nucleic acid polymerase with 5'-3' exonuclease activity under conditions that allow the polymerase to fragment the detectably-labeled oligonucleotide.

In a preferred embodiment, the method may further comprise the step of determining the quantity of telomerase in the biological sample. Preferably, the method further comprises the step of comparing the quantity of SENP1 and telomerase in the sample to a SENP1 standard and a telomerase standard, respectively, wherein the SENP1 standard represents SENP1 in non-cancer cells and the telomerase standard represents telomerase quantities in non-cancer cells. The standard is preferably a biological sample (comprising cells) from a control individual not suffering from bladder cancer, breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, or pancreatic cancer.

The method may optionally comprise the step of obtaining the biological sample from the individual before the determining the quantity of SENP1 in the biological sample. Preferably, the method further comprises the step of recording a diagnosis of a cancer selected from the group consisting of bladder cancer, breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

In another preferred embodiment of the invention, a method is provided to determine whether a biological sample from a patient comprises cancerous cells selected from the group consisting of bladder cancer cells, breast cancer cells, colon cancer cells, kidney cancer cells, lung cancer cells, ovarian cancer cells, pancreatic cancer cells, and small intestine cancer cells comprising the steps of:

a) determining the quantity of SENP1 in the biological sample,

b) determining the quantity of SENP1 in a biological sample from a control individual not suffering from bladder cancer, breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, or pancreatic cancer,
a significant difference between the quantity of SENP1 in the biological sample from the patient and the quantity of SENP1 in the biological sample from the control individual is an indication that the biological sample comprises cancer cells.

A significant difference is preferably a 1.5 fold or greater difference, more preferably a two fold or greater difference.

The step of determining the quantity of SENP1 in the biological sample preferably comprises the steps of

a) amplifying a polynucleotide encoding SENP1 in the biological sample in an amplification reaction, and
b) detecting the amount of the amplification product of step a) to determine the quantity of SENP1 in the biological sample.

 Preferably, the amplification reaction comprises at least two different oligonucleotides comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that during the amplification reaction the oligonucleotides prime amplification of at least a fragment of SEQ ID NO:1.

 Preferably, the (amount of the) amplification product of the amplification reaction is detected in a step comprising hybridizing a detectably-labeled oligonucleotide to the product. Preferably, the amplification reaction further comprises a template-dependent nucleic acid polymerase with 5'-3' exonuclease activity under conditions that allow the polymerase to fragment the detectably-labeled oligonucleotide.

In a preferred embodiment, the method may further comprise the step of determining the quantity of telomerase in the biological sample. Preferably, the method further comprises the step of comparing the quantity of SENP1 and telomerase in the sample to a SENP1 standard and a telomerase standard, respectively, wherein the SENP1 standard represents SENP1 in non-cancer cells and the telomerase standard represents telomerase quantities in non-cancer cells.
The standard is preferably a biological sample (comprising cells) from a control individual not suffering from bladder cancer, breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, or pancreatic cancer.

The method may optionally comprise the step of obtaining the biological sample from the individual before the determining the quantity of SENP1 in the biological sample. Preferably, the method further comprises the step of recording a diagnosis of a cancer selected from the group consisting of breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

VII. Kits

The present invention also provides for kits for diagnosing cancer by detecting SENP1 and telomerase (e.g., polynucleotides, polypeptides, or activity). The kits of the invention will generally comprise reagents for detecting SENP1 and/or telomerase polypeptides and/or SENP1 and/or telomerase polynucleotides, and will optionally contain written instructions for their use.

In some embodiments, the kits of the invention will comprise reagents to amplify SENP1 and/or telomerase polynucleotides. Such reagents can include, e.g., SENP1 and/or telomerase-specific primers and/or detectably labeled probes (e.g., 5' exonuclease, molecular beacon or Scorpion probes). The kits can optionally include amplification reagents such as thermostable polymerases, reverse transcriptase, nucleotides, buffers and salts or other components as described herein or known in the art.

In some cases, the kits will comprise at least one oligonucleotide comprising a sequence at least 70%, 75%, 80%, 85%, 90% or 95% identical to at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 35, 50 or more contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that when the oligonucleotide and a polynucleotide comprising SEQ ID NO:1 are submitted to an amplification reaction, the oligonucleotide primes amplification of at least a fragment of SEQ ID NO:1.

In some cases, the kits will also comprise the detectably-labeled oligonucleotide comprising a sequence at least 70%, 75%, 80%, 85%, 90% or 95% identical to at
least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 35, 50 or more contiguous nucleotides of SEQ ID NO:1, or a complement thereof.

In some cases, the kits will comprise at least one oligonucleotide comprising a sequence at least 70%, 75%, 80%, 85%, 90% or 95% identical to at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 35, 50 or more contiguous nucleotides of:

i) human telomerase RNA (TERC);

ii) human telomerase reverse transcriptase protein (TERT) mRNA;

iii) a complement of TERC; or

iv) a complement of TERT

such that when the oligonucleotide and TERC or TERT mRNA are submitted to an amplification reaction, the oligonucleotide primes amplification of at least a fragment of TERC or TERT mRNA.

In some cases, the kits will comprise the detectably-labeled oligonucleotide comprising a sequence at least 70%, 75%, 80%, 85%, 90% or 95% identical to at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 35, 50 or more contiguous nucleotides of:

i) human telomerase RNA (TERC);

ii) human telomerase reverse transcriptase protein (TERT) mRNA;

iii) a complement of TERC; or

iv) a complement of TERT.

In other embodiments, the kits of the invention comprise reagents that specifically bind to SENP1 or telomerase polypeptides. For example, in some embodiments, the kits of the invention comprise a first antibody that specifically binds to SENP1 or telomerase. The kits can also comprise a second antibody that binds to the first antibody (i.e., from a different species) and a detectable label.

VIII. Screening for Antagonists of SENP1

A number of different screening protocols can be utilized to identify agents that modulate the level of activity of SENP1 in cells, e.g., in mammalian cells, e.g., in
human cells. In general terms, the screening methods may involve screening a plurality of agents to identify an agent that interacts with SENP1, for example, by binding to SENP1 and preventing activity of SENP1 or by preventing an activator of SENP1 from activating SENP1.

1. **SENP1 Binding Assays**

Preliminary screens can be conducted by screening for agents capable of binding to SENP1, as at least some of the agents so identified may be SENP1 antagonists. The binding assays usually involve contacting a SENP1 protein with one or more test agents and allowing sufficient time for the protein and test agents to form a binding complex. Any binding complexes formed can be detected using any of a number of established analytical techniques. Protein binding assays include, but are not limited to, immunohistochemical binding assays, flow cytometry or other assays which maintain conformation of SENP1. SENP1 utilized in such assays can be naturally expressed, cloned or synthesized. Binding assays are also useful, e.g., for identifying endogenous proteins that interact with SENP1.

2. **Cells and Reagents**

The screening methods of the invention can be performed as *in vitro* or cell-based assays. Cell-based assays can be performed in any cells in which a SENP1 polypeptide is endogenously or exogenously expressed. In some embodiments, the cell-based assays may be performed using cells that have reduced or no detectable telomerase activity or expression and/or that have a neoplastic phenotype. In some embodiments, TERT expression-negative immortal cell lines are tested for susceptibility to potential SENP1 inhibitors. These telomerase-negative cell lines are proposed to be useful in such a screen since they likely replicate their telomeres by a telomerase-independent mechanism (Alternative Lengthening of Telomeres or "ALT"). Without intending to limit the scope of the invention to a particular mechanism of action, we propose that SENP1 is involved in the maintenance of ALT. Inhibition of ALT by a SENP1 inhibitor would then be predicted to result in an alteration of the telomere structure with an eventual inhibition of division of
these cells. In contrast, in cases where telomerase is active in cell-lines, the telomerase would continue to allow for cell division even in the presence of a SENP1 inhibitor.

Inhibition of ALT can be detected by assaying for a change in telomere length (see, e.g., the TeloTAGGG Telomere Length Assay from Roche Applied Biosystems or Tsutsui, T. et al., Carcinogenesis 24 (2003) 953-965), or a change in morphological markers such as the presence of PML bodies that are "donut-shaped" in ALT cells instead of the normally punctate appearance of PML-NB in cells not undergoing ALT (see, e.g., Yeager, T.R., et al., Cancer Res. 59 (1999) 4175-4179, inhibition of cell division (determined by, e.g., counting the number of cells at different time points (e.g., using Guava Technology™ products), using soft agar based assays to count the number of colonies at different time points, using cell staging technology to determine the stage of the cell cycle the cells are in, visually analyzing cell using microscopy, chromosomal analyses or Cellomics™ technology, or analyzing protein expression, e.g., via western blotting or immunohistochemical analyses).

Cell-based assays may involve whole cells or cell fractions containing SENP1 to screen for agent binding or modulation of SENP1 activity by the agent. Cells used in the cell-based assays may be primary cells or tumor cells or other types of immortal cell lines. Of course, SENP1 can be expressed in cells that do not endogenously express SENP1.

3. **Signaling activity or downstream events**

Signaling activity or other downstream events regulated by SENP1 can also be monitored to identify SENP1 antagonists. Thus, in some embodiments, a plurality of agents are contacted to a cell expressing SENP1 and the cells are subsequently
screened for a change in signaling or a downstream event. The pool of agents that
modulate a downstream event regulated by SENP1 are typically enriched for
SENP1 antagonists because at least some of the identified agents are likely to
directly antagonize SENP1. Downstream events include those activities or
manifestations that occur as a result of inhibition of SENP1, and may include, e.g.:
reduced cell growth (measured, e.g., as colony counts in soft agar or using cell
analysis systems such as those from Guava Technologies, Hayward, CA),
changes in cell cycle stage (measured, e.g., using HT antibody staining image
analysis, e.g., from Cellomics, Pittsburgh, PA, or by standard cytological methods);
or
changes in protein expression, including, e.g., by western blotting or microscopy.

Soft agar growth or colony formation in suspension
Normal cells require a solid substrate to attach and grow. Neoplastic cells have lost
this phenotype and grow detached from the substrate. For example, neoplastic cells
can grow in stirred suspension culture or suspended in semi-solid media, such as
semi-solid or soft agar. The neoplastic cells, when transfected with tumor
suppressor genes or when contacted with a SENP1 antagonist, may regenerate
normal phenotype and may require a solid substrate to attach and grow. Thus, soft
agar growth or colony formation in suspension assays can be used to identify
agents that reduce or eliminate abnormal cellular proliferation and transformation,
including soft agar growth.
Techniques for soft agar growth or colony formation in suspension assays are
described in Freshney, *Culture of Animal Cells a Manual of Basic Technique* (3rd

Contact inhibition and density limitation of growth
Normal cells typically grow in a flat and organized pattern in a petri dish until they
touch other cells. When the cells touch one another, they are contact inhibited and
stop growing. When cells are transformed, however, the cells are not contact
inhibited and continue to grow to high densities in disorganized foci. Thus, the
transformed cells grow to a higher saturation density than normal cells. This can
be detected morphologically by the formation of a disoriented monolayer of cells or rounded cells in foci within the regular pattern of normal surrounding cells. Alternatively, labeling index with \(^{3}H\)-thymidine at saturation density can be used to measure density limitation of growth. See Freshney (1994), supra. The transformed cells, when transfected with tumor suppressor genes, regenerate a normal phenotype and become contact inhibited and would grow to a lower density.

Labeling index with \(^{3}H\)-thymidine at saturation density may be used to measure density limitation of growth. For example, transformed host cells may be contacted with a candidate SENP1 antagonist and then grown for a period of time (e.g., 24 hours) to saturation density in non-limiting medium conditions. The percentage of cells labeling with \(^{3}H\)-thymidine may be determined autoradiographically. See, Freshney (1994), supra.

Growth factor or serum dependence

Transformed cells have a lower serum dependence than their normal counterparts (see, e.g., Temin, *J. Natl. Cancer Inst.* 37 (1966) 167-175; Eagle et al., *J. Exp. Med.* 131 (1970) 836-879); Freshney, supra. This is in part due to release of various growth factors by the transformed cells. Growth factor or serum dependence of cells contacted with a candidate SENP1 antagonist can be compared with that of control.

Tumor specific markers levels

Tumor or neoplastic cells release an increased amount of certain factors (hereinafter “tumor specific markers”) than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, *Angiogenesis, tumor vascularization, and potential interference with tumor growth.* in *Biological Responses in Cancer*, pp. 178-184 (Mihich (ed.) 1985)). Similarly, Tumor angiogenesis factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman, *Angiogenesis and Cancer, Sem Cancer Biol.* (1992)).

Invasiveness into Matrigel

The degree of invasiveness into Matrigel or some other extracellular matrix constituent can be used in an assay to identify SENP1 antagonists. Tumor cells exhibit a good correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, neoplastic cells may be used, wherein a decrease invasiveness of the cells following contacted with an agent may indicate that the agent is a SENP1 antagonist.

Techniques described in Freshney (1994), supra, can be used. Briefly, the level of invasion of host cells can be measured by using filters coated with Matrigel or some other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with 125I and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), supra.

