
(12) STANDARD PATENT (11) Application No. AU 2016380796 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Replay of partially executed instruction blocks in a processor-based system employ
ing a block-atomic execution model

(51) International Patent Classification(s)
G06F 9/38 (2006.01)

(21) Application No: 2016380796 (22) Date of Filing: 2016.12.09

(87) WIPO No: W017/116652

(30) Priority Data

(31) Number (32) Date (33) Country
62/271,475 2015.12.28 US
15/252,323 2016.08.31 us

(43) Publication Date: 2017.07.06
(44) Accepted Journal Date: 2021.12.16

(71) Applicant(s)
QualcommIncorporated

(72) Inventor(s)
Wright, Gregory Michael

(74) Agent / Attorney
Madderns Pty Ltd, GPO Box 2752, Adelaide, SA, 5001, AU

(56) Related Art
US 5832202 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2017/116652 A1
6 July 2017 (06.07.2017) W IP0IPICT

(51) International Patent Classification: DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
G06F 9/38 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,

KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
(21) InternationalApplicationNumber: MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,

PCT/US2016/065740 NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
(22) International Filing Date: RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,

9 December 2016 (09.12.2016) TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZM, ZW.

(25) Filing Language: English
(84) Designated States (unless otherwise indicated, for every

(26) Publication Language: English kind of regional protection available): ARIPO (BW, GH,

(30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

62/271,475 28 December 2015 (28.12.2015) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

15/252,323 31 August 2016 (31.08.2016) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

(71) Applicant: QUALCOMM INCORPORATED [US/US]; LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
ATTN: International IP Administration, 5775 Morehouse SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Drive, San Diego, California 92121-1714 (US). GW, KM, ML, MR, NE, SN, TD, TG).

(72) Inventor: WRIGHT, Gregory, Michael; 5775 Morehouse Declarations under Rule 4.17:
Drive,SanDiego,California92121(US). - as to applicant's entitlement to applyfor and be granted a

(74) Agent: TERRANOVA, Steven, N.; WITHROW & TER- patent (Rule 4.17(ii))
RANOVA, PLLC, 106 Pinedale Springs Way, Cary, North - as to the applicant's entitlement to claim the priority of the
Carolina 27511 (US). earlier application (Rule 4.17(iii))

(81) Designated States (unless otherwise indicated, for every Published:
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, with international search report (Art. 21(3))
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,

(54) Title: REPLAY OF PARTIALLY EXECUTED INSTRUCTION BLOCKS IN A PROCESSOR-BASED SYSTEM EMPLOY
ING A BLOCK-ATOMIC EXECUTION MODEL

PRUYO (2114)

-N INSTRUCTIONS P

i | CACHE (304)

CCN`PLITIOJUIT 3STAT' I3PL

-N- -/
,_-32F 310 -3 2 - __-_-_-_- __-_-_--_>

- ----- -3021
- LOAilNG 212 CORD/REPAY

POINTLUNIS) LOADVOP E PA ,L REPLAY N S 33 LOL (338 34

-)N1 WR I.A JR11 S 336 -E-YR 3
- Li 341 TE VA N-t

P ~
318

AL'ST R T 2 3- 326

-iW~uu -AA~A -4 - 21

_22 MCTJNIT V1Mk3) y'

1324 332 D T O34

j-FS IICI

I~j~~ADRES21S FIG3

4 (57) Abstract: Replay of partially executed instruction blocks in a processor-based system employing a block-atomic execution
model is disclosed. In one aspect, a partial replay controller is provided in a processor(s) of a central processing unit (CPU). If an in
struction is detected in the instruction block associated with a potential architectural state modification, or an exception occurs dur
ing execution of instructions, the instruction block is re-executed. During re-execution of the instruction block, the partial replay
controller is configured to record produced results from load/store instructions. Thus, if an exception occurs during re-execution of

r4 the instruction block, previously recorded produced results for the executed load/store instructions before the exception occurred are
replayed during re-execution of the instruction block after the exception is resolved. Thus, execution of instructions leading up to
side-effect operations in the instruction block can be deterministically repeated with previously produced results, without repeating
the side-effects.

WO 2017/116652 PCT/US2016/065740

REPLAY OF PARTIALLY EXECUTED INSTRUCTION BLOCKS IN A
PROCESSOR-BASED SYSTEM EMPLOYING A BLOCK-ATOMIC

EXECUTION MODEL

PRIORITY APPLICATION

[0001] The present application claims priority to U.S. Provisional Patent

Application Serial No. 62/271,475 filed on December 28, 2015, and entitled "REPLAY

OF PARTIALLY-EXECUTED INSTRUCTION BLOCKS IN A PROCESSOR

BASED SYSTEM EMPLOYING A BLOCK-ATOMIC EXECUTION MODEL," the

contents of which is incorporated herein by reference in its entirety.

[0002] The present application also claims priority to U.S. Patent Application Serial

No. 15/252,323 filed on August 31, 2016, and entitled "REPLAY OF PARTIALLY

EXECUTED INSTRUCTION BLOCKS IN A PROCESSOR-BASED SYSTEM

EMPLOYING A BLOCK-ATOMIC EXECUTION MODEL," the contents of which is

incorporated herein by reference in its entirety.

BACKGROUND

I. Field of the Disclosure

[0003] The technology of the disclosure relates generally to execution of

instructions in a processor-based system, and more particularly to processor-based

systems employing a block-atomic execution model in which instructions are grouped

into instruction blocks in which either all instructions in the instruction block are

committed or none of the instructions are committed.

II. Background

[0004] Microprocessors perform computational tasks in a wide variety of

applications. A conventional microprocessor application includes a central processing

unit (CPU) that includes or more processors, also known as "processor cores," that

execute software instructions. The software instructions instruct a CPU to perform

operations based on data. Examples of such data include immediate values encoded in

instruction fetch data, data stored in a register, data from a location in memory, and data

from external devices, such as input/output (1/0) devices. The CPU performs an

1

WO 2017/116652 PCT/US2016/065740

operation according to the instructions to generate a result. The result may then be

stored in a register or memory, or provided as output to an 1/O device.

[0005] Some CPUs employ a "block-atomic" execution model. In a block-atomic

execution model, a set of instructions (e.g., 128 instructions) is grouped into instruction

blocks. For example, Figure 1 illustrates an exemplary instruction block 100 comprised

of a plurality of instructions 102(1)-102(N) to be executed by a processor employing a

block-atomic execution model. A processor operating according to a block-atomic

execution model logically fetches, executes, and commits the instruction block 100 as a

single entity. A block-atomic execution model has an advantage of reducing the

complexity of an out-of-order processor (OoP). For example, an OoP that employs a

block-atomic execution model does not have to report back the precise state of the

processor after execution of each instruction. In this regard, in the example instruction

block 100 shown in Figure 1, intermediate produced results 104(1), 104(2), 104(4),

104(N-2)-104(N) from execution of the instructions 102(1), 102(2), 102(4), 102(N-2)

102(N) that would otherwise be stored in global registers do not need to be saved to

registers. Taking instruction 102(1) as an example, its intermediate produced result

104(1) can be provided to a consumer instruction 102(2) in the instruction block 100 in

a peer-to-peer manner without having to save the intermediate produced result 104(1).

This enables fewer register read and write operations. However, in a block-atomic

execution model, all the instructions must be executed before the external execution

results (e.g., to memory, an 1/O device, etc.) of the instruction block 100 can be

committed since intermediate produced results are not stored in global registers. For

example, as shown in Figure 1, if an exception 108 occurs (e.g., a precise exception,

such as a page fault, or a debug breakpoint or set point) during the execution of the

instruction 102(4) inside the instruction block 100, the remaining instructions 102(N-2)

102(N) are not executed, because the intermediate produced results 104(1), 104(2),

104(4) are not preserved wherein execution could begin at the next instruction 102(N

2). The instruction block 100 is re-executed from the beginning after the exception 108

is resolved.

[0006] Thus, while a processor employing a block-atomic execution model has the

advantage of reduced complexity, a processor employing a block-atomic execution

model has a disadvantage of having to execute all instructions in an instruction block

2

WO 2017/116652 PCT/US2016/065740

before external results are committed. As an example, this can make debugging more

difficult in the presence of a multi-threaded CPU, because it is generally not possible to

reproduce whatever behavior led to an exception or breakpoint that occurred during

execution of an instruction block. The intermediate produced results of the instruction

block, which may have been read from a previous write operation in another thread, are

not stored. This also presents difficulties with side-effect operations, such as 1/O device

side-effects, where an 1/O operation has already been executed prior to an exception

occurring. For example, if execution of I/O operation instruction 102(4) in the

instruction block 100 in Figure 1 was initiated but not completed prior to the occurrence

of the exception 108, the intermediate data read from the I/O operation in instruction

102(4) may no longer be available during re-execution of the instruction block 100.

