

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 March 2009 (12.03.2009)

PCT

(10) International Publication Number
WO 2009/030613 A1

(51) International Patent Classification:

CIID 3/40 (2006.01) *CIID 17/06* (2006.01)
CIID 3/37 (2006.01)

(74) Common Representative: CIBA HOLDING INC.;
Patent Department, Klybeckstrasse 141, CH-4057 Basel
(CH).

(21) International Application Number:

PCT/EP2008/061190

(22) International Filing Date: 27 August 2008 (27.08.2008)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/967,533 5 September 2007 (05.09.2007) US

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

WO 2009/030613 A1

(54) Title: HOME AND FABRIC CARE COMPOSITIONS COMPRISING DYE-POLYMER COMPLEXES

(57) Abstract: The present invention relates to home or fabric care compositions comprising certain dye-polymer complexes. Additionally, methods for colouration of home or fabric care compositions using said dye-polymer complexes are disclosed.

Home and fabric care compositions comprising dye-polymer complexes

The present invention relates to home or fabric care compositions comprising certain dye-polymer complexes. Additionally, methods for the colouration of home or fabric care compositions using said dye-polymer complexes are disclosed.

5 *WO 00/25730* and *WO 00/25731* disclose the stabilization of body care and household products.

Published U.S. Pat. App. No. 60/377,381 discloses the use of selected hindered nitroxyl, hydroxylamine and hydroxylamine salt compounds in formulations of body care products, household products, textiles and fabrics.

10 *U.S. Pat. Spec. No. 4,492,686* discloses cosmetic makeup compositions containing pigments salified with amine functions.

It is now found that dye-polymer complexes provide outstanding stable colouration of home or fabric care compositions and products.

The present invention pertains to a home or fabric care composition comprising

15 a) An effective colourizing amount of at least one dye-polymer complexes formed from

(i) At least one cationic polymer and

(ii) At least one anionic dye,

20 wherein components a) (i) and a) (ii) are complexed to form particles prior to addition to said home or fabric care composition and wherein said complex remains as particles in the finished product; and

b) optional additional ingredients.

25 The cationic polymers of component a) (i) can be natural, modified natural polymers or synthetic polymers. Examples of natural and modified natural cationic polymers are chitosan and salts thereof and cationic starch.

30 Suitable cationic polymers of component a) (i) for use in the compositions of the present invention contain cationic nitrogen-containing moieties, such as quaternary ammonium or cationic protonated amino moieties. The cationic protonated amines can be primary, secondary, or tertiary amines, preferably secondary or tertiary amines, depending upon the particular species and the selected pH of the home or fabric care composition. The cationic polymers also have a cationic charge density ranging from about 0.2 meq/g to about 13 meq/g, preferably at least about 0.4 meq/g, more preferably at least about 0.6 meq/g.

The pH of intended use of the home or fabric care composition, which pH will range from about pH 2 to about pH 12, preferably from about pH 3 and to about pH 11, more preferably from about pH 3 to about pH 10.

The cationic nitrogen containing moiety of the cationic polymer may be present as a substituent on all, or on some, of the monomer units thereof. The cationic polymer component a) (i), which is used in the dye-polymer complexes of the invention, includes homopolymers, copolymers, terpolymers, and others of quaternary ammonium or cationic amine-substituted monomer units, optionally in combination with non-cationic monomers. Examples of such polymers are described in the *CTFA Cosmetic Ingredient Dictionary, 3rd edition, edited by Estrin, Crosley, and Haynes, (The Cosmetics, Toiletry, and Fragrance Association, Inc. Washington, D.C. (1982))*.

Suitable cationic polymers as component a) (i) for the dye-polymer complex of the present invention are polymers containing more than 2, preferably more than 100, and more preferably more than 1000, ionizable or quaternizable cationic groups which include primary, secondary, tertiary amines and their salts, and quaternary ammonium and phosphonium salts.

Cationic polymers of component a) (i) may contain a so-called Mannich-type base, poly-amine, polyethyleneimine, polyamidoamine/ epichlorohydrins, polyamine epichlorohydrin products, dicyandiamide polymers including polyamine-dicyandiamide and polydicyandiamide formaldehyde polymers. Additional examples are polyamine-epihalohydrin resins, such as polyaminopolyamide-epihalohydrin resins which are cationic thermosetting materials used to increase the wet strength of papers. Additionally, non-crosslinked reaction products of epichlorohydrin and amines, such as dimethylamine are cationic polymers of component a) (i). Additionally, crosslinked reaction products of epichlorohydrin and amines, such as dimethylamine with ethylenediamine as a crosslinking agent are cationic polymers of component a) (i). These polymers may be linear or crosslinked.

Synthetic cationic polymers of component a) (i) can be polymers obtained from homopolymerization of at least one cationic monomer I_b or copolymerization of I_b with a copolymerizable monomer II. Suitable cationic monomers I_b include diallyldimethyl ammonium chloride (DADMAC), diallyldimethyl ammonium bromide, diallyldimethyl ammonium sulphate, diallyldimethyl ammonium phosphates, dimethallyldimethyl ammonium chloride, diethylallyl dimethyl ammonium chloride, diallyl di(beta-hydroxyethyl) ammonium chloride, and diallyl di(beta-ethoxyethyl) ammonium chloride, aminoalkyl acrylates, such as dimethylaminoethyl acrylate, diethylaminoethyl acrylate, and 7-amino-3,7-dimethyloctyl acrylate, and their salts including their alkyl and benzyl quaternized salts; N,N'-dimethylaminopropyl acrylamide and its salts, allylamine and its salts, diallylamine and its salts, methyldiallylamine and its salts,

methylallylamine and its salts, dimethylallylamine and its salts, vinylamine (obtained by hydrolysis of vinyl alkylamide polymers) and its salts, vinyl pyridine and its salts, and mixtures thereof.

Representative examples are selected from the group consisting of suitable cationically

5 charged or potentially cationically charged monomers I_b including dimethylaminoethyl acrylate methyl chloride quaternary salt, dimethylaminoethyl acrylate methyl sulphate quaternary salt, dimethylaminoethyl acrylate benzyl chloride quaternary salt, dimethylaminoethyl acrylate sulphuric acid salt, dimethylaminoethyl acrylate hydrochloric acid salt, dimethylaminoethyl methacrylate methyl chloride quaternary salt, dimethylaminoethyl methacrylate methyl sulphate quaternary salt, dimethylaminoethyl methacrylate benzyl chloride quaternary salt, dimethylaminoethyl methacrylate sulphuric acid salt, dimethylaminoethyl methacrylate hydrochloric acid salt, diethylaminoethyl acrylate, diethylaminoethyl acrylate methyl chloride quaternary salt, diethylaminoethyl methacrylate, diethylaminoethyl methacrylate methyl chloride quaternary salt, methacrylamidopropyltrimethylammonium chloride, acrylamidopropyltrimethylammonium chloride, dimethylaminopropylacrylamide methyl sulphate quaternary salt, dimethylaminopropylacrylamide sulphuric acid salt, dimethylaminopropylacrylamide hydrochloric acid salt, diallyldiethylammonium chloride, diallyldimethyl ammonium chloride, diallylamine, and vinylpyridine.

Further specific examples of cationic monomers or potentially cationic monomers I_b are

20 2-vinyl-N-methylpyridinium chloride, (p-vinylphenyl)-trimethylammonium chloride, 1-methacryloyl-4-methyl piperazine, Mannich-type-type poly acrylamides i.e. polyacrylamide reacted with dimethylamine formaldehyde adduct to give the N-(dimethyl amino methyl) and (meth)acrylamido propyltrimethyl ammonium chloride.

Cationic polymers of component a) (i) also include the polymers formed from polyfunctional

25 epoxides, for example, di-epoxy or di-glycidyl compounds and polyfunctional amines. The cationic polymers from step polymerization may also include those known as "ionenes" formed by reacting difunctional alkylhalide (e.g., 1,6-dibromohexane) and polyfunctional amines, for example, ethylenediamine.

Potentially cationic monomers I_b may be monomers that give a cationic charge under acidic

30 conditions, such as when an amine functionality on the potentially cationic monomer is protonated.

Monomers containing tertiary amine groups I_b may also be converted into quaternary ammonium groups by reaction with quarternizing agents to produce a cationic polymer. There are no particular limitations on the quaternizing agents that can be used to quaternize the tertiary

amino groups on the polymer or monomer. For example, the quaternizing agents may include alkyl halides, such as methyl chloride, ethyl chloride, methyl bromide, ethyl bromide, methyl iodide, ethyl iodide and long chain alkyl halides, such as C₆-C₂₄ alkyl halides; alkyl halide carboxylates, such as sodium chloroacetate, sodium bromoacetate, and sodium iodacetate, benzyl halides, such as benzyl chloride, benzyl bromide and benzyl iodide, sulphonic acid ester derivatives, such as dimethyl sulphate, diethyl sulphate, methyl o-toluene sulphonate, methyl p-toluene sulphonate, ethyl o-toluene sulphonate, ethyl p-toluene sulphonate, methyl methane sulphonate, ethyl methane sulphonate, methyl benzene sulphonate and ethyl benzene sulphonate. Moreover, polyacrylamide can be rendered partially cationic by reaction with glycidyl dimethyl ammonium chloride.

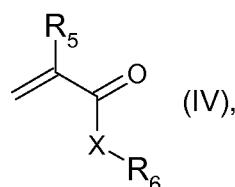
The most preferred cationic monomers are DADMAC and dimethylaminoethyl acrylate and its salts, including its alkyl and benzyl quaternized salts. Suitable water-soluble cationic polymers are reaction products of 0.1 to 100.0 wt.-%, preferably 10.0 to 100.0 wt.-%, and most preferably 50.0 to 100.0 wt.-%, of at least one cationic monomer I_b, preferably 0.0 to 15.0 wt.-%, and most preferably 0.0 to 50.0 wt.-% of at least one other copolymerizable monomers II, and optionally, 0.0 to 10.0 wt.-% of a crosslinking agent III.

Copolymerizable monomers II suitable for use with cationic monomers I_b, such as DADMAC for the cationic polymer include selected vinyl and (meth)acrylate-based compounds, other unsaturated compounds, such as styrene, (meth)acrylonitrile and esters of unsaturated poly-20 functional acids.

Examples of suitable vinyl compounds for monomer II include styrene; vinyl esters of C₂-C₁₈ carboxylic acids, such as vinyl acetate and vinyl butyrate; N-vinyl amides of C₂-C₁₈ carboxylic acids, such as N-vinyl acetamide, and the like.

The (meth)acrylate based compounds suitable as monomer II include esters of (meth)acrylic acid, amides of (meth)acrylic acid, esters of acrylic acid and amides of acrylic acid.

Esters of (meth)acrylic acid or (meth)acrylates or and esters of acrylic acid and amides of acrylic acid encompass long- and short-chain alkyl (meth)acrylates, such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, amyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, isoamyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, isoctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate, lauryl (meth)acrylate, octadecyl (meth)acrylate, and stearyl (meth)acrylate; alkoxyalkyl

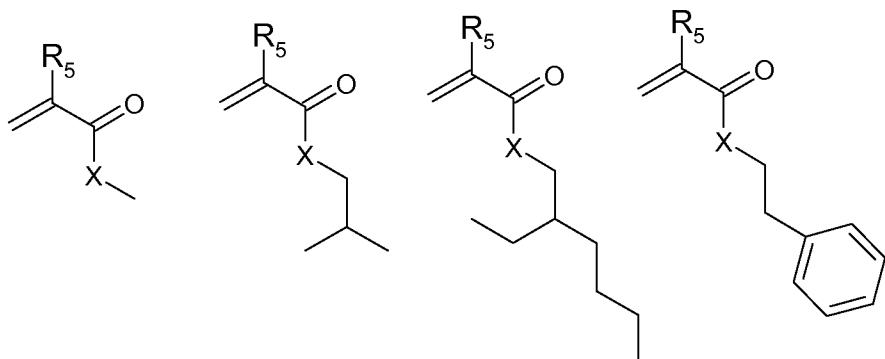

(meth)acrylates, particularly C₁-C₄alkoxy C₁-C₄alkyl (meth)acrylates, such as butoxyethyl acrylate and ethoxyethoxyethyl acrylate;

Aryloxyalkyl (meth)acrylates, particularly aryloxy-C₁-C₄alkyl (meth)acrylates, such as phenoxyethyl acrylate (e.g Ageflex®, Ciba Specialty Chemicals)

- 5 Monocyclic and polycyclic aromatic or non-aromatic acrylates, such as cyclohexyl acrylate, benzyl acrylate, dicyclopentadienyl acrylate, dicyclopentanyl acrylate, tricyclodecanyl acrylate, bornyl acrylate, isobornyl acrylate (e.g. AGEFLEX IBOA, Ciba Specialty Chemicals), tetrahydrofurfuryl acrylate (e.g. SR285, Sartomer Company, Inc.), caprolactone acrylate (e.g. SR495, Sartomer Company, Inc.), and acryloylmorpholine;
- 10 Alcohol-based (meth)acrylates, such as polyethylene glycol monoacrylate, polypropylene glycol monoacrylate, methoxyethylene glycol acrylate, methoxypolypropylene glycol acrylate, methoxypolyethylene glycol acrylate, ethoxydiethylene glycol acrylate, and various alkoxylated alkylphenol acrylates, such as ethoxylated(4) nonylphenol acrylate, e.g. Photomer® 4003, Henkel Corp.;
- 15 Amides of (meth)acrylic acid, such as diacetone acrylamide, isobutoxymethyl acrylamide, and t-octyl acrylamide; and esters of polyfunctional unsaturated acids, such as maleic acid ester and fumaric acid ester.

