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IMPROVED FERMENTATION PROCESS

FIELD OF THE INVENTION
The present invention relates to an improved
fermentation process for the production of a glycopeptide
nucleus from an Amycolatopsis orientalis or Nocardia

orientalis medium based on particle swarm optimization.

BACKGROUND

Computational intelligence (CI) algorithms offer an
alternative approach to ad hoc or statistically-designed
optimization methods. The class of CI algorithms known as
evolutionary algorithms(EA) seek to optimize an objective
function by evolving a population of solutions in some
manner. As their name suggests, biologically inspired
operators such as crossover and mutation are used in
combining good or "fit" solutions in order to improve the
overall fitness of the population as an optimum is pursued.
Stochastic elements of the search operators may lead to some
portion of the population exploring very different, but
feasible, regions of the search space. Solutions are not
obtained, for example, by descending an objective function
error gradient but rather by a pseudo-random search of the
solution space. In general, no underlying assumptions about
the objective function surface such as smoothness are
necessary as they are with least-squares statistical design
techniques.

The conceptual simplicity and ability to outperform
classic methods in challenging real-world problems make CI
algorithms attractive for study of fermentation media

optimization. See e.g., Fogel D.B., “The Advantages of
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Evolutionary Computation,” In Proc. of BCE97: BioComputing

and Emergent Computation, Lundh D, Olsson B, Narayanan A

(eds.), Sinagapore:World Scientific, 1-11 (1997). However,
it must be fairly noted that a "typical" application of
these paradigms may involve very large population sizes
(i.e. number of candidate solutions studied at each
iteration) and may require many iterations to converge to an
acceptable solution. Given that fermentation medium design
can be expensive in terms of time, material, and labor
costs, these are two potential drawbacks when considering
the applicability of CI algorithms to medium design
problems. Fortunately, these issues have not precluded
research into the use of CI algorithms for this class of
problem. In a similar application, Weuster-Botz and Wandrey
used a GA to optimize fourteen medium ingredients for the
formate dehydrogenase fermentation, requiring only four
iterations. See, e.g., Weuster-Botz, D., et al., 1995.
“Medium Optimization by Genetic Algorithm for Continuous
Production of Formate Dehydrogenase,” Process Biochemistry,

30(6), 563-571 (1995). Similarly, Backhouse, et al.

compared a GA with statistical techniques in the
optimization of four parameters in a yarn-spinning process
(five iterations), noting the importance of a good initial
randomization of the population. See, e.g., Backhouse,
P.G., et al., “A comparison of a genetic algorithm with an
experimental design technique in the optimization of a
production process,” Journal of the Operational Research

Society, 48, 247-254 (1997).

To date, no one has attempted to optimize the
fermentation process for production of glycopeptide nuclei
using PSO. A variety of glycopeptide derivatives have been

shown to have significant activity as an antibacterial
2
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agent. See, e.g., U.S. Patent Nos. 4,643,987; 4,698,327;
5,840,684; 5,843,437; and 5,843,889. Given the complexity
of components in a fermentation process, there is a need for
identifying optimized parameters for the production of the
glycopeptide nucleus for use in synthesizing glycopeptide
antibacterial agents without having to conduct overwhelming

experimentation.

SUMMARY

The present invention provides a process for optimizing
a fermentation process for the production of a glycopeptide
nucleus (e.g., AB82846B) from Amycolatopsis orientalis oxr
Nocardia orientalis (including mutants, variants or
recombinants thereof) comprising the step of determining key
component concentrations in the process by means of a
particle swarm optimization.

In another embodiment of the present invention, an
improved fermentation medium is provided wherein the
improvement is characterized by optimization of key
components of the medium by means of a particle swarm
optimization. The composition of the improved fermentation
medium as a result of applying the particle swarm

optimization is also provided.

In yet another embodiment of the present invention, a
fermentation medium for the production of a glycopeptide
nucleus from Amycolatopsis orientalis which contains no
animal source material (ASM), referred to herein as “ASM-
free” fermentation medium. The ASM-free medium comprises
cane molasses, hydrolyzed soybean flour and yeast. 1In a

preferred embodiment, the medium also includes corn gluten.
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Definitions
As used herein, the term “particle swarm optimization”
or “PSO” refers to a computational intelligence algorithm as
described in Eberhart, R.C., et al. , “A new optimizer

using particle swarm theory,” In Proc. Sixth Intl. Symposium

on Micro Machine and Human Science, (Nagoya, Japan),

Piscataway, IEEE Service Center, 39-43 (1995); Kennedy, J.,

“The particle swarm: Social adaptation of knowledge,” In

Proc. 1997 IEEE International Conference on Evolutionary

Computation (Indianapolis, IN), Piscataway:IEEE Service

Center, 303-308 (1997), and Eberhart, R., et al.,

“Evolutionary Computation Implementations,” Computational

Intelligence PC Tools, Boston, AP Professional, 212-226

(1996), and are hereby incorporated herein by reference, to
the extent that they explain, further enable, provide a
basis for or describe the subject matter to which is
referred to in the specification.

“Key components” refer to chemical ingredients of the
fermentation process that have significant effects on the
yield of the desired product (e.g., glycopeptide nucleus).

“Titer” refers to the standard of strength of a
volumetric test solution, i.e., the assay value of an

unknown measure by volumetric means.

DESCRIPTION OF THE FIGURES
Figure 1 represents the PSO Average and Maximum Titer

by Iteration.

DETAILED DESCRIPTION
A significantly improved medium for the production of a
glycopeptide nucleus from Amycolatopsis orientalis was found

using particle swarm optimization. Eleven medium
4
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ingredients were optimized using a total of 240 shake-flask
fermentations (12 iterations with a population size of 20;
each “individual”, or “agent” in the population represents a
shake flask fermentation). The best medium improved
glycopeptide titer > 2-fold over ad hoc experimentation.
Whereas, a traditional statistical design approach using
similar numbers of shake-flasks improved the titer 40% by
optimizing five ingredients screened from the original 11.
Surprisingly, the PSO approach yielded a different optimal
medium than the medium derived through statistically
designed experimentation.