Thus, in this example, the intermediate data read during the first execution of instruction

102(4) may not be reproducibly stored in a register r2.

SUMMARY OF THE DISCLOSURE

[0007] Aspects disclosed herein include replay of partially executed instruction

blocks in a processor-based system employing a block-atomic execution model. In this

regard, in one aspect, a partial replay controller is provided in a processor(s) of a central

processing unit (CPU) that employs a block-atomic execution model. In a block-atomic

execution model, instructions are grouped in instruction blocks that are fully executed in

a processor (e.g., an out-of-order processor (OoP)) before external produced results are

committed. This resolves all load/store dependencies that can affect the values of the

external produced results, and thus an architectural state of the processor and other

processes dependent on such externally produced results. To avoid produced results

from load/store operations not being able to be reproduced during re-execution of an

instruction block loaded due to an exception, the partial replay controller is configured

to record/replay results of load/store instructions during re-execution of the instruction

block. In this regard, in certain aspects, if an instruction is detected in the instruction

block as associated with a potential architectural state modification (e.g., a potential

side-effect), or an exception occurs, during execution of instructions in the instruction

block, the instruction block is re-executed. During re-execution of the instruction block,

the partial replay controller is configured to record the produced results from the

3

WO 2017/116652 PCT/US2016/065740

load/store instructions. Thus, if an exception occurs during re-execution of the

instruction block, the previously recorded produced results for the executed load/store

instructions before the exception occurred can be replayed during re-execution of the

instruction block after the exception is resolved. In this manner, execution of

instructions leading up to the operations associated with a potential architectural state

modification or before an exception occurs can be deterministically repeated with the

previously produced results, without repeating side-effects.

[0008] Note however that if an exception does not occur during re-execution of the

instruction block, this means that all instructions in the instruction block were fully

executed with the produced results being recorded. Since the instruction block in this

instance is not re-executed, there is no need to replay the recorded produced results for

the load/store instructions previously executed.

[0009] In this regard, in one exemplary aspect, a partial replay controller for

controlling execution replay of an instruction block executed in a processor is provided.

The partial replay controller comprises a detection circuit configured to set a

record/replay state to an active state for an instruction block, in response to detection of

an instruction associated with a potential architectural state modification, or an

occurrence of an exception in the processor. The partial replay controller also

comprises a record/replay circuit. In response to the record/replay state being an active

state for the instruction block, the record/replay circuit is configured to inspect an entry

state in a record/replay log file corresponding to a next load/store instruction to be

executed in the instruction block to determine if previously produced data is recorded

for the next load/store instruction. Also in response to the record/replay state being an

active state for the instruction block, the record/replay circuit is also configured to

record produced data of the executed next load/store instruction in the record/replay log

file, in response to the previously produced data not being recorded in the record/replay

log file for the next load/store instruction. Also in response to the record/replay state

being an active state for the instruction block, the record/replay circuit is also

configured to execute the next load/store instruction using the previously produced data

recorded for the next load/store instruction in the record/replay log file, in response to

the previously produced data being recorded in the record/replay log file for the next

load/store instruction.

4

WO 2017/116652 PCT/US2016/065740

[0010] In another exemplary aspect, a partial replay controller for controlling

execution replay of an instruction block executed in a processor is provided. The partial

replay controller comprises a means for setting a means for storing a record/replay state

to an active state for an instruction block, in response to detection of an instruction

associated with a potential architectural state modification, or an occurrence of an

exception in the processor. The partial replay controller also comprises a means for

inspecting an entry state in a means for storing a record/replay log file corresponding to

a next load/store instruction to be executed in the instruction block to determine if

previously produced data is recorded for the next load/store instruction, in response to

the means for storing the record/replay state to an active state for the instruction block.

The partial replay controller also comprises a means for recording produced data of the

executed next load/store instruction in the means for storing the record/replay log file, in

response to the previously produced data not being recorded in the means for storing the

record/replay log file for the next load/store instruction. The partial replay controller

also comprises a means for executing the next load/store instruction using the

previously produced data recorded for the next load/store instruction in the means for

storing the record/replay log file, in response to the previously produced data being

recorded in the means for storing the record/replay log file for the next load/store

instruction.

[0011] In another exemplary aspect, a method of replaying an instruction block in a

processor is provided. The method comprises setting a record/replay state to an active

state for an instruction block in response to detection of an instruction associated with a

potential architectural state modification, or an occurrence of an exception in the

processor. In response to the record/replay state being an active state for the instruction

block, the method also comprises, inspecting an entry state in a record/replay log file

corresponding to a next load/store instruction to be executed in the instruction block to

determine if previously produced data is recorded for the next load/store instruction,

recording produced data of the executed next load/store instruction in the record/replay

log file, in response to the previously produced data not being recorded in the

record/replay log file for the next load/store instruction, and executing the next

load/store instruction using the previously produced data recorded for the next

load/store instruction in the record/replay log file, in response to the previously

5

produced data being recorded in the record/replay log file for the next load/store

instruction.

[00121 In another exemplary aspect, a non-transitory computer-readable medium

having stored thereon computer executable instructions is provided. The computer

executable instructions, when executed by a processor, cause the processor to set a

record/replay state to an active state for an instruction block, in response to detection of

an instruction associated with a potential architectural state modification, or an

occurrence of an exception in the processor. In response to the record/replay state being

an active state for the instruction block, the computer executable instructions, when

executed by the processor, also cause the processor to inspect an entry state in a

record/replay log file corresponding to a next load/store instruction to be executed in the

instruction block to determine if previously produced data is recorded for the next

load/store instruction. In response to the record/replay state being an active state for the

instruction block, the computer executable instructions, when executed by the

processor, also cause the processor to record produced data of the executed next

load/store instruction in the record/replay log file, in response to the previously

produced data not being recorded in the record/replay log file for the next load/store

instruction. In response to the record/replay state being an active state for the

instruction block, the computer executable instructions, when executed by the

processor, also cause the processor to execute the next load/store instruction using the

previously produced data recorded for the next load/store instruction in the

record/replay log file, in response to the previously produced data being recorded in the

record/replay log file for the next load/store instruction.

[0012a] In another exemplary aspect, there is provided a partial replay controller for

controlling execution replay of an instruction block executed in a processor employing a

block-atomic execution model in which instructions are grouped into instruction blocks

in which either all instructions in the instruction block are committed or none of the

instructions are committed, comprising: a detection circuit configured to set a

record/replay state to an active state for an instruction block, in response to detection of

an instruction associated with a potential architectural state modification or an

occurrence of an exception in the processor during execution of the instruction block by

the processor, wherein an instruction is associated with a potential, architectural state

6

modification if it modifies an architectural state in the processor and has an observable

interaction with functions or processes outside of the instruction block; and a

record/replay circuit configured to, during re-execution of the instruction block by the

processor in response to the record/replay state being an active state for the instruction

block: inspect an entry state in a record/replay log file corresponding to a next load/store

instruction to be executed in the instruction block to determine if previously produced

data is recorded for the next load/store instruction; record produced data of the executed

next load/store instruction in the record/replay log file, in response to the previously

produced data not being recorded in the record/replay log file for the next load/store

instruction; and execute the next load/store instruction using the previously produced

data recorded for the next load/store instruction in the record/replay log file, in response

to the previously produced data being recorded in the record/replay log file for the next

load/store instruction.

[0012b] In another exemplary aspect, there is provided a method of replaying an

instruction block in a processor employing a block-atomic execution model in which

instructions are grouped into instruction blocks in which either all instructions in the

instruction block are committed or none of the instructions are committed, comprising:

setting a record/replay state to an active state for an instruction block in response to

detection of an instruction associated with a potential architectural state modification, or

an occurrence of an exception in the processor during execution of the instruction block

by the processor, wherein an instruction is associated with a potential, architectural state

modification if it modifies an architectural state in the processor and has an observable

interaction with functions or processes outside of the instruction block; and during re

execution of the instruction block by the processor in response to the record/replay state

being an active state for the instruction block: inspecting an entry state in a

record/replay log file corresponding to a next load/store instruction to be executed in the

instruction block to determine if previously produced data is recorded for the next

load/store instruction; recording produced data of the executed next load/store

instruction in the record/replay log file, in response to the previously produced data not

being recorded in the record/replay log file for the next load/store instruction; and

executing the next load/store instruction using the previously produced data recorded

for the next load/store instruction in the record/replay log file, in response to the

6a

previously produced data being recorded in the record/replay log file for the next

load/store instruction.