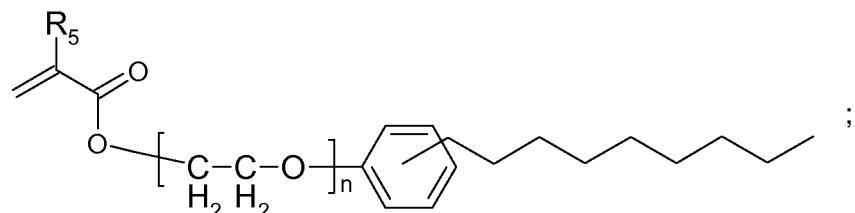
A short chain alkyl acrylate is one having an alkyl group with 6 or less C-atoms and a long chain alkyl acrylate is one having an alkyl group with 7 or more C-atoms.

- 20 Suitable monomers are either commercially available or readily synthesized using reaction schemes known in the art. For example, most of the above-listed acrylate monomers can be synthesized by reacting an appropriate alcohol or amide with an acrylic acid or acryloyl chloride.
- 25 Specific examples of preferred compounds for use as other copolymerizable monomers II are exemplified by formula IV:


wherein

R₅ is H or CH₃,

X is a divalent radical selected from the group consisting of -O-, -NR₇₋, and -NH-;


R_6 is C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, phenyl C_1 - C_6 alkylene, wherein the phenyl radical may be unsubstituted or substituted one to three times by C_1 - C_{12} alkyl or C_1 - C_{12} alkoxy, and the C_1 - C_6 alkylene group may be interrupted by at least one oxygen atoms.

Particularly preferred other copolymerizable monomers II are exemplified by:

5

and

wherein R_5 and X are as defined above and n is a number from 1 to 5, preferably 2 or 3.

Suitable crosslinking agents III can be polyfunctional ethylenically unsaturated monomers which include alkoxylated bisphenol A diacrylates, such as ethoxylated bisphenol A diacrylate with ethoxylation being 2 or greater, preferably ranging from 2 to about 30, e.g. SR349 and SR601 available from Sartomer Company and PHOTOMER 4025 and PHOTOMER 4028, available from Henkel Corp. and propoxylated bisphenol A diacrylate with propoxylation being 2 or greater, preferably ranging from 2 to about 30.

Preferred examples of suitable crosslinking agents III include methylene bisacrylamide, pentaerythritol, di-, tri- and tetra-acrylate, divinylbenzene, polyethylene glycol diacrylate and bisphenol A diacrylate.

When the cationic copolymer of component a) (i) is present, the weight ratio of monomer Ib to monomer II is from about 1.0 : 99.0 wt.-% to about 99.0 : 1.0 wt.-%, based on the total weight of the copolymer. The weight ratio of monomer Ib to monomer II is from about 10.0 : 90.0 wt.-% to about 90.0 : 10.0 wt.-%, based on the total weight of the polymer. The weight ratio of monomer Ib to monomer II is from about 25.0 : 75.0 wt.-% to about 75.0 :

25.0 wt.-%, based on the total weight of the polymer. The weight ratio of monomer Ib to monomer II is from about 50.0 : 50.0 wt.-%, based on the total weight of the polymer.

The preparation of the cationic polymers of component a) (i) for the inventive dye-polymer complex can be carried out using various polymerization techniques, such as solution, emul-

5 sion, microemulsion, inverse emulsion, and/or bulk polymerization, as well as other technologies that are available to those who are skilled in the art. The polymerizations can be carried out with or without free radical initiators and with various initiator concentrations. The co- or terpolymers can also be prepared in such a way that the architecture of the polymers is random, block, alternating or core-shell, and with or without the use of polymerization regu-

10 lators, such as nitroxyl ethers or other types of nitroxyl radicals.

The weight average molecular weight of the cationic polymers of component a) (i) is from about 1 000 to about 10 million. Another embodiment of the invention is cationic polymers of component a) (i) having a weight average molecular weight from about 50 000 to about 5 million atomic mass units. Another embodiment of the invention is cationic polymers of com-

15 ponent a) (i) having a weight average molecular weight from about 200 000 to about 4 million atomic mass units. Another embodiment of the invention are cationic polymers of component a) (i) having a weight average molecular weight from about 300 000 to about 2 million atomic mass units.

The anionic dyes of component a) (ii) are not only those anionic dyes having at least one

20 carboxylic acid function but also those having at least one sulphonic acid functions or anionic dyes having both at least one carboxylic acid functions and at least one sulphonic acid functions.

The anionic dyes of component a) (ii) are selected from the group consisting of halogen-containing acid dyes, reactive dyes, azo dyes, anthraquinone dyes and other acid dyes.

25 An example of an anionic reactive dye is Procion Red® MX 5B.

Suitable anionic dyes of component a) (ii) are selected from the group consisting of D and C Red 21, D and C Orange 5, D and C Red 27, D and C Orange 10, D and C Red 3, D and C Red 6, D and C Red 7, D and C Red 2, D and C Red 4, D and C Red 8, D and C Red 33, D and C Yellow 5, D and C Yellow 6, D and C Green 5, D and C Yellow 10, D and C Green 3,

30 D and C Blue 1, D and C Blue 2, D and C Violet 1, Food Black 1 (CI No. 28440), Acid Black 1 (CI No. 20470), Acid Black 2 (CI No. 50420), Food Red 10 (CI No. 18050), Food Blue 1 (CI No. 73015), Food Brown 3 (CI No. 20285), Food Red 3 (CI No. 14720), Food Red 7 (CI No. 16255), Food Yellow No. 4 (CI No. 19140), Food Yellow No. 13 (CI No. 47005), Red No. 102, Red No. 104-1, Red No. 105-1, Red No. 106, Yellow No. 5, Red No. 227, Red No. 230-1,

Orange No. 205, Yellow No. 202-1, Yellow No. 203, Green No. 204, Blue No. 205, Brown No. 201, Red No. 401, Red No. 504, Orange No. 402, Yellow No. 403-1, Yellow No. 406, Yellow No. 407, Green No. 401, Violet No. 401, and Black No. 401, etc. In addition, natural acid dyes, such as carminic acid and laccaic acid can be used.

5 Another embodiment of the invention is to employ a mixture of more than one anionic dye in component a) (ii), such as those exemplified above.

Another embodiment of the invention is to employ a mixture of at least one anionic dyes of component a) (ii) with other types of dyes in the dye-polymer complex.

10 Although there are no critical size limitations to the dye-polymer complex particles of component a), the dye-polymer complex particles having a size of about 0.001 to about 500 micrometer are particularly advantageous. Another embodiment of the invention is a particle size for the dye-polymer complexes of about 0.01 to 300 micrometer. Another embodiment of the invention is a particle size for the dye-polymer complexes of about 1 to 300 micrometer.

15 The weight ratio of component a) (i) to component a) (ii) is from about 10 000 : 1 to about 1 : 10 000. The weight ratio of component a) (i) to component a) (ii) is from about 1 000 : 1 to about 1 : 1 000. The weight ratio of component a) (i) to component a) (ii) is from about 100 : 1 to about 1 : 100.

The term "effective colourizing amount" means for example the amount necessary to achieve the desired compositional colour effects.

20 The dye-polymer complexes of component a) of the home or fabric care compositions preferably comprise no more than about 50 wt.-% of the composition; more preferably no more than about 25 wt.-% of the home or fabric care composition; even more preferably no more than about 7 wt.-%; and still more preferably no more than about 5 wt.-%. The dye-polymer complexes of the home or fabric care composition preferably comprise at least about 25 0.0001 wt.-% of the home or fabric care composition, more preferably at least about 0.01 wt.-%, even more preferably at least about 0.1wt.-%, and still more preferably at least about 0.2 by weight of the composition.

The present home or fabric care compositions may comprise further traditional additives, for example ultraviolet (UV) light absorbers and antioxidants.

30 The present invention further pertains to a home or fabric care composition comprising

a) An effective colourizing amount of at least one dye-polymer complexes formed from

(i) At least one cationic polymer and

(ii) At least one anionic dye,

wherein components a) (i) and a) (ii) are complexed to form particles prior to addition to said home or fabric care composition and wherein said complex remains as particles in the finished product;

5 b) optional additional ingredients; and

 c) at least one compound selected from the group consisting of ultraviolet light absorbers, antioxidants, tocopherol, tocopherol acetate, hindered amine light stabilizers, complex formers, optical brighteners, surfactants and polyorganosiloxanes.

The additional additives of present component c) are for example those as described in WO
10 00/25730 and WO 00/25731.

Component c) of the home or fabric care compositions preferably comprise no more than about 10 wt.-% of the composition; more preferably no more than about 7 wt.-% of the home or fabric care composition; even more preferably no more than about 5 wt.-%; and still more preferably no more than about 4 wt.-%. The dye-polymer complexes of the home or fabric
15 care composition preferably comprise at least about 0.0001 wt.-% of the home or fabric care composition, more preferably at least about 0.01 wt.-%, even more preferably at least about 0.1 wt.-%, and still more preferably at least about 0.2 wt.-% of the composition.

The UV (ultraviolet light) absorbers are for example selected from the group consisting of 2H-benzotriazoles, s-triazines, benzophenones, alpha-cyanoacrylates, oxanilides, benzoxazinones, benzoates and alpha-alkyl cinnamates.
20

Suitable UV absorbers are, for example, selected from the group consisting of:

2,4,6-tris(2-Hydroxy-4-octyloxyphenyl)-1,3,5-triazine;

2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine;

2,4-bis(2-hydroxy-4-propyloxyphenyl)-6-(2,4-dimethylphenyl)-1,3,5-triazine;

25 2-(2-hydroxy-4-octyloxyphenyl)-4,6-bis(4-methylphenyl)-1,3,5-triazine;

2-(2-hydroxy-4-dodecyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine;

2-[2-hydroxy-4-(2-hydroxy-3-butyloxypropyloxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine;

30 2-[2-hydroxy-4-(2-hydroxy-3-octyloxypropyloxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine;

2-[2-hydroxy-4-(2-hydroxy-3-tridecyloxy-propyloxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine;

5-chloro-2-(2-hydroxy-3,5-di-tert-butylphenyl)-2H-benzotriazole;

2-(2-hydroxy-3-dodecyl-5-methylphenyl)-2H-benzotriazole;

5 5-chloro-2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-2H-benzotriazole;

bis-(3-(2H-benzotriazol-2-yl)-2-hydroxy-5-tert-octyl)methane;

2-(2-hydroxy-3,5-di-tert-butylphenyl)-2H-benzotriazole;

2-(2-hydroxy-3,5-di-tert-amylphenyl)-2H-benzotriazole;

2-(2-hydroxy-3,5-di-alpha-cumylphenyl)-2H-benzotriazole;

10 2-(2-hydroxy-3-alpha-cumyl-5-tert-octylphenyl)-2H-benzotriazole;

2-(2-hydroxy-5-tert-octylphenyl)-2H-benzotriazole;

3-(2H-benzotriazol-2-yl)-4-hydroxy-5-(1-methylpropyl)-benzenesulphonic acid monosodium salt;

3-tert-butyl-4-hydroxy-5-(2H-benzotriazol-2-yl)-hydrocinnamic acid and sodium salt;

15 12-hydroxy-3,6,9-trioxadodecyl 3-tert-butyl-4-hydroxy-5-(2H-benzotriazol-2-yl)-hydrocinnamate;

octyl 3-tert-butyl-4-hydroxy-5-(2H-benzotriazol-2-yl)-hydrocinnamate;

4,6-bis(2,4-dimethylphenyl)-2-(4-(3-dodecyloxy*-2-hydroxypropoxy)-2-hydroxyphenyl)-s-triazine (*mixture of C₁₂₋₁₄alkoxy isomers);

20 4,6-bis(2,4-dimethylphenyl)-2-(4-octyloxy-2-hydroxyphenyl)-s-triazine;

2,4-dihydroxybenzophenone;

2,2'-dihydroxy-4,4'-dimethoxy-5,5'-disulphobenzophenone, disodium salt;

2-hydroxy-4-octyloxybenzophenone;

2-hydroxy-4-dodecyloxybenzophenone;

25 2,4-dihydroxybenzophenone;

2,2',4,4'-tetrahydroxybenzophenone;

4-aminobenzoic acid;

2,3-dihydroxypropyl-4-aminobenzoic acid;

3-(4-imidazolyl)acrylic acid;

2-phenyl-5-benzimidazole sulphonic acid;

N,N,N-trimethyl-alpha-(2-oxo-3-bornylidene)-p-toluidinium methyl sulphate;

5-benzoyl-4-hydroxy-2-methoxybenzenesulphonic acid, sodium salt;

5 3-(4-benzoyl-3-hydroxyphenoxy)-2-hydroxy-N,N,N- trimethyl-1-propanaminium chloride;

3-[4-(2H- benzotriazol-2-yl)-3-hydroxyphenoxy]- 2-hydroxy-N,N,N-trimethyl-1-propanaminium, chloride;

2-(2-hydroxy-5-methylphenyl)-2H-benzotriazole; and

2,2'-dihydroxy-4,4'-dimethoxybenzophenone (Uvinul® 3049).