PSO is a recent addition to the CI field. It is
similar to well known EAs such as genetic algorithms but is
defined in a social context as opposed to a biological
context. The individuals in the population retain memory of
known good solutions as they continue to search for better
solutions, unlike EAs where knowledge is destroyed between
generations. Interaction among parameters is thought to
enhance the ability of the PSO algorithm to find good
solutions. PSO seems to offer a powerful yet simple-to-
implement paradigm with a maximum of two algorithm
parameters that must be set prior to its use. This
simplicity makes the PSO algorithm appealing as a starting
point for forays into solving "real world" problems with CI
algorithms. Finally, concerning the algorithmic issues
above, PSO is reported to work well with relatively small
population sizes and to converge quickly over the range of
problems to which it has been applied to date (i.e.
determining artificial neural network weights to solve the
XOR problem. See, e.g., Eberhart, R.C., et al., “A new

optimizer using particle swarm theory,” In Proc. Sixth Intl.

Symposium on Micro Machine and Human Science, (Nagova,
5
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Japan), Piscataway, IEEE Service Center, 39-43 (1995) and
Eberhart R., et al., “Evolutionary Computation

Implementations, ” Computational Intelligence PC Tools,

Boston, AP Professional, 212-226 (1996).

The usual method of optimizing early-phase fermentation
media is via the application of statistical design (SD)
methods, such as screening and response surface experiments.
These are inherently local optimization methods. PSO is a
global optimization method and takes advantage of the
intuitive fact that there are likely several ‘optimal’
fermentation mediums which may be located in the
fermentation ingredient search space.

Applicants explored the applicability of PSO to
fermentation medium optimization for production of
glycopeptide nucleus in an attempt to identify advantages of
using an alternative approach to statistical design (SD)
methods. Classical ad hoc, or one-factor-at-a-time,
experimentation was also conducted for comparison purposes.
This work was done as an extension of efforts being made to
replace an animal-source nutrient (pork skin residue) in a
previously developed process for making the glycopeptide
nucleus.

Applicants have discovered that the use of PSO provides
several advantages, such as (i) lack of sensitivity to
(initial) ingredient ranges, (ii) ability to optimize in
higher dimensions, and (iii) global search vs. sequential
experimentation.

The range of each ingredient to be included in the
optimization study is typically set by the fermentation
scientist prior to designing the experiments. The
fermentation scientist balances knowledge of ingredient

ranges which have been successful in the past with the
6
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desire to explore broader ranges, keeping in mind the need
to minimize the number of experiments to keep labor and
material costs low and to meet ever more aggressive product
development time-lines. One advantage of SD is its ability
to alert the experimenter that an optimum does not lie in
the design space currently being studied and to indicate
where the design space must be moved to pursue an optimum.
But the need to run additional experiments is required,
possibly delaying the project and adding additional costs.
An optimization paradigm more robust to initial ingredient
ranges could offer advantages from the standpoint of not
requiring additional screening experiments.

As mentioned above, applying SD to a problem with more
than four or five independent variables typically reguires a
preliminary screening design in order to reduce the number
of independent variables and keep the factorial load to a
manageable level. Often, the results of the screening
experiments are straightforward. For example, in a
fermentation medium optimization experiment, ingredients
that have a significant negative linear effect with respect
to the objective function (titer) may be effectively removed
from further consideration. But often the analysis of
screening experiment requires the aid of an experienced
statistician. For example, does an ingredient with a
slightly negative main effect still warrant inclusion in the
experiments because it has a slightly positive interaction
with another ingredient? Consider also the case where
several ingredients exhibit similar effects on the objective
function at the screening experiment phase or where higher
order interactions are suspected. Successful resolution to
the question of which ingredients to remove and which

ingredients to keep for further study can be crucial to
7
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success of the project. Either bypassing the screening
stage, and thus avoiding any decisions regarding whether or
not to keep an ingredient in the study, or screening out
only major negative effects and keeping the remaining
ingredients in the plan could be advantageous.

SD techniques are seguential in nature - each stage of
the experiment requires success in the prior stage(s).
While conceptually simple, the proper application of SD
methodologies can become technically demanding and require
the assistance of a professional statistician to ensure
success. Often some subjective decisions may have to be
made when planning the next stage of experiments depending
on the strength of the results from the just completed
experimental stage. The experimenter must balance the need
to "be bold" in planning further experiments with the
constraint of operating in the current design space.

In a fermentation medium optimization problem with
several ingredients it is not uncommon that more than one
optimal solution exists - different mixtures of ingredients
may provide similar titer results. Optimizing globally via
a "population of solutions" may provide the researcher with
not only an optimized fermentation medium, but with several
candidate media to explore as the individuals move
throughout the search space. Sequential optimization
techniques like SD may also provide more than one candidate
optimum, but these optima will tend to lie close together
due to the local nature of the search process. The
"richness” of solutions is another facet of the evolutionary
algorithmic approach to be explored in this work. To
summarize, the intent was to apply a novel CI algorithm to a
"standard" problem typically solved with SD approaches. The

ability of PSO to simplify the optimization process with
8
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respect to ingredient range selection, preclusion of any
screening stages, and the ability to globally optimize the
objective function in high dimensions, thus possibly
providing a "richer" set of solutions were of interest to
5 Applicants.

The following examples illustrate the optimization of
the fermentation process for the production of A82846B
glycopeptide nucleus from using PSO. The A82846B

glycopeptide nucleus has the following structure:

OH

10
wherein R and R6 are 4-epi-vancosaminyl, Rl is hydrogen, R2?
is NHCH;3, R3 is CHpCH(CH3),, R% is CH(CO)NHp, R® is
hydrogen, and X and Y are Cl. The A82846B glycopeptide
nucleus may alternatively be produced from Nocardia

15 orientalis strains (e.g., NRRL 18098, NRRL 18099, and NRRL
18100) which is described in U.S. Patent No. 5,312,738,
incorporated herein by reference. Although the following
Examples illustrate the use of PSO to optimize the
fermentation media from a specific strain of Amycolatopsis

20 orientalis, those skilled in the art will appreciate that
other strains and/or mutants, variants or recombinants

thereof may be optimized using this process as well. For
9
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example, one may use mutant strains that are produced using
Ultraviolet (UV) mutation procedures well known to those

skilled in the art. One may select a specific mutant based
on pigmentation which is also well know to those skilled in

5 the art.