4. Validation

Agents that are initially identified by any of the foregoing screening methods can be further tested to validate the apparent activity. In some embodiments, such studies are conducted with suitable animal models. The basic format of such methods involves administering a lead compound identified during an initial screen to an animal that serves as a model for human disease to be treated and then determining if SENP1 is in fact modulated and/or the disease or condition is ameliorated. The animal models utilized in validation studies generally are mammals of any kind. Specific examples of suitable animals include, but are not limited to, primates, mice and rats.
5. **Agents that interact with SENP1**

The agents tested as modulators of SENP1 can be any small chemical compound, or a biological entity, such as a polypeptide (e.g., a peptide), sugar, nucleic acid (including, e.g., siRNAs or antisense polynucleotides) or lipid. Essentially any chemical compound can be used as a potential modulator (e.g., antagonist) or ligand in the assays of the invention, although most often compounds that can be dissolved in aqueous or organic (especially DMSO-based) solutions are used. The assays are designed to screen large chemical libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays). It will be appreciated that there are many suppliers of chemical compounds, including Sigma (St. Louis, MO), Aldrich (St. Louis, MO), Sigma-Aldrich (St. Louis, MO), Fluka Chemika-Biochemica Analytika (Buchs, Switzerland) and the like.

In some embodiments, the agents have a molecular weight of less than 1,500 daltons, and in some cases less than 1,000, 800, 600, 500, or 400 daltons. The relatively small size of the agents can be desirable because smaller molecules have a higher likelihood of having physiochemical properties compatible with good pharmacokinetic characteristics, including oral absorption than agents with higher molecular weight. For example, agents less likely to be successful as drugs based on permeability and solubility were described by Lipinski *et al.* as follows: having more than 5 H-bond donors (expressed as the sum of OHs and NHs); having a molecular weight over 500; having a LogP over 5 (or MLogP over 4.15); and/or having more than 10 H-bond acceptors (expressed as the sum of Ns and Os). See, *e.g.*, Lipinski *et al.* *Adv Drug Delivery Res* 23 (1997) 3–25.

In some embodiments, high throughput screening methods involve providing a combinatorial chemical or peptide library containing a large number of potential therapeutic compounds (potential modulator or ligand compounds). Such "combinatorial chemical libraries" or "ligand libraries" are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The
compounds thus identified can serve as conventional “lead compounds” or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis, by combining a number of chemical “building blocks” such as reagents. For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (amino acids) in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks.

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent 5,010,175, Furka, Int. J. Pept. Prot. Res. 37 (1991) 487-493; and Houghton et al., Nature 354 (1991) 84-88).

Other chemistries for generating chemical diversity libraries can also be used. Such chemistries include, but are not limited to: peptoids (e.g., PCT Publication No. WO 91/19735), encoded peptides (e.g., PCT Publication WO 93/20242), random bio-oligomers (e.g., PCT Publication No. WO 92/00091), benzodiazepines (e.g., U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs et al., Proc. Natl. Acad. Sci. USA 90 (1993) 6909-6913), vinylogous polypeptides (Hagihara et al., J. Amer. Chem. Soc. 114 (1992) 6568), nonpeptidal peptidomimetics with glucose scaffolding (Hirschmann et al., J. Amer. Chem. Soc. 114 (1992) 9217-9218), analogous organic syntheses of small compound libraries (Chen et al., J. Amer. Chem. Soc. 116 (1994) 2661), oligocarbamates (Cho et al., Science 261 (1993) 1303), and/or peptidyl phosphonates (Campbell et al., J. Org. Chem. 59 (1994) 658), nucleic acid libraries (see Ausubel, Berger and Sambrook, all supra), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn et al., Nature Biotechnology, 14 (1996) 309-314 and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al., Science, 274 (1996) 1520-1522 and U.S. Patent 5,593,853), small organic molecule libraries (see, e.g., benzodiazepines, Baum C&EN, Jan 18, page 33 (1993); isoprenoids, U.S. Patent 5,569,588; thiazolidinones and

Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA). In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Tripos, Inc., St. Louis, MO, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

SENPI is structurally related to the ubiquitin family of proteins and this similarity can be used to assist in designing SENP1 antagonists. The family of Small Ubiquitin-Like (Ubl) Modifiers (SUMO; reviewed in Muller, S., et al., Nat Rev Mol Cell Biol 2 (2001) 202-210) and Yeh, E.T., et al., Gene 248 (2000) 1-14), of which SENP1 is a member, is related to the Ubiquitin family. Although sequence identity between the two families is <20%, the overall structures are very similar (2.1 Å rmsd for core residues [21-93 and 1-72 of SUMO-1 and ubiquitin, respectively] (Bayer, P., et al., J Mol Biol. 280 (1998) 275-286). Both proteins become covalently attached via their C-terminal -COOH group to the ε-NH₂ group of a Lysine side chain (isopeptide bond) of the target protein. Ubiquitin and SUMO possess conserved di-Glycine motifs near the C-terminus. The conjugation of Ubiquitin and SUMO is a complex process that involves several steps: C-tail cleavage, activation and final transfer (Johnson, E.S., et al., Embo J 16 (1997) 5509-5519; Gong, L., et al., FEBS Lett 448 (1999) 185-189).

Unlike ubiquitin, SUMOs do not form polymeric attachments due to substitution of the equivalent to Ubiquitin Lys-48 with Gln. The SUMO and ubiquitin pathways differ primarily in the consequence of the modification: the most well characterized result of ubiquitination is the targeting of the tagged protein to the 26 S proteasome for degradation. SUMOylated proteins are not destined for degradation.

Three SUMO genes have been identified in humans (see Table 1 for accession numbers). There is 62.0/49.0% sequence similarity/identity between Smt3 and
human SUMO-1 (see Table 2). The solution structure for human SUMO-1 has been solved (Bayer, P., et al., J Mol Biol. 280 (1998) 275-286).

Table 1: Sequences (SWISSPROT accession numbers), Pfam motifs and Structures (PDB files).

<table>
<thead>
<tr>
<th>Sequence/Motif/Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEASTGP:ULP1</td>
<td>S. cerevisiae Ulp1</td>
</tr>
<tr>
<td>YEASTGP:ULP2</td>
<td>S. cerevisiae Ulp1</td>
</tr>
<tr>
<td>SW HUM:SEN1 HUMAN</td>
<td>H. sapiens SENP1</td>
</tr>
<tr>
<td>SW HUM:SEN2 HUMAN</td>
<td>H. sapiens SENP2</td>
</tr>
<tr>
<td>SW HUM:SEN3 HUMAN</td>
<td>H. sapiens SENP3</td>
</tr>
<tr>
<td>SW HUM:SEN5 HUMAN</td>
<td>H. sapiens SENP5</td>
</tr>
<tr>
<td>SW HUM:SEN6 HUMAN</td>
<td>H. sapiens SENP6</td>
</tr>
<tr>
<td>SW HUM:SEN7 HUMAN</td>
<td>H. sapiens SENP7</td>
</tr>
<tr>
<td>SW HUM:SEN8 HUMAN</td>
<td>H. sapiens SENP8</td>
</tr>
<tr>
<td>PF02902</td>
<td>Pfam Ulp1 C (SENP family)</td>
</tr>
<tr>
<td>1euv.pdb</td>
<td>Yeast Ulp1-Smt3 X-ray structure</td>
</tr>
<tr>
<td>PF00443</td>
<td>Pfam Ubiquitin carboxyl-terminal hydrolase (UCH family)</td>
</tr>
<tr>
<td>SW_HUM:UBL3 HUMAN (P15374)</td>
<td>H. sapiens Ubiquitin carboxyl-terminal hydrolase isozyme L3</td>
</tr>
<tr>
<td>SW_HUM:UBL1 HUMAN (P09936)</td>
<td>H. sapiens Ubiquitin carboxyl-terminal hydrolase isozyme L1</td>
</tr>
<tr>
<td>SW_HUM:UBL5 HUMAN (Q9y5k5)</td>
<td>H. sapiens Ubiquitin carboxyl-terminal hydrolase isozyme L5</td>
</tr>
<tr>
<td>1uch.pdb</td>
<td>H. sapiens UCH-L3 X-ray structure</td>
</tr>
<tr>
<td>1omx.pdb</td>
<td>Yeast UCH-ubiquitin aldehyde X-ray structure</td>
</tr>
<tr>
<td>SW HUM:SM33 HUMAN</td>
<td>H. sapiens SUMO-1</td>
</tr>
<tr>
<td>SW HUM:SM32 HUMAN</td>
<td>H. sapiens SUMO-2 (Sentrin 2)</td>
</tr>
<tr>
<td>SW HUM:SM31 HUMAN</td>
<td>H. sapiens SUMO-?</td>
</tr>
<tr>
<td>YEASTGP:SMT3</td>
<td>S. cerevisiae Smt3</td>
</tr>
<tr>
<td>SW HUM:UBIQ HUMAN</td>
<td>H. sapiens Ubiquitin</td>
</tr>
<tr>
<td>PF00240</td>
<td>Pfam Ubiquitin family</td>
</tr>
<tr>
<td>1a5r.pdb</td>
<td>NMR Structure of H. sapiens SUMO-1 (Sm33)</td>
</tr>
</tbody>
</table>
Table 2: Sequence Similarity/Identity Matrix for H. sapiens Sm (SUMO) and S. cerevisiae Smt3.

e.g.: Sm31 and Sm32 have 98.94% similarity and 96.81% identity.

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>s</th>
<th>s</th>
<th>l</th>
<th>l</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>m</td>
<td>m</td>
<td>a</td>
<td>e</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>u</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>r</td>
<td>v</td>
<td>q</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>sm31_human</th>
<th>96.81</th>
<th>48.96</th>
<th>48.96</th>
<th>48.10</th>
<th>15.79</th>
<th>3 gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sm32_human</td>
<td>98.94</td>
<td>50.00</td>
<td>50.00</td>
<td>46.84</td>
<td>15.79</td>
<td>3 gaps</td>
</tr>
<tr>
<td></td>
<td>sm33_human</td>
<td>65.62</td>
<td>64.89</td>
<td>76.00</td>
<td>50.63</td>
<td>18.42</td>
<td>3 gaps</td>
</tr>
<tr>
<td></td>
<td>laSr</td>
<td>65.62</td>
<td>64.89</td>
<td>100.00</td>
<td>50.63</td>
<td>18.42</td>
<td>2 gaps</td>
</tr>
<tr>
<td></td>
<td>leuV</td>
<td>62.03</td>
<td>63.29</td>
<td>65.82</td>
<td>65.82</td>
<td>13.33</td>
<td>4 gaps</td>
</tr>
<tr>
<td></td>
<td>ubiquin_human</td>
<td>39.47</td>
<td>39.47</td>
<td>42.11</td>
<td>42.11</td>
<td>37.33</td>
<td>2 gaps</td>
</tr>
</tbody>
</table>

SUMOylation is a dynamic, reversible process. The cleavage of SUMO from its target (deSUMOylation) is catalyzed by cysteine proteases termed ULP (for Ubiquitin-like proteases) in yeast and SENPs or SUSPs in human (for sentrin/SUMO-specific proteases) (Li, S.J. and M. Hochstrasser, Nature 398 (1999) 246-251; Bailey, D. and P. O'Hare, J Biol Chem 279 (2004) 692-703). Two ULPs have been identified in yeast (Ulp1 and Ulp2) and at least seven SENPs in human (see Table 1). These proteases play a dual role in the SUMOylation pathway: C-terminal tail processing to generate the di-Glycine motif and de-conjugation by hydrolysis of the Gly-Lys isopeptide bond. They do not cleave ubiquitin isopeptide bonds. In yeast, the deconjugating function of Ulp1 is essential (Li, S.J. and M. Hochstrasser, Nature 398 (1999) 246-251). It is reasonable to speculate that the various distinct SENPs in mammals have evolved to work with the distinct SUMO forms. Additionally, sub-cellular localization places a physiologically significant restraint on SUMO isopeptidase specificity. For example, SENP1 can deconjugate SUMO-1 from Ran GAP1 in vitro, but not in vivo. This is attributed to the fact that Ran GAP1 is attached to the cytoplasmic fibrils of the nuclear pore complex, while SENP1 is localized to the nucleus (Gong, L., et al., J Biol Chem 275 (2000) 3355-3359). A nuclear localization signal (NLS1) is found in SENP1 at position 171-177.
An alignment of the seven human SENP and two ULP sequences indicates that there is conservation among the core C-terminal catalytic domain (residues 420-643 in SENP1; see Table 3) which possesses the absolutely conserved Cys, His, and Asp residues that form the catalytic triad and a Gln that forms the oxyanion hole in the active site (Gong, L., et al., J Biol Chem 275 (2000) 3355-3359). The variable N-terminal domain is believed to play a regulatory role since expression of the C-terminal catalytic domain alone leads to lower levels of SUMO-1, indicative of constitutive catalytic activity (Bailey, D. and P. O’Hare, J Biol Chem 279 (2004) 692-703).

Table 3: Sequence Similarity/Identity (lower/upper) Matrix for *H. sapiens* SENP and *S. cerevisiae* ULP families. e.g.: SENP1 and SENP2 have 73.71% similarity and 60.3% identity.