10 For instance, suitable UV absorbers are selected from the group consisting of:

3-(2H-benzotriazol-2-yl)-4-hydroxy-5-(1-methylpropyl)-benzenesulphonic acid monosodium salt;

3-tert-butyl-4-hydroxy-5-(2H-benzotriazol-2-yl)-hydrocinnamic acid and sodium salt;

2-(2-hydroxy-3,5-di-tert-butylphenyl)-2H-benzotriazole;

15 2-(2-hydroxy-3,5-di-tert-amylphenyl)-2H-benzotriazole;

4,6-bis(2,4-dimethylphenyl)-2-(4-(3-dodecyloxy*-2-hydroxypropoxy)-2-hydroxyphenyl)-s-triazine (*is mixture of C₁₂₋₁₄alkoxy isomers);

12-hydroxy-3,6,9-trioxadodecyl 3-tert-butyl-4-hydroxy-5-(2H-benzotriazol-2-yl)-hydrocinnamate;

20 2,4-dihydroxybenzophenone;

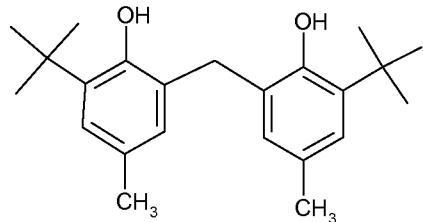
2,2'-dihydroxy-4,4'-dimethoxy-5,5'-disulphobenzophenone, disodium salt;

2,2',4,4'-tetrahydroxybenzophenone;

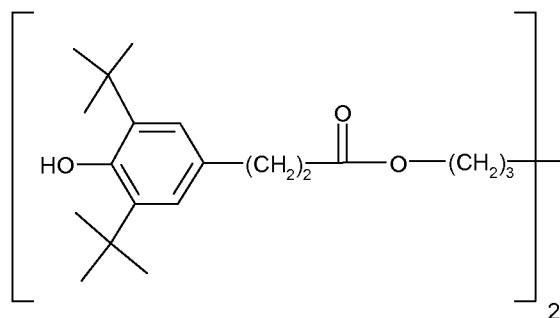
3-(4-benzoyl-3-hydroxyphenoxy)-2-hydroxy-N,N,N-trimethyl-1-propanaminium chloride;

3-[4-(2H- benzotriazol-2-yl)-3-hydroxyphenoxy]-2-hydroxy-N,N,N-trimethyl-1-propanaminium,

25 chloride;

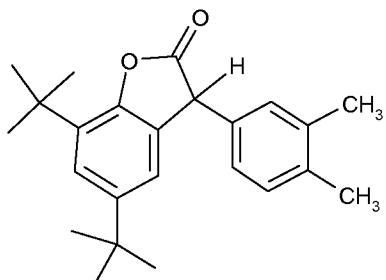

5-benzoyl-4-hydroxy-2-methoxybenzenesulphonic acid, sodium salt; and

2-(2-hydroxy-3-alpha-cumyl-5-tert-octylphenyl)-2H-benzotriazole.

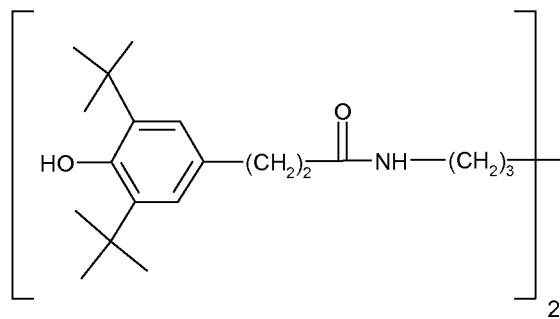

Additional suitable antioxidants are for example selected from the hindered phenolic and benzofuranone stabilizers.

- 12 -

Suitable antioxidants are, for example, selected from the group consisting of

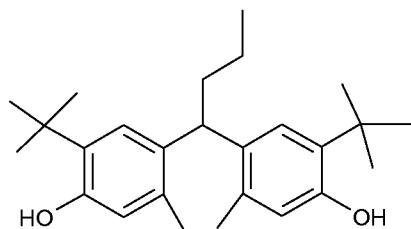


,

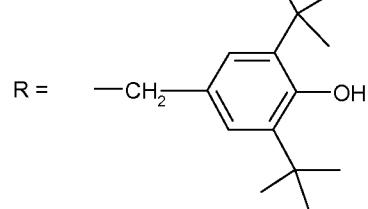
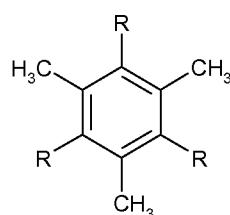


,

5

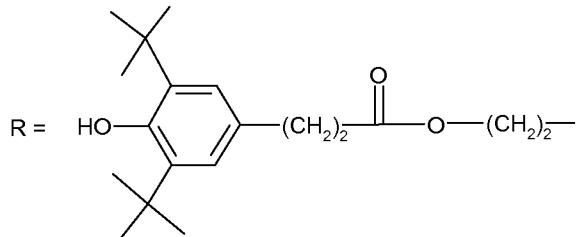
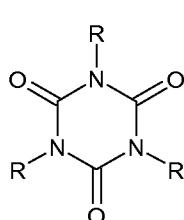


,

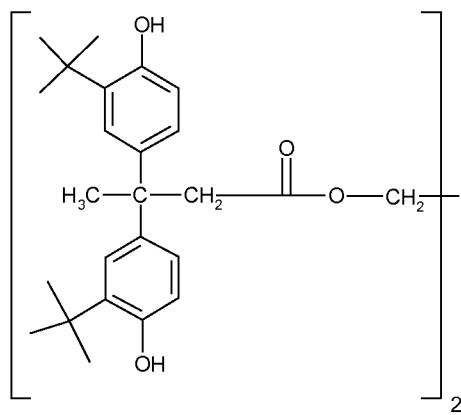



,

- 13 -

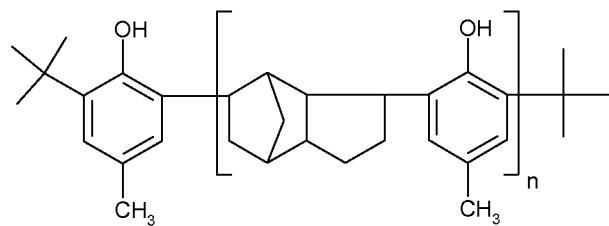



,

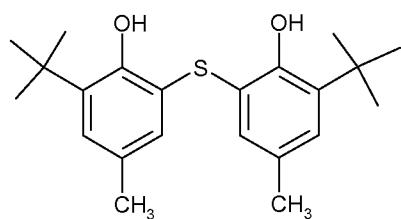


,

5

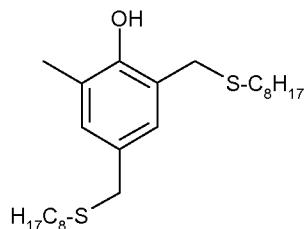


,

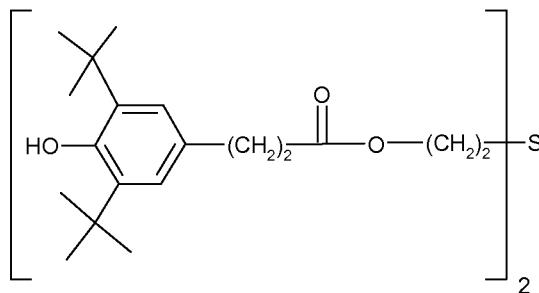


,

- 14 -

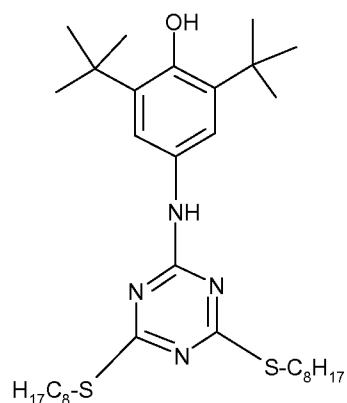

 $n = 1-3$

,

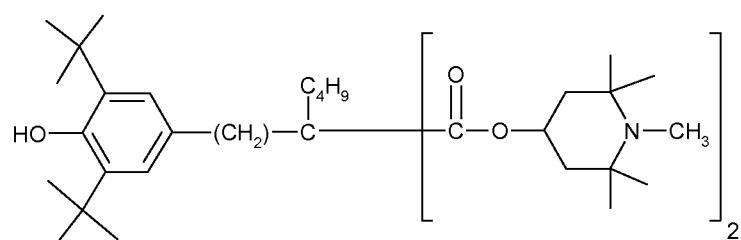


,

5

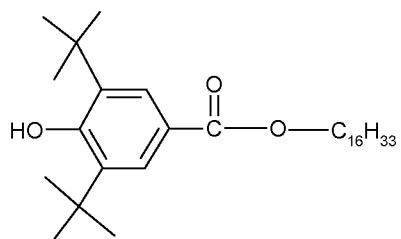


,

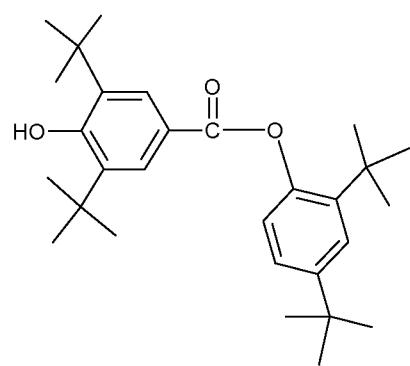


,

- 15 -

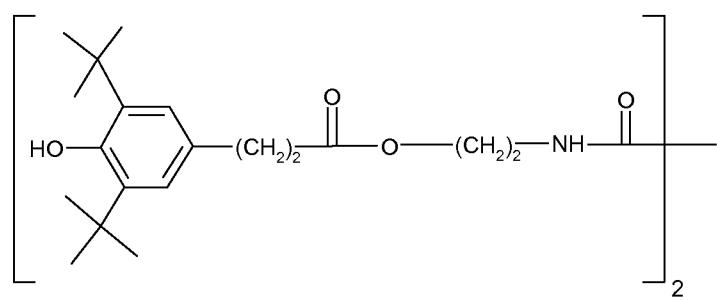
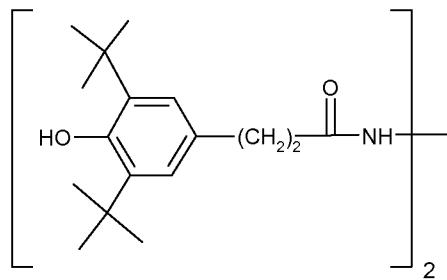


,

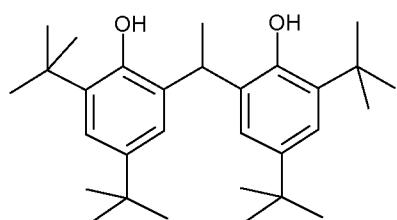
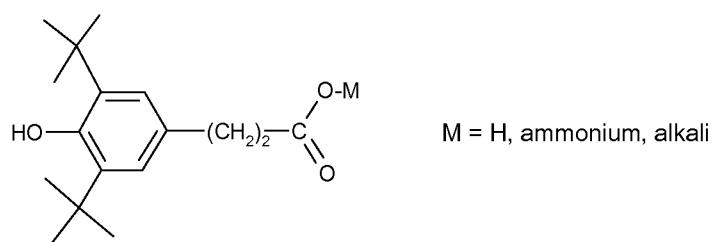
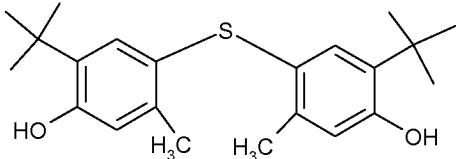