EXAMPLES
Preparations

Glycopeptide Vegetative Flask Medium (GV-003):

10 The GV-003 broth was prepared by combining the

following components in the listed respective amounts.

Component QA Grams/Liter % w/v
Glucose QAOQO20N 40 4
Phytone Peptone NA 15 1.5
(BBL)

No pH adjustment

15 Glycopeptide Bump Medium (GB-002):

The GB-002 broth was prepared by adding the following
ingredients in the listed order. The pH was adjusted to 7.0

before addition of the calcium carbonate.

Component QA/QD Grams/Liter %w/v
Glucose QAQ020N 10 1

Corn Starch Powder QAQ55L 5 0.5
Basic Yeast QA220M 5 0.5
Hy-Soy™ (Quest) QD463T 5 0.5
CaCoO; QA209P 1 0.1

Fermentation Media:

The producing culture, an UV mutated strain from
Amycolatopsis orientalis, was preserved and stored in liquid

nitrogen. Cultures were thawed and inoculated into GV-003

10
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broth to initiate a seed train for the PSO studies. After
48 hours, a small amount (0.1 mL) of GV-003 culture was
transferred to second-stage seed broth, GB-002. After 48
hours growth in GB-002, 1.0 mL aliquots were transferred to
flasks containing 50 mL of media designed through the PSO
algorithm. All PSO media were buffered (pH 6.7) with 200 mM
filter-sterilized 3-(N-morpholino)propanesulfonic acid
(MOPS) added after flasks had been autoclaved (20 min.) and
cooled. PSO cultures were grown at 34.5°C for 6 days in a
shaker incubator set at 250 rpm with a relative humidity of
70%. Once a given set of shake-flask cultures was completed
(one iteration), samples were taken from the flasks and sent
to analytical laboratories for quantitative HPLC analysis of
glycopeptide factors. A complete fermentation cycle,
including preparation, inoculation, fermentation, assay, and
setting a culture for the next round of experiments,

required about 14 days.

PSO Methods

Basic algorithm:

Given a population of N individuals each individual i,
i € {1,..,N}, has associated with it a position vector X; on
D dimensions. The quantity X;[d], 4 € {1,..,D}, represents
the 4 parameter setting for individual i. The dimension D
is problem dependent and depends upon the number of free
parameters to be optimized in the system. At each iteration
k an individual's position vector X;(k) is updated by adding

a AX,(k) vector, denoted V;, to the current position. The

vector V; represents an individual's velocity in the D-
dimensional problem hyperspace. Optimization is effected by
modifying the V; vectors of all the individuals in the

population as shown below in equation 1.

11
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Equation 1: Position update equation

X, (k+1)=X.(k)+V (k)

As the individuals, represented by particles, move
throughout the problem space each retains knowledge of its
best objective function value, denoted pbest; (for "personal
best"), and the position in parameter hyperspace associated
with that value of pbest;, denoted Xppest,i- The difference
Xppest,i — Xi represents the geometric distance between an
individual's current position and its best position found
thus far. 2adding a stochastic element in the form of a
random positive number 711 results in an individual's update

equation 2 given below.

Equation 2: Pbest velocity component update equation
Vik+D) =V (k)+n(X ... — X))

This update equation results in a stochastic tendency

for each individual to return to its previous best position.

This can be analogized with a human's tendency to remember

and return to regions in the psychological space which have

seemed beneficial or promising in the past.

To incorporate an interaction element the concept of a
neighborhood is employed, defined as the nearest i - s and 1
+ s individuals, for a neighborhood of size g, including the
i individual. In the context of this neighborhood
construct, each individual retains knowledge of the overall
best value of the objective function found thus far for the
entire neighborhood, denoted gbest (for "global best"). The
position in the problem space associated with the global
best value gbest is denoted Xgpest. The vector Xgpest - Xi

represents the distance from individual i's current position

and the position associated with the overall best objective

12
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function value found thus far in the individual’s
neighborhood. The interaction component of the algorithm
then consists of an update to V; for each individual as

shown below in Equation 3.

Equation 3: Gbest velocity component update equation

Vilk+D) =V (k) + (X sy, — X))

gbest.i

To prevent computer overflow as well as to define the
granularity of the search a parameter defined as Vpax,
representing maximum velocity, is defined and incorporated
into the algorithm. At each iteration the newly calculated
value of V; is compared to Vg and the minimum value 1is
chosen for V;(k+1l), preserving the sign of the current
direction. Combining (2) and (3) vyields the complete

velocity update equation 4 below (note that the velocity may

be positive or negative).

Equation 4: Velocity update equations

Vi (k + 1) = MIN{‘/: (k) + nl (Xpbesi,i - Xi)+ nZ (ngext.i - Xi )’Vmax }

Metaphorically, individuals (represented by particles)
are flown through D-dimensional hyperspace in search of good
solutions. Individuals are guided in their search by
knowledge of where the best solutions have been found thus
far. The preservation of information between iterations
sets the PSO algorithm apart from many evolutionary
algorithms where information is typically destroyed between
generations. (Elitism, or the introduction of one of the
most fit individuals in generation k into generation k+1 is
an information preservation technique sometimes used in
evolutionary algorithms, though not usually on the scale of
PSO). The construct of the update equations ensures

13
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individuals will ‘fly by’ known good regions and allocate

some search time to unknown regions.