<table>
<thead>
<tr>
<th></th>
<th>senp1_huma</th>
<th>senp2_huma</th>
<th>senp3_huma</th>
<th>senp4_huma</th>
<th>senp5_huma</th>
<th>senp6_huma</th>
<th>senp7_huma</th>
<th>senp8_huma</th>
<th>ulp2_yeast</th>
<th>1euv</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 gaps</td>
<td>60.31</td>
<td>73.71</td>
<td>65.96</td>
<td>62.23</td>
<td>62.23</td>
<td>65.77</td>
<td>53.93</td>
<td>40.22</td>
<td>50.81</td>
<td>54.34</td>
</tr>
<tr>
<td>23 gaps</td>
<td>43.62</td>
<td>37.23</td>
<td>56.38</td>
<td>55.85</td>
<td>55.85</td>
<td>52.08</td>
<td>50.26</td>
<td>36.87</td>
<td>45.41</td>
<td>54.91</td>
</tr>
<tr>
<td>24 gaps</td>
<td>43.62</td>
<td>36.17</td>
<td>62.18</td>
<td>76.68</td>
<td>52.66</td>
<td>52.08</td>
<td>48.13</td>
<td>44.00</td>
<td>51.38</td>
<td>46.24</td>
</tr>
<tr>
<td>14 gaps</td>
<td>30.21</td>
<td>30.73</td>
<td>29.79</td>
<td>31.91</td>
<td>54.79</td>
<td>54.79</td>
<td>52.15</td>
<td>39.43</td>
<td>46.67</td>
<td>46.82</td>
</tr>
<tr>
<td>17 gaps</td>
<td>31.41</td>
<td>30.37</td>
<td>26.74</td>
<td>30.11</td>
<td>44.32</td>
<td>44.32</td>
<td>72.28</td>
<td>44.43</td>
<td>54.50</td>
<td>48.02</td>
</tr>
<tr>
<td>18 gaps</td>
<td>21.79</td>
<td>20.11</td>
<td>22.29</td>
<td>22.29</td>
<td>46.45</td>
<td>46.45</td>
<td>22.95</td>
<td>44.32</td>
<td>50.00</td>
<td>51.43</td>
</tr>
<tr>
<td>15 gaps</td>
<td>27.03</td>
<td>27.57</td>
<td>27.07</td>
<td>25.56</td>
<td>29.63</td>
<td>29.63</td>
<td>29.26</td>
<td>44.32</td>
<td>40.00</td>
<td>38.73</td>
</tr>
<tr>
<td>19 gaps</td>
<td>37.57</td>
<td>35.84</td>
<td>27.75</td>
<td>28.32</td>
<td>29.94</td>
<td>29.94</td>
<td>31.43</td>
<td>21.71</td>
<td>30.99</td>
<td>47.95</td>
</tr>
</tbody>
</table>
ComputAided Mol Des 9 (1995) 251-268. The interactions observed in the active site of the modeled human SENP1 with the SUMO-1 substrate are very similar in the experimental yeast and modeled human structures (see Table 4). There are multiple hydrogen bonds involving the Glu93 and Gln94 residues of SUMO-1, but very little interaction with Thr95. Table 4 also lists the homologous residues in other members of the SENP family and makes a prediction about whether these hydrogen bond interactions with Glu93-Gln94 are preserved. Based on this analysis, very little cross reactivity is predicted for SUMO-1 with other members of the SENP family since two of the four critical hydrogen bonds are missing.

Specifically, this analysis indicates that an EQTGG substrate/inhibitor would be highly specific for SENP1 and Ulp1 and would not crossreact with other members of the human sentrin/SUMO-specific protease family. Thus, in some embodiments, the SENP1 antagonists of the invention comprise the sequence EQTGG, or mimetics thereof.

Table 4: Hydrogen Bond Interactions of homology modeled SENP1/SUMO-1 complex with -EQTGG partial sequence of substrate/proposed inhibitor. Bold text indicates that the H-bond interaction is preserved with this residue.

<table>
<thead>
<tr>
<th>SENP1 residue</th>
<th>N467</th>
<th>K455</th>
<th>T499</th>
<th>T495</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENP2 residue</td>
<td>N412</td>
<td>G400</td>
<td>P444</td>
<td>T440</td>
</tr>
<tr>
<td>SENP3 residue</td>
<td>N403</td>
<td>D391</td>
<td>D431</td>
<td>S427</td>
</tr>
<tr>
<td>SENP5 residue</td>
<td>N584</td>
<td>D572</td>
<td>R612</td>
<td>S608</td>
</tr>
<tr>
<td>SENP6 residue</td>
<td>N683</td>
<td>E671</td>
<td>K716</td>
<td>S712</td>
</tr>
<tr>
<td>SENP7 residue</td>
<td>N711</td>
<td>E699</td>
<td>K744</td>
<td>S740</td>
</tr>
<tr>
<td>SENP8 residue</td>
<td>N28</td>
<td>S16</td>
<td>Q60</td>
<td>P56</td>
</tr>
<tr>
<td>Ulp1 residue</td>
<td>N450</td>
<td>R438</td>
<td>T477</td>
<td>S473</td>
</tr>
</tbody>
</table>

As described above, in view of this information there are several approaches to develop an inhibitor for SENP1. In some embodiments, since the structures are available both for human SUMO-1 (C-terminal domain, NMR (Bayer, P., et al. J Mol Biol. 280 (1998) 275-286) and for the yeast homolog of the SENP1/SUMO-1 complex (X-ray (Mosessova, E. and C.D. Lima, Mol Cell 5 (2000) 865-876), one of skill in the art may perform structure-based inhibitor design as well as perform virtual screening of compounds for a predicted inhibitory effect.
In some embodiments, the SENP1 antagonists of the invention comprise an aldehyde. Aldehydes are potent inhibitors of cysteine proteases because they form thiohemiacetals. These stable covalent adducts mimic the transition state. Examples in which aldehydes have been used to elucidate the mechanism of cysteine proteases include papain (Schroder, E., et al., FEBS Lett, 315 (1993) 38-42) and ubiquitin carboxyl-terminal hydrolase (Pickart, C.M. and I.A. Rose, J Biol Chem 261 (1986) 10210-10217). Reduction of the Smt3 substrate by NaBH₄ to the C-terminal aldehyde was used to generate a stable transition state analog for cocystalization studies with yeast Ulp1 (Mossessova, E. and C.D. Lima, Mol Cell 5 (2000) 865-876). Therefore, a Gly-Gly aldehyde could serve as a potent inhibitor of the SENP1 cysteine protease.

The three amino acids upstream to the C-terminal Gly-Gly of SUMO-1 (Glu-Gln-Thr), or a mimic thereof, may be utilized in an inhibitor since these residues contribute significantly to the specificity of the SENP1/SUMO-1 interaction (Table 4 and Table 5). Although Thr95 does not interact strongly with SENP1, it provides the proper spacing between the scissile peptide bond and Glu93-Gln95 residues.

Table 5: C-terminal sequence of the three SUMO proteins from *H. sapiens*. The sequence corresponding to x1-x3 in Figure 3 is underlined; the di-Glycine motif is in bold.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm3.1</td>
<td>TIDVFOVQGTVPESSLAGHSF</td>
</tr>
<tr>
<td>Sm3.2</td>
<td>TIDVFQQTGGVY</td>
</tr>
<tr>
<td>Sm3.3</td>
<td>VIEVYQEQTGCHSTV</td>
</tr>
<tr>
<td>Smt.3</td>
<td>IIEAHREQITGGATY</td>
</tr>
</tbody>
</table>

Although the structure of the SENP1/SUMO-1 complex indicates that the lysine and its flanking residues of the target protein do not interact with SENP1, an alternative inhibitor design could include these amino acids or moieties to mimic their functional groups.

One possible means to validate specificity is to virtually screen for binding of the proposed SENP1 inhibitor to a family of proteins highly related to SENP1 in structure, function and mechanism, such as ubiquitin carboxyl-terminal hydrolases (Pfam motif UCH; PF00443). A search of the Swissprot database reveals three sequences belonging to the UCH family in humans (Table 1). The structure of
several UCHs have been solved, including the human UCH-L3 isozyme (Johnston, S.C., et al., Embo J, 16(13):3787-96 (1997)) and the yeast enzyme in complex with ubiquitin C-terminal aldehyde (Johnston, S.C., et al., Embo J. 18 (1999) 3877-3887). Homology models for the other family members could be constructed using these X-ray structures as a template. A highly specific inhibitor of SENP1 inhibitor would interact favorably with SENP1, but not with any UCH. Thus, in some embodiments, the screening methods of the invention further comprises selecting an agent that binds and/or inhibits SENP1 but does not inhibit at least one ubiquitin carboxyl-terminal hydrolase.

The nuclear localization of SENP1 plays a role in its substrate specificity. Therefore, in some embodiments, to ensure minimal cross reactivity of the proposed inhibitor with other cysteine proteases, one may utilize SENP1’s own nuclear localization sequence (NLS1; PKKTQRR) as part of the inhibitor in a Trojan Horse design. This heptapeptide sequence, when modeled onto the SUMO-1 structure of the SENP1-SUMO1 homology modeled complex, shows only one steric overlap involving Inhibitor Arg6’ with SENP1 Lys500. However, there would be sufficient space for the heptapeptide to make conformational adjustments in order to avoid such unfavorable steric or charge interactions since the first 92 amino acids of SUMO-1 would be missing. Accordingly, in some cases, an inhibitor of SENP1 comprises one or more of the following: 1) a Gly Gly aldehyde, 2) the Glu-Gln-Thr sequence, or a mimetic thereof, and/or 3) a nuclear localization signal such as PKKTQRR.

IX. Pharmaceutical Compositions and Administration

Antagonists of SENP1 can be administered directly to the mammalian subject for treating cancers, including, e.g., bladder cancer, breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer. Administration may be by any of the routes normally used for introducing a chemotherapeutic or other anti-cancer drug into ultimate contact with the tissue to be treated. Although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route. SENP1 antagonists may be administrated to
an individual either as the sole active ingredient or in combination with chemotherapeutic or other anti-cancer agents.

Therefore, it is an object of the invention to provide a pharmaceutical composition comprising an antagonist of SENP1 and a pharmaceutically acceptable carrier. In another embodiment of the invention, an antagonist of SENP1 is provided for use in medicine. In another embodiment of the invention, an antagonist of SENP1 is used in the manufacture of a medicament or for manufacturing a medicament for the treatment of cancer, in particular breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

Particularly preferred is bladder cancer.

The pharmaceutical compositions of the invention may comprise a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention (see, e.g., Remington's Pharmaceutical Sciences, 17th ed. 1985)). The SENP1 antagonists, alone or in combination with other suitable components, can be made into aerosol formulations (i.e., they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.

Formulations suitable for administration include aqueous and non-aqueous solutions, isotonic sterile solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. In the practice of this invention, compositions can be administered, for example, orally, nasally, topically, intravenously, intraperitoneally, or intrathecally. The formulations of antagonists can be presented in unit-dose or multi-dose sealed containers, such as ampoules and vials. Solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described. The antagonists can also be administered as part a of prepared food or drug.
The dose administered to a patient, in the context of the present invention should be sufficient to effect a beneficial response in the subject over time. The optimal dose level for any patient will depend on a variety of factors including the efficacy of the specific antagonist employed, the age, body weight, physical activity, and diet of the patient, on a possible combination with other drugs, and on the severity of a particular disease. The size of the dose also will be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular compound or vector in a particular subject.

In determining the effective amount of the antagonist to be administered a physician may evaluate circulating plasma levels of the antagonist, antagonist toxicity, and the production of anti-antagonist antibodies. In general, the dose equivalent of a antagonist is from about 1 ng/kg to 10 mg/kg for a typical subject. Administration can be accomplished via single or divided doses.

EXAMPLES

Example 1: Association of SENP1/telomerase expression with bladder cancer

Our work shows that an increased level of the sentrin/SUMO-specific protease (SENP1) mRNA is present in the urine sediment of bladder cancer patients, who have tumors that do not express measurable telomerase (TERT) mRNA in the urine sediment. Thus, measurement of SENP1 can be used to diagnose, monitor and assess prognosis of cancers, particularly, though not necessarily exclusively, in cases where TERT is not expressed.

Our current work shows that an increase in expression of SENP1 mRNA is associated with cells from tumors not expressing detectable levels of telomerase mRNA. To the best of our knowledge, this is the first demonstration that SENP1 is elevated in telomerase-negative samples from cancer patients. In this context, SENP1 provides a useful marker in diagnostic, monitoring and prognostic tests for cancer. Also, it is worth noting that the expression of telomerase in tumors does not necessarily preclude the overexpression of SENP1. Therefore, overexpression of SENP1 is a useful marker for detection of some tumors that are telomerase positive.
Urine (100 ml) was obtained from human subjects who were healthy or were diagnosed with bladder cancer. Cells from these samples were collected by low speed centrifugation (700 x g for 10 minutes), and rinsed twice with phosphate buffered saline. Cells were lysed in lysis buffer provided in the Roche HighPure total RNA kit. Total RNA was purified using the Roche HighPure total RNA kit. Samples were assayed by quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) for expression of the gene encoding telomerase reverse transcriptase (TERT), and expression of protein phosphatase 1, catalytic subunit, alpha isoform (PPP1CA), a gene used to monitor the yield of RNA from the samples.

For the current study, nineteen telomerase-negative samples from bladder cancer patients and nineteen telomerase-negative samples from healthy subjects were analyzed by quantitative real-time RT-PCR. Experimental conditions were as follows in each assay: 100 µl reactions contained 50 mM bicine, pH 8.0, 115 mM potassium acetate, 8% glycerol, 3 mM manganese acetate, 200 µM each deoxyadenosine triphosphate, deoxycytidine triphosphate, deoxyguanosine triphosphate, and 500 µM deoxyuridine triphosphate, 2 Units of uracil N-glycosylase (UNG) from Applied Biosystems, 10 Units of rTth DNA polymerase (recombinant form of DNA polymerase from Thermus thermophilus from Applied Biosystems), 10 nM 5' nuclease probe, 200 nM each primer, forward and reverse. SENP1 RNA was reverse transcribed, amplified and detected with a fluorescently-labeled probe.