,

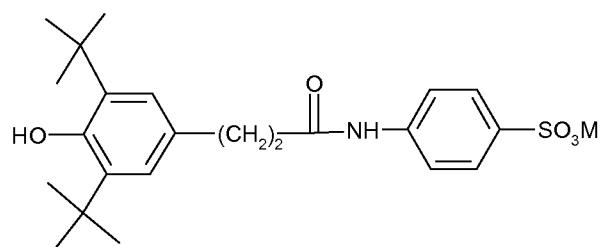
5

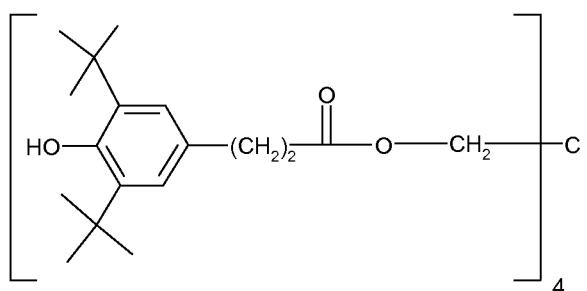



,

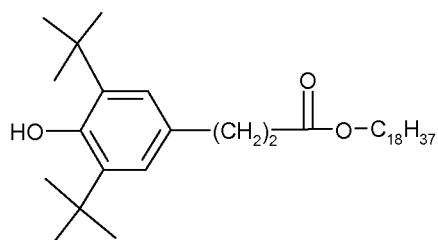




,

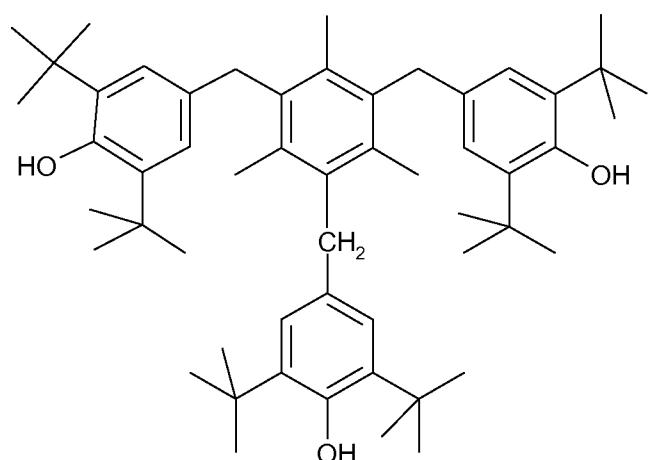

- 16 -


5

- 17 -


 $M = H, Na$

,



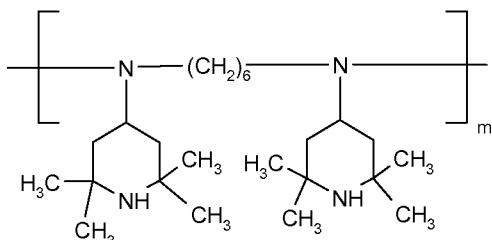
,

5

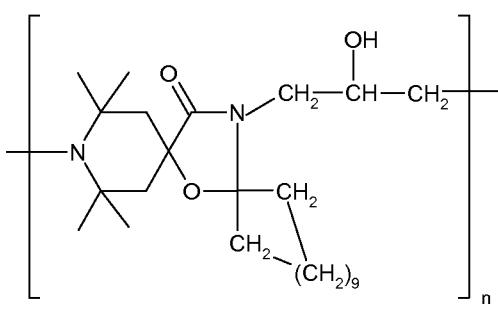
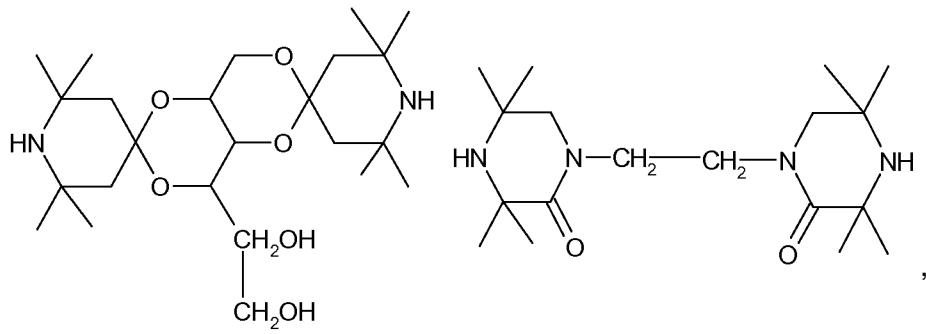
and

The hindered amine light stabilizers (HALS) of component c) are for example known commercial compounds. They are, for example, selected from the group consisting of bis(2,2,6,6-tetramethylpiperidin-4-yl)sebacate, bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate, bis(1,2,2,6,6-pentamethylpiperidin-4-yl)sebacate, n-butyl-3,5-di-tert-butyl-4-hydroxybenzy-

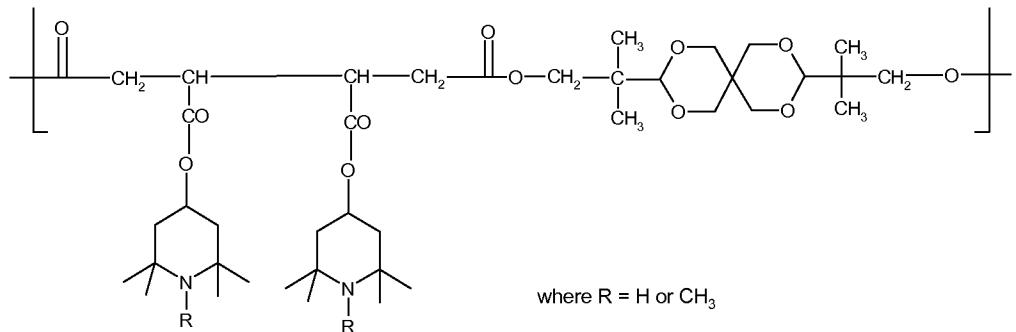
5 malonic acid-bis(1,2,2,6,6-pentamethylpiperidyl)ester, the condensate of 1-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid, the condensate of N,N'-bis-(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-s-triazine, tris(2,2,6,6-tetramethyl-4-piperidyl)nitrilotriacetate, tetrakis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butanetetraoate, 1,1'-(1,2-ethanediyl)-bis(3,3,5,5-tetramethylpiperazine), 4-benzoyl-2,2,6,6-tetramethylpiperidine, 4-stearylxy-2,2,6,6-tetramethylpiperidine, bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate, 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione, the condensate of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine, the condensate of 2-chloro-4,6-di(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane, the condensate of 2-chloro-4,6-di(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)-ethane, 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione, 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidin-2,5-dione, 3-dodecyl-1-(1,2,2,6,6-pentamethyl-4-piperidyl)-pyrrolidine-2,5-dione, a mixture of 4-hexadecyloxy- and 4-stearylxy-


10 2,2,6,6-tetramethylpiperidine, the condensate of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine, the condensate of 1,2-bis(3-aminopropylamino)ethane and 2,4,6-trichloro-1,3,5-triazine and 4-butylamino-2,2,6,6-tetramethylpiperidine (CAS reg. No. [136504-96-6]); (2,2,6,6-tetramethyl-4-piperidyl)-n-dodecylsuccinimide, (1,2,2,6,6-pentamethyl-4-piperidyl)-n-dodecylsuccinimide, 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxo-spiro[4,5]decane, the reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro[4,5]decane and epichlorohydrin, tetra(2,2,6,6-tetramethylpiperidin-4-yl)-butane-1,2,3,4-tetracarboxylate, tetra(1,2,2,6,6-pentamethylpiperidin-4-yl)-butane-1,2,3,4-tetracarboxylate, 2,2,4,4-tetramethyl-7-oxa-3,20-diaza-21-oxo-dispiro[5.1.11.2]-heneicosan, 8-acetyl-3-dodecyl-1,3,8-triaza-7,7,9,9-tetramethyl-spiro[4,5]-decane-2,4-dione,

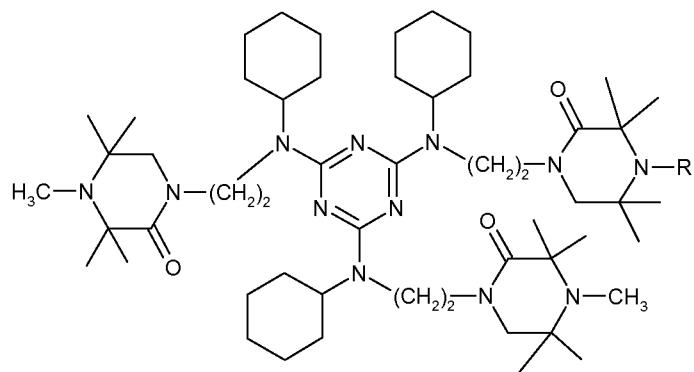
15



20

25


30

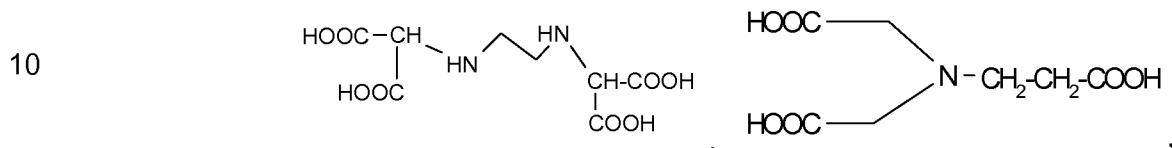
wherein m is a value from 5-50,


5

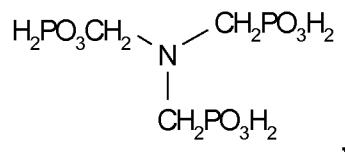
where R = H or CH₃

and

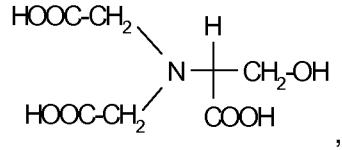
- 20 -

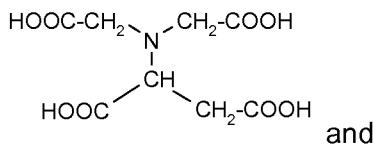


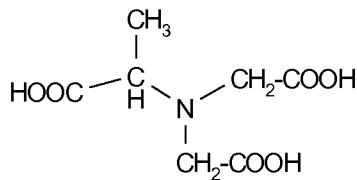
where R = H or CH₃


The complex formers of component c) are for example nitrogen-containing complex formers or polyanionically-derived natural polysaccharides, for example those containing phosphate, phosphonate or methylphosphonate groups, such as chitin derivatives, e.g. sulphochitin,

5 carboxymethylchitin, phosphochitin or chitosan derivatives, for example sulphochitosan, carboxymethylchitosan or phosphochitosan.


The complex formers of component c) are, for example, selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), beta-alaninediacetic acid (EDETA) or ethylenediaminedisuccinic acid (EDDS),


Aminotrimethylenephosphoric acid (ATMP) conforming to formula


Serine diacetic acid (SDA) conforming to formula

15 Asparagine diacetic acid conforming to formula

Methylglycinediacetic acid (MGDA) conforming to formula

The present dye-polymer complexes of component a) are particularly suitable for colourizing

5 home or fabric care compositions or products.

Laundry detergents, fabric softeners or other products, from which the dye-polymer complexes of component a) are intended for deposition onto fabrics with use, are considered household products of this invention, and the above concentration levels also pertain thereto.

10 The dye-polymer complexes of component a) are effective at colourizing the laundry detergents and fabric softeners.

Preparations containing fragrances and odoriferous substances are in particular scents, and perfumes.

The present home or fabric care compositions or products can be in the form of creams, ointments, pastes, foams, gels, lotions, powders, liquids, sprays, sticks or aerosols. The pre-

15 sent dye-polymer complexes of component a) may be present in the oil phase or in the aqueous or aqueous/alcoholic phase.

Creams are oil-in-water emulsions containing more than 50% water. The oil-containing base used therein is usually mainly fatty alcohols, for example lauryl, cetyl or stearyl alcohol, fatty acids, for example palmitic or stearic acid, liquid to solid waxes, for example isopropylmyri-

20 state or beeswax and/or hydrocarbon compounds, such as paraffin oil. Suitable emulsifiers are surfactants having primarily hydrophilic properties, such as the corresponding non-ionic emulsifiers, for example fatty acid esters of polyalcohols of ethylene oxide adducts, such as polyglycerol fatty acid ester or polyoxyethylenesorbitan fatty acid ether (Tween®); poly-

oxyethylene fatty alcohol ether or their esters or the corresponding ionic emulsifiers, such as the alkali metal salts of fatty alcohol sulphonates, sodium cetyl sulphate or sodium stearyl

25 sulphate, which are usually used together with fatty alcohols, such as cetyl alcohol or stearyl alcohol. In addition, creams contain agents which reduce water loss during evaporation, for example polyalcohols, such as glycerol, sorbitol, propylene glycol, and/or polyethylene glycols.

Ointments are water-in-oil emulsions which contain up to 70%, for instance not more than 20 to 50%, of water or of an aqueous phase. The oil-containing phase contains predominantly hydrocarbon atoms, such as paraffin oil and/or solid paraffin which, for instance, contains hydroxy compounds, for example fatty alcohol or their esters, such as cetyl alcohol or

5 wool wax for improving the water absorption. Emulsifiers are corresponding lipophilic substances, such as sorbitan fatty acid ester. In addition, the ointments contain moisturisers such as polyalcohols, for example glycerol, propylene glycol, sorbitol and/or polyethylene glycol as well as preservatives.

Rich creams are anhydrous formulations and are produced on the basis of hydrocarbon 10 compounds, such as paraffin, natural or partially synthetic fats, for example coconut fatty acid triglycerides or, for instance, hardened oils and glycerol partial fatty acid esters.

Pastes are creams and ointments containing powdered ingredients which absorb secretions, for example metal oxides, such as titanium dioxide or zinc oxide, and also tallow and/or aluminium silicates which bind the moisture or the absorbed secretion.