The PSO algorithm, was coded as a MATLAB (The
MathWorks, Cambridge, MA) m-file. The algorithm was written
to accept tab-delimited ASCII files containing information
about the current iteration, such as coded ingredient
levels, current ingredient delta values (e.g. agent

velocities), wvalues and location of each individual’s best

fitness (pbest values), the titer results of the current
fermentation (e.g. current fitness values), etc. New files
are output containing the next set of experiments. In this

manner the algorithm was run one iteration at a time,
dependent upon the arrival of updated fitness information

from the current set of experiments.

Microsoft Excel (Microsoft Corp., Redmond, WA) and JMP
(The SAS Institute, Cary, NC) software were used to
manipulate the various data files generated, for example de-
scaling the coded ingredient levels returned by the PSO
algorithm into the actual ingredient concentrations in
grams/liter. The various algorithmic details are described

next.

Setting up the search space:

The number of ingredients as well as the allowable
range of each ingredient defines the ingredient space in
which the PSO population will operate. The determination

and application-related issues of each are discussed below.

Number of ingredients: The fermentation medium

initially provided contained six ingredients, including a
complex animal-source nutrient. Based on the composition of

the current medium, the desire to remove the animal-source

14
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raw material, and overall production cost targets, the
development scientist selected 11 ingredients for inclusion

in the study.

Ingredient ranges: The development scientist, using

his judgement and prior experience, sets an initial range
for each ingredient. These initial ranges were then
linearly coded into [-10.0,10.0] for use in the PSO
algorithm. For PSO, the determination of ingredient ranges
is primarily to allow for initialization of the population
(see below) and to start the PSO population in a space where

there is a reasonable chance of success.

Ingredient levels below 0.0 (uncoded) are infeasible.
Thus, during the position update step of the algorithm, if
any ingredient fell below -10.0 (coded), it was then clamped
to -10.0 (coded). A guestion arises as to what to do about
the velocity value for an ingredient when it is clamped to
its minimum value. Consider an ingredient that is heading
towards its minimum value (implying negative velocity) and
reaches the lower bound. If the individual attempted to
move to a different portion of the ingredient space
including non-zero values of the ingredient, some time may
be ‘wasted’ in that at least one iteration would likely be
required to change the value of the velocity from negative
to positive, after which the ingredient level could ‘move
away’ from 0.0. For this reason, any time an ingredient was
clamped to its lower bound, the associated velocity was set

to 0.0.

Conversely, the upper end of the ingredient ranges was
set to 100.0 (coded), essentially providing for an unbounded

search of the ingredient space. The constraints above

15
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result in the modifications to the position and velocity

update equations shown below.

Equation 5: Modified position update equation

X, (k+1) = MAX{X, (k) +V,(k),~10.0}

Equation 6: Modified velocity update equation

Vik+1) = MIN{V, (k) + 10, (X e = XD+ 10X g = XD, Vi }

If X (k+1)<-10.0 then V,(k+1)=00 and X,(k+1)=-10.0

Setting Vmax:

Vmax was set to +/- 20% of the coded initial ingredient
ranges, or +/-2.0. This is commensurate with the typical
‘rules of thumb’ for using PSO and other computational

intelligence tools with a similar granularity construct.

Population size:

A population size of 20 was selected for this work. It
was felt this population size would allow for a complete
trial (consisting of 20 shake-flasks) to be prepared in 4-8
hours depending on the number of resources dedicated to the
effort. Minimizing the amount of effort required for
preparing the PSO shake-flask media was considered important

in light of the high workload in the area.

Number of iterations:

It was hoped the project would run through 15
iterations of experiments. Although 15 iterations is
certainly a ‘few’ iterations in the context of applying
computational intelligence algorithms, it still represented
a fairly large amount of development time (15x20 = 300

planned experiments). One way to explore the reduction of

16
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overall development time is to investigate the application
of PSO and SD methods in a hybrid sense. To address this
second project goal, the selection of a ‘novel’ location in
ingredient space would be done after the sixth iteration.
This would provide the PSO algorithm five iterations (in
addition to initialization) before the selection of a medium

was made.

Objective function:

Much discussion centered on how many project goals to
encode in the objective function. In addition to product
titer, broth viscosity was another response factor
considered for inclusion into the objective function.
Another metric considered was the percentage of the desired
chemical entity secreted by the A. orientalis production
culture, as at least two other chemical analogs were usually
produced in addition to the analog of interest. To meet
downstream purification targets, the desired chemical entity
had to represent a certain percentage (61%) of the overall

amount of the three analogs produced.

Several candidate objective functions were considered
to produce a figure of merit that would seek to reward
higher titer, lower viscosity, and meeting or exceeding the
percentage goal for the desired glycopeptide factor. The
possibility of simply having the scientist rank-order each
set of experiments was considered as well. In the end,
concerns about trying to achieve too many goals at once
during an initial foray into this type of project led the
team to decide to keep the objective function
straightforward, including only the potency metric. It
should be said that often media that provide for good titer

values usually have the other desirable characteristics as
17
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well. While serendipity may come into play with respect to
the achievement of these ancillary goals, they are also
somewhat interrelated. For example, fermentation media
which become very viscous over the course of the
fermentation are less likely to promote good culture growth
and chemical synthesis as the high viscosity provides a less
than optimal environment due to impediments on mixing and
oxygen mass transfer. Therefore, fermentation media that
provide for high culture growth and product synthesis
generally must usually exhibit favorable viscosity
characteristics in order to achieve the high growth and

synthesis in the first place.

Samples were taken twice during the course of a PSO
iteration to measure glycopeptide titer (potency), and it
was decided to scale the titer values. The resulting
objective function used to score the fitness of the PSO

population after each trial was then:

Equation 7: Titer (Potency) Objective Function

Max(Potency — sample —1, Potency — sample — 2)
1000

Neighborhood size:

Keeping with the goals of the experiment, it was
decided to use an initial neighborhood size of 3
individuals. After five iterations, the neighborhood size
would be increased to 5 individuals. The neighborhood size
would then be increased to its final value of 7 (or possibly
more) for the last five iterations. The basic intent was to
use a more 'localized' version of the algorithm for the
first part of the project, with the goal being to promote

search of several regions of the ingredient space at once.
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As the algorithm progressed and good solutions were found in
the various regions of ingredient space - the
'neighborhoods' - the algorithm would become more global in
nature, with the best solution(s) having a greater impact on

a larger portion of the PSO population.