BRIEF DESCRIPTION OF THE FIGURES

[0013] Figure 1 illustrates an exemplary instruction block configured to be executed

by a central processing unit (CPU) employing a block-atomic execution model, wherein

an exception occurred during execution of instructions in the instruction block after an

input/output (I/O) operation executed in the instruction block;

[0014] Figure 2 is a block diagram of an exemplary multiple processor ("multi

processor") CPU, wherein each processor is configured to execute software instructions

to perform functions, including accesses to external memory and I/O devices;

6b

WO 2017/116652 PCT/US2016/065740

[0015] Figure 3 is a block diagram illustrating exemplary detail of a processor that

can be included in the multi-processor CPU in Figure 2, wherein the processor includes

a partial replay controller configured to record and/or replay results of load/store

instructions during re-execution of an instruction block, in response to detecting an

instruction in the instruction block associated with a potential architectural state

modification, and/or in response to an occurrence of an exception, during execution of

instructions in the instruction block;

[0016] Figure 4 is a flowchart illustrating an exemplary process that can be

performed by the partial replay controller in the processor in Figure 3 for entering a

record/replay active state to record and/or replay results of load/store instructions during

re-execution of an instruction block, in response to detection of the instruction

associated with a potential architectural state modification and/or in response to an

occurrence of an exception in the processor;

[0017] Figure 5 illustrates an exemplary instruction block executed by the processor

in Figure 3 that includes instructions associated with a potential architectural state

modification, to facilitate further exemplary discussion of the partial replay controller in

Figure 3 during execution and re-execution of the instruction block;

[0018] Figure 6 is a flowchart illustrating an exemplary process that can be

performed by the partial replay controller in Figure 3 for recording and replaying results

of load/store instructions during re-execution of an instruction block, in response to

detecting an instruction in the instruction block associated with a potential architectural

state modification;

[0019] Figure 7 is an exemplary state machine illustrating an exemplary operation

of the partial replay controller in the processor in Figure 3 during execution of the

instruction block in the processor; and

[0020] Figure 8 is a block diagram of an exemplary processor-based system that

includes a multi-processor CPU that includes a partial replay controller configured to

record and/or replay results of load/store instructions during re-execution of an

instruction block, in response to detecting an instruction in the instruction block

associated with a potential architectural state modification and/or an occurrence of an

exception during an idle execution state of the instruction block, according to the

examples disclosed herein.

7

WO 2017/116652 PCT/US2016/065740

DETAILED DESCRIPTION

[0021] With reference now to the drawing figures, several exemplary aspects of the

present disclosure are described. The word "exemplary" is used herein to mean

"serving as an example, instance, or illustration." Any aspect described herein as

"exemplary" is not necessarily to be construed as preferred or advantageous over other

aspects.

[0022] Aspects disclosed herein include replay of partially executed instruction

blocks in a processor-based system employing a block-atomic execution model. In this

regard, in one aspect, a partial replay controller is provided in a processor(s) of a central

processing unit (CPU) that employs a block-atomic execution model. In a block-atomic

execution model, instructions are grouped in instruction blocks that are fully executed in

a processor (e.g., an out-of-order processor (OoP)) before external produced results are

committed. This resolves all load/store dependencies that can affect the values of the

external produced results, and thus an architectural state of the processor and other

processes dependent on such externally produced results. To avoid produced results

from load/store operations not being able to be reproduced during re-execution of an

instruction block loaded due to an exception, the partial replay controller is configured

to record/replay results of load/store instructions during re-execution of the instruction

block. In this regard, in certain aspects, if an instruction is detected in the instruction

block as associated with a potential architectural state modification (e.g., a potential

side-effect), or an exception occurs, during execution of instructions in the instruction

block, the instruction block is re-executed. During re-execution of the instruction block,

the partial replay controller is configured to record the produced results from the

load/store instructions. Thus, if an exception occurs during re-execution of the

instruction block, the previously recorded produced results for the executed load/store

instructions before the exception occurred can be replayed during re-execution of the

instruction block after the exception is resolved. In this manner, execution of

instructions leading up to the operations associated with a potential architectural state

modification or before an exception occurs can be deterministically repeated with the

previously produced results, without repeating side-effects.

[0023] In this regard, Figure 2 is a block diagram of an exemplary processor-based

system 200 that includes a CPU 202 having multiple processor cores 204(1)-204(P),

8

WO 2017/116652 PCT/US2016/065740

which are referenced herein as processors 204(1)-204(P), wherein 'P' is the number of

processors 204 included in the CPU 202. As a non-limiting example, the processors

204(1)-204(P) may be out-of-order processors (OoPs) that are configured to perform

out-of-order execution of instructions based on the availability of input data. This is

opposed to an in-order processor that must execute instructions according to their

original order in a program, to avoid being idle while waiting for the preceding

instruction to complete to retrieve data for the next instruction in a program. One or

more processors 204(1)-204(P) in the CPU 202 in this example include a partial replay

controller 206(1)-206(P). In this example, each processor 204(1)-204(P) in the CPU

202 includes a partial replay controller 206(1)-206(P), but such is not required.

[0024] As will be discussed in more detail below starting at Figure 3, the partial

replay controllers 206(1)-206(P) that are included in the processors 204(1)-204(P) are

each configured to record and/or replay results of load/store instructions during re

execution of an instruction block, in response to detecting an instruction associated with

a potential architectural state modification (e.g., a potential side-effect) during execution

of instructions in the instruction block. Before discussing the aspects of the partial

replay controllers 206(1)-206(P), a description of the other components of the CPU 202

in Figure 2 are first discussed below.

[0025] In this regard, with continuing reference to Figure 2, each processor 204(1)

204(P) in this example can include a cache memory ("cache") 208(1)-208(P) (e.g., a

Level 2 (L2) cache) for providing access to cached data on-processor without having to

provide a memory access request (at "address") off-processor onto an address bus 210.

For off-processor memory access requests, the processors 204(1)-204(P) are configured

to provide an "address" on the address bus 210 to a memory controller 212 for accessing

a system memory 214. "Data" to be written by a requesting processor 204(1)-204(P) is

provided to the system memory 214 via a data bus 216. "Data" read from the system

memory 214 is provided on the data bus 216 by the system memory 214 to be provided

to the requesting processor 204(1)-204(P). An input/output (1/0) device(s) 218 is also

coupled to the address bus 210 and the data bus 216 in the processor-based system 200

in Figure 2 to provide the processors 204(1)-204(P) access to the 1/O device(s) 218.

The processor-based system 200 could be provided as a system-on-a-chip (SoC) 220,

9

WO 2017/116652 PCT/US2016/065740

wherein the processors 204(1)-204(P) and the related components illustrated in Figure 2

and described above are integrated together on a chip.

[0026] Exemplary details of each processor 204(1)-204(P) in the CPU 202,

including an exemplary partial replay controller and supporting data structures is shown

in Figure 3 generally as "processor 204." As shown therein, the processor 204 includes

an instruction memory management unit (MMU) 300 that can fetch instructions 302

stored in an instruction cache 304 to provide to a decode/dispatch completion unit 306.

The instruction cache 304 may load the instructions 302 to be executed from a main

memory, such as the system memory 214 in Figure 2. In this example, the instructions

302 are grouped together into an instruction block 308 to be executed. The

decode/dispatch completion unit 306 provides instructions 302 for the decoded

instruction block 308 to a dispatch/completion bus(es) 310 to be executed. As

previously discussed, since the processor 204 employs a block-atomic execution model,

all instructions 302 in a given instruction block 308 fully execute before the results of

the executed instructions 302 are committed. In this example, a floating point unit(s)

312 is provided to receive floating point instructions 302F in the instruction block 308

to be executed with the produced results stored in a floating point register file 314.

Similarly, an integer unit(s) 316 is provided to receive integer instructions 3021 in an

executed instruction block 308 to be executed, with the produced results stored in a

general purpose register (GPR) file 318. A load/store unit 320 is provided to receive

load/store instructions 302L from an instruction block 308. Depending on the particular

load/store instruction 302L, the produced results from the executed load/store

instructions 302L can be stored in the general purpose register file 318, or a memory

queue 322 for access to external memory through a bus interface unit 324 coupled to the

address bus 210 and the data bus 216. Executed load/store instructions 302L requiring

access to external memory are also provided to a data MMU 326 to manage the data to

be read to external memory or written to external memory based on the executed

load/store instructions 302L.

[0027] With continuing reference to Figure 3, if instructions, such as the

instructions 102(1)-102(N) in the exemplary instruction block 100 in Figure 1, were

executed by the processor 204 as the instruction block 308 without the partial replay

controller 206 provided, and if an exception occurred during the execution of an

10

WO 2017/116652 PCT/US2016/065740

instruction 302 inside the instruction block 308, the remaining instructions 302 in the

instruction block 308 are not executed. The intermediate produced results are not

preserved wherein execution could begin at the next instruction 302 in the instruction

block 308 after the exception is resolved. In this regard, the instructions 302 in the

instruction block 308 would be re-executed from the beginning after the exception is

resolved. This could make debugging instructions 302 executed by the processor 204

difficult, because it is generally not possible to reproduce whatever behavior led to an

exception that occurred during execution of instructions 302 in an instruction block 308.