Assays were run in the ABI Prism 7700 with cycling conditions as follows: An initial incubation step at 50°C for 2 minutes to allow UNG-mediated elimination of any contamination by carryover PCR product, denaturation for 1 minute at 95°C, and a reverse transcription step of 30 minutes at 60°C, were followed by 50 cycles of denaturation at 95°C for 20 seconds and annealing/extension at 60°C for 40 seconds. It is worth noting that these fixed assay conditions are arbitrary and that the same results could be obtained with a variety of buffers, salts, glycerol/DMSO concentrations, nucleotide concentrations, primer and probe concentrations, reverse transcriptases, DNA polymerase enzymes, two-enzyme/one-tube or two-enzyme/two-tube methods for RT-PCR, with and without UNG, using magnesium
or manganese as the divalent cation, various primer / probe concentrations, sequences and thermocycling conditions. Sequences of primers and probes were as follows: For SENP1 CAAGAAGTGCAGCTTATAATCCAA (SEQ ID NO:6; forward “sense” primer) and GTCTTTCCGGTTTTCGAGGTA (SEQ ID NO:7; reverse “antisense” primer), CTCAGACAGTTTTCTGGCTCAGCGC (SEQ ID NO:8; probe); for PPP1CA GAGCACACCCAGGTGGTAGAA (SEQ ID NO:9; forward primer), GGGCTTGAGGATCTGGAAA (SEQ ID NO:10; reverse primer), GAGTTTGACAATGCTGGCAGCCATGAGT (SEQ ID NO:11; probe).

Levels of SENP1 mRNA were measured by quantitative real-time RT-PCR. Relative copy numbers of SENP1 were determined based on RNA quantification standards. These standards consist of PPP1CA run-off transcripts of known concentrations, reverse transcribed and amplified by PCR under the same conditions as the experimental samples. Cycle threshold (Ct) values were calculated to provide a measure of the amount of mRNA that was present at the beginning of the amplification reaction. Since efficiencies in amplification reactions are rarely, if ever, exactly the same with different primer / probe sets or in standards versus samples from human subjects due to the possible presence of inhibitors of reverse transcription that might carry through the sample preparation in the latter case, copy numbers are stated as relative copies of a given transcript in a sample rather than as an absolute copy number.

As shown in Table I, the median number of copies of SENP1 in healthy subjects is 4, the median in bladder cancer telomerase-negative patients is 1899 copies. The median is calculated rather than the mean in order to mitigate the effect of outliers on calculations. The receiver-operator characteristic curve for these samples (Figure1) (as determined according to the methods of Agresti, A., Categorical Data Analysis, pp. 228-230 (2002)) shows that the telomerase-negative bladder cancer patients can be distinguished from the telomerase-negative healthy subjects on the basis of SENP1. To a first approximation this subset of patients can be distinguished from one another with a 100% sensitivity and a 90% specificity.
Table I: Relative copies of SENP1 mRNA in healthy subjects vs. telomerase negative bladder cancer patients

<table>
<thead>
<tr>
<th>Bladder Cancer Patients-Telomerase Negative</th>
<th>Healthy Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENP1 Copies</td>
<td>SENP1 Copies</td>
</tr>
<tr>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>201</td>
<td>0</td>
</tr>
<tr>
<td>240</td>
<td>0</td>
</tr>
<tr>
<td>304</td>
<td>0</td>
</tr>
<tr>
<td>322</td>
<td>0</td>
</tr>
<tr>
<td>655</td>
<td>0</td>
</tr>
<tr>
<td>1184</td>
<td>0</td>
</tr>
<tr>
<td>1413</td>
<td>0</td>
</tr>
<tr>
<td>1499</td>
<td>3</td>
</tr>
<tr>
<td>1899</td>
<td>4</td>
</tr>
<tr>
<td>2708</td>
<td>4</td>
</tr>
<tr>
<td>2873</td>
<td>5</td>
</tr>
<tr>
<td>4113</td>
<td>10</td>
</tr>
<tr>
<td>4610</td>
<td>10</td>
</tr>
<tr>
<td>5188</td>
<td>12</td>
</tr>
<tr>
<td>5839</td>
<td>21</td>
</tr>
<tr>
<td>6195</td>
<td>26</td>
</tr>
<tr>
<td>9941</td>
<td>380</td>
</tr>
<tr>
<td>14173</td>
<td>1675</td>
</tr>
</tbody>
</table>

Median | 1899 | 4

This data can also be normalized to the level of a housekeeping gene present in each sample. Such normalization controls for variations in the number of cells in the initial sample, any RNA degradation, or the presence of inhibitors in a sample. In this case, the level of PPP1CA previously measured, under the same conditions, was used for normalization. Calculations were as follows: The relative number of copies of SENP1 mRNA in a given sample was divided by the relative number of copies of PPP1CA mRNA in the same sample. For ease of manipulation and recording, this number was multiplied by 1×10^5. Thus, the normalized copy number for SENP1 mRNA shown in Table II represents the number of copies of SENP1 mRNA per 1×10^5 copies of PPP1CA mRNA. The median normalized copy number for SENP1 mRNA in healthy subjects is 1096, the median in bladder cancer telomerase-negative patients is 11994. The receiver-operator characteristic
curve for these data (Figure 2) shows that the telomerase-negative bladder cancer patients can be distinguished from the telomerase-negative healthy subjects on the basis of SENP1. To a first approximation this subset of patients can be distinguished from one another with a sensitivity of 90% and a specificity of 70%.

Relative copies of SENP1 mRNA normalized to levels of the housekeeping gene PPP1CA in healthy subjects vs. telomerase negative bladder cancer patients

<table>
<thead>
<tr>
<th>Bladder Cancer</th>
<th>Healthy Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients-Telomerase Negative</td>
<td>SENP1 Copies</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
</tr>
<tr>
<td>2344</td>
<td>0</td>
</tr>
<tr>
<td>3242</td>
<td>0</td>
</tr>
<tr>
<td>3379</td>
<td>0</td>
</tr>
<tr>
<td>3509</td>
<td>0</td>
</tr>
<tr>
<td>5095</td>
<td>0</td>
</tr>
<tr>
<td>6892</td>
<td>0</td>
</tr>
<tr>
<td>8182</td>
<td>0</td>
</tr>
<tr>
<td>10413</td>
<td>137</td>
</tr>
<tr>
<td>11994</td>
<td>1096</td>
</tr>
<tr>
<td>15370</td>
<td>1445</td>
</tr>
<tr>
<td>16401</td>
<td>1592</td>
</tr>
<tr>
<td>17827</td>
<td>2257</td>
</tr>
<tr>
<td>22070</td>
<td>3688</td>
</tr>
<tr>
<td>22378</td>
<td>4561</td>
</tr>
<tr>
<td>23384</td>
<td>7639</td>
</tr>
<tr>
<td>26195</td>
<td>10591</td>
</tr>
<tr>
<td>33182</td>
<td>19453</td>
</tr>
<tr>
<td>76298</td>
<td>47093</td>
</tr>
</tbody>
</table>

Median 11994 1096

Our results indicate that SENP1 can be used as a marker to differentiate cancer patients from healthy patients on the basis of mRNA found in cells in samples from the patients.
Example 2: Association of SENP1 and/or telomerase expression with breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer

100 mg of frozen solid tissues were homogenized in 7.5 ml of Ultraspec solution (Biotex) for 30 seconds. Total RNA was extracted using the Biotexc Ultraspec® RNA kit. RNA was further purified using the QIAGEN RNasey mini kit. (for a maximum of 100 ug of total RNA), including a QIAGEN DNase treatment. cDNA was synthesized using 3-50 ug of total RNA per reaction, based on the method described in the Invitrogen Superscript™ Double-Strand cDNA synthesis kit. Reagents were purchased from Invitrogen unless otherwise stated. In the first strand synthesis reaction, the final concentrations of reagents was as follows: 5 pM Poly dT primer (Affymetrix #900375), 1X First Strand Buffer, 0.01M DTT, 0.5 mM each of dATP, dCTP, dGTP and dTTP, 400 Units of SuperScript™ II RNase H-Reverse Transcriptase (SSRT), total reaction volume was 20 μl. First strand primer (1 μl) was incubated with total RNA (plus RNase free water to bring volume to 10 μl) at 70°C for 10 min., followed by incubation on ice for 2 min. First Strand Buffer, DTT and dNTPs were added followed by incubation at 42°C for 2 min. After addition of SSRT II samples were incubated for 1 hr at 42°C. Second strand synthesis was then performed. To the entire 20 μl reaction from first strand synthesis the following reagents were added to the final concentrations indicated: 1X Second Strand buffer, 0.2 mM each of dATP, dCTP, dGTP, and dTTP, 10 U of E. coli DNA Ligase, 40 U of E. Coli DNA Polymerase I, 2 U of RNase H, 20 U of T4 DNA Polymerase, total reaction volume was 150 μl. All reagents except the T4 DNA Polymerase were mixed and incubated for 2 hr at 16°C. T4 DNA Pol was then added followed by a 16°C incubation for 5 min.

For each sample the entire 150 μl of resulting ds cDNA was purified by use of Phase Lock Gel (available through Brinkmann) as follows: 150 ul of ds cDNA was mixed with an equal volume of phenol-chloroform-isoamyl alcohol. The aqueous phase was transferred to a new tube and the RNA was precipitated by standard methods using ammonium acetate and ethanol, followed by two washes with ice cold 100 % ethanol. The pellet was dried and resuspended in 2-10 ul of RNase free deionized water. cDNA was quantitated by measuring the OD260.
Quantitative PCR was run on samples under the following conditions: 7 ng of cDNA, 1X TaqMan® Universal Master Mix (purchased stock available from Applied Biosystems was considered 2X), 2.4 µM each forward and reverse human GAPDH primers, and 0.5 µM human GAPDH TaqMan probe, and the primers and probe for a given gene of interest was added to the same reaction tube at concentrations described for GAPDH primers and probes. Sequences of these primers and probes were: For SENP1, CAAGAAGTGCAAGCTTTAATCCAA (forward “sense” primer) and GTCTTTGGGTTTCGAGGTA (reverse “antisense” primer), CTCAGACAGTTTTCTTGCGCTCGGCG (TaqMan probe); for TERT, TGGGCACGTCGCA (forward), GCCGTGTTGGCGACATGAA (reverse), TCATCGAGCAGCTCCTCCTGAATGAGG (TaqMan probe). All primers and probes, including those for a panel of seven housekeeping genes (see below) were purchased from ABI. Total volume of each assay was 20 µl.

Cycling was performed on an ABI Prism® 7900 HT Sequence Detection System. An initial incubation of 2 minutes at 50°C was followed by 10 minutes at 95°C then 40-55 cycles of 95°C for 15 sec and 60°C for 1 min. Relative expression levels of SENP1 and TERT mRNA (referred to as genes of interest or GOI) were calculated in the following way: Cycle threshold (Ct) values were determined from RT-PCR for SENP1 and TERT, GAPDH and a panel of seven “housekeeping” human genes. The seven genes were hypoxanthine phosphoribosyl transferase, β-glucuronidase, β2-microglobulin, phosphoglyceratekinase, cyclophilin, β-actin, and large ribosomal protein PO.

Based on the Cts of the panel of housekeeping genes, the GAPDH Ct was adjusted to give the expected value. This adjustment compensates for any small unexpected differences in the GAPDH Ct that could be explained by GAPDH not behaving as the “average” housekeeping gene in a particular sample. The relative expression level of the GOI is then calculated as:

\[\text{Ct(adjusted GAPDH)} - \text{Ct (GOI)} = \Delta \text{Ct} \]

\[2^{\Delta \text{Ct}} = \text{relative expression level of GOI} \]

As shown in Figures 3 through 11 and in Table III, our current data shows that in a variety of cancers some, but not all, tumors show telomerase (TERT) expression
elevated above that in normal cells. Likewise, some tumors, but not all, show an increase in SENP1 expression. Use of both SENP1 and TERT in combination as molecular markers for cancer allows for a greater number of samples from tumor tissue to be identified as cancer positive than use of either marker alone. Thus, a molecular assay in which the up-regulation of either marker was scored as positive for cancer would show an increased sensitivity for cancer detection. This increased sensitivity would, not surprisingly, come at a cost of a somewhat decreased specificity (i.e. an increased number of subjects who did not have cancer would be identified as having cancer). To use an assay for a given diagnostic setting, one would choose standardized values for positive and negative calls that would maximize correct calls, thus maximizing sensitivity and specificity. In the examples shown, threshold values were chosen that, for each individual marker, would give approximately 80% specificity. Unless otherwise shown, the threshold for detection of TERT is zero.