Initialization of algorithm:

In CI applications it is common practice to initialize
the population at random locations in the problem space, and
the authors have used this approach in the past. For this
work a different approach was used, following from the
experience that CI algorithms typically require several
iterations to become organized, after which real progress is
made. The initialization of the population was thus
effected in a manner similar to the generation of a
screening design, with the intent to make the rows and
columns of the design matrix as orthogonal and independent
as possible. The design matrix used to initialize the PSO

experimentation is provided in Table 1 below.

Table 1

Initial PSO design matrix (ingredients in grams per liter)

Glucose | MgSO; |(NH,),;SOs| KH,PO,| KC1 | Cane | Corn | Hy-Sey™ | Basic |Cotton| Corn
Molasses| Gluten Yeast | Seed | Steep
Meal Flour {Powder

Flask1 | 275 | 5.0 7.5 04 |33 150 | 225 13 25 1150} 25
Flask 2 | 10.0 | 20.0 10.0 0.0 1.0 | 60.0 | 0.0 5.0 100 0.0 | 0.0
Flask 3 | 10.0 | 20.0 10.0 05 |100{ 0.0 0.0 5.0 0.0 |20.0| 10.0
Flask4 | 100 | 0.0 10.0 00 |10.0j 60.0 | 30.0 0.0 10.0 { 20.0 | 0.0
Flask 5 | 62.5 | 15.0 2.5 0.1 33| 150 | 225 1.3 75 | 150 25
Flask6 | 27.5 | 5.0 2.5 0.1 7.8 | 150 | 7.5 2.5 50 | 150} 7.5
Flask 7 | 27.5 | 15.0 25 0.1 331450 | 75 3.8 75 1150 25
Flask 8 | 62.5 | 15.0 7.5 0.1 331 15.0 | 225 3.8 251501 175
Flask 9 | 10.0 [ 20.0 0.0 0.0 |100] 0.0 | 300 3.8 251 0.0 | 100
Flask 10| 62.5 | 15.0 7.5 04 |78 ] 450 | 75 0.0 100 50 | 25
Flask 11| 275 | 5.0 7.5 04 |33 150 | 75 1.3 751501 75
Flask 12| 80.0 | 0.0 0.0 0.5 10 | 60.0 | 30.0 1.3 7.5 120.0] 100
Flask 13| 80.0 | 0.0 10.0 0.0 (100] 0.0 | 300 25 501007} 00
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| Glucose | MgSO, [(NH4);SOs| KH;PO,{ KC1 | Cane | Corn | Hy-Soy™ | Basic |Cotton| Corn
. Molasses| Gluten Yeast | Seed | Steep
:ﬁ Meal Flour |Powder

Flask 14| 80.0 | 0.0 10.0 0.0 1.0 | 600 | 0.0 5.0 0.0 |20.0] 100
Flask 15| 27.5 | 5.0 2.5 04 | 78 | 450 | 225 0.0 00 |50 25
Flask 16| 10.0 | 20.0 0.0 0.5 1.0 { 60.0 | 30.0 3.8 25 | 00 | 100
Flask 17| 80.0 | 20.0 0.0 05 [10.0} 0.0 0.0 0.0 0.0 (200} 0.0
Flask 18| 80.0 | 0.0 0.0 0.5 1.0 ] 00 0.0 0.0 00 ] 00 | 00
Flask 19| 45.0 | 10.0 50 03 | 55| 300 | 150 5.0 1001100 5.0
Flask 20{ 62.5 | 5.0 25 0.1 78 | 450 | 7.5 25 50| 501} 75

Following the first experiment (above), the design
matrix was reorganized in an attempt to take advantage of
the neighborhood construct to be employed. A 20x1l matrix
was constructed consisting of inter-column Euclidean
distances. Using the first individual as a starting point,
the individual with the least calculated distance from the
first was re-indexed to be the second individual in the
population. Next, the individual the least distance from
the second individual was moved and re-indexed as the third
individual, and so on. In this manner each neighborhood
consisted initially of individuals with the least distance
from each other in ingredient space. Table 2 reflects the

updated distance-based design matrix.

Table 2

PSO position initialization (ingredients in grams per liter)

”“M Glucose| MgSO, | (NH4),SOs | KH:POs} KCI Cane { Corn |Hy-Soy™| Basic | Cotton | Corn
. Molasses | Gluten Yeast | Seed | Steep
i Meal Flour |Powder

Flask1 | 27.5 | 5.0 7.5 04 (33 ] 150 [225 13 25 | 150 ] 25
Flask2 | 275 | 5.0 2.5 0.1 (78] 150 | 7.5 25 50 { 150 | 75
Flask3 | 275 | 5.0 7.5 04 33| 150 | 75 13 7.5 5.0 7.5
Flask 4 | 45.0 | 10.0 5.0 03 [551] 300 {150 5.0 100 | 100 | 5.0
Flask 5 | 27.5 | 15.0 2.5 0.1 |33 450 | 75 38 7.5 ] 150 | 25
Flask 6 | 27.5 | 5.0 2.5 04 | 7.8 | 450 |225 0.0 0.0 5.0 25
Flask 7 | 10.0 | 20.0 0.0 05 | 1.0] 60.0 [30.0 3.8 2.5 0.0 | 100
Flask 8 | 10.0 | 0.0 10.0 0.0 [10.0] 60.0 | 300 0.0 100 | 20.0 | 0.0
Flask 9 | 10.0 | 20.0 10.0 00 | 1.0]| 600 | 0.0 5.0 100§ 0.0 0.0
Flask 10| 625 | 5.0 2.5 01 | 781 450 [ 7.5 25 5.0 5.0 7.5
Flask 11| 62.5 | 15.0 7.5 04 [ 78] 450 | 7.5 0.0 100 | 5.0 2.5
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£ 1Glucose| MgSO, | (NH,);SO, | KH;PO4| KCl Cane Corn |Hy-Soy™ | Basic | Cotton | Corn
Molasses | Gluten Yeast | Seed Steep
Meal Flour | Powder