The intermediate produced results of the executed instructions 302 from an instruction

block 308, which may have been read from a previous write operation in another thread,

are not stored. This also presents difficulties with load/store instructions 302L that can

have or have side-effects, such as I/O device side-effects, where an 1/O operation to the

1/O device(s) 218 (see Figure 2), has already been executed prior to an exception. In

this regard, if a load/store instruction 302L of an instruction block 308 was initiated but

not completed prior to the exception, the intermediate data read from the 1/O operation

may no longer be available for re-executing the instructions 302 in the instruction block

308, because the intermediate data was not stored.

[0028] In this regard, the partial replay controller 206 is provided in the processor

204 to record and/or replay results of the load/store instructions 302L during re

execution of the instructions 302 in the instruction block 308, in response to detection of

the instruction 302 in the instruction block 308 associated with a potential architectural

state modification (e.g., a potential side-effect). The partial replay controller 206 can

be provided as part of a load/store system 328 that includes the load/store unit 320, or

separately from the load/store unit 320. An instruction 302 is associated with a

potential architectural state modification if it involves an operation that modifies an

architectural state in the CPU 202, including the processors 204(1)-204(P), and can have

an observable interaction with functions or processes outside of the instruction block

308. For example, an instruction 302 associated with a potential architectural state

modification may affect external produced results that can affect other processes and

threads outside of the instruction block 308 and/or other processors 204(1)-204(P).

Such instructions 302 may have load/store dependencies that can affect the values of the

11

WO 2017/116652 PCT/US2016/065740

external produced results, and thus the architectural state of the processors 204(1)

204(P) and other processes is dependent on such externally produced results.

[0029] For example, the instruction block 308 may have an instruction 302 that can

potentially modify an architectural state and thus cause a side-effect. Non-limiting

examples include modifying a global variable, writing to a system configuration

register, raising an expected exception (e.g., a breakpoint, set point, or watchpoint), and

writing data to memory or an I/O device. An architectural state may also be modified

from an operation that has a side-effect, such as reading data from a device such as an

I/O device where data is popped off a queue and thus is not reproduced on a subsequent

read operation. If an instruction 302 is associated with a potential architectural state

modification, the behavior or other processes that are affected by the architectural state

modification depend on an order of evaluation.

[0030] For instructions 302 associated with potential architectural state

modifications that have or cause side-effects, it may be difficult to recreate or reproduce

the conditions by which the instructions 302 operate during any re-execution of the

instructions 302. Thus, if an exception were to occur before the instruction block 308

fully executed, intermediate produced results used to perform the operation of the

instructions 302 associated with potential architectural state modifications may no

longer be available or have the same value after the exception is resolved. However,

with the partial replay controller 206 being configured to record and/or replay results of

the load/store instructions 302L during re-execution of the instruction block 308 in

response to detection of the instruction 302 in the instruction block 308 associated with

the potential architectural state modification, the intermediate produced results can be

recorded during re-execution of the instruction block 308. Thus, if an exception were to

occur, such intermediate results can be replayed during another re-execution of the

instruction block 308 after the exception is resolved to ensure integrity of externally

produced values from the instruction block 308 that affect the architectural state of the

processor 204.

[0031] For example, the exception could be a precise exception, including a block

exception that occurs at an instruction block 308 execution boundary, and an instruction

exception which occurs at an instruction 302 boundary within an instruction block 308.

Examples of exceptions include arithmetic exceptions: divide by zero, division

12

WO 2017/116652 PCT/US2016/065740

overflow, IEEE floating point, privilege violations (non-MMU), data page faults (page

not mapped, privilege violation, write protected), uncorrectable precise error correcting

code (ECC) error, and other precise hardware faults (TBD). The exception could also

be a debugger breakpoint in a debugging mode or a watchpoint as other examples. The

ability to record and replay previously produced data from an instruction block 308

during a debugging mode or at a watchpoint may be particularly useful to be able to see

the state of all loaded or stored data during execution.

[0032] However, the processor 204 in Figure 3 includes the partial replay controller

206 to avoid the situation of not being able to reproduce produced data from the

load/store instructions 302L in the instruction block 308 in the event that the instruction

block 308 must be re-executed by the processor 204, such as due to an exception

occurring during the execution of the instruction block 308. As discussed in more detail

below, the partial replay controller 206 is configured to allow an instruction exception

to be reproducible in the processor 204 employing a block-atomic execution model.

The partial replay controller 206 allows a partial block replay (PBR) model to be

employed wherein a sufficient state can be reported to an exception handler or debugger

to allow the instruction block 308 execution leading up to the exception to be

reproduced deterministically. In such a scenario, the instruction block's 308 execution

remains atomic, in the sense that it has induced no side-effects to general purpose

registers and memory. Partial block replay also allows side-effect operations (strongly

ordered load and store and system register writes) operations to fit within the instruction

block 308 structure. The PBR model made possible by the partial replay controller 206

allows a weakening of block atomicity for instructions 302 in an instruction block 308

with side-effects. Sufficient state is saved to allow an instruction block 308 to be

resumed after an exception, deterministically repeating the execution leading up to the

side-effect operations, and without then repeating the side-effects themselves.

[0033] As will also be discussed in more detail below, the partial replay controller

206 may also be configured to record and/or replay results of the load/store instructions

302L during re-execution of the instruction block 308, in response to the occurrence of

an actual exception in the processor 204. For example, such exceptions may include a

static block exception, such as an instruction page fault, an invalid block header, and an

invalid instruction encoding. Thus, after the processor 204 recovers from the exception,

13

WO 2017/116652 PCT/US2016/065740

the partial replay controller 206 may be configured to record and/or replay results of the

load/store instructions 302L during re-execution of the instruction block 308. This is so

that if the exception occurs again, or another exception occurs, during re-execution of

the instruction block 308, intermediate produced results of the instruction block 308,

which may have been read from a previous write operation in another thread, are stored

and can be replayed if the instruction block 308 must be re-executed due to the

occurrence of another exception. Otherwise, intermediate data read in for performing

the load/store operations, such as I/O operations, may no longer be available for re

executing the instruction block 308, because the intermediate data was not stored. Also,

if the exception is a precise exception, the produced results from instructions 302 in the

instruction block 308 executed before the exception occurred could be committed by the

processor 204 in a partial commit operation. Thus, after the processor 204 recovers

from the exception, the partial replay controller 206 may be configured to start

execution from the beginning of the instruction block 308 to record and/or replay results

of the load/store instructions 302L. Previously recorded results of previously executed

load/store instructions 302L are replayed during the re-execution of the instruction

block 308. However, in one example, any produced data from load/store instructions

302L that were committed during a previous execution of the instruction block 308 as

part of a partial commit operation are not re-committed during a subsequent partial

recommit operation of full commit when the instructions block 308 fully executes. This

is because the results of these previously executed load/store instructions 302L have

already been previously committed. Thus, employing a partial commit functionality

may increase execution efficiency, because the instruction block 308 may not have to be

re-executed from the beginning instruction 302 after recovering from an exception. The

partial replay controller 206 can be configured to track results from previously executed

load/store instructions 302L having been committed so that such results produced from

replay of the load/store instructions 302L are not re-committed.

[0034] In this regard, Figure 4 is a flowchart illustrating an exemplary process 400

that can be performed by the partial replay controller 206 in the processor 204 in Figure

3 for entering a record/replay state in an active state to record and/or replay results of

load/store instructions 302L during re-execution of the instruction block 308. In this

regard, as illustrated in Figure 4, the process 400 starts by the partial replay controller

14

WO 2017/116652 PCT/US2016/065740

206 detecting an instruction 302 associated with a potential architectural state

modification, or an occurrence of an exception in the processor 204 during execution of

the instruction block 308 (block 402 in Figure 4). As shown in the example in Figure 3,

the partial replay controller 206 can include a detection circuit 332 that is configured to

detect an instruction 302 associated with a potential architectural state modification, or

the occurrence of an exception in the processor 204, during execution of the instruction

block 308. The instructions 302 executed by the processor 204 are provided to the

load/store unit 320, which allows the detection circuit 332 of the partial replay

controller 206 to detect if the instruction 302 is associated with a potential architectural

state modification.

[0035] With continuing reference to Figure 4, in response to detection of the

instruction 302 associated with a potential architectural state modification, or the

occurrence of an exception during execution of the instruction block 308, the partial

replay controller 206 is configured to set a record/replay state 330 to an active state for

the instruction block 308 (block 404 in Figure 4). For example, before the detection of

an instruction 302 associated with a potential architectural state modification, or the

occurrence of an exception in the processor 204, the record/replay state 330 may be set

to an idle execution state. In response to the record/replay state 330 being an active

state for the instruction block 308, the instruction block 308 is re-executed by the

processor 204. If the active state is set as the record/replay state 330 in response to the

occurrence of an exception, the instruction block 308 is re-executed after the exception

is resolved by the CPU 202 (e.g., by the operating system in the CPU 202) (Figure 2).