Table III provides a summary of performance of telomerase and senp1 as single markers or as combined markers. Sensitivity is the number of cancer positive samples of a given tissue type that are called cancer positive divided by the total number of cancer positive samples of that tissue type. Specificity is the number of cancer negative (or normal) samples of a given tissue type that are called cancer negative divided by the total number of cancer negative samples of that tissue type. The "accuracy" of a given assay is defined as the sum of its sensitivity and specificity.
Cancer Type	Telomerase			SENP1			Combined						
	Sensitivity	Specificity	Accuracy										
Bladder	3/4	7/8	75%	26%	100%	150%	4/4	7/8	100%	87%	187%		
Breast	7/11	7/7	63%	1/11	8/7	9%	85%	94%	8/11	6/7	72%	85%	157%
Colon	9/54	14/17	16%	14/54	14/17	26%	82%	108%	21/54	13/17	38%	76%	114%
Kidney	0/7	0/5	0%	0/7	5/5	1/7	100%	157%	4/7	5/5	57%	100%	157%
Lung	3/14	20/21	21%	5/14	17/21	36%	80%	116%	7/14	16/21	50%	76%	126%
Ovarian	0/3	4/5	0%	1/3	4/5	33%	80%	113%	1/3	3/5	33%	60%	93%
Pancreatic	1/6	1/1	16%	3/6	1/1	50%	100%	150%	4/6	1/1	66%	100%	166%
Pancreatic (2nd set)	2/9	10/10	22%	4/9	9/10	44%	90%	134%	5/9	9/10	56%	90%	146%
Pancreatic (metastatic)	5/6	100%	83%	1/6	17%	90%	107%	5/6	83%	90%	173%		
Small Intestine	0/2	0/7	0%	0/2	7/8	100%	87%	187%	2/2	7/8	100%	87%	187%
FOR ALL CANCERS	**30/116**	**75/82**	**26%**	**36/116**	**71/82**	**31%**	**87%**	**118%**	**59/116**	**67/82**	**51%**	**82%**	**133%**
It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.
List of References

Agresti, A., Categorical Data Analysis, pp. 228-230, 2002
Akerstrom et al., J. Immunol. 135 (1985) 2589-2542
Alderton et al., Anal. Biochem. 201 (1992) 166-169
Altshul et al., Nuc. Acids Res. 25 (1977) 3389-3402
Angelopoulou et al., Anticancer Res. 23 (2003) 4821-4829
Arnold et al., Clin. Chem. 35 (1989) 1588-1594
Ausubel et al. (eds.), Current Protocols in Molecular Biology, 2002
Ausubel et al., Current Protocols in Molecular Biology, 1995 Supplement
Baum C&EN, Jan 18, page 33 (1993)
Campbell et al., J. Org. Chem. 59 (1994) 658
Chen et al., Biotechniques 35 (2003) 158-162
Chen et al., J. Amer. Chem. Soc. 116 (1994) 2661
Cho et al., Science 261 (1993) 1303
Cole et al., Monoclonal Antibodies and Cancer Therapy, pp. 77-96, 1985
Coligan, Current Protocols in Immunology, 1991
Eagle et al., J. Exp. Med. 131 (1970) 836-879
Folkman, Angiogenesis and Cancer, Sem Cancer Biol.1, 1992
Freshney Anticancer Res. 5 (1985) 111-130
Gibson et al., *Genome Research* 6 (1996) 995-1001
Hanahan and Weinberg, *Cell* 100 (2000) 57-70
Huse et al., *Science* 246 (1989) 1275-1281
Kozbor et al., *Immunology Today* 4 (1983) 72
Kronval et al., J. Immunol. 111 (1973) 1401-1406
Lee et al., Nucleic Acids Res. 21 (1993) 3761-3766
Little et al., Clin. Chem. 45 (1999) 777-784
Lizardi et al., Bio/Technology 6 (1988) 1197
Maggio (ed.), Enzyme Immunoassay, 1980
Marks et al., Biotechnology 10 (1992) 779-783
McCafferty et al., Nature 348 (1990) 552-554
Paul (ed.), Fundamental Immunology, 3rd ed., 1993
PCT/GB91/00212
PCT/US96/10287
Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Vols. 1-3,
Shippen-Lentz et al., Science 247 (1990) 546
Stites and Terr (eds.), *Basic and Clinical Immunology*, 7th ed., 1991

Tijssen, *Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes*, “Overview of principles of hybridization and the strategy of nucleic acid assays”, 1993

U.S. Patent Application No. 07/695,072
Unkless et al., *J. Biol. Chem.* 249 (1974) 4295-4305
US 2002/0012969
US 2002/0025518
US 4,366,241
US 4,376,110
US 4,517,288
US 4,683,195
US 4,683,202
US 4,767,700
US 4,837,168
US 4,851,331
US 4,889,818
US 4,914,210
US 4,946,778
US 4,948,882
US 4,994,373
US 5,010,175
US 5,079,352
US 5,102,784
US 5,118,605
US 5,118,802
US 5,119,801
US 5,135,717
US 5,155,018
US 5,210,015
US 5,232,829
US 5,234,809
US 5,288,514
5 US 5,294,534
US 5,312,728
US 5,352,600
US 5,405,774
US 5,424,414
10 US 5,437,977
US 5,464,746,
US 5,466,591
US 5,487,972
US 5,491,063
15 US 5,506,337
US 5,514,546
US 5,519,134
US 5,525,462
US 5,525,465
20 US 5,525,735
US 5,539,083
US 5,547,861
US 5,549,974
US 5,556,959
25 US 5,569,588
US 5,571,673
US 5,593,853
US 5,595,890
US 5,597,696
30 US 5,618,711
US 5,641,633
US 5,648,245
US 5,674,738
US 5,679,510
35 US 5,679,785
US 5,683,872
US 5,683,875
US 5,707,813
US 5,710,028
US 5,714,320
5 US 5,728,525
US 5,750,343
US 5,789,562
US 5,792,614
US 5,795,718
10 US 5,795,762
US 5,800,989
US 5,804,375
US 5,808,036
US 5,808,044
15 US 5,814,447
US 5,837,453
US 5,844,106
US 5,846,723
US 5,846,726
20 US 5,853,990
US 5,856,092
US 5,866,336
US 5,876,924
US 5,880,287
25 US 5,882,867
US 5,888,723
US 5,888,739
US 5,919,630
US 5,935,791
30 US 5,945,283
US 5,955,589
US 5,958,700
US 5,972,602
US 5,981,176
35 US 5,990,303
US 5,994,063
US 6,001,611
US 6,022,686
US 6,033,854
US 6,054,279

5 US 6,080,068
US 6,110,677
US 6,121,001
US 6,124,090
US 6,130,047

10 US 6,140,055
US 6,174,998
US 6,177,249
US 6,180,349
US 6,210,884

15 US 6,214,979
US 6,221,603
US 6,221,604
US 6,245,514
US 6,261,779

20 US 6,261,784
US 6,268,128
US 6,294,338
US 6,312,906
US 6,320,005

25 US 6,326,145
US 6,335,166
US 6,344,329
US 6,348,596
US 6,350,580

30 US 6,352,827
US 6,361,944
US 6,365,724
US 6,368,803
US 6,379,888

35 US 6,383,393
US 6,383,756
US 6,391,554
US 6,399,303
US 6,399,392
US 6,406,297
5 US 6,417,340
US 6,440,707
US 6,495,324
US 6,506,564
US 6,528,254
10 US 6,528,632
US 6,551,774
US 6,582,964
US 6,596,527
US 6,607,898
Vogelstein et al., *Proc. Natl. Acad. Sci. USA* 76 (1979) 615-619
20 Wang et al., *Electroanalysis* 10 (1998) 553-556
Ward et al., *Nature* 341 (198) 544-546

WO 01/37291
WO 91/19735
30 WO 92/00091
WO 93/20242
WO 95/35390
PATENT CLAIMS

1. A method of detecting SENP1 expression in a biological sample, the method comprising, determining the quantity of SENP1 in a biological sample from an individual having or suspected of having a cancer selected from the group consisting of breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

2. The method according to claim 1, wherein the method further comprises obtaining the biological sample from the individual.

3. The method according to any of the claims 1 to 2, wherein the method further comprises recording a diagnosis of a cancer selected from the group consisting of breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

4. The method according to any of the claims 1 to 3, wherein the quantity of SENP1 is determined by detecting a polynucleotide encoding SENP1 in the sample.

5. The method according to claim 4, wherein the detection step comprises amplifying the polynucleotide in an amplification reaction.

6. The method according to claim 5, wherein the amplification reaction comprises at least two different oligonucleotides comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that during the amplification reaction the oligonucleotides prime amplification of at least a fragment of SEQ ID NO:1.

7. The method according to any of the claims 5 to 6, wherein the amplification product of the amplification reaction is detected in a step comprising hybridizing a detectably-labeled oligonucleotide to the product.

8. The method according to any of the claims 5 to 7, wherein the amplification reaction comprises a template-dependent nucleic acid polymerase with 5'-3' exonuclease activity under conditions that allow the polymerase to fragment the detectably-labeled oligonucleotide.
9. The method according to any of the claims 1 to 8, wherein the method further comprises determining the quantity of telomerase in the biological sample.

10. The method according to claim 9, wherein the method further comprises comparing the quantity of SENP1 and telomerase in the sample to a SENP1 standard and a telomerase standard, respectively, wherein the SENP1 standard represents SENP1 in non-cancer cells and the telomerase standard represents telomerase quantities in non-cancer cells.

11. A method of detecting SENP1 expression in a biological sample, the method comprising,

determining the quantity of SENP1 in a biological sample from an individual; and

recording a diagnosis of a cancer selected from the group consisting of breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

12. The method according to claim 11, wherein the method further comprises obtaining the biological sample from the individual.

13. The method according to any of the claims 11 to 12, wherein the quantity of SENP1 is detected by detecting a polynucleotide encoding SENP1 in the sample.

14. The method according to claim 13, wherein the detection step comprises amplifying the polynucleotide in an amplification reaction.

15. The method according to claim 14, wherein the amplification reaction comprises at least two different oligonucleotides comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that during the amplification reaction the oligonucleotides prime amplification of at least a fragment of SEQ ID NO:1.

16. The method according to any of the claims 14 to 15, wherein the amplification product of the amplification reaction is detected in a step comprising hybridizing a detectably-labeled oligonucleotide to the product.
17. The method according to any of the claims 14 to 16, wherein the amplification reaction comprises a template-dependent nucleic acid polymerase with 5'-3' exonuclease activity under conditions that allow the polymerase to fragment the detectably-labeled oligonucleotide.

18. The method according to any of the claims 11 to 17, wherein the method further comprises determining the quantity of telomerase in the biological sample.

19. The method according to claim 18, wherein the method further comprises comparing the quantity of SENP1 and telomerase in the sample to a SENP1 standard and a telomerase standard, respectively, wherein the SENP1 standard represents SENP1 in non-cancer cells and the telomerase standard represents telomerase quantities in non-cancer cells.

20. A method of detecting SENP1 expression in a biological sample, the method comprising,

determining the quantity of SENP1 in a biological sample from an individual, wherein the biological sample is selected from the group consisting of a breast biopsy, a colon biopsy, a kidney biopsy, a lung biopsy, an ovary biopsy, a pancreas biopsy, a small intestine biopsy, a bronchial lavage and a stool.

21. The method according to claim 20, wherein the method further comprises obtaining the biological sample from the individual.

22. The method according to any of the claims 20 to 21, wherein the method further comprises recording a diagnosis of a cancer selected from the group consisting of breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

23. The method according to any of the claims 20 to 22, wherein the quantity of SENP1 is detected by detecting a polynucleotide encoding SENP1 in the sample.

24. The method according to claim 23, wherein the detection step comprises amplifying the polynucleotide in an amplification reaction.

25. The method according to claim 24, wherein the amplification reaction comprises at least two different oligonucleotides comprising a sequence at
least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that during the amplification reaction the oligonucleotides prime amplification of at least a fragment of SEQ ID NO:1.

26. The method according to any of the claims 24 to 25, wherein the amplification product of the amplification reaction is detected in a step comprising hybridizing a detectably-labeled oligonucleotide to the product.

27. The method according to any of the claims 24 to 26, wherein the amplification reaction comprises a template-dependent nucleic acid polymerase with 5'-3' exonuclease activity under conditions that allow the polymerase to fragment the detectably-labeled oligonucleotide.

28. The method according to any of the claims 20 to 27, wherein the method further comprises determining the quantity of telomerase in the biological sample.

29. The method according to claim 28, wherein the methods further comprise comparing the quantity of SENP1 and telomerase in the sample to a SENP1 standard and a telomerase standard, respectively, wherein the SENP1 standard represents SENP1 in non-cancer cells and the telomerase standard represents telomerase quantities in non-cancer cells.

30. A method for identifying an SENP1 antagonist, the method comprising, contacting a plurality of agents to a cell expressing SENP1, wherein the cell does not express telomerase and the cell expresses a neoplastic phenotype, and selecting an agent that inhibits a neoplastic phenotype, thereby identifying an SENP1 antagonist.

31. The method according to claim 30, wherein the cell does not express TERT.

32. The method according to any of the claims 30 to 31, further comprising testing the effect of the selected agent on cancer cells.

33. A pharmaceutical composition comprising an antagonist of SENP1 and a pharmaceutically acceptable carrier.

34. Use of an antagonist of SENP1 for manufacturing a medicament for the treatment of cancer.
35. Use according to claim 34, wherein the cancer is selected from the group consisting of bladder cancer, breast cancer, colon cancer, kidney cancer, lung cancer, ovarian cancer, pancreatic cancer, and small intestine cancer.

36. Pharmaceutical composition according to claim 33 or use according to any of the claims 34 to 35, wherein the antagonist is identified by the steps of: contacting a plurality of agents to a cell expressing SENP1, wherein the cell does not express telomerase and the cell expresses a neoplastic phenotype, and selecting an agent that inhibits a neoplastic phenotype, thereby identifying an SENP1 antagonist.

37. An inhibitor of SENP1 protease activity, wherein the inhibitor comprises an amino acid sequence comprising Glu-Gln-Thr-Gly-Gly, or a mimetic thereof, wherein the final Gly terminates in an aldehyde.

38. The inhibitor according to claim 37, wherein the inhibitor comprises a nuclear localization signal sequence.

39. The inhibitor according to claim 38, wherein the nuclear localization signal sequence comprises Pro-Lys-Lys-Thr-Gln-Arg-Arg.