Flask 12| 62.5 | 15.0 7.5 0.1 }33] 150 |225 3.8 25 5.0 7.5
Flask 13| 62.5 | 15.0 2.5 0.1 |33} 150 |[225 1.3 75 | 150 | 25
Flask 14 | 80.0 | 0.0 10.0 00 }100| 00 {300 25 5.0 0.0 0.0
Flask 15) 80.0 | 0.0 0.0 05 110 00 0.0 0.0 0.0 0.0 0.0
Flask 16 | 80.0 | 20.0 0.0 0.5 [(100] 0.0 0.0 0.0 0.0 | 200 | 00
Flask 17| 80.0 | 0.0 10.0 00 | 1.0 600 | 0.0 5.0 0.0 | 200 | 10.0
Flask 18 | 80.0 | 0.0 0.0 05 | 1.0 ] 60.0 | 30.0 13 7.5 | 20.0 | 10.0
Flask 19| 10.0 | 20.0 0.0 00 |100{ 0.0 {300 38 2.5 0.0 | 10.0
Flask 20 | 10.0 | 20.0 10.0 05 [100}] 0.0 0.0 5.0 0.0 | 20.0 | 10.0

The velocity, or change in position, for each
ingredient in each flask must also be initialized, and again
it is common practice to initialize the PSO velocities in

5 some random manner. For this work it was considered to
initialize all the velocities to 0.0, again in the context
of trying to give the PSO population the most efficient
starting point and (lack of) initial trajectory. It was
thought that perhaps a random initialization of the

10 velocities might contribute to the PSO population requiring
a several iterations simply to organize, such as when the
combined velocity vector led an agent to a worse-performing
region of ingredient space, from which it would seek to
return. However, Applicants eventually decided to

15 initialize the velocities to N(0,Vmx) random values. Table

3 contains the initial velocity settings for all agents.

Table 3

PSO velocity initialization (coded values)

Glucose| MgSO; |(NH4);SOs| KH;POs | KCl | Cane | Corn |Hy-Soy™| Basic | Cotton | Corn
{0 Molasses| Gluten Yeast | Seed | Steep
o Meal Flour | Powder

Flask1 | 023 | 1.75 | -1.61 028 | 148} 1.85 [ 000 | -1.72 | 0.10 | -1.62 | -1.33
Flask 2 | -0.49 | -0.16 | -1.46 | -0.37 |-0.26| -0.64 |-1.11| -0.46 | 1.62 | 1.77 {-1.09
Flask3 {-1.30| 1.87 | -0.80 | -1.31 {1.73}-0.11 | 1.76 | 1.83 | 1.27| 1.50 | 1.58
Flask4 | -1.72 | -1.21 | 0.31 -0.77 |-196| 1.64 |-197] -092 | 1.39| 1.20 | 0.67
Flask 5 | -0.72 | -0.12 1.72 1.21 {0.63] -0.06 | 0.90 | -0.59 |1.81] 1.94 | -1.35
Flask 6 | 1.29 | -1.04 | 0.62 1.00 |-092| 0.76 | 1.72 | 041 }-034( 147 |-1.44
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Glucose} MgSO, [(NH,);SO.] KH;PO,| KCl1 | Cane | Corn |Hy-Sey™| Basic | Cotton | Corn
Molasses| Gluten Yeast | Seed Steep
Meal Flour | Powder

Flask7 | -1.65| 1.65 | -128 | 043 |-0.15] 0.57 | 1.40 | 1.08 |1.49 | 022 | 0.77
Flask 8 | -1.67 | 0.76 1.05 1.84 {117 -0.67 | 0.67 | 126 |-1.83| 0.76 | -0.29
Flask9 | 059 | 1.37 | -049 1.78 [1.78 | 0.01 {-021 | 0.29 |-147| 0.75 | -1.00
Flask 10| 1.46 | 0.26 0.34 0.39 |-1.80] 1.88 |-0.29 | -1.03 |-097| -0.01 | 0.78
Flask 11| -1.64 | -1.11 | 0.07 | -0.08 | 049 | -0.08 | 0.08 } -0.73 [-0.04| 0.12 | -1.99
Flask 12| -0.68 | 0.87 | -1.33 | -0.75 | 1.23] -1.36 | 0.00 | -0.96 |-1.57{-1.59 | 1.88
Flask 13| -1.02 | -1.53 | -0.11 | -1.08 [099| 1.54 | 197 | 040 |[-1.33} 055 | 1.18
Flask 14| -1.31 [ -023 | -1.10 1.66 [0.00| -0.67 | 0.16 | 095 |0.78 | 0.24 | 1.89
Flask 15| -1.00 | -0.08 | -1.17 0.16 [-0.07{ -0.09 | 1.29 | 0.85 |0.29| 1.75 | -0.67
Flask 16| -1.85| 0.63 | -0.81 | -0.42 [-0.14( -0.89 | 1.44 | -0.85 |-0.77| -1.78 | 0.30
Flask 17| 0.02 | 0.75 | -1.33 | -1.72 |030} -1.72 | 140 | 0.16 {044 | 0.76 | 1.77
Flask 18| 0.11 | 0.22 0.71 0.78 {-0.52| -0.90 |-055| 048 |1.82|-1.37 1 0.67
Flask 19] -195 | -1.81 | -0.66 | -1.85 [-1.71} -1.59 | 0.08 | 1.35 [-1.34{-0.83 | 1.05
Flask 20| 1.68 | 1.72 172 | -1.12 |-042} -0.08 | -1.70 | 0.19 |-0.70| -0.77 | -1.76

ko

Velocity damping:

Finally, one additional modification was made to the
velocity update equation. The velocity is multiplied by a
5 weight, or damping factor, which declines linearly over
several iterations. For this work, the weight was
initialized to 0.9 and the intent was to reduce the weight
to 0.4 over 15 iterations. Similar to the momentum term in
standard back-propagation of error optimization algorithms,
10 the weight term works to ‘smooth’ movement in ingredient-
space which could be helpful in finding any optima once
promising regions are located. Considering this weight
term, the final velocity update equation results, as given

below.