[0036] When the instruction block 308 is re-executed in response to the

record/replay state 330 being the active state, the record/replay circuit 334 in the partial

replay controller 206 inspects an entry state 336 in a record/replay log file 338

corresponding to each next load/store instruction 302L to be executed in the instruction

block 308 before the next load/store instruction 302L is executed (block 406 in Figure

4). The record/replay circuit 334 inspects the entry state 336 to determine if previously

produced data for the next load/store instruction 302L was recorded, meaning that the

next load/store instruction 302L being inspected was already executed during a previous

execution of the instruction block 308 before a potential architectural state modification

was detected or exception occurred during execution of the instruction block 308 (block

15

WO 2017/116652 PCT/US2016/065740

406 in Figure 4). If the entry state 336 indicates that the next load/store instruction

302L to be executed was already previously executed, the produced results for the next

load/store instruction 302L will be recorded in the record/replay log file 338 as this is

the first instance of execution of this next load/store instruction 302L in the instruction

block 308. However, if the entry state 336 indicates that the next load/store instruction

302L had not already been executed in a previous execution instance of the instruction

block 308, the record/replay circuit 334 is configured to record produced data of the

executed next load/store instruction 302L in the record/replay log file 338 in response to

the record/replay state 330 being the active state (block 408 in Figure 4). This is so that

if the instruction block 308 must be re-executed again, the produced data of the

executed next load/store instruction 302L will be available in the record/replay log file

338 to be replayed. In this regard, the record/replay circuit 334 is also configured to

execute the next load/store instruction 302L using the previously produced data

recorded for the next load/store instruction 302L in the record/replay log file 338 (block

410 in Figure 4).

[0037] To facilitate further discussion of the partial replay controller 206 that can be

provided in the processors 204(1)-204(P) in the CPU 202 in Figure 2, Figures 5 and 6

are provided to facilitate further exemplary discussion of the partial replay controller

206 in Figure 3 during execution and re-execution of the instruction block 308. In this

regard, Figure 5 illustrates an exemplary instruction block 308(A) that can be executed

by the processor 204 in Figure 3 that includes instructions associated with a potential

architectural state modification. Figure 6 is a flowchart illustrating more detail of an

exemplary process 600 that can be performed by the partial replay controller 206 to

record and replay results of load/store instructions 302L during re-execution of the

instruction block 308(A) in Figure 5, in response to detecting an instruction 502 in the

instruction block 308(A) associated with a potential architectural state modification.

Reference to the process 600 in Figure 6 will be made in conjunction with the

instruction block 308(A) in Figure 5.

[0038] In this regard, with reference to Figure 5, the instruction block 308(A) is

fetched by the processor 204 in Figure 3 for execution in a new instance with the

record/replay state 330 set to idle (block 602 in Figure 6). When a first instruction

502(1), which is an I/O device load/store instruction in this example, is provided to the

16

WO 2017/116652 PCT/US2016/065740

load/store unit 320 in Figure 3, the detection circuit 332 of the partial replay controller

206 detects if the first instruction 502(1) is associated with a potential architectural state

modification (block 604 in Figure 6). In this example, the first instruction 502(1) has a

potential side-effect that is associated with a potential architectural state modification,

because a source of the data to be loaded is from an I/O device. Thus, if an exception

were to occur after execution of the first instruction 502(1), the data popped from the

1/O device may no longer be retained in the I/O device queue and may thus not be

reproducible, before the first instruction 502(1) is re-executed during re-execution of the

instruction block 308(A). Thus, in this instance, the partial replay controller 206 sets

the record/replay state 330 to active for the instruction block 308(A) in response to the

detection of the potential side-effect for the first instruction 502(1) without executing

the first instruction 502(1). This is so that results from execution of the first instruction

502(1) are not produced that could cause a side-effect of the results not being

reproducible on a next execution instance of the first instruction 502(1) during re

execution of the instruction block 308(A) (block 606 in Figure 6). Thereafter, the

processor 204 causes the instruction block 308(A) to be re-executed.

[0039] During the re-execution of the instruction block 308(A) in Figure 5, the first

instruction 502(1) is again provided to the load/store unit 320 in the processor 204 in

Figure 3 for execution. The record/replay circuit 334 in the partial replay controller 206

inspects an entry state 336 in an entry 340(1)-340(E) in the record/replay log file 338 to

determine if previously produced data was recorded for the first instruction 502(1)

(block 608 in Figure 6). In this example, previously produced data was not recorded for

the first instruction 502(1), because the first instruction 502(1) was not executed during

the initial execution of the instruction block 308(A) due to the detection of the potential

side-effect. Thus, the record/replay circuit 334 of the partial replay controller 206

records produced results 504(1) from the first instruction 502(1) as a result of the

load/store unit 320 executing the first instruction 502(1) in the record/replay log file 338

so that the produced results 504(1) can be replayed in the event that the instruction

block 308(A) is re-executed again, such as due to an exception (block 610 in Figure 6).

Thereafter, the processor 204 executes a second instruction 502(2) without regard to

side-effect considerations, such that the second instruction 502(2) is not a load/store

instruction. However, a third instruction 502(3) in the example instruction block

17

WO 2017/116652 PCT/US2016/065740

308(A) in Figure 5 is a load/store operation that has a potential side-effect. However,

since the record/replay state 330 is already active, meaning that the partial replay

controller 206 is recording produced results 504(1)-504(Q) from executed load/store

instructions 302L, the instruction block 308(A) is not re-executed. The produced results

504(3) obtained from global register r3 in the third instruction 502(3) are recorded in the

record/replay log file 338. The execution of the instructions 502(4)-502(Q) continues

with the produced results 504(1)-504(Q) of the load/store instructions 302L being

recorded by the partial replay controller 206 in the record/replay log file 338 (blocks

608, 610 in Figure 6).

[0040] However, as shown in the example in Figure 5, an exception 508 occurred

between instruction 502(4) and instruction 502(Q-2). After the exception 508 is

resolved, the instruction block 308(A) is re-executed in the processor 204. However,

since instructions 502(1)-502(4) have already been executed in a previous execution

instance of the instruction block 308(A), the record/replay circuit 334 in the partial

replay controller 206 is configured to check the record/replay log file 338 to determine

if the produced results 504(1), 504(3)-504(4) are recorded in the record/replay log file

338 (block 608 in Figure 6). Since in this example, the produced results 504(1), 504(3)

504(4) are recorded in the record/replay log file 338, the record/replay circuit 334 is

configured to execute or "replay" the previously produced results 504(1)-504(Q) using

the previously produced results 504(1), 504(3)-504(4) recorded in the record/replay log

file 338 during the previous re-execution of the instruction block 308(A) in this example

(block 612 in Figure 6). Thus, if an exception or side-effect occurred with regard to the

instructions 502(1), 502(3)-502(4) after the exception 508 occurred, the previously

produced results 504(1), 504(3)-504(4) were preserved in the record/replay log file 338

so that the re-execution of the instruction block 308(A) will produce the correct results

and produced values.

[0041] In this example, since instructions 502(Q-2)-502(Q) had not executed during

the previous re-execution of the instruction block 308(A) before the exception 508

occurred, the partial replay controller 206 is configured to check the record/replay log

file 338 to determine if the produced results 504(Q-2), 504(Q) for the instructions

502(Q-2), 502(Q) were recorded in the record/replay log file 338 (block 608 in Figure

6). Because in this example, they were not recorded before the occurrence of the

18

WO 2017/116652 PCT/US2016/065740

exception 508, the record/replay circuit 334 is configured to record the produced results

504(Q-2), 504(Q) for the instructions 502(Q-2), 502(Q) in the record/replay log file 338

(block 610 in Figure 6), as opposed to replaying the instructions 502(Q-2), 502(Q).

Thus, if another exception 508 occurs, the produced results 504(Q-2), 504(Q) for the

instructions 502(Q-2), 502(Q) can be replayed from the record/replay log file 338.

After all instructions 502(1)-502(Q) are executed in the instruction block 308(A) in

Figure 5 (block 614 in Figure 6), the external produced values resulting from the

executed instructions 502(1)-502(Q) are committed (block 616 in Figure 6).