40. A method comprising determining the quantity of SENP1 and telomerase in a biological sample from an individual, wherein the quantity of SENP1 is detected by detecting an RNA encoding SENP1 in the sample.

41. The method according to claim 40, wherein the method further comprises obtaining the biological sample from the individual.

42. The method according to any of the claims 40 to 41, wherein the method further comprises recording a diagnosis of a cancer.

43. The method according to any of the claims 40 to 42, wherein the quantity of SENP1 is detected by detecting a polynucleotide encoding SENP1 in the sample.

44. The method according to claim 43, wherein the detection step comprises amplifying the polynucleotide in an amplification reaction.

45. The method according to any of the claims 44, wherein the amplification reaction comprises at least two different oligonucleotides comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ
ID NO:1, or a complement thereof, such that during the amplification reaction the oligonucleotides prime amplification of at least a fragment of SEQ ID NO:1.

46. The method according to any of the claims 44 to 45, wherein the amplification product of the amplification reaction is detected in a step comprising hybridizing a detectably-labeled oligonucleotide to the product.

47. The method according to any of the claims 44 to 46, wherein the amplification reaction comprises a template-dependent nucleic acid polymerase with 5'-3' exonuclease activity under conditions that allow the polymerase to fragment the detectably-labeled oligonucleotide.

48. The method according to any of the claims 40 to 47, wherein the method further comprises comparing the quantity of SENP1 and telomerase in the sample to a SENP1 standard and a telomerase standard, respectively, wherein the SENP1 standard represents SENP1 in non-cancer cells and the telomerase standard represents telomerase quantities in non-cancer cells.

49. A kit for detecting a cancer cell in a biological sample from an individual, the kit comprising,

a) at least one oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that when the oligonucleotide and a polynucleotide comprising SEQ ID NO:1 are submitted to an amplification reaction, the oligonucleotide primes amplification of at least a fragment of SEQ ID NO:1;

b) a detectably-labeled oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof;

c) at least one oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of:

i) human telomerase RNA (TERC);

ii) human telomerase reverse transcriptase protein (TERT) mRNA;

iii) a complement of TERC; or
iv) a complement of TERT;
such that when the oligonucleotide and TERC or TERT mRNA are submitted to an amplification reaction, the oligonucleotide primes amplification of at least a fragment of TERC or TERT mRNA; and

d) a detectably-labeled oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of:
i) human telomerase RNA (TERC);
ii) human telomerase reverse transcriptase protein (TERT) mRNA;
iii) a complement of TERC; or
iv) a complement of TERT.

50. A reaction mixture comprising:
a) at least one oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof, such that when the oligonucleotide and a polynucleotide comprising SEQ ID NO:1 are submitted to an amplification reaction, the oligonucleotide primes amplification of at least a fragment of SEQ ID NO:1;
b) a detectably-labeled oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of SEQ ID NO:1, or a complement thereof

c) at least one oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of:
i) human telomerase RNA (TERC);
ii) human telomerase reverse transcriptase protein (TERT) mRNA;
iii) a complement of TERC; or
iv) a complement of TERT;
such that when the oligonucleotide and TERC or TERT mRNA are submitted to an amplification reaction, the oligonucleotide primes amplification of at least a fragment of TERC or TERT mRNA; and
d) a detectably-labeled oligonucleotide comprising a sequence at least 90% identical to at least 10 contiguous nucleotides of:

i) human telomerase RNA (TERC);

ii) human telomerase reverse transcriptase protein (TERT) mRNA;

iii) a complement of TERC; or

iv) a complement of TERT.
Figure 3A

Bladder Normal

Adjusted Expression level

Sample number

TERT
SENP1

SENP1 threshold

Figure 3B

Bladder Cancer

Adjusted Expression level

Sample number

TERT
SENP1

SENP1 threshold
Figure 4A

Breast Normal

Figure 4B

Breast Cancer

Figure 8A

Ovarian Normal

Figure 8B

Ovarian cancer
Figure 9A

Pancreas normal

Figure 9B

Pancreas cancer
Figure 10A

Pancreas Normal

Figure 10B

Pancreas Cancer
SEQUENCE LISTING

Roche Diagnostics GmbH
F. Hoffmann-La Roche AG

SENPI as a Marker for Cancer

US 60/569,220
2004-05-06
US 60/599,318
2004-08-05
20
PatentIn Ver. 3.2
1
1932
DNA
Homo sapiens

sentrin/SUMO-specific protease 1 (SENPI)

1

atggatgata ttgctgtag gatgaggag tggctggag aagtgacttt agtgaacctc 60
aactccgtat ctaaaaaacc cccctccgca caaagaacctg tctccagaga ccaagctttcg 120
ccttcgtgcc acggagatgg atccttcaggg cacaagctt gcagtttcgata ttaacagctg 180
tcccaagga tgcagcgact ttaatcccaagc tattactcag taataaccttc ctccagagact 240
tttttgtgcc cagccagtatt agaagacccgt gcgacagagt ccaatgccaa atggagaatg 300
tctaacccgt ctgcaagctgg atctttacaa aaatcaagga aacgcccagat ctccatctctc 360
gaaacccgag acagcctcag tgagttataa aacaagtttg cgggaagcttg aacacatcag 420
tgccagctat ctcgtcagtg aaaaaatttt cctatttaacc ctcctgtcag cagctctatcg 480
agtgttcgtt gctgtcgaag ctctttgagcc ccacagaaaa ccagagctgc acaagttgttgc 540
acacagcaag agacagctgg agagagcagaa agagagatgt agacgaacgt gcgctacagttg 600
gtcacagggga aacagtttac tatagcccaaa ccccaccacat atttcttcctc aacagctgtg 660
cgagtctcct ttcggcagta aataacctgg aaagactcag tggtagaaaaa tgtgacactct 720
tgctgctatcgc atgcttctgg tctgctacat ctctctctct cgtgtcgcag cattttatac 780
aaccaggaac agctgtctcc caagtgatt aactctatctt cctatccccca cagtgctgaca 840
cttggatcaca aagattttcg tgtctttcat catcccccaaa atcaccactc tgtctccacat 900
cacccgacata acttcagcgc ttcacaataa caatcctgag gatcagactc tgcattaggta 960
cgtgaaaggtga aagatccccca gacctccaaagt ccttcctctc ccaatcagcat gcgctgatgtg 1020
tggtgaaaggatatag tttctctctcttt cgtgctgcag cacaaggttt tcgcagcattcc 1080
ggaagacagag gagcattggc cccaacgagc gatgagacgc cgggaagactt 1140
tcagttctgta ataatactcag cggagccagc gcaatcgcct ggaaagagaatg 1200
actgtgctc cggagacatc cgcgcgagcc ctcagcaagc tggagttcttccagag 1260
cctcaagttg cagaagaaaa caaaaaaaggt cattataata ctagatgtag ctgtagaattt 1320
gagagaggtt ccgagctggg gagaagaatg ataaaggttg tttctctcgag cgggaatcag 1380
atatcctctc gcccgagctgg gagaagttt catagataat ctccgagatttctgatgagc 1440
gagagaggtt ccgagctggg gagaagaatg ataaaggttg tttctctcgag cgggaatcag 1500
atcttccttcagtc ccagtttcag cggagctggg gagaagaatg ataaaggttg tttctctcgag cgggaatcag 1560
gagagaggtt ccgagctggg gagaagaatg ataaaggttg tttctctcgag cgggaatcag 1620
agagagttttg ctctctctcc ccgagctggg gagaagaatg ataaaggttg tttctctcgag cgggaatcag 1680
agagagttttg ctctctctcc ccgagctggg gagaagaatg ataaaggttg tttctctcgag cgggaatcag 1740
<table>
<thead>
<tr>
<th><210></th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>643</td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td><213></td>
<td>Homo sapiens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><220></th>
<th>sentrin/SUMO-specific protease 1 (SENP1)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>2</th>
</tr>
</thead>
</table>

Met Asp Asp Ile Ala Asp Arg Met Arg Met Asp Ala Gly Glu Val Thr	1	5	10	15
Leu Val Asn His Asn Ser Val Phe Lys Thr His Leu Leu Pro Gln Thr	20	25	30	
Gly Phe Pro Glu Asp Gln Leu Ser Leu Ser Asp Gln Gln Ile Leu Ser	35	40	45	
Ser Arg Gln Gly His Leu Asp Arg Ser Phe Thr Cys Ser Thr Arg Ser	50	55	60	
Ala Ala Tyr Asn Pro Ser Tyr Tyr Ser Asp Asn Pro Ser Ser Asp Ser	65	70	75	80
Phe Leu Gly Ser Gly Asp Leu Arg Thr Phe Gly Gln Ser Ala Asn Gly	85	90	95	

<p>| Gln Trp Arg Asn Ser Thr Pro Ser Ser Ser Ser Leu Gln Lys Ser | 100 | 105 | 110 |
| Arg Asn Ser Arg Ser Leu Tyr Leu Glu Thr Arg Lys Thr Ser Ser Gly | 115 | 120 | 125 | |
| Leu Ser Asn Ser Phe Ala Gly Lys Ser Asn His His Cys His Val Ser | 130 | 135 | 140 |
| Ala Tyr Glu Lys Ser Phe Pro Ile Lys Pro Val Pro Ser Pro Ser Trp | 145 | 150 | 155 | 160 |
| Ser Gly Ser Cys Arg Ser Leu Leu Ser Pro Lys Lys Thr Gln Arg | 165 | 170 | 175 |
| Arg His Val Ser Thr Ala Glu Glu Thr Val Gln Glu Glu Glu Arg Glu | 180 | 185 | 190 |
| Ile Tyr Arg Glu Leu Leu Gln Met Val Thr Gly Lys Gln Phe Thr Ile | 195 | 200 | 205 |
| Ala Lys Pro Thr Thr His Phe Pro Leu His Leu Ser Arg Cys Leu Ser | 210 | 215 | 220 |</p>
<table>
<thead>
<tr>
<th>Ser</th>
<th>Ser</th>
<th>Lys</th>
<th>Asn</th>
<th>Thr</th>
<th>Leu</th>
<th>Lys</th>
<th>Asp</th>
<th>Ser</th>
<th>Leu</th>
<th>Phe</th>
<th>Lys</th>
<th>Asn</th>
<th>Gly</th>
<th>Asn</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>225</td>
<td>230</td>
<td>235</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Ala</td>
<td>Ser</td>
<td>Gln</td>
<td>Ile</td>
<td>Ile</td>
<td>Gly</td>
<td>Ser</td>
<td>Asp</td>
<td>Thr</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
<td>245</td>
<td></td>
<td>255</td>
</tr>
<tr>
<td>Ser</td>
<td>Ile</td>
<td>Leu</td>
<td>Thr</td>
<td>Asn</td>
<td>Gln</td>
<td>Glu</td>
<td>Gln</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
<td>Val</td>
<td>Tyr</td>
<td>Ser</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>260</td>
<td>265</td>
<td></td>
<td>270</td>
</tr>
<tr>
<td>Ser</td>
<td>Ser</td>
<td>Tyr</td>
<td>Thr</td>
<td>Pro</td>
<td>Asp</td>
<td>Val</td>
<td>Ala</td>
<td>Phe</td>
<td>Gly</td>
<td>Ser</td>
<td>Lys</td>
<td>Asp</td>
<td>Ser</td>
<td>Gly</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>275</td>
<td>280</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>His</td>
<td>His</td>
<td>Pro</td>
<td>His</td>
<td>His</td>
<td>Ser</td>
<td>Val</td>
<td>Pro</td>
<td>His</td>
<td>Glu</td>
<td>Pro</td>
<td>Asp</td>
<td>Asn</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>290</td>
<td>295</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td>Ala</td>
<td>Ser</td>
<td>Asn</td>
<td>Thr</td>
<td>Gln</td>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
<td>Asp</td>
<td>Ser</td>
<td>Val</td>
<td>Ile</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>305</td>
<td>310</td>
<td>315</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Lys</td>
<td>Val</td>
<td>Lys</td>
<td>Asp</td>
<td>Ser</td>
<td>Gln</td>
<td>Thr</td>
<td>Pro</td>
<td>Thr</td>
<td>Pro</td>
<td>Ser</td>
<td>Ser</td>
<td>Thr</td>
<td>Phe</td>
<td>Phe</td>
</tr>
<tr>
<td>325</td>
<td>330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>335</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Ala</td>
<td>Glu</td>
<td>Leu</td>
<td>Trp</td>
<td>Ile</td>
<td>Lys</td>
<td>Glu</td>
<td>Leu</td>
<td>Thr</td>
<td>Ser</td>
<td>Val</td>
<td>Tyr</td>
<td>Asp</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td>340</td>
<td>345</td>
<td></td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Arg</td>
<td>Glu</td>
<td>Arg</td>
<td>Leu</td>
<td>Arg</td>
<td>Gln</td>
<td>Ile</td>
<td>Glu</td>
<td>Glu</td>
<td>Gln</td>
<td>Lys</td>
<td>Ala</td>
<td>Leu</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>355</td>
<td>360</td>
<td></td>
<td>365</td>
</tr>
<tr>
<td>Gln</td>
<td>Leu</td>
<td>Gln</td>
<td>Asn</td>
<td>Gln</td>
<td>Arg</td>
<td>Leu</td>
<td>Gln</td>
<td>Glu</td>
<td>Arg</td>
<td>Glu</td>
<td>His</td>
<td>Ser</td>
<td>Val</td>
<td>His</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td>370</td>
<td></td>
<td>375</td>
<td></td>
<td>380</td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Glu</td>
<td>Leu</td>
<td>His</td>
<td>Leu</td>
<td>Arg</td>
<td>Val</td>
<td>Pro</td>
<td>Leu</td>
<td>Glu</td>
<td>Lys</td>
<td>Glu</td>
<td>Ile</td>
<td>Pro</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td>385</td>
<td>390</td>
<td>395</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Val</td>
<td>Gln</td>
<td>Thr</td>
<td>Gln</td>
<td>Lys</td>
<td>Gys</td>
<td>His</td>
<td>Leu</td>
<td>Thr</td>
<td>Asp</td>
<td>Ser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>405</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Asp</td>
<td>Glu</td>
<td>Phe</td>
<td>Pro</td>
<td>Glu</td>
<td>Ile</td>
<td>Thr</td>
<td>Glu</td>
<td>Met</td>
<td>Glu</td>
<td>Lys</td>
<td>Glu</td>
<td>Ile</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>425</td>
<td></td>
<td>430</td>
</tr>
<tr>
<td>Asn</td>
<td>Val</td>
<td>Phe</td>
<td>Arg</td>
<td>Asn</td>
<td>Gly</td>
<td>Asn</td>
<td>Gln</td>
<td>Asp</td>
<td>Glu</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Glu</td>
<td>Ala</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
<td>435</td>
<td></td>
<td>440</td>
<td></td>
<td>445</td>
</tr>
<tr>
<td>Arg</td>
<td>Leu</td>
<td>Thr</td>
<td>Ile</td>
<td>Thr</td>
<td>Arg</td>
<td>Lys</td>
<td>Asp</td>
<td>Ile</td>
<td>Gln</td>
<td>Thr</td>
<td>Leu</td>
<td>Asn</td>
<td>His</td>
<td>Leu</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450</td>
<td>455</td>
<td></td>
<td>460</td>
</tr>
<tr>
<td>Trp</td>
<td>Leu</td>
<td>Asn</td>
<td>Asp</td>
<td>Glu</td>
<td>Ile</td>
<td>Asn</td>
<td>Asp</td>
<td>Tyr</td>
<td>Met</td>
<td>Asn</td>
<td>Met</td>
<td>Leu</td>
<td>Met</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>465</td>
<td>470</td>
<td></td>
<td>480</td>
</tr>
<tr>
<td>Arg</td>
<td>Ser</td>
<td>Lys</td>
<td>Glu</td>
<td>Lys</td>
<td>Gly</td>
<td>Leu</td>
<td>Pro</td>
<td>Ser</td>
<td>Val</td>
<td>His</td>
<td>Ala</td>
<td>Phe</td>
<td>Asn</td>
<td>Thr</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>485</td>
<td></td>
<td>495</td>
</tr>
<tr>
<td>Phe</td>
<td>Phe</td>
<td>Thr</td>
<td>Lys</td>
<td>Leu</td>
<td>Lys</td>
<td>Thr</td>
<td>Ala</td>
<td>Gly</td>
<td>Tyr</td>
<td>Gln</td>
<td>Ala</td>
<td>Val</td>
<td>Lys</td>
<td>Arg</td>
<td>Trp</td>
</tr>
<tr>
<td>490</td>
<td></td>
<td>505</td>
<td>510</td>
</tr>
<tr>
<td>Thr</td>
<td>Lys</td>
<td>Val</td>
<td>Asp</td>
<td>Val</td>
<td>Phe</td>
<td>Ser</td>
<td>Val</td>
<td>Asp</td>
<td>Ile</td>
<td>Leu</td>
<td>Leu</td>
<td>Val</td>
<td>Pro</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>515</td>
<td></td>
<td>525</td>
</tr>
</tbody>
</table>
His Leu Gly Val His Trp Cys Leu Ala Val Val Asp Phe Arg Lys Lys