15 Equation 8: Final velocity update equation

V. (k+1) = MIN{w[V, (k) +n (X - X )+n,(X - X)LV}

pbest.i ghest.i

If X, (k+1)<-100 then V(k+1)=0.0 and X (k+1)=-10.0
The results of applying PSO to glycopeptide
optimization fermentation medium are described below. The

20 results of maximizing potency are presented first and
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compared to the results achieved in the parallel SD

optimization work.

It should be noted that in the middle of the experiment

it was determined that a key ingredient, (NH;),S0,, had
become contaminated and had likely adversely affected the
results of several of the PSO iterations. This problem
remained unnoticed for several iterations of the PSO
algorithm. However, the excellent results obtained using
PSO suggest the algorithm was able to easily recover once

the ingredient problem was corrected.

The total number of PSO iterations were reduced to 12
rather than the planned 15. The progression of fitness
values by iteration is illustrated in Table 4 below and

Figure 1.

Table 4
PSO medium optimization results for each iteration

(g of nucleus/liter)

1 2 3 4 5 6 7 8 9 10 | 11 | 12

Flask 1 0.06/ 0.07 { 0.12 | 0.14 | 0.28 1 0.29 ] 0.12 [ 0.19 ] 0.09 | 0.13 ] 0.37 | 0.30
Flask 2 0.021023]0.1010.12 1027|1022 ] 0.17 [ 041 | 0.20 | 0.24 | 0.23 | 0.34
Flask 3 0.0040.15] 0.26 | 0.11 } 0.21 | 0.07 | 0.18 | 0.04 | 0.11 | 0.13 ] 0.20 | 0.20
Flask 4 0.15|0.10} 0.11 } 0.21 | 0.21 } 0.05} 0.23 | 0.00 | 0.32 { 0.30 | 0.47 { 0.59
Flask S 0.11{0.03] 007 {0.12033]0.31] 029 | 0.05 | 0.36 | 0.39 | 0.49 | 0.52
Flask 6 0.00} 0.09 | 049 | 0.24 1 0.32 | 0.25] 049 | 0.00 | 0.32 | 0.24 1092 |0.77
Flask 7 0.00[ 0.00§ 0.19 } 0.19 | 0.27 { 0.01 | 0.40 { 0.23 | 0.34 | 0.64 | 0.69 | 0.94
Flask 8 0.00] 0.01 | 0.00 | 0.10 | 0.00 | 0.06 | 0.01 { 0.00 | 0.34 | 0.46 | 0.55 | 0.71
Flask 9 0.16/ 0.18 1 0.21 | 0.61 }0.59 | 0.30 | 0.41 | 0.27 | 0.20 | 0.50 | 0.50 | 0.74
Flask 10 |0.13|0.08 { 0.01 | 0.28 | 0.25 [ 0.50 | 0.26 | 0.35 | 0.41 | 0.89 | 0.51 | 0.74
Flask 11 |0.56] 0.14 | 0.01 [ 044 ] 0.4510.21 | 0.22 [ 0.49 | 0.21 | 0.32 [ 0.41 | 0.67
Flask 12 |0.21]0.04 | 045 | 0.29 1 0.44 | 0.07 | 0.16 | 0.03 | 0.03 | 0.26 | 0.22 | 0.57
Flask 13 [0.02|0.04 | 0.04 | 0.44 | 0.10 [ 0.10 | 0.15 } 0.04 | 0.02 } 0.12 ] 0.05 | 0.22
Flask 14 [0.14] 0.07 | 0.40 | 0.16 [ 0.05 {0.05 [ 0.04 | 0.07 | 0.21 | 0.24 | 0.33 | 2.18
Flask 15 [0.04|0.07 | 0.13 | 042 { 040|045 0.12 | 0.04 { 0.41 | 0.49 } 0.11 {0.79
Flask 16 [0.09}0.10| 0.18 [ 0.30 | 0.35]0.22 ] 0.17 { 0.15 | 0.11 [ 0.42 ] 0.20 | 0.71
Flask 17 [0.06] 0.01 | 0.00 | 0.00 | 0.20 { 0.39 | 0.16 | 0.03 | 0.04 | 0.36 | 0.27 | 0.64
Flask 18 [0.16{ 0.00 | 0.00 | 0.00 | 0.17 | 0.12] 0.08 [ 0.04 [ 0.05 | 0.13 { 0.11 | 0.54
Flask 19 [0.02}0.25| 0.21 | 0.31 | 0.43 {0.44 | 0.44 | 0.35 | 0.19 | 0.52 { 0.44 | 0.51
Flask 20 |0.14[ 0.07 | 0.24 | 0.50 | 0.23 | 0.28 | 0.15 } 0.15 ] 0.06 | 0.42 ] 0.29 | 0.36
Average [0.10{0.09 ] 0.16 | 0.25 | 0.28 | 0.22 { 0.21 | 0.14 | 0.20 | 0.36 | 0.37 | 0.65
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Median }0.07/0.07 | 0.12 { 0.23 [ 0.27 [ 0.22 | 0.17 | 0.06 | 0.20 | 0.34 | 0.35 | 0.6]
Maximum |0.56] 0.25 | 0.49 | 0.61 | 0.59 { 0.50 | 0.49 | 0.49 | 0.4]1 | 0.89 | 0.92 | 2.18

The period of ingredient contamination from iteration 5
through iteration 9 can be readily seen as the average
population fitness decreases slightly during this period.
Once the situation was corrected, the average and maximum
fitness values increased dramatically. Average fitness
increased from 0.1 g/L to 0.65 g/L, or 550%. Similarly,
median fitness increased from 0.07 g/L to 0.61 g/L, or 771%.
Discounting the highest fitness result obtained in the 12
(final) iteration, the mean and median fitness values
increased 270% and 250%, respectively. The medium achieving
the best fitness (2.18 g/L) in the final iteration was
comprised of 10 of the 11 possible ingredients, with 3 of
the ingredients present in very minute guantities. 1In all,
12 x 20 = 240 individual flask trials were performed,
requiring approximately 7 months to complete. By these
measures, the results achieved using PSO were excellent.