[0042] Note that it is a design choice on which types of load/store instructions 302L

are configured to be detected as having a potential side-effect by the detection circuit

332. For example, the detection circuit 332 could be configured to detect every

load/store instruction 302L in an executed instruction block 308 as having a potential

side-effect without regard to the type of load/store instruction 302L. For example, if

the processor 204 is executing multiple-thread code, potentially any load instruction

could result in non-producible results, because another thread could change the data in

the source location of such load instruction after an exception occurs. However,

detecting a potential side-effect in every type of load/store instruction 302L in an

executed instruction block 308 could reduce performance of the processor 204, because

an executed instruction block 308 may be re-executed more often. The record/replay

state 330 would be set to active based on an executed instruction block 308 having any

type of load/store instruction 302L. This may be useful in a debugging mode or in

response to a debugger breakpoint, because the partial replay controller 206 would

provide for the ability to review the state of all data from load/store instructions 302L

during a debugging mode. However, as another example, during a normal or non

debugging mode, the detection circuit 332 may be configured to detect only certain

types of load/store instructions 302L in an instruction block 308 as having potential

side-effects that involve 1/O operations without regard to other reproducibility issues.

For example, the detection circuit 332 may be configured to only detect load/store

instructions 302L in an instruction block 308 that load or store data from or to locations

or devices external to the processor 204.

[0043] The operation of a partial replay controller 206 may be well suited for

implementation as a state machine since an instruction block 308 can be re-executed

19

WO 2017/116652 PCT/US2016/065740

multiple times with the operations based on the state of re-execution. In this regard,

Figure 7 is a state machine 700 that can be employed by the partial replay controller 206

in the processor 204 in Figure 3 to record and/or replay results of load/store instructions

during re-execution of an instruction block. In this regard, with reference to Figure 7, in

response to a new instance of execution of an instruction block 308 in the processor 204

(702 in Figure 7), a record/replay state 330 accessible by the processor 204 is set to an

idle state ("IDLE"), meaning that a record/replay operation is not occurring for the

instruction block 308. An architectural state for such a thread, or an exception or

interrupt, corresponds to an instruction block 308 boundary. The processor 204

executes the instructions 302 in the instruction block 308 in the idle state. If all the

instructions 302 in the instruction block 308 are not detected as having a potential

architectural state modification during the initial execution of the instruction block 308,

and no exception occurs, the execution of the instructions 302 will eventually fully

complete with the external produced results committed (704 in Figure 7).

[0044] With continuing reference to Figure 7, once the detection circuit 332 detects

an instruction 302 associated with a potential architectural state modification to be

executed (706 in Figure 7), the partial replay controller 206 changes the record/replay

state 330 to an active state ("ACTIVE"). The processor 204 then causes the instruction

block 308 to be re-executed from the beginning instruction 302. This is so that the

instruction block 308 can be re-executed and the produced results for the load/store

instructions 302L having potential side-effects can be recorded in the record/replay log

file 338. When a thread is active, as discussed below, this means that the partial replay

controller 206 is being recorded and/or replayed. Recording of PBR state means that

loads and stores, plus reads and writes of system registers, are recorded for later replay.

[0045] In the active state, the partial replay controller 206 is configured to access

the record/replay log file 338 as previously discussed. The partial replay controller 206

is configured to update or record the record/replay log file 338 with the produced results

from the executed load/store instructions 302L during re-execution of the instruction

block 308. In this manner, if an exception occurs after execution of a load/store

instruction 302L that is associated with a potential architectural state modification (e.g.,

a potential side-effect) (708 in Figure 7), the produced result is stored by the load/store

unit 320 in the record/replay log file 338. If an exception occurs during re-execution of

20

WO 2017/116652 PCT/US2016/065740

the instruction block 308, the partial replay controller 206 sets the record/replay state

330 to a locked state ("LOCKED") for the exception to be resolved by exception

handling in the operating system in the CPU 202. After the exception is resolved, the

record/replay state 330 is set back to the active state ("ACTIVE") such that the

instruction block 308 is re-executed (710 in Figure 7). As previously discussed above,

the produced results can be replayed during re-execution of the instruction block 308

after the exception is resolved so that the instruction block 308 can be successfully re

executed with previously recorded produced results in the event that such recorded

produced results would be different due to a change, such as from another thread or data

popped from an I/O device, as examples.

[0046] For example, the entry state 336 recorded for an executed load/store

instruction 302L in the record/replay log file 338 could be none/null, load (normal),

store (normal), annulled, load - committed (side-effect), store - committed (side-effect),

read system register, and write system register - committed depending on the type of

load/store instruction 302L executed, as non-limiting examples. A virtual address (VA)

342 recorded for an executed load/store instruction 302L is the address of the memory

or I/O device accessed by the load/store instruction 302L, which is useful for debugging

the program. Data 344 recorded for an executed load/store instruction 302L is the

produced result as a result of executing the load/store instruction 302L.

[0047] Note that in one example, when the exception occurs when the record/replay

state 330 is in the active state ("ACTIVE"), any produced results from instructions 302

that executed before the occurrence of the exception are not committed. The instruction

block 308 is re-executed once the exception is resolved from the locked state

("LOCKED") (710 in Figure 7). However, in an alternative aspect, the partial replay

controller 206 could be configured to commit the produced results from the instructions

302 in the instruction block 308 that executed before the occurrence of the exception.

In this instance, once the remaining instructions 302 are re-executed when the exception

is resolved and the record/replay state 330 goes back to the active state ("ACTIVE"),

only produced results from instructions 302 that did not previously execute are

committed.

[0048] With continuing reference to Figure 7, the record/replay state 330 remains in

the active state ("ACTIVE") until all the instructions 302 in the instruction block 308

21

WO 2017/116652 PCT/US2016/065740

have been executed. Thereafter, the external produced results from the executed

instructions 302 in the instruction block 308 are committed (or in the case of a partial

commit functionality, produced results from instructions 302 that were not previously

committed are committed) (712 in Figure 7). As discussed earlier, in one example if a

partial commit operation is employed, produced data from load/store instructions 302L

that were committed during a previous execution of the instruction block 308 as part of

a partial commit operation are not re-committed during a subsequent partial recommit

operation of full commit when the instruction block 308 fully executes. The partial

replay controller 206 sets the record/replay state 330 back to the idle state ("IDLE") to

execute a next instruction block 308. If an exception occurs when the record/replay

state 330 is in the idle state ("IDLE"), the operating system in the CPU 202 saves the

current architectural state and switches the locked state "LOCKED" to resolve the

exception such that no further instructions 302 are executed in the instruction block 308

(714 in Figure 7). Once the exception is resolved in the locked state "LOCKED", the

operating system restores the architectural state that existed before the exception

occurred and switches the record/replay state 330 back to the idle state ("IDLE") (716 in

Figure 7).

[0049] In summary, a PBR model provided by the partial replay controller 206 in

the processor 204 in Figure 3 is only needed when an instruction block 308 performing

operations with side-effects may later take any kind of exception. However, a PBR

model may also be used to enhance debugging, when any precise exception is expected

to cause program termination or transfer to a debugger for a block-atomic execution

model. For performance reasons, a PBR model can optionally not be engaged for non

error exceptions (e.g., page fault) that may cause a supervisor service to be invoked and

then normal execution resumed.

[0050] A summary of exemplary exception categories wherein an architectural state

of an instruction block 308 can be preserved by employing the partial replay controller

206 is shown below. However, if the current instruction block 308 is executing with the

PBR model enabled by the partial replay controller 206, an interrupt may be taken with

a precise partial block state as well. As discussed previously and as shown in the table

below, if an instruction block encounters side-effects or has stored produced data before

an exception occurs, a partial replay controller could be configured to discard produced

22

WO 2017/116652 PCT/US2016/065740

results from instructions that were executed in the instruction block before the exception

occurred. After the processor recovers from the exception, the partial replay controller

would then be configured to start execution back from the beginning instruction of the

instruction block to record and/or replay results of the load/store instructions.

Alternatively, the partial replay controller could be configured to commit the produced

results from instructions that were executed in the instruction block before an exception

occurred. After the processor recovers from the exception, the partial replay controller

would then be configured to start from the next instruction in the instruction block that

had not been executed to record and/or replay results of the load/store instructions that

had not been previously executed in the instruction block during re-execution.