530 535 540

Asn Ile Thr Tyr Tyr Asp Ser Met Gly Gly Ile Asn Asn Glu Ala Cys

545 550 555 560

Arg Ile Leu Leu Gln Tyr Leu Lys Gln Glu Ser Ile Asp Lys Lys Arg

565 570 575

Lys Glu Phe Asp Thr Asn Gly Trp Gln Leu Phe Ser Lys Lys Ser Gln

580 585 590

Ile Pro Gln Gln Met Asn Gly Ser Asp Cys Gly Met Phe Ala Cys Lys

595 600 605

Tyr Ala Asp Cys Ile Thr Lys Asp Arg Pro Ile Asn Phe Thr Gln Gln

610 615 620

His Met Pro Tyr Phe Arg Lys Arg Met Val Trp Glu Ile Leu His Arg

625 630 635 640

Lys Leu Leu

<210> 3
<211> 1132
<212> PRT
<213> Homo sapiens

<220>
<223> human telomerase reverse transcriptase (TERT)

<400> 3
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser

1 5 10 15

His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly

20 25 30

Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg

35 40 45

Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro

50 55 60

Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu Leu

65 70 75 80

Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val

85 90 95

Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Phe Pro

100 105 110

Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr

115 120 125
<table>
<thead>
<tr>
<th>130</th>
<th>135</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp</td>
<td>Ala</td>
<td>Leu</td>
</tr>
<tr>
<td>Arg</td>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Trp</td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>Leu</td>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>Val</td>
<td>145</td>
</tr>
<tr>
<td>Gly</td>
<td>Asp</td>
<td>Val</td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
<td>His</td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td>Arg</td>
</tr>
<tr>
<td>Cys</td>
<td>Ala</td>
<td>Leu</td>
</tr>
<tr>
<td>Leu</td>
<td>Phe</td>
<td>Val</td>
</tr>
<tr>
<td>150</td>
<td>155</td>
<td>160</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Pro</td>
</tr>
<tr>
<td>Ser</td>
<td>Cys</td>
<td>Ala</td>
</tr>
<tr>
<td>Tyr</td>
<td>Gln</td>
<td>Val</td>
</tr>
<tr>
<td>Cys</td>
<td>Gly</td>
<td>Pro</td>
</tr>
<tr>
<td>Pro</td>
<td>Leu</td>
<td>Tyr</td>
</tr>
<tr>
<td>165</td>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td>Gln</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Thr</td>
</tr>
<tr>
<td>Gln</td>
<td>Ala</td>
<td>Arg</td>
</tr>
<tr>
<td>Pro</td>
<td>Pro</td>
<td>Pro</td>
</tr>
<tr>
<td>His</td>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>Gly</td>
<td>180</td>
<td>185</td>
</tr>
<tr>
<td>Pro</td>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td>Cys</td>
<td>Glu</td>
<td>Arg</td>
</tr>
<tr>
<td>Ala</td>
<td>Trp</td>
<td>Asn</td>
</tr>
<tr>
<td>His</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>Arg</td>
<td>195</td>
<td>200</td>
</tr>
<tr>
<td>Glu</td>
<td>Ala</td>
<td>Gly</td>
</tr>
<tr>
<td>Val</td>
<td>Pro</td>
<td>Leu</td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Pro</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td>Ala</td>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>210</td>
<td>215</td>
</tr>
<tr>
<td>Gly</td>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Pro</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Lys</td>
</tr>
<tr>
<td>Arg</td>
<td>Pro</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>225</td>
<td>230</td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Glu</td>
<td>Pro</td>
<td>Glu</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td>Pro</td>
</tr>
<tr>
<td>Val</td>
<td>Gly</td>
<td>Gln</td>
</tr>
<tr>
<td>Gly</td>
<td>Ser</td>
<td>Trp</td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>Ala</td>
<td>His</td>
<td>Pro</td>
</tr>
<tr>
<td>Gly</td>
<td>Arg</td>
<td>Thr</td>
</tr>
<tr>
<td>Arg</td>
<td>Gly</td>
<td>Pro</td>
</tr>
<tr>
<td>Ser</td>
<td>Asp</td>
<td>Arg</td>
</tr>
<tr>
<td>Gly</td>
<td>Phe</td>
<td>Cys</td>
</tr>
<tr>
<td>Val</td>
<td>260</td>
<td>265</td>
</tr>
<tr>
<td>Val</td>
<td>Ser</td>
<td>Pro</td>
</tr>
<tr>
<td>Ala</td>
<td>Arg</td>
<td>Pro</td>
</tr>
<tr>
<td>Ala</td>
<td>Glu</td>
<td>Glu</td>
</tr>
<tr>
<td>Ala</td>
<td>Thr</td>
<td>Ser</td>
</tr>
<tr>
<td>Leu</td>
<td>Glu</td>
<td>Gly</td>
</tr>
<tr>
<td>Ala</td>
<td>275</td>
<td>280</td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>Gly</td>
</tr>
<tr>
<td>Thr</td>
<td>Arg</td>
<td>His</td>
</tr>
<tr>
<td>Ser</td>
<td>His</td>
<td>Pro</td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Gly</td>
</tr>
<tr>
<td>Arg</td>
<td>Gln</td>
<td>His</td>
</tr>
<tr>
<td>His</td>
<td>290</td>
<td>295</td>
</tr>
<tr>
<td>Ala</td>
<td>Gly</td>
<td>Pro</td>
</tr>
<tr>
<td>Pro</td>
<td>Ser</td>
<td>Thr</td>
</tr>
<tr>
<td>Ser</td>
<td>Arg</td>
<td>Pro</td>
</tr>
<tr>
<td>Pro</td>
<td>Arg</td>
<td>Pro</td>
</tr>
<tr>
<td>Trp</td>
<td>Asp</td>
<td>Thr</td>
</tr>
<tr>
<td>Pro</td>
<td>305</td>
<td>310</td>
</tr>
<tr>
<td>Cys</td>
<td>Pro</td>
<td>Pro</td>
</tr>
<tr>
<td>Val</td>
<td>Tyr</td>
<td>Ala</td>
</tr>
<tr>
<td>Glu</td>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td>His</td>
<td>Phe</td>
<td>Leu</td>
</tr>
<tr>
<td>Tyr</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>Gly</td>
<td>325</td>
<td>330</td>
</tr>
<tr>
<td>Asp</td>
<td>Lys</td>
<td>Glu</td>
</tr>
<tr>
<td>Gln</td>
<td>Leu</td>
<td>Arg</td>
</tr>
<tr>
<td>Pro</td>
<td>Ser</td>
<td>Phe</td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Arg</td>
</tr>
<tr>
<td>Pro</td>
<td>340</td>
<td>345</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>Glu</td>
<td>Thr</td>
<td>Ile</td>
</tr>
<tr>
<td>Phe</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td>Ser</td>
<td>355</td>
<td>360</td>
</tr>
<tr>
<td>Arg</td>
<td>Pro</td>
<td>Trp</td>
</tr>
<tr>
<td>Gly</td>
<td>Thr</td>
<td>Pro</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Arg</td>
</tr>
<tr>
<td>Gln</td>
<td>370</td>
<td>375</td>
</tr>
<tr>
<td>Arg</td>
<td>Tyr</td>
<td>Trp</td>
</tr>
<tr>
<td>385</td>
<td>390</td>
<td>395</td>
</tr>
<tr>
<td>Ala</td>
<td>Gln</td>
<td>Cys</td>
</tr>
<tr>
<td>405</td>
<td>410</td>
<td>415</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Val</td>
</tr>
<tr>
<td>420</td>
<td>425</td>
<td>430</td>
</tr>
</tbody>
</table>
Gly Ser Val Ala Ala Pro Glu Glu Glu Asp Thr Asp Pro Arg Arg Leu
435 440 445
Val Gln Leu Leu Arg Gln His Ser Ser Pro Trp Gln Val Tyr Gly Phe
450 455 460
Val Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser
465 470 475 480
Arg His Asn Glu Arg Arg Phe Leu Arg Asn Thr Lys Lys Phe Ile Ser
485 490 495
Leu Gly Lys His Ala Lys Leu Ser Leu Gln Glu Leu Thr Trp Lys Met
500 505 510
Ser Val Arg Asp Cys Ala Trp Leu Arg Arg Ser Pro Gly Val Gly Cys
515 520 525
Val Pro Ala Ala Glu His Arg Leu Arg Glu Ile Leu Ala Lys Phe
530 535 540
Leu His Trp Leu Met Ser Val Tyr Val Glu Leu Leu Arg Ser Phe
545 550 555 560
Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys Asn Arg Leu Phe Phe Tyr
565 570 575
Arg Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His
580 585 590
Leu Lys Arg Val Gln Leu Arg Glu Leu Ser Glu Ala Glu Val Arg Gln
595 600 605
His Arg Glu Ala Arg Pro Ala Leu Leu Thr Ser Arg Leu Arg Phe Ile
610 615 620
Pro Lys Pro Asp Gly Leu Arg Pro Ile Val Asn Met Asp Tyr Val Val
625 630 635 640
Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser
645 650
Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg
665 655 670
Pro Gly Leu Leu Gly Ala Ser Val Leu Gly Leu Asp Asp Ile His Arg
665 680 685
Glu Leu Tyr Phe Val Lys Val Asp Val Thr Gly Ala Tyr Asp Thr Ile
705 710 715 720
Pro Gln Asp Arg Leu Thr Glu Val Ile Ala Ser Ile Ile Lys Pro Gln
725 730 735
Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val Gln Lys Ala Ala His
740 745 750
Gly His Val Arg Lys Ala Phe Lys Ser His Val Ser Thr Leu Thr Asp
755 760 765
Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His Leu Gln Glu Thr Ser
770 775 780
Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser Ser Ser Leu Asn Glu
785 790 795 800
Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg Phe Met Cys His His
805 810 815
Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln Cys Gln Gly Ile Pro
820 825 830
Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr Gly Asp
835 840 845
Met Glu Asn Lys Leu Phe Ala Gly Arg Arg Asp Gly Leu Leu Leu
850 855 860
Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr His Ala
865 870 875 880
Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly Cys
885 890 895
Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp Glu
900 905 910
Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe
915 920 925
Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser
930 935 940
Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe
945 950 955 960
Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu Phe Gly
965 970 975
Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val Asn
980 985 990
Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu Leu Gln
995 1000 1005
Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln Gln
1010 1015 1020
Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr Ala
1025 1030 1035 1040
<table>
<thead>
<tr>
<th>Ser</th>
<th>Leu</th>
<th>Cys</th>
<th>Tyr</th>
<th>Ser</th>
<th>Ile</th>
<th>Leu</th>
<th>Lys</th>
<th>Ala</th>
<th>Lys</th>
<th>Asn</th>
<th>Ala</th>
<th>Gly</th>
<th>Met</th>
<th>Ser</th>
<th>Leu</th>
<th>1045</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Lys</td>
<td>Gly</td>
<td>Ala</td>
<td>Ala</td>
<td>Gly</td>
<td>Pro</td>
<td>Leu</td>
<td>Pro</td>
<td>Ser</td>
<td>Glu</td>
<td>Ala</td>
<td>Val</td>
<td>Gln</td>
<td>Trp</td>
<td>1060</td>
</tr>
<tr>
<td>Leu</td>
<td>Cys</td>
<td>His</td>
<td>Gln</td>
<td>Ala</td>
<td>Phe</td>
<td>Leu</td>
<td>Lys</td>
<td>Leu</td>
<td>Thr</td>
<td>Arg</td>
<td>His</td>
<td>Arg</td>
<td>Val</td>
<td>Thr</td>
<td>1075</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Val</td>
<td>Pro</td>
<td>Leu</td>
<td>Leu</td>
<td>Gly</td>
<td>Ser</td>
<td>Leu</td>
<td>Arg</td>
<td>Thr</td>
<td>Ala</td>
<td>Gln</td>
<td>Thr</td>
<td>Gln</td>
<td>Leu</td>
<td>Ser</td>
<td>1090</td>
</tr>
<tr>
<td>Arg</td>
<td>Lys</td>
<td>Leu</td>
<td>Pro</td>
<td>Gly</td>
<td>Thr</td>
<td>Thr</td>
<td>Leu</td>
<td>Thr</td>
<td>Ala</td>
<td>Leu</td>
<td>Glu</td>
<td>Ala</td>
<td>Ala</td>
<td>Asn</td>
<td>1105</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ala</td>
<td>Leu</td>
<td>Pro</td>
<td>Ser</td>
<td>Asp</td>
<td>Phe</td>
<td>Thr</td>
<td>Ile</td>
<td>Leu</td>
<td>Asp</td>
<td>1125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> 4
<211> 4015
<212> DNA
<213> Homo sapiens