15 Foams are liquid oil-in-water emulsions in aerosol form. Hydrocarbon compounds are used, inter alia, for the oil-containing phase, for example paraffin oil, fatty alcohols, such as cetyl alcohol, fatty acid esters, such as isopropylmyristate and/or waxes. Suitable emulsifiers are, inter alia, mixtures of emulsifiers having predominantly hydrophilic properties, for example polyoxyethylenesorbitan fatty acid ester, and also emulsifiers having predominantly lipophilic 20 properties, for example sorbitan fatty acid ester. Commercially available additives are usually additionally employed, for example preservatives.

Gels are, in particular, aqueous solutions or suspensions of active substances in which gel 25 formers are dispersed or swelled, in particular cellulose ethers, such as methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose or vegetable hydrocolloids, for example sodium alginate, tragacanth or gum Arabic and polyacrylate thickener systems. The gels for example additionally contain polyalcohols, such as propylene glycol or glycerol as moisturisers and wetting agents, such as polyoxyethylenesorbitan fatty acid ester. The gels furthermore contain commercially available preservatives, such as benzyl alcohol, phenethyl alcohol, phenoxyethanol and the like.

30 The following is a partial list of examples of home or fabric care products and their ingredients:

The dye-polymer complexes are also used in household cleaning and treatment agents, for example, laundry products, fabric softeners, liquid cleansing agents, scouring agents, glass detergents, neutral cleaners all-purpose cleaners, acidic bathroom cleaners, bathroom

cleaners, washing agents, rinsing agents, dishwashing agents, kitchen cleaners, oven cleaners, clear rinsing agents, dishwasher detergents, shoe polishes, polishing waxes, floor detergents, floor polishes, metal cleaners, glass cleaners, ceramic cleaners, textile-care products, rug cleaners and carpet shampoos, agents for rust removal, agents for stain removal, furniture polishes, multipurpose polishes, leather dressing agents, vinyl dressing agents, and air 5 fresheners.

The present invention also concerns home care and fabric care products, such as drain cleaners, disinfectant solutions, upholstery cleaners, automotive care products (e.g., to clean and/or polish and protect paint, tires, chrome, vinyl, leather, fabric, rubber, plastic and fabric), 10 degreasers, polishes (glass, wood, leather, plastic, marble, granite, and tile, etc.), and metal polishes and cleaners. Antioxidants are suitable to protect fragrances in above products as well as in dryer sheets. The present invention also relates to home care products, such as candles, gel candles, air fresheners and fragrance oils (for the home).

The dye-polymer complexes of the present invention may be employed in fabric treatment 15 that takes place after use of the fabric, referred to as fabric care. Such treatments include laundering, which uses detergents and/or fabric conditioner, and the application of non-detergent based fabric care products, such as spray-on products. When employed in this fashion, the dye-polymer complexes are intended for deposition onto the fabric and used to protect the fabric and colourants associated with wear.

20 Typical examples of household cleaning and treating agents are:

Household cleaners/household treating agents	Ingredients
Detergent concentrate	Surfactant mixture, ethanol, antioxidant, water, UV absorbers, antioxidants
Shoe polish	Wax, wax emulsifier, antioxidant, water, preservative, UV-absorbers, antioxidants
Wax-containing floor cleaning agent	Emulsifier, wax, sodium chloride, antioxidant, water, preservative, UV absorbers, antioxidants

In the case of fabrics, for example dyed fabrics, the present dye-polymer complexes are applied thereto via deposition from for instance detergents, fabric conditioners or non-detergent based fabric care products.

The present fabrics are natural or synthetic, and may be woven or nonwoven.

5 The home or fabric care compositions also include textile products. The textiles or textile products of this invention are for example textile fiber materials, for example nitrogen-containing or hydroxy-group-containing fiber materials, for instance textile fiber materials selected from cellulose, silk, wool, synthetic polyamides, leather and polyurethanes. Included are cotton, linen and hemp, pulp and regenerated cellulose. Included also are cellulosic
10 blends, for example mixtures of cotton and polyamide or cotton/polyester blends.

The dye-polymer complexes of the present invention are for example applied to textiles in a dyeing or printing process, or in a finishing process. For instance, the dye-polymer complexes may be applied as part of a dye formulation. The dye-polymer complex may be applied to textiles for example in an ink-jet printing process. The dye-polymer complexes are for
15 example applied as part of an aqueous dye solution or printing paste. They may be applied in an exhaust method or dyeing by the pad-dyeing method, in which the textiles are impregnated with aqueous dye solutions, which may contain salts, and the dyes and additives are fixed, after an alkali treatment or in the presence of alkali, if appropriate with the action of heat or by storage at room temperature for several hours. After fixing, the dyeings or prints
20 are rinsed thoroughly with cold and hot water, if appropriate with the addition of an agent which has a dispersing action and promotes diffusion of the non-fixed portions.

The dye or ink formulations for application to textiles may comprise further customary additives, for example surfactants, antifoams, antimicrobials and the like, for example as disclosed in *U.S. Pat. Spec. Nos. 6,281,339, 6,353,094 and 6,323,327*.

25 The present dye-polymer complexes of component a) have high stability towards colour changes and chemical degradation of the ingredients present in these products. For example, present compositions that further comprise additional dyes and/or pigments or mixtures thereof are found to have excellent colour stability.

Accordingly, the present invention further pertains to a home or fabric care composition comprising
30

a) An effective colourizing amount of at least one dye-polymer complex formed from

(i) At least one cationic polymer and

(ii) At least one anionic dye,

wherein components a) (i) and a) (ii) are complexed to form particles prior to addition to said home or fabric care composition and wherein said complex remains as particles in the finished product; and

- b) optional additional ingredients, and
- 5 d) a dye or a pigment or mixtures thereof.

Dyes of component d) according to the present invention are for example:

- Disperse dyes which may be solubilized in solvents like direct hair dyes of the HC type, for example HC Red No. 3, HC Blue No. 2 and all other hair dyes listed in *International Cosmetic Ingredient Dictionary and Handbook, 7th edition 1997* or the dispersion dyes listed in Colour Index International or Society of Dyers and Colourists;
- Colour varnishes (insoluble salts of soluble dyes, like many Ca-, Ba- or Al-salts of anionic dyes);
- Soluble anionic or cationic dyes, like acid dyes (anionic), basic dyes (cationic), direct dyes, reactive dyes or solvent dyes.

15 For the colouration of home or fabric care compositions, all substances are suitable which have an absorption in the visible light of electromagnetic radiation (wavelength of ca. 4000 to 700 nm). The absorption is often caused by the following chromophores:

Azo- (mono-, di, tris-, or poly-)stilbene-, carotenoide-, diarylmethan-, triarylmethan-, xanthen-, acridin-, quinoline, methin- (also polymethin-), thiazol-, indamin-, indophenol-, azin-, oxazin, 20 thiazin-, anthraquinone-, indigoid-, phthalocyanine- and further synthetic, natural and/or inorganic chromophores.

Pigments of component d) include inorganic pigments, metal oxides and hydroxides, mica, organic pigments, pearlescent pigments, mineral silicates, porous materials, C-atoms, interference pigments, and the like.

25 Examples of the inorganic pigments of component d) capable of being utilized according to the present invention are ultramarine blue, ultramarine violet, Prussian blue, manganese violet, titanium-coated mica, bismuth oxychloride, iron oxides, iron hydroxide, titanium dioxide, titanium lower oxides, chromium hydroxide and oxides, and carbon based pigments, e.g. Carbon Black. Of these inorganic pigments, ultramarine blue and Prussian blue are particular 30 preferred.

The range of useful organic pigments of component d) may comprise monoazo, disazo, naphthol, dioxazone, azomethin, azocondensation, metal complex, nitro, perinone, quinoline,

anthraquinone, benzimidozolone, isoindoline, isoindolinone, triarylmethane, quinacridone, hydroxyanthraquinone, aminoanthraquinone, anthrapyrimidine, indanthrone, flavanthrone, pyranthrone, anthantrone, isoviolanthrone, diketopyrrolopyrrole, carbazole, indigo or thioindigo pigments.

5 Examples of the organic pigments of component d) are C.I. 15850, C.I. 15850:1, C.I. 15585:1, C.I. 15630, C.I. 15880:1, C.I. 73360, C.I. 12085, C.I. 15865:2, C.I. 12075, C.I. 21110, C.I. 21095, and C.I. 11680, C.I. 74160 and zirconium, barium, or aluminum lakes of C.I. 45430, C.I. 45410, C.I. 45100, C.I. 17200, C.I. 45380, C.I. 45190, C.I. 14700, C.I. 15510, C.I. 19140, C.I. 15985, C.I. 45350, C.I. 47005, C.I. 42053, C.I. 42090.

10 C.I. means Colour Index as compiled by The Society of Dyers and Colourists and The American Association of Textile Chemists and Colourists.

Mixtures of the organic pigments of component d) may be used.

Mixtures of the inorganic and organic pigments of component d) may be used.

15 Component d) of the home or fabric care compositions preferably comprise no more than about 10.0 wt.-% of the composition; more preferably no more than about 7.0 wt.-% of the home or fabric care composition; even more preferably no more than about 5.0 wt.-%; and still more preferably no more than about 4.0 wt.-%. The dye-polymer complexes of the home or fabric care composition preferably comprise at least about 0.0001 wt.-% of the home or fabric care composition, more preferably at least about 0.01 wt.-%, even more preferably at 20 least about 0.1 wt.-%, and still more preferably at least about 0.2 wt.-% of the composition.

The present invention also pertains to a method of colourizing a home or fabric care composition which comprises incorporating therein or applying thereto

a) An effective colourizing amount of at least one dye-polymer complex formed from

(i) At least one cationic polymer and

25 (ii) At least one anionic dye,

wherein components a) (i) and a) (ii) are complexed to form particles prior to incorporating therein or applying thereto said home or fabric care composition and wherein said complex remains as particles in the finished product.

30 The present invention also pertains to a method of colourizing a home or fabric care product which additionally contains a dye and/or pigment or mixtures thereof, which comprises incorporating therein or applying thereto

a) an effective colourizing amount of at least one dye-polymer complex selected from

- (i) At least one cationic polymer and
- (ii) At least one anionic dye,

wherein components a) (i) and a) (ii) are complexed to form particles prior to incorporating

5 therein or applying thereto said home or fabric care composition and wherein said complex remains as particles in the finished product.

The present colourizing methods do not include embodiments where the dye-polymer complex is formed during the colourizing process. For example, a printing process which comprises printing a non-complexed dye onto a paper with a dye fixative is excluded.

10 Another embodiment of the invention is a home or fabric care composition comprising said dye-polymer complexes which is formulated as a water-in-oil or oil-in-water emulsion, as an alcoholic or alcohol-containing formulation, as a vesicular dispersion of an ionic or non-ionic amphiphilic lipid, as a gel, or a solid stick as an aqueous or non-aqueous system.

15 Another embodiment of the invention is a home or fabric care composition wherein the home or fabric care composition additionally comprises a blend of pigment particles that are individually provided in a single matrix material.

20 The compositions may further comprise selected optional additional ingredients of component b), in particular from among fatty substances, organic solvents, oil structurants, surfactants, emulsifiers, thickeners, organic cationic deposition polymers, demulcents, opacifiers, additional colourants colourants, effect pigments, additional stabilizers, emollients, antifoaming agents, moisturizing agents, antioxidants, vitamins, peptides, amino acids, botanical extracts, particulates, perfumes, preservatives, polymers, fillers, sequestrants, propellants, alkalinizing or acidifying agents or other optional ingredients customarily formulated into home or fabric care compositions.

25 The fatty substances may be an oil or a wax or mixtures thereof, and they also comprise fatty acids, fatty alcohols and esters of fatty acids. The oils may be selected from among animal, vegetable, mineral or synthetic oils and, in particular, from among liquid paraffin, paraffin oil, silicone oils, volatile or otherwise, isoparaffins, polyolefins, fluorinated or perfluorinated oils. Likewise, the waxes may be animal, fossil, vegetable, mineral or synthetic waxes which are 30 also known per se.

Exemplary organic solvents may include the lower alcohols and polyols.

The *CTFA Cosmetic Ingredient Handbook, Second Edition* (1992) describes a wide variety of non-limiting cosmetic and pharmaceutical ingredients commonly used in the home or fabric

care industry, which are suitable for use in the home or fabric care compositions of the present invention.

The present invention may optionally comprise an oil structurant. The structurant can provide the dispersed phase with the correct rheological properties. This can aid in providing effective deposition and retention to the intended substrate.

5 The structured oil or oil phase should have a viscosity in the range of 100 to about 200 000 (Pa: Poise) measured at 1 sec-1, preferably 200 to about 100 000 Pa, and most preferably 200 to about 50 000 Pa. The amount of structurant required to produce this degree of viscosity will vary depending on the oil and the structurant, but in general, the structurant will preferably be less than 75.0 wt.-% of the dispersed oil phase, more preferably less than 50.0 wt.-%, and still more preferably less than 10 35.0 wt.-% of the dispersed oil phase.