Precision Cause Partial Block has Architectural Reproducible
Block performed state
Replay side effects

or stores

Precise Block N/A No Beginning of Yes
block

Instruction No No Beginning of No
block

Yes No Beginning of Yes
block

Yes (normal GPR/normal Yes
stores memory:
discarded) Beginning of

block

Side-effects:
After side
effects

Yes (normal GPR: Yes
stores Beginning of
partially block
committed
up to Normal
execution memory or
point) side-effects:

at the point of
the exception

23

WO 2017/116652 PCT/US2016/065740

[0051] In further aspects, the partial replay controller for controlling execution

replay of an instruction block executed in a processor could be provided that includes a

means for setting a means for storing a record/replay state to an active state for an

instruction block, in response to detection of an instruction associated with a potential

architectural state modification, or an occurrence of an exception in the processor. For

example, the partial replay controller 206, the detection circuit 332 or the record/replay

circuit 334 in Figure 3 are examples of such a means for setting, where the partial replay

controller 206 is configured to set the record/replay state 330 to the active state in

response to detection of an instruction associated with a potential architectural state

modification, or an occurrence of an exception in the processor 204. The partial replay

controller 206 could also include a means for inspecting an entry state in a means for

storing a record/replay log file corresponding to a next load/store instruction to be

executed in the instruction block to determine if previously produced data is recorded

for the next load/store instruction, in response to the means for storing the record/replay

state to an active state for the instruction block. For example, this means for inspecting

an entry state could be provided by the partial replay controller 206 or the record/replay

circuit 334 in Figure 3, by accessing the record/replay log file 338. The partial replay

controller 206 could also include a means for recording produced data of the executed

next load/store instruction in the means for storing the record/replay log file, in response

to the previously produced data not being recorded in the means for storing the

record/replay log file for the next load/store instruction. For example, the means for

storing the record/replay log file could be provided by the partial replay controller 206

or the record/replay circuit 334 in Figure 3 to store previously produced data not being

recorded in the record/replay log file 338 for the next load/store instruction. The partial

replay controller 206 could also include a means for executing the next load/store

instruction using the previously produced data recorded for the next load/store

instruction in the means for storing the record/replay log file, in response to the

previously produced data being recorded in the means for storing the record/replay log

file for the next load/store instruction. The means for executing the next load/store

instruction using the previously produced data could be provided by the partial replay

controller 206 or the record/replay circuit 334 in Figure 3.

24

WO 2017/116652 PCT/US2016/065740

[0052] A processor that includes a partial replay controller configured to record

and/or replay results of load/store instructions during re-execution of an instruction

block, in response to detecting an instruction in the instruction block associated with a

potential architectural state modification, and/or in response to an occurrence of an

exception, during execution of instructions in the instruction block, such as the partial

replay controller 206 in the processor 204 in Figure 3 for example, and according to any

of the examples disclosed herein, may be provided in or integrated into any processor

based device. Examples, without limitation, include a set top box, an entertainment

unit, a navigation device, a communications device, a fixed location data unit, a mobile

location data unit, a mobile phone, a cellular phone, a smart phone, a tablet, a phablet, a

computer, a portable computer, a desktop computer, a personal digital assistant (PDA),

a monitor, a computer monitor, a television, a tuner, a radio, a satellite radio, a music

player, a digital music player, a portable music player, a digital video player, a video

player, a digital video disc (DVD) player, a portable digital video player, and an

automobile.

[0053] In this regard, Figure 8 illustrates an example of a processor-based system

800 that includes a CPU 802 that includes one or more processors 804. The

processor(s) 804 can each include a partial replay controller 806 that is configured to

record and/or replay results of load/store instructions during re-execution of an

instruction block, in response to detecting a potential side-effect during execution of

instructions in the instruction block. The partial replay controller 806 can be the partial

replay controller 206 in Figure 3 as an example. The CPU 802 may have a cache

memory 808 coupled to the processor(s) 804 for rapid access to temporarily stored data.

The CPU 802 is coupled to a system bus 810 and can intercouple peripheral devices

included in the processor-based system 800. The processor(s) 804 in the CPU 802 can

communicate with these other devices by exchanging address, control, and data

information over the system bus 810. Although not illustrated in Figure 8, multiple

system buses 810 could be provided, wherein each system bus 810 constitutes a

different fabric. For example, the CPU 802 can communicate bus transaction requests

to a memory controller 812 in a memory system 814 as an example of a slave device. In

this example, the memory controller 812 is configured to provide memory access

operations to a memory array 816 in the memory system 814.

25

WO 2017/116652 PCT/US2016/065740

[0054] Other devices can be connected to the system bus 810. As illustrated in

Figure 8, these devices can include the memory system 814, one or more input devices

818, one or more output devices 820, one or more network interface devices 822, and

one or more display controllers 824, as examples. The input device(s) 818 can include

any type of input device, including but not limited to input keys, switches, voice

processors, etc. The output device(s) 820 can include any type of output device,

including but not limited to audio, video, other visual indicators, etc. The network

interface device(s) 822 can be any devices configured to allow exchange of data to and

from a network 826. The network 826 can be any type of network, including but not

limited to a wired or wireless network, a private or public network, a local area network

(LAN), a wireless local area network (WLAN), a wide area network (WAN), a

BLUETOOTHTM network, and the Internet. The network interface device(s) 822 can be

configured to support any type of communications protocol desired.

[0055] The CPU 802 may also be configured to access the display controller(s) 824

over the system bus 810 to control information sent to one or more displays 828. The

display(s) 828 can include any type of display, including but not limited to a cathode ray

tube (CRT), a liquid crystal display (LCD), a plasma display, etc. The display

controller(s) 824 sends information to the display(s) 828 to be displayed via one or more

video processors 830, which process the information to be displayed into a format

suitable for the display(s) 828.

[0056] A partial replay controller configured to record and/or replay results of

load/store instructions during re-execution of an instruction block, in response to

detecting a potential side-effect during execution of instructions in the instruction block,

can also be provided in a software-based system. The partial replay controller does not

have to be implemented in a hardware-only circuit that provides the functions of the

partial replay controller without software instructions. The partial replay controller,

such as the partial replay controller 206 in Figure 3, could be provided in a non

transitory computer-readable medium having stored thereon computer executable

instructions which, when executed by a processor, such a processor 204(1)-204(P) like

in Figure 2, cause the processor to set a record/replay state to an active state for an

instruction block, in response to detection of an instruction associated with a potential

architectural state modification, or an occurrence of an exception in the processor. In

26

WO 2017/116652 PCT/US2016/065740

response to the record/replay state being an active state for the instruction block, the

computer executable instructions which, when executed by a processor, cuase the

processor to inspect an entry state in a record/replay log file corresponding to a next

load/store instruction to be executed in the instruction block to determine if previously

produced data is recorded for the next load/store instruction, record produced data of the

executed next load/store instruction in the record/replay log file, in response to the

previously produced data not being recorded in the record/replay log file for the next

load/store instruction, and execute the next load/store instruction using the previously

produced data recorded for the next load/store instruction in the record/replay log file, in

response to the previously produced data being recorded in the record/replay log file for

the next load/store instruction.

[0057] The "computer-readable medium" should be taken to include a single

medium or multiple media (e.g., a centralized or distributed database, and/or associated

caches and servers) that store the one or more sets of instructions. The term "computer

readable medium" shall also be taken to include any medium that is capable of storing,

encoding, or carrying a set of instructions for execution by a processor and that cause

the processor to perform any one or more of the methodologies of the aspects disclosed

herein. The term "computer-readable medium" shall accordingly be taken to include,

but not be limited to, solid-state memories, optical medium, and magnetic medium.

[0058] Those of skill in the art will further appreciate that the various illustrative

logical blocks, modules, circuits, and algorithms described in connection with the

aspects disclosed herein may be implemented as electronic hardware, instructions stored

in memory or in another computer-readable medium and executed by a processor or

other processing device, or combinations of both. The master and slave devices

described herein may be employed in any circuit, hardware component, integrated

circuit (IC), or IC chip, as examples. Memory disclosed herein may be any type and

size of memory and may be configured to store any type of information desired. To

clearly illustrate this interchangeability, various illustrative components, blocks,

modules, circuits, and steps have been described above generally in terms of their

functionality. How such functionality is implemented depends upon the particular

application, design choices, and/or design constraints imposed on the overall system.

Skilled artisans may implement the described functionality in varying ways for each

27

WO 2017/116652 PCT/US2016/065740

particular application, but such implementation decisions should not be interpreted as

causing a departure from the scope of the present disclosure.

[0059] The various illustrative logical blocks, modules, and circuits described in

connection with the aspects disclosed herein may be implemented or performed with a

processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit

(ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device,

discrete gate or transistor logic, discrete hardware components, or any combination

thereof designed to perform the functions described herein. A processor may be a

microprocessor, but in the alternative, the processor may be any conventional processor,

controller, microcontroller, or state machine. A processor may also be implemented as

a combination of computing devices, e.g., a combination of a DSP and a

microprocessor, a plurality of microprocessors, one or more microprocessors in

conjunction with a DSP core, or any other such configuration.

[0060] The aspects disclosed herein may be embodied in hardware and in

instructions that are stored in hardware, and may reside, for example, in Random Access

Memory (RAM), flash memory, Read Only Memory (ROM), Electrically

Programmable ROM (EPROM), Electrically Erasable Programmable ROM

(EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of

computer readable medium known in the art. An exemplary storage medium is coupled

to the processor such that the processor can read information from, and write

information to, the storage medium. In the alternative, the storage medium may be

integral to the processor. The processor and the storage medium may reside in an ASIC.

The ASIC may reside in a remote station. In the alternative, the processor and the

storage medium may reside as discrete components in a remote station, base station, or

server.