<220>
human telomerase reverse transcriptase (TERT)

<400> 4
gcacgcgtgc	gctctgctgc	gcacgtgagga	agcccttgcc	ccggccaccc	ccgcgagtcg	60
gcacgctccc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	120
gcacgctgac	cgccgctgcc	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	180
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	240
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	300
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	360
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	420
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	480
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	540
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	600
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	660
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	720
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	780
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	840
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	900
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	960
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	1020
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	1080
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	1140
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	1200
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	1260
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	1320
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	1380
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	1440
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	1500
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	1560
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	1620
gcacgctgcc	cgccgctgag	ccctcctgcc	cctcctgcgc	agccactacc	gcggaggtct	1680
caagttcctg cactggctga tgaatgtgta cgtgcgtcagag cttgctcaggt cttttttaa 1740

tgtcaccggag accacgctttc aaaaacacag gctctttttt cacccgaaga gttgcctcagg 1800
cagttgcaaa cggcattgga ctcagcagaa tccggagggc gttgccagtc ggtcctcagg 1860
ggaagccagag gtcagggcag atcgagggac caggccggcc ctgtgctgatg ctagactcgc 1920
cctcatccc aagcctgcag gcggctccgg gattttgaac atgatcagc tgggtgagac 1980
cagacaagtcct cacgaagaaaa agaggccgca ggtgctccac tcaggtgtga aggcagcttt 2040
cagcgtctttc aactacgacc gggcggccgc ccgcccgcctt cggcgctgctt ctgctgctgg 2100
ccttggccagt ctaccaaggct ctcgggcccc cttgctgctg gttggcggac cccgccaccc 2160
ggcacgcctag cttgctctttg tcaagttggta tgtcaggggc ggtgacacag ccatccccca 2220
ggacagcttc acggaggtctc catcctaaacct cggccaagag caacctcgacgt cctgctctcc 2280
tcgttactgca gttgctggcag aggcgccttc cttggccagtc cgggacggcc tcaagacgca 2340
cgtctcctcc taacgacacc ctcagcagca cagcactaac agttggcgag accttttgca 2400
gcagacccgcg ctgagggagtt ctgctgcttact gagagccagc tctccctgta atggcggcag 2460
cagttgctctt ctcacgctcct ctgcagcttt catgctcacc gtagcctgcc gcctcgaggg 2520
cagttcctcct tcggttcggtc agggctctgc gcagcagctc ttcctctctc gcgctgctctg 2580
cagcctgtgcc tgcagggagtct cggggcagaa taagagacag ggcacggccc ggtgcggtgg 2640
gtcctcctggt tgttgggtat aatcttctgt tgtgacactc cactctaccc acgcggaaac 2700
cctttccagcc aagggcctcc acgggacagc tggatagttg caggtgttaa accttgaggaa 2760
gacagcttggc aactcttctcg taagacgcga ggcctccttg ggcacggctt tttcagctag 2820
gccggccaccc cttgctttcc ttcgaggtgc gcacagggag cccggtgagc cccttgaggct 2880
ggacagacac tgcctgaagg cagtgcctga ttcgagggac cagttgctca ccacccatct 2940
cgcctccttc acggcctgcg gaatgccttg gttgcgcgac ggcacaggct ctcctctctc 3000
tcagggcctc ttcggtggag gctcctctct cggagttgta ccagtcgctc ccaaatacct 3060
cagatccccct ccgctcgggt ttcagcagtt tcacacgtct gcggtcagtgt gttgcctcag 3120
tcagcaagtt gcgcagcact gcacagcgtt ctcgagctgct atctcagatg ccggcttcctc 3180
cgctgctcct ctcacagact tgcggtgcct cttcggggtg tcagagcagg ggcagcgccc 3240
cgcctccgct ctcgggtcag gttctcaggt gcgctgctag cccagctgct gctcctccct 3300
gacctgcacag cgttcctccc ctgcgggcttc cggggccgttc ctcgagaccc ccctggagca 3360
gccagttcgg gagcctggcg gggagcgcgt gcctgcgcttg gaggcccgcc cccggcatcc 3420
actgcccttc gacgcttgcag atcagcagtc ctcggtctgt gcgcagcgcag cgcctgctgc 3480
gggccagacac cagcagcctct ccgctcggcg ggcaccagct gcgtcactgt cagggagggg ggcaggcccg 3540
cacacaccggcc ccgccacccgc ctgaggtctgt gcgcctcgggt gatggtctgat ggtgctggtg gaggccgctc 3600
cgttaggctgg ctgttccggtgc tggctccgtga ggaggctgag caggtgctcc gccacaggtc 3660
gagggtccttt ctcgagcagc ctcgagcagc ggcagcgctc ctcggtgagt gccgctgcgc gcgggcagcc 3720
ccagagttggc cttgcttgct ctcgctccct gcctctcttt gcctgctccc cctcctccct 3780
ccagatgcggc ccctgctgct gtcgctctct ctcgctcgag ggcagcagcg ccctgcgctg 3840
ccagctggtgg accttcggggc ctcctggaaat tgggagtgac ctaaaaggtgtg 3900
ccccgtctaccc aggccagggc ctcgctcactg gataggggttc cctgagttgc aatattgggg 3960
gaggtgtctgt gggaagaataa tactgtaaat atgagtttttt cattttgga aaa 4015

<210> 5
<211> 451
<212> DNA
<213> Homo sapiens

<220>
<223> human telomerase RNA component (TERC)

<400> 5
gggttcggga ggttgggccc gggaggggtg gttgccttactt tttgtctacaact aactcgtgag 60
agggcctgac cccgctgctct ttggtgtccttc gcgcgggtgtt ttttctctctg actcttcacgc 120
ggcgcctcag cccgtcttcctc ccggcctccgtc tagacagctca aaaaaatgctc 180
agtctgcgttc cctgtctggcag gctgctcagctg cttgctgactg gcgcaggtgg caggccaggg 240
acccgctctg gaggcccgcc tcggccccgg gcctctccttt gcaggccacc gcggcaccctc 300
aaggcttggc cctcgtctcgc gcggtcctctg cgccccgctg cagcccttcagc 360
aggccgcagg aagaggaacg gacgcagtcg cgcgcgcgcgg cgcgcattccc tgagctgtgg 420
gacgtgcacc caggactcgg ctcacacatg c 451

<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SENP1 forward "sense" primer

<400> 6
ciaagaagtc gcagttataat cc a a 24

<210> 7
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SENP1 reverse "antisense" primer

<400> 7
gtttggg gtttcaggta a 21

<210> 8
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: SENP1 TaqMan probe

<400> 8
ctcagacagt tttcttggtct caggcg 26

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PPP1CA forward primer

<400> 9
gagcacacca ggtggtagaa 20

<210> 10
<211> 19
DNA
Artificial Sequence

Description of Artificial Sequence: PPP1CA reverse primer

gggcttgagg atctggaaa

DNA
Artificial Sequence

Description of Artificial Sequence: PPP1CA probe

gagtttgaca atgctgcgc catgatgagt

Artificial Sequence

Description of Artificial Sequence: substrate/inhibitor specific for SENP1 protease, SENP1 antagonist

Glu Gln Thr Gly Gly

Artificial Sequence

Description of Artificial Sequence: nuclear localization signal sequence (NLS1)

Pro Lys Lys Thr Gln Arg Arg

Artificial Sequence
Description of Artificial Sequence: small ubiquitin-like modifier (SUMO) protein Sm31 C-terminal sequence

Thr Ile Asp Val Phe Gln Gln Gln Thr Gly Gly Val Pro Glu Ser Ser Leu Ala Gly His Ser Phe
1 5 10 15

Description of Artificial Sequence: small ubiquitin-like modifier (SUMO) protein Sm32 C-terminal sequence

Thr Ile Asp Val Phe Gln Gln Gln Thr Gly Gly Val Tyr
1 5 10

Description of Artificial Sequence: small ubiquitin-like modifier (SUMO) protein Sm33 C-terminal sequence

Val Ile Glu Val Tyr Gln Glu Gln Thr Gly Gly His Ser Thr Val
1 5 10 15

Description of Artificial Sequence: small ubiquitin-like modifier (SUMO) protein Sm34 C-terminal sequence

Ile Ile Glu Ala His Arg Glu Gln Ile Gly Gly Ala Thr Tyr
1 5 10
<210> 18
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: TERT forward primer

<400> 18
tggycacgyc cgca

<210> 19
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: TERT reverse primer

<400> 19
ggycgtggag cacatgaa

<210> 20
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: TERT TaqMan probe

<400> 20
tcactgagca gactcctcc ctgaatgagg

30
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS, MEDLINE, EMBASE, Sequence Search

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 01/22920 A (HUMAN GENOME SCIENCES, INC; RUBEN, STEVEN, M; BARASH, STEVEN, C; BIRSE) 5 April 2001 (2001-04-05) Human colon cancer antigen encoding cDNA SEQ ID NO:1655 corresponds 100% to SENP1 between nt 427-789</td>
<td>1-50</td>
</tr>
<tr>
<td>X</td>
<td>US 6 596 527 B1 (YEH EDWARD T. H ET AL) 22 July 2003 (2003-07-22) Sequence 1 from patent US 6596527 = SENP1 column 3; claims 1-8</td>
<td>49,50</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

Date of the actual completion of the international search

12 October 2005

Date of mailing of the international search report

18/10/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5016 Patentinformation 2 NL - 2280 HV Rijswijk
Tel. (31-70) 342-2040, Tx. 31 651 eop at
Fax. (31-70) 340-3016

Form PCT/ISA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P,X</td>
<td>WO 2004/048938 A (PROTEIN DESIGN LABS, INC; AZIZ, NATASHA; GINSBURG, WENDY, M; ZLOTNIK,) 10 June 2004 (2004-06-10) Human soft tissue sarcoma-upregulated DNA - SEQ ID 2907. Example 2; SEQ ID NO 2907 = SENP1 the whole document</td>
<td>1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2003263603 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2500472 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2500482 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1556518 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1549771 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004031412 A2</td>
</tr>
<tr>
<td>WO 0122920 A</td>
<td>05-04-2001</td>
<td>AU 7721500 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2384713 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1265582 A2</td>
</tr>
<tr>
<td>US 6596527 B1</td>
<td>22-07-2003</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 0109292 A</td>
<td>08-02-2001</td>
<td>AT 281522 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2337685 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 6001559 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1204746 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003506032 T</td>
</tr>
<tr>
<td>US 2004029114 A</td>
<td>12-02-2004</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2003264881 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2500859 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2500861 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1546411 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1546197 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004031231 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6664046 B1</td>
</tr>
</tbody>
</table>