10 The structurant can be either an organic or inorganic structurant. Examples of organic thickeners suitable for the invention are solid fatty acid esters, natural or modified fats, fatty acid, fatty amine, fatty alcohol, natural and synthetic waxes, and petrolatum, and the block copolymers sold under the name Kraton® by Shell. Inorganic structuring agents include hydrophobically modified silica or hydrophobically modified clay. Examples of inorganic structurants are Bentone®27V, BENTONE 38V or BENTONE GEL MIO V from Rheox; and Cab-o-sil® TS720 or CAB-O-SIL M5 from Cabot Corporation.

15 Structurants meeting the above requirements with the selected composition compatible oil can form 3-dimensional network to build up the viscosity of the selected oils. It has been found that such structured oil phases, i.e., built with the 3-dimensional network, are extremely desirable for use in the compositions. These structured oils can deposit and be retained very effectively on the intended substrate and retained after rinsing and drying to provide long-lasting benefit without causing a too oily/greasy wet and dry feel. It is believed that 20 the highly desirable in-use and after-use properties of such structured oils are due to their shear thinning rheological properties and the weak structure of the network. Due to its high low-shear viscosity, the 3-dimensional network structured oil can stick and retain well on the intended substrate.

25 A wide variety of surfactants can be useful herein, both for emulsification of the dispersed phase as well as to provide acceptable spreading and in use properties for non-lathering systems. For cleansing applications, the surfactant phase also serves to clean the substrate and provide an acceptable amount of lather for the user. The composition preferably contains no more than about 50.0 wt.-% of a surfactant, more preferably no more than about 30.0 wt.-%, still more preferably no more than about 15.0 wt.-%, and even more preferably no more than 30 35 about 5.0 wt.-% of a surfactant. The composition preferably contains at least about 5.0 wt.-%

of a surfactant, more preferably at least about 3.0 wt.-%, still more preferably at least about 1.0 wt.-%, and even more preferably at least about 0.1 wt.-% of a surfactant. For cleansing applications the home or fabric care compositions preferably produces a Total Lather Volume of at least 300 ml, more preferably greater than 600 ml as described in the Lathering Volume

5 Test. The home or fabric care compositions preferably produces a Flash Lather Volume of at least 100 ml, preferably greater than 200 ml, more preferably greater than 300 ml as described in the Lathering Volume Test.

Preferable surfactants useful in the home or fabric care compositions of the invention include those selected from the group consisting of anionic surfactants, non-ionic surfactants, am-

10 photeric surfactants, non-lathering surfactants, emulsifiers and mixtures thereof. Examples of surfactants useful in the compositions of the present invention are disclosed in *U.S. Pat.*

Spec. No. 6,280,757.

Examples of anionic surfactants useful in the home or fabric care compositions of the present invention are disclosed in *McCutcheon's, Detergents and Emulsifiers, North American edition*

15 (1986), published by *Allured Publishing Corporation*; *McCutcheon's, Functional Materials, North American Edition* (1992); and *U.S. Pat. Spec. No. 3,929,678.*

A wide variety of anionic surfactants are useful herein. Examples of anionic surfactants include those selected from the group consisting of sarcosinates, sulphates, isethionates, tau-

20 rates, phosphates, lactylates, glutamates, and mixtures thereof. Amongst the isethionates, the alkoyl isethionates are preferred, and amongst the sulphates, the alkyl and alkyl ether sulphates are preferred.

Other anionic materials useful herein are fatty acid soaps (i.e., alkali metal salts, e.g., sodium or potassium salts) having from a fatty acid having about 8 to about 24 C-atoms, preferably from about 10 to about 20 C-atoms. These fatty acids used in making the soaps can be ob-

25 tained from natural sources, such as, for instance, plant or animal-derived glycerides (e.g., palm oil, coconut oil, soybean oil, castor oil, tallow, lard, etc.) The fatty acids can also be synthetically prepared. Soaps and their preparation are described in detail in *U.S. Pat. Spec. No. 4,557,853.*

Other anionic materials include phosphates, such as monoalkyl, dialkyl, and trialkylphos-

30 phate salts. Examples of preferred anionic lathering surfactants useful herein include those selected from the group consisting of sodium lauryl sulphate, ammonium lauryl sulphate, ammonium laureth sulphate, sodium laureth sulphate, sodium trideceth sulphate, ammonium cetyl sulphate, sodium cetyl sulphate, ammonium cocoyl isethionate, sodium lauroyl isethionate, sodium lauroyl lactylate, triethanolamine lauroyl lactylate, sodium caproyl lacty-

late, sodium lauroyl sarcosinate, sodium myristoyl sarcosinate, sodium cocoyl sarcosinate, sodium lauroyl methyl taurate, sodium cocoyl methyl taurate, sodium lauroyl glutamate, sodium myristoyl glutamate, and sodium cocoyl glutamate and mixtures thereof.

Especially preferred for use herein are ammonium lauryl sulphate, ammonium laureth sul-

5 phate, sodium lauroyl sarcosinate, sodium cocoyl sarcosinate, sodium myristoyl sarcosinate, sodium lauroyl lactylate, and triethanolamine lauroyl lactylate.

Examples of non-ionic surfactants for use in the home or fabric care compositions of the pre-
sent invention are disclosed in *McCutcheon's, Detergents and Emulsifiers*, and
McCutcheon's, Functional Materials, North American Edition (1992).

10 Non-ionic surfactants useful herein include those selected from the group consisting of alkyl glucosides, alkyl polyglucosides, polyhydroxy fatty acid amides, alkoxyolated fatty acid esters, sucrose esters, amine oxides, and mixtures thereof.

Examples of preferred non-ionic surfactants for use herein are those selected from the group
consisting of C₈₋₁₄alkyl glucose amides, C₈₋₁₄alkyl polyglucosides, sucrose cocoate, sucrose

15 laurate, lauramine oxide, cocoamine oxide and mixtures thereof.

The term "amphoteric surfactant," as used herein, is also intended to encompass zwitterionic
surfactants, which are well known to formulators skilled in the art as a subset of amphoteric
surfactants.

A wide variety of amphoteric lathering surfactants can be used in the home or fabric care
20 compositions of the present invention. Particularly useful are those which are broadly de-
scribed as derivatives of aliphatic secondary and tertiary amines, preferably wherein the ni-
trogen is in a cationic state, in which the aliphatic radicals can be straight or branched chain
and wherein one of the radicals contains an ionizable water solubilizing group, e.g., carboxy,
sulphonate, sulphate, phosphate, or phosphonate.

25 Examples of amphoteric surfactants useful in the compositions of the present invention are
disclosed in *McCutcheon's, Detergents and Emulsifiers, North American edition (1986)*, pub-
lished by Allured Publishing Corporation; and *McCutcheon's, Functional Materials, North
American Edition (1992)*.

Examples of zwitterionic surfactants are those selected from the group consisting of be-
30 taines, sultaines, hydroxysultaines, alkyliminoacetates, iminodialkanoates, aminoalkanoates,
and mixtures thereof.

Preferred surfactants are the following, wherein the anionic surfactant is selected from the
group consisting of ammonium lauroyl sarcosinate, sodium trideceth sulphate, sodium lauroyl

sarcosinate, ammonium laureth sulphate, sodium laureth sulphate, ammonium lauryl sulphate, sodium lauryl sulphate, ammonium cocoyl isethionate, sodium cocoyl isethionate, sodium lauroyl isetionate, sodium cetyl sulphate, sodium lauroyl lactylate, triethanolamine lauroyl lactylate, and mixtures thereof, wherein the non-ionic surfactant is selected from the

5 group consisting of lauramine oxide, cocoamine oxide, decyl polyglucose, lauryl polyglucose, sucrose cocoate, C₈₋₁₄alkyl glucosamides, sucrose laurate, and mixtures thereof; and wherein the amphoteric surfactant is selected from the group consisting of disodium lauroamphodiacetate, sodium lauroamphoacetate, cetyl dimethyl betaine, cocoamidopropyl betaine, cocoamidopropyl hydroxy sultaine, and mixtures thereof.

10 A wide variety of non-lathering surfactants are useful herein. The home or fabric care compositions of the present invention can comprise a sufficient amount of at least one non-lathering surfactant to emulsify the dispersed phase to yield an appropriate particle size and good application properties on the substrate.

Examples of these non-lathering compositions are: polyethylene glycol 20 sorbitan monolaurate (Polysorbate 20), polyethylene glycol 5 soya sterol, Steareth-20, Ceteareth-20, PPG-2 methyl glucose ether distearate, Ceteth-10, Polysorbate 80, cetyl phosphate, potassium cetyl phosphate, diethanolamine cetyl phosphate, Polysorbate 60, glyceryl stearate, PEG-100 stearate, polyoxyethylene 20 sorbitan trioleate (Polysorbate 85), sorbitan monolaurate, polyoxyethylene 4 lauryl ether sodium stearate, polyglyceryl-4 isostearate, hexyl laurate, stear-20 eth-20, ceteareth-20, PPG-2 methyl glucose ether distearate, ceteth-10, diethanolamine cetyl phosphate, glyceryl stearate, PEG-100 stearate, and mixtures thereof.

In addition, there are several commercial emulsifier mixtures that are useful in some embodiments of the home or fabric care compositions according to the present invention. Examples include PROLIPID 141 (glyceryl stearate, behenyl alcohol, palmitic acid, stearic acid, 25 lecithin, lauryl alcohol, myristyl alcohol and cetyl alcohol) and 151 (Glyceryl stearate, cetearyl alcohol, stearic acid, 1-propanamium, 3-amino-N-(2-(hydroxyethyl)-N,N-dimethyl,N-C₁₆₋₁₈acyl Derivatives, Chlorides) from ISP; POLAWAX NF (Emulsifying wax NF), INCROQUAT BEHENYL TMS (behentrimonium sulphate and cetearyl alcohol) from Croda; and EMULLIUM DELTA (cetyl alcohol, glyceryl stearate, PEG-75 stearate, ceteth-20 and 30 steareth-20) from Gattefosse.

The home or fabric care compositions of the present invention, in some embodiments, may further include at least one thickening/aqueous phase stability agent. Because different stability agents thicken with different efficiencies, it is difficult to provide an accurate compositional range, however, when present, the composition preferably comprises no more than about 35 20.0 wt.-%, more preferably no more than about 10.0 wt.-%, more preferably no more than

about 8.0 wt.-%, and still more preferably no more than about 7.0 wt.-% of the home or fabric care composition. When present, the thickening/aqueous phase stability agent preferably comprises at least about 0.01 wt.-%, more preferably at least about 0.05. wt.-%, and still more preferably at least about 0.1 wt.-% of the home or fabric care composition. A better 5 method of describing the stability agent is to say that it must build viscosity in the product. This can be measured using the Stability Agent Viscosity Test; preferably, the stability agent produces a viscosity in this test of at least 1000 cps, more preferably at least 1500 cps, and still more preferably at least 2000 cps.

Examples of thickening agents useful herein include carboxylic acid polymers, such as the 10 carbomers (such as those commercially available under the trade name Carbopol®900 series from B.F. Goodrich; e.g. CARBOPOL 954). Other suitable carboxylic acid polymeric agents include copolymers of C10-30 alkyl acrylates with at least one monomer of acrylic acid, methacrylic acid, or one of their short chain (i.e., C1-4 alcohol) esters, wherein the cross linking agent is an allyl ether of sucrose or pentaerytritol. These copolymers are known 15 as acrylates/C₁₀₋₃₀alkyl acrylate crosspolymers and are commercially available as CARBOPOL 1342, CARBOPOL 1382, Pemulen® TR-1, and TR-2, from B.F. Goodrich.

Other examples of thickening agents include crosslinked polyacrylate polymers including both cationic and non-ionic polymers.

Other examples of thickening agents include the polyacrylamide polymers, especially non- 20 ionic polyacrylamide polymers including substituted branched or unbranched polymers. More preferred among these polyacrylamide polymers is the non-ionic polymer given the CTFA designation polyacrylamide and isoparaffin and laureth-7, available under the Trade name Sepigel® 305 from Seppic Corporation (Fairfield, N.J.). Other polyacrylamide polymers useful herein include multi-block copolymers of acrylamides and substituted acrylamides with 25 acrylic acids and substituted acrylic acids. Commercially available examples of these multi-block copolymers include Hypan® SR150H, SS500V, SS500W, SSSA100H, from Lipo Chemicals, Inc., (Patterson N.J., USA).

Another class of thickening agents useful herein is the polysaccharides. Examples of polysaccharide gelling agents include those selected from cellulose, and cellulose derivatives. 30 Preferred among the alkyl hydroxyalkyl cellulose ethers is the material given the CTFA designation cetyl hydroxyethylcellulose, which is the ether of cetyl alcohol and hydroxyethylcellulose, sold under the designation Natrosol® CS PLUS from Aqualon Corporation. Other useful polysaccharides include scleroglucans which are a linear chain of (1-3) linked glucose units with a (1-6) linked glucose every three units, a commercially available example of which is 35 Clearogel®CS 11 from Michel Mercier Products Inc. (Mountainside, N.J., USA).

Another class of thickening agents useful herein is the gums. Examples of gums useful herein include hectorite, hydrated silica, xantham gum, cellulose gums, guar gum, biosaccharide gums and mixtures thereof.