[0061] It is also noted that the operational steps described in any of the exemplary

aspects herein are described to provide examples and discussion. The operations

described may be performed in numerous different sequences other than the illustrated

sequences. Furthermore, operations described in a single operational step may actually

be performed in a number of different steps. Additionally, one or more operational

steps discussed in the exemplary aspects may be combined. It is to be understood that

the operational steps illustrated in the flow chart diagrams may be subject to numerous

28

different modifications as will be readily apparent to one of skill in the art. Those of

skill in the art will also understand that information and signals may be represented

using any of a variety of different technologies and techniques. For example, data,

instructions, commands, information, signals, bits, symbols, and chips that may be

referenced throughout the above description may be represented by voltages, currents,

electromagnetic waves, magnetic fields or particles, optical fields or particles, or any

combination thereof.

[0062] The previous description of the disclosure is provided to enable any person

skilled in the art to make or use the disclosure. Various modifications to the disclosure

will be readily apparent to those skilled in the art, and the generic principles defined

herein may be applied to other variations without departing from the spirit or scope of

the disclosure. Thus, the disclosure is not intended to be limited to the examples and

designs described herein, but is to be accorded the widest scope consistent with the

principles and novel features disclosed herein.

[00631 It will be understood that the term "comprise" and any of its derivatives

(e.g., comprises, comprising) as used in this specification is to be taken to be inclusive

of features to which it refers, and is not meant to exclude the presence of any additional

features unless otherwise stated or implied.

[0064] The reference to any prior art in this specification is not, and should not be

taken as an acknowledgement or any form of suggestion that such prior art forms part of

the common general knowledge.

29

CLAIMS

1. A partial replay controller for controlling execution replay of an instruction

block executed in a processor employing a block-atomic execution model in which

instructions are grouped into instruction blocks in which either all instructions in the

instruction block are committed or none of the instructions are committed, comprising:

a detection circuit configured to set a record/replay state to an active state for an

instruction block, in response to detection of an instruction associated

with a potential architectural state modification or an occurrence of an

exception in the processor during execution of the instruction block by

the processor, wherein an instruction is associated with a potential,

architectural state modification if it modifies an architectural state in the

processor and has an observable interaction with functions or processes

outside of the instruction block; and

a record/replay circuit configured to, during re-execution of the instruction block

by the processor in response to the record/replay state being an active

state for the instruction block:

inspect an entry state in a record/replay log file corresponding to a next

load/store instruction to be executed in the instruction block to

determine if previously produced data is recorded for the next

load/store instruction;

record produced data of the executed next load/store instruction in the

record/replay log file, in response to the previously produced data

not being recorded in the record/replay log file for the next

load/store instruction; and

execute the next load/store instruction using the previously produced

data recorded for the next load/store instruction in the

record/replay log file, in response to the previously produced data

being recorded in the record/replay log file for the next load/store

instruction.

30

2. The partial replay controller of claim 1, wherein the detection circuit comprises a

side-effect detection circuit configured to:

detect the instruction in the instruction block comprising a load/store instruction

having a potential side-effect, during the execution of the instruction

block by the processor; and

in response to detection of the instruction comprising the load/store instruction

having the potential side-effect, set the record/replay state to the active

state for the instruction block.

3. The partial replay controller of claim 1, wherein the detection circuit comprises a

side-effect detection circuit configured to:

detect the instruction in the instruction block comprising a write system

configuration register instruction, during the execution of the instruction

block by the processor; and

in response to detection of the instruction comprising the write system

configuration register instruction, set the record/replay state to the active

state for the instruction block.

4. The partial replay controller of claim 1, wherein the detection circuit comprises a

side-effect detection circuit configured to:

detect the instruction in the instruction block comprising an instruction having

an expected exception, during the execution of the instruction block by

the processor; and

in response to detection of the instruction comprising the instruction having the

expected exception, set the record/replay state to the active state for the

instruction block.

5. The partial replay controller of claim 4, wherein the instruction having the

expected exception comprises an instruction associated with an operation causing a

static block exception.

31

6. The partial replay controller of claim 5, wherein the static block exception is

comprised from the group consisting of: an instruction page fault; an invalid block

header; and an invalid instruction encoding.

7. The partial replay controller of claim 4, wherein the instruction having the

expected exception comprises an instruction associated with a watchpoint, a breakpoint,

or a debug step point.

8. The partial replay controller of claim 1 further configured to:

determine if all instructions in the instruction block have been executed; and

commit external produced values by the executed instructions in the instruction

block in response to determining all the instructions in the instruction

block have been executed.

9. The partial replay controller of claim 1, wherein the record/replay circuit is

further configured to record the record/replay state for the produced data of the executed

next load/store instruction in the record/replay log file.

10. The partial replay controller of claim 1, wherein the record/replay circuit is

further configured to record a virtual address addressed by the executed next load/store

instruction in association with the produced data of the executed next load/store

instruction in the record/replay log file.

11. The partial replay controller of claim 1, wherein, in response to the record/replay

state being an idle execution state for the instruction block, the detection circuit is

configured to detect the instruction in the instruction block associated with the potential

architectural state modification, during execution of the instruction block by the

processor.

32

12. The partial replay controller of claim 11, configured to, in response to an

exception occurring during the execution of the instruction block when the record/replay

state is in the idle execution state, cause the instruction block to be re-executed.

13. The partial replay controller of claim 1, wherein, in response to an exception

occurring during execution of the instruction block when the record/replay state is in the

active state, the record/replay circuit is further configured to:

set the record/replay state for the instruction block to a locked state; and

suspend recording of the produced data of the executed next load/store

instruction in the record/replay log file, and suspend executing the next

load/store instruction using the previously produced data recorded for the

next load/store instruction.

14. The partial replay controller of claim 13, wherein, in response to the

record/replay state for the instruction block returning to an active state from a previous

locked state, the record/replay circuit is further configured to resume recording the

produced data of the executed next load/store instruction in the record/replay log file

and executing the next load/store instruction using the previously produced data

recorded for the next load/store instruction.

15. The partial replay controller of claim 14, wherein, in response to the occurrence

of a precise exception during the execution of the instruction block when the

record/replay state is in the active state, the record/replay circuit is further configured to

commit external produced values by executed instructions in the instruction block prior

to the occurrence of the exception.

16. A method of replaying an instruction block in a processor employing a block

atomic execution model in which instructions are grouped into instruction blocks in

which either all instructions in the instruction block are committed or none of the

instructions are committed, comprising:

33

setting a record/replay state to an active state for an instruction block in response

to detection of an instruction associated with a potential architectural

state modification, or an occurrence of an exception in the processor

during execution of the instruction block by the processor, wherein an

instruction is associated with a potential, architectural state modification

if it modifies an architectural state in the processor and has an observable

interaction with functions or processes outside of the instruction block;

and

during re-execution of the instruction block by the processor in response to the

record/replay state being an active state for the instruction block:

inspecting an entry state in a record/replay log file corresponding to a

next load/store instruction to be executed in the instruction block

to determine if previously produced data is recorded for the next

load/store instruction;

recording produced data of the executed next load/store instruction in the

record/replay log file, in response to the previously produced data

not being recorded in the record/replay log file for the next

load/store instruction; and

executing the next load/store instruction using the previously produced

data recorded for the next load/store instruction in the

record/replay log file, in response to the previously produced data

being recorded in the record/replay log file for the next load/store

instruction.

17. The method of claim 16, comprising:

detecting an instruction in the instruction block comprising a load/store

instruction having a potential side-effect, during the execution of the

instruction block by the processor; and

setting the record/replay state to the active state for the instruction block in

response to detection of the instruction comprising the load/store

instruction having the potential side-effect.

34

18. The method of claim 16, comprising:

detecting an instruction in the instruction block comprising a write system

configuration register instruction, during the execution of the instruction

block by the processor; and

setting the record/replay state to the active state for the instruction block in

response to detection of the instruction comprising the write system

configuration register instruction.

19. The method of claim 16, comprising:

detecting an instruction in the instruction block comprising an instruction having

an expected exception, during the execution of the instruction block by

the processor; and

setting the record/replay state to the active state for the instruction block in

response to detection of the instruction comprising the instruction having

the expected exception.

20. The method of claim 16, wherein, in response to an exception occurring during

execution of the instruction block when the record/replay state is in the active state,

further comprises:

setting the record/replay state for the instruction block to a locked state; and

suspending recording the produced data of the executed next load/store

instruction in the record/replay log file, and suspending executing the

next load/store instruction using the previously produced data recorded

for the next load/store instruction.

21. The method of claim 16, further comprising committing external produced

values by executed instructions in the instruction block prior to the occurrence of the

exception, in response to the occurrence of the exception during the execution of

instruction block when the record/replay state is in the active state.

35

22. A non-transitory computer-readable medium having stored thereon computer

executable instructions which, when executed by a processor, cause the processor to

perform a method according to any of claims 16 to 21.

36

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