In comparison, the SD project work yielded a medium
with a fitness of 1.05 g/L, requiring 7 ingredients. A
response surface design suggested that a simpler medium,
consisting of only 3 of the 7 ingredients, would achieve a
predicted potency of 1.1 g/L. 1In all, approximately 100 SD
shake-flask trials were performed, requiring approximately 4

months to complete.

Beyond the level of fitness achieved, the difference in
composition of the optimal fermentation media obtained is of
interest and useful for comparison. Table 5 lists the
composition of the best PSO medium along with the best SD-
derived fermentation medium and the best medium obtained by

the ad hoc approach. The titers shown are averages for
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several flask trials (replicates). The fact that the PSO
and SD-derived media are very different is readily seen,
although some similarities are evident as well. It is
interesting to note the best PSO result was obtained in the
ingredient space defined by the initial PSO ingredient
ranges. In contrast, the design space moved under the SD
approach, with Basic Yeast at 12.5 g/L in the best SD
results. Examination of the PSO population locations over
all the experiments (not shown) indicates several
ingredients were tested outside the initial ranges, but the
overall tendency was to search within the pre-defined
ingredient space as that was where the best solutions were

located by the PSO population.
Table 5

Comparison of optimized media’

PSO SD Ad Hoc ASM
Medium Medium Medium Medium

Ingredient (g/liter)
Meat Peptone 0.0 0.0 0.0 22.5
Glucose 80.0 45.0 45.0 45.0
MgSO, 0.0 1.2 1.2 1.2
(NH,),SO, 7.3 4.13 4.13 4.13
KH,PO, 0.15 0.16 0.16 0.16
KCI 8.6 10.0 5.5 5.5
Cane Molasses 2.6 10.0 0.0 0.0
Corn Gluten 23.1 0.0 20 0.0
Hy-Soy™ 2.5 2.5 0.0 0.0
Basic Yeast 4.9 12.5 0.0 0.0
Titer (g/L) 1.8 1.05 0.74 1.0
Std Deviation 0.09 0.05 0.06 0.05
No. of Replicates 4 4 4 4

A1l media contained CaCO; at 5.2 grams/liter

In examining the above results, it is clear the PSO
algorithm was able to optimize the fermentation medium for
the modified glycopeptide process. In addition, the PSO
algorithm was shown to be robust in the face of some

challenging issues. For example, the incidence of an
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ingredient becoming contaminated had no more a deleterious
effect than the likely addition of iterations required to
reach high glycopeptide titer. Although it is only
conjecture, considering that iterations at risk consisted of
80-100 experiments, it is possible similar results might
have been realized in 140-160 PSO experiments, or 7 to 8
trials, which is very similar to the number required for SD
optimization. Furthermore, the ability to simply 'keep
going', rather than having to 'go back' and repeat one or
more experimental stages - as would likely be required in SD

- 1s certainly of value.

This result represents a very exciting discovery for
the area, not only with respect to the ability of a tool
like PSO to provide an optimized fermentation medium, but
also in terms of the value delivered to the project by
providing a fermentation medium that supports high product
titer. In addition, the optimized medium identified
enhances the prospects for commercialization of a
glycopeptide antibacterial agent by providing cost savings

as a result of increased productivity of the medium.

In addition, a fermentation medium was identified which
was free from animal source materials (ASM) without
sacrificing titer. In fact, the PSO medium using a
combination of cane molasses (or blackstrap molasses), corn
gluten, Hy-Soy™ (hydrolyzed soybean flour available from
Quest International, Norwich, NY) and yeast (e.g. Red Star
basic yeast, available from Red Star, Milwaukee, WI) as a
nutrient source provided a titer which was 180% higher than
a comparative medium using a meat peptone as a nutrient
source. The SD medium using cane molasses, Hy-Soy™ and

basic yeast as a nutrient source provided a titer which was
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nearly equivalent to the comparative medium using meat
peptone (105%). Therefore, both the PSO and SD ASM-free
media provide viable alternatives for media containing

animal-source materials.

Other useful alternatives for cane molasses include any
sucrose related materials. Useful alternatives for Hy-Soy™
include other hydrolyzed soybean flours which may be
hydrolyzed enzymatically, or by means of an acid or base
hydrolysis. Suitable yeasts include any spray dried whole
yeast materials or yeast extracts. Suitable corn glutens

include whole or hydrolyzed glutens and equivalents thereof.
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CLAIMS
We Claim:

1. A process for optimizing a fermentation process
for the production of a glycopeptide nucleus from
Amycolatopsis orientalis or Nocardia orientalis comprising
the step of determining key component concentrations in said

process by means of a particle swarm optimization.

2. The process of Claim 1 wherein said glycopeptide

nucleus is A82846B.

3. An improved fermentation medium for the production
of a glycopeptide nucleus from Amycolatopsis orientalis or
Nocardia orientalis wherein said improvement is
characterized by optimization of key components of said

medium by means of a particle swarm optimization.

4. The medium of Claim 3 wherein said glycopeptide

nucleus is A82846B.

5. An ASM-free fermentation medium for the production
of a glycopeptide nucleus from Amycolatopsis orientalis
comprising cane molasses, hydrolyzed soybean flour and

veast.

6. The fermentation medium of Claim 5 further

comprising corn gluten.
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