Yet another class of thickening agents useful herein is the modified starches. Acrylate modified starches, such as Waterlock® from Grain Processing Corporation may be used. Hydroxypropyl starch phosphate, tradename Structure XL® from National Starch is another example of a useful modified starch, and other useful examples include Aristoflex® HMB (Ammonium acrylodimethyltaruate/beheneth-25 methacrylate crosspolymer) from Clariant Corp. and cationic stabylens.

5 The home or fabric care compositions according to the present invention may also contain organic cationic deposition polymers. Concentrations of the cationic deposition polymers preferably range from about 0.025 % to about 10.0%, more preferably from about 0.05% to about 2.0%, even more preferably from about 0.1% to about 1.0%, by weight of the home or fabric care composition.

10 Suitable cationic deposition polymers for use in the present invention contain cationic nitrogen-containing moieties, such as quaternary ammonium or cationic protonated amino moieties. The cationic protonated amines can be primary, secondary, or tertiary amines (preferably secondary or tertiary), depending upon the particular species and the selected pH of the home or fabric care composition. The average molecular weight of the cationic deposition

15 polymer is between about 5 000 to about 10 million, preferably at least about 100 000, more preferably at least about 200 000, but preferably not more than about 2 million, more preferably not more than about 1.5 million. The polymers also have a cationic charge density ranging from about 0.2 meq/g to about 5 meq/g, preferably at least about 0.4 meq/g, more preferably at least about 0.6 meq/g, at the pH of intended use of the home or fabric care

20 composition, which pH will range from about pH 4 to about pH 9, preferably between about pH 5 and about pH 8.

25

Examples of cationic deposition polymers for use in the home or fabric care compositions include polysaccharide polymers, such as cationic cellulose derivatives. Preferred cationic cellulose polymers are the salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 10 which are available from Amerchol Corp. (Edison, N.J., USA) in their Polymer KG, JR and LR series of polymers with the most preferred being KG-30M.

30 Other suitable cationic deposition polymers include cationic guar gum derivatives, such as guar hydroxypropyltrimonium chloride, specific examples of which include the Jaguar series

(preferably Jaguar C-17®) commercially available from Rhodia Inc., and N-Hance polymer series commercially available from Aqualon.

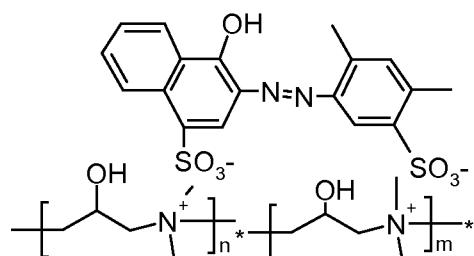
Other suitable cationic deposition polymers include synthetic cationic polymers. The cationic polymers suitable for use in the home or fabric cleansing composition herein are water soluble or dispersible, non cross linked, cationic polymers having a cationic charge density of

5 from about 4 meq/g to about 7 meq/g, preferably from about 4 meq/g to about 6 meq/g, more preferably from about 4.2 meq/g to about 5.5 meq/g. The select polymers also must have an average molecular weight of from about 1 000 to about 1 million, preferably from about 10 000 to about 500 000, more preferably from about 75 000 to about 250 000.

10 A non-limiting example of a commercially available synthetic cationic polymer for use in the cleansing compositions is polymethyacrylamidopropyl trimonium chloride, available under the trade name Polycare® 133, from Rhodia, Cranberry, N.J., U.S.A.

Other non limiting examples of optional ingredients include benefit agents that are selected from the group consisting of vitamins and derivatives thereof (e.g., ascorbic acid, vitamin E,

15 tocopheryl acetate, and the like); sunscreens; thickening agents (e.g., polyol alkoxy ester, available as Crothix® from Croda); preservatives for maintaining the antimicrobial integrity of the cleansing compositions; antioxidants; chelators and sequestrants; and agents suitable for aesthetic purposes, such as fragrances, essential oils, pigments, pearlescent agents (e.g., mica and titanium dioxide), lakes, colourings, and the like (e.g., clove oil, menthol, camphor,


20 eucalyptus oil, and eugenol), antibacterial agents and mixtures thereof. These materials can be used at ranges sufficient to provide the required benefit, as would be obvious to one skilled in the art.

The following examples describe certain embodiments of this invention, but the invention is not limited thereto. In these examples all parts given are by weight unless otherwise indicated.

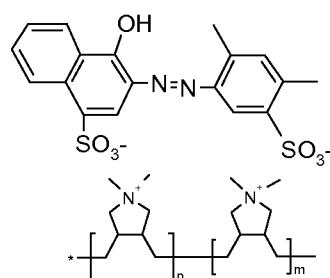
25

Example 1

D&C Red 4 Dye Complex with polyepiamine

D&C Red 4 complexed with polyepiamine

Polyepiamine copolymer is an aqueous solution polymer containing 50% of branched polyepiamine prepared by step polymerization of epichlorohydrin and dimethylamine with small amount of ethylenediamine as a crosslinker. The polyepiamine copolymer possesses a viscosity of 4500 to 9000 cps measured at 25°C using a Brookfield viscometer, spindle LV3 and

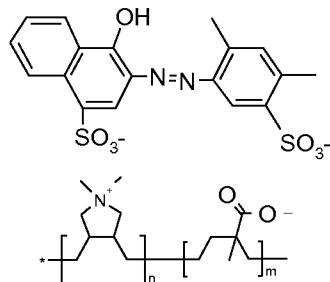

5 12 rpm. Typical weight average molecular weight (MW) is estimated to be about 250 000 atomic mass units by GPC using polyethylene oxide MW standards.

To a 250 ml beaker with stirring are added D&C Red #4 Dye (2.1424 g, Puricolour® Ciba Specialty Chemicals) and deionized water (89.27 g) in order to prepare a 3 wt.-% dye solution a). Solution B containing 3% by weight of the polyepiamine copolymer, described above, 10 is prepared by diluting the polyepiamine copolymer solution with deionized water to the proper concentration. Solution A (71.74 g, 3% D&C Red 4 dye) is slowly added to solution B (71.72 g, 3% polyepiamine copolymer) with agitation. After five minutes of agitation, the mixture thickens and precipitation occurs. At this point, deionized water (20 g) is added and agitation is continued for another 10 minutes. The thick red slurry obtained is vacuum filtered 15 though #1 filter paper. The filter cake is washed twice with copious amounts of deionized water until little or no colour is observed in the filtrate. The filter cake is vacuum oven dried at 70°C overnight and then mortar grinded to yield about 3 g of dried red powder dye complex.

The final dye-polymer complex powder (0.1 g) is placed in 10 ml of deionized water. Red dye-polymer complex dispersion is agitated briefly. It takes about one week for the dye complex powder to completely settle. After two weeks of standing at room temperature, there is 20 little to no colour bleeding and the water phase remained colourless clear.

Example 2

D&C Red 4 Dye Complex with poly- DADMAC


D&C Red 4 complexed with poly-DADMAC

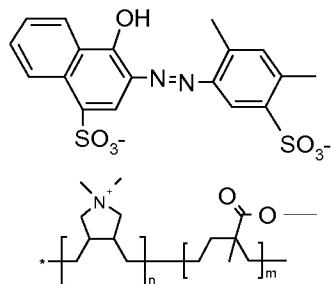
25 Poly-DADMAC is an aqueous solution of 20% by weight of a linear homopolymer of DADMAC with a Brookfield viscosity of 1600 to 3000 cps. The weight average molecular weight is, determined by GPC with PEO standards, about 500 000 atomic mass units.

According to the dye complexation procedure of Example 1, the dye-polymer complex is formed between D&C Red 4 and a linear homopolymer of DADMAC.

Example 3

D&C Red 4 Dye Complex with Co-polyDADMAC-copolymethylmethacrylate

5 D&C Red 4 complexed with modified poly-DADMAC

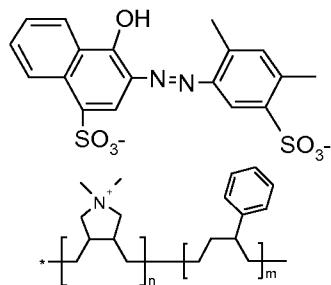

A 1 l reactor equipped with a condenser, a thermometer, a nitrogen inlet, and an overhead agitator is charged with DADMAC monomer (453.8 g, 66% assay), methyl methacrylate (MMA, 15.8 g), deionized water (57.4 g) and Na₄EDTA (0.15 g, 20% assay). The polymerization mixture is purged with nitrogen and heated with agitation to a temperature of 90°C. An 10 aqueous solution containing ammonium persulphate (APS, 5.1 g) is slowly fed to the reactor over 190 minutes. The reaction temperature is allowed to increase to above 100°C and then maintained at reflux temperature (100-110°C) during the APS feed period. After the APS feed, the reaction temperature is lowered to and held at 95°C for about 30 minutes. At this 15 point, an aqueous solution containing sodium metabisulfite (MBS, 5.6 g) is added over 30 minutes. The reactor content temperature is held at 95°C for another 30 minutes to complete the polymerization (above 99% conversion). The polymer solution is diluted with sufficient deionized water to achieve a concentration of about 35% solids and cooled to room temperature. Total monomer conversion is measured to be above 99.5%. The final product has a Brookfield viscosity of 23,400 cps at 25°C and 33.7% polymer solids.

20 According to the dye complexation procedure of Example 1, the dye-polymer complex is formed between D&C Red 4 and the copolymer of DADMAC and methylmethacrylate.

Example 4

D&C Red 4 Dye Complex with Co-polyDADMAC-copolymethylmethacrylate

- 37 -


D&C Red 4 complexed with modified poly-DADMAC

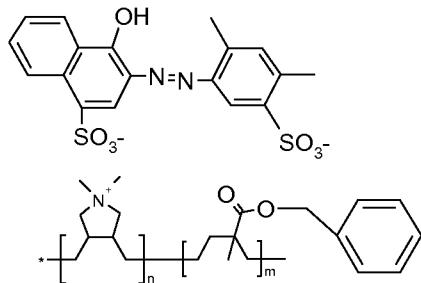
A 1 l reactor equipped with a condenser, a thermometer, a nitrogen inlet, and an overhead agitator is charged with DADMAC monomer (453.8 g, 66% assay), methyl methacrylate (MMA, 31.6 g), deionized water (57.4 g) and Na₄EDTA (0.15 g, 20% assay). The polymerization mixture is purged with nitrogen and heated with agitation to a temperature of 90°C. An aqueous solution containing ammonium persulphate (APS, 5.1 g) is slowly fed to the reactor over 190 minutes. The reaction temperature is allowed to increase to above 100°C and then maintained at reflux temperature (100-110°C) during the APS feed period. After the APS feed, the reaction temperature is lowered to and held at 95°C for about 30 minutes. At this point, an aqueous solution containing sodium metabisulfite (MBS, 5.6 g) is added over 30 minutes. The reactor content temperature is held at 95°C for another 30 minutes to complete the polymerization (above 99% conversion). The polymer solution is diluted with sufficient deionized water to achieve a concentration of about 35% solids and cooled to room temperature. Total monomer conversion is measured to be above 99.5%. The final product has a Brookfield viscosity of 5300 cps at 25°C and 35.1% polymer solids.

According to the dye complexation procedure of Example 1, the dye-polymer complex is formed between D&C Red 4 and the copolymer of DADMAC and methyl methacrylate.

Example 5

D&C Red 4 Dye Complex with Co-polyDADMAC-copolystyrene

A 1 l reactor equipped with a condenser, a thermometer, a nitrogen inlet, and an overhead agitator is charged with DADMAC monomer (453.8 g, 66% assay), styrene (7.9 g), deionized water (57.4 g) and Na₄EDTA (0.15 g, 20% assay). The polymerization mixture is purged with nitrogen and heated with agitation to a temperature of 90°C. An aqueous solution containing


5 ammonium persulphate (APS, 5.1 g) is slowly fed to the reactor over 190 minutes. The reaction temperature is allowed to increase to above 100°C and then maintained at reflux temperature (100-110°C) during the APS feed period. After the APS feed, the reaction temperature is lowered to and held at 95°C for about 30 minutes. At this point, an aqueous solution containing sodium metabisulfite (MBS, 5.6 g) is added over 30 minutes. The reactor content

10 temperature is held at 95°C for another 30 minutes to complete the polymerization (above 99% conversion). The polymer solution is diluted with sufficient deionized water to achieve a concentration of about 35% solids and cooled to room temperature. Total monomer conversion is measured to be above 99.5%. The final product has a Brookfield viscosity of 2830 cps at 25°C and 36.5% polymer solids.

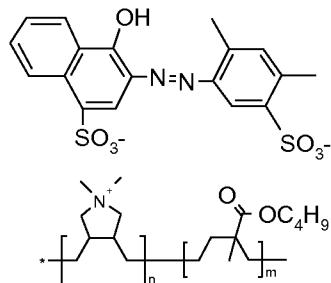
15 According to the dye complexation procedure of Example 1, the dye-polymer complex is formed between D&C Red 4 and the copolymer of DADMAC and styrene.

Example 6

D&C Red 4 Dye Complex with Co-polyDADMAC-copolybenzylmethacrylate

D&C Red 4 complexed with modified poly-DADMAC

20 A 1 l reactor equipped with a condenser, a thermometer, a nitrogen inlet, and an overhead agitator is charged with DADMAC monomer (453.8 g, 66% assay), benzyl methacrylate (15.8 g), deionized water (57.4 g) and Na₄EDTA (0.15 g, 20% assay). The polymerization mixture is purged with nitrogen and heated with agitation to a temperature of 90°C. An aqueous solution containing ammonium persulphate (APS, 5.1 g) is slowly fed to the reactor over 190 minutes. The reaction temperature is allowed to increase to above 100°C and then maintained at reflux temperature (100-110°C) during the APS feed period. After the APS feed, the reaction temperature is lowered to and held at 95°C for about 30 minutes. At this point, an aqueous solution containing sodium metabisulfite (MBS, 5.6 g) is added over 30 minutes. The

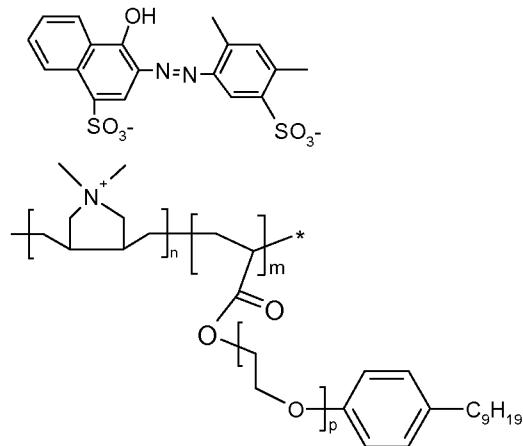

25

reactor content temperature is held at 95°C for another 30 minutes to complete the polymerization (above 99% conversion). The polymer solution is diluted with sufficient deionized water to achieve a concentration of about 35% solids and cooled to room temperature. Total monomer conversion is measured to be above 99.5%. The final product has a Brookfield viscosity of 15,440 cps at 25°C and 36.3% polymer solids.

According to the dye complexation procedure of Example 1, the dye-polymer complex is formed between D&C Red 4 and the copolymer of DADMAC and benzyl methacrylate.

Example 7

D&C Red 4 Dye Complex with Co-polyDADMAC-copolybutylmethacrylate

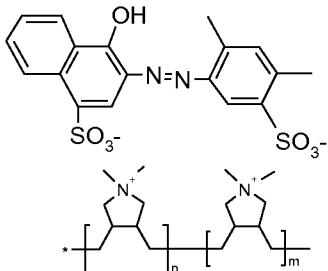

10 D&C Red 4 complexed with modified poly-DADMAC

A 1 l reactor equipped with a condenser, a thermometer, a nitrogen inlet, and an overhead agitator is charged with DADMAC monomer (453.8 g, 66% assay, Aldrich), butyl methacrylate (15.8 g, Aldrich), deionized water (57.4 g) and Na₄EDTA (0.15 g, 20% assay, Aldrich). The polymerization mixture is purged with nitrogen and heated with agitation to a temperature of 90°C. An aqueous solution containing ammonium persulphate (APS, 5.1 g, Aldrich) is slowly fed to the reactor over 190 minutes. The reaction temperature is allowed to increase to above 100°C and then maintained at reflux temperature (100-110°C) during the APS feed period. After the APS feed, the reaction temperature is lowered to and held at 95°C for about 30 minutes. At this point, an aqueous solution containing sodium metabisulfite (MBS, 5.6 g, Aldrich) is added over 30 minutes. The reactor content temperature is held at 95°C for another 30 minutes to complete the polymerization (above 99% conversion). The polymer solution is diluted with sufficient deionized water to achieve a concentration of about 35% solids and cooled to room temperature. Total monomer conversion is measured to be above 99.5%. The final product has a Brookfield viscosity of 15,200 cps at 25°C and 35.2% polymer solids.

According to the dye complexation procedure of Example 1, the dye-polymer complex is formed between D&C Red 4 and the copolymer of DADMAC and butyl methacrylate.

Example 8

D&C Red 4 Dye Complex with Co-polyDADMAC-copolyethoxylated nonylphenol acrylate


D&C Red 4 complexed with modified poly-DADMAC

A 1 l reactor equipped with a condenser, a thermometer, a nitrogen inlet, and an overhead agitator is charged with DADMAC monomer (453.8 g, 66% assay based on weight, Aldrich), ethoxylated nonylphenol acrylate (15.8 g, SR504 Sartomer), deionized water (57.4 g) and 10 Na₄EDTA (0.15 g, 20% assay, Aldrich). The polymerization mixture is purged with nitrogen and heated with agitation to a temperature of 90°C. An aqueous solution containing ammonium persulphate (APS, 5.1 g, Aldrich) is slowly fed to the reactor over 190 minutes. The reaction temperature is allowed to increase to above 100°C and then maintained at reflux temperature (100-110°C) during the APS feed period. After the APS feed, the reaction temperature is lowered to and held at 95°C for about 30 minutes. At this point, an aqueous solution containing sodium metabisulfite (MBS, 5.6 g, Aldrich) is added over 30 minutes. The reactor content temperature is held at 95°C for another 30 minutes to complete the polymerization (above 99% conversion). The polymer solution is diluted with sufficient deionized water to achieve a concentration of about 35% solids and cooled to room temperature. Total monomer conversion is measured to be above 99.5%. The final product has a Brookfield viscosity of 19,500 cps at 25°C and 34.8% polymer solids.

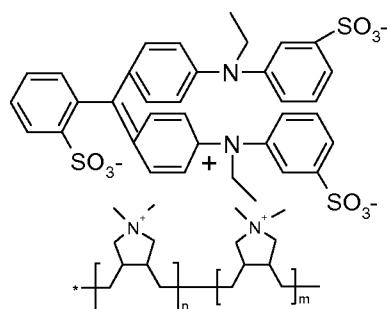
According to the dye complexation procedure of Example 1, the dye-polymer complex is formed between D&C Red 4 and the copolymer of DADMAC and ethoxylated nonylphenol acrylate.

Example 9

5 **D&C Red 4 Dye Complex with Hydrophobically Crosslinked poly-DADMAC**

D&C Red 4 complexed with hydrophobically crosslinked poly-DADMAC

To a suitable reactor kettle equipped with a condenser, a thermometer, a nitrogen inlet, and an overhead agitator is charged with DADMAC aqueous solution (452.51 g, 65.9% assay by weight, Aldrich), diallylamine (1.809 g, > 99% assay by weight, Aldrich), concentrated hydrochloric acid (1.62 g, 37% assay by weight), Na₄EDTA (0.6 g, 20% assay by weight, Aldrich), and deionized water (96.81 g). The polymerization mixture is purged with nitrogen and heated with agitation to a temperature of 80°C. An aqueous solution containing ammonium persulphate (3.5 g, APS, Aldrich) dissolved in deionized water (66.5 g) is slowly fed into the reactor over 280 minutes. The reaction temperature is allowed to increase to above 90°C and then maintained at 90-100°C during the APS feed period. After the APS feed, the reaction mixture is diluted with deionized water to a concentration of about 35% solids and held at 90°C for about thirty minutes. At this point, an aqueous solution containing sodium metabisulfite (MBS, 3.00 g) dissolved in deionized water (12 g) is added over ten minutes. The reactor contents are held at 90°C for another 30 minutes to complete the polymerization. The polymer solution is diluted with sufficient deionized water to about 30% solids. The final product (12zs79B) has a Brookfield viscosity of 1,600 cps at 25°C and a pH of 3.

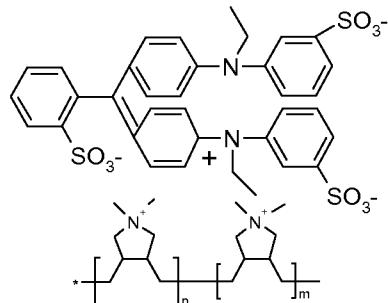

In a 1 l reactor fitted with a mechanical stirrer, addition funnel and condenser is charged with 250.0 g of the above synthesized polymer (12zs79B) and deionized water (143.6 g). The reactor content is heated to 72°C with agitation and adjusted with NaOH aqueous solution to a pH of 10. After the pH adjustment, diglycidyl ether bisphenol A (0.89 g, DGEBA, average MW: 348) is added into the reactor. The crosslinking reaction is allowed to proceed at 70°C until little to no increase in viscosity is observed. After the reaction, the polymer solution is diluted with deionized water to 20% solids and adjusted with concentrated HCl solution to a pH

of 4.5. The final product is a gel-free white-emulsion-like polymer solution with a Brookfield viscosity of 35,200 cps at 25°C.

According to the dye complexation procedure of Example 1, the dye-polymer complex is formed between D&C Red 4 and the hydrophobically crosslinked polymer of DADMAC.

5 Example 10

In-situ Formed Beads of FD&C Blue 1 Dye Complex with Linear poly- DADMAC


FD&C Blue 1 complexed with linear poly-DADMAC

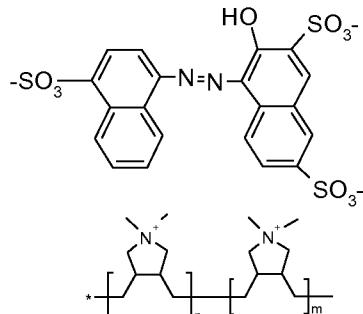
A 0.5 l reactor equipped with a condenser, a thermometer, a nitrogen inlet, and an overhead agitator is charged with Naphthol Spirits oil (240 g, CITGO) and 1.2 g of polymer stabilizer (a copolymer of methyl methacrylate and acrylic acid). To the reactor is added an agitated monomer and dye aqueous solution consisting of DADMAC (206.2 g, 66.5% assay by weight, Aldrich), Na₄EDTA (0.012 g, 20% assay by weight, Aldrich), 2,2'-azobis(2-amidinopropane) dihydrochloride, (6.61 g, V50, Wako, 41% assay by weight) and FD&C blue #1 dye (1.43 g, Aldrich). The reactor content is purged with nitrogen and heated to and held at 40°C for one hour, 50°C for two hours, and 60°C for two and half hours. An aliquot of reaction is taken and the viscosity is determined to be 3200 cps at 20% solids at 25°C. At this point, the reaction mixture is heated to reflux temperature at 82 +/- 2.0 C for about 2 hours and the water is azeotropically removed. The reaction mixture is cooled and filtered. The filtered cake was further dried in an oven at 90°C for 3 hours. The final product consists of free flowing beads of intense dark blue colour with particle size of about 300 micrometer.

The FD&C blue #1 dye is soluble in polar solvents, such as isopropanol. The beads of the dye-polymer complex with polyDADMC are insoluble in isopropanol and show no colour bleeding (colour dispersal) to the liquid phase.

Example 11

Beads of FD&C Blue 1 Dye Complex with Crosslinked poly- DADMAC Hydrogel Beads

FD&C Blue 1 complexed with crosslinked poly-DADMAC

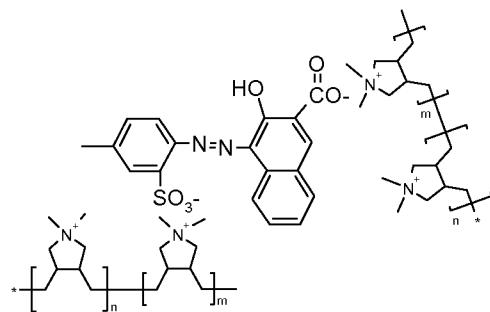

A 0.5 l reactor equipped with a condenser, a thermometer, a nitrogen inlet, and an overhead agitator is charged with Naphthol Spirits oil (240 g, CITGO) and 1.2 g of polymer stabilizer (a 5 copolymer of methyl methacrylate and acrylic acid). To the reactor is added an agitated aqueous monomer solution consisting of DADMAC (206.2 g, 66.5% assay by weight, Aldrich), Na₄EDTA (0.012 g, 20% assay by weight, Aldrich), 2,2'-azobis(2-amidinopropane) dihydrochloride, (6.61 g, V50, Wako, 41% assay by weight) and methylenebisacrylamide (2.7 g, Aldrich). The reactor content is purged with nitrogen and heated to and held at 40°C 10 for one hour, 50°C for two hours, and 60°C for two and half hours. At this point, the reaction mixture is heated to reflux temperature at 82+/-2°C for about 2 hours and the water is azeotropically removed. The reaction mixture is cooled and filtered. The filtered cake is further dried in an oven at 90°C for 3 hours. The final product consists of free flowing beads with a particle size of about 300 micrometer.

15 A FD&C blue #1 dye aqueous solution (12.4 g, 6 % assay by weight, Aldrich) is added to crosslinked poly-DADMAC beads, as prepared above, (3 g on a dry basis) in deionized water (124.7 g) with agitation. After standing overnight for the completion of the dye complexing process, the beads have shrunk and become dark blue in colour. The aqueous phase is very light blue in colour. The pigment bead slurry is filtered and washed thrice with copious 20 amounts of deionized water and twice with acetone. After being dried in a 100°C oven for 24 hours, the product is ground to a powder using a SPEX freezer mill to yield about 4.3 g of blue dye-polymer complex which is insoluble in organic solvent and water.

Example 12

Beads of FD&C Red 2 Dye Complex with Crosslinked poly- DADMAC Hydrogel
25 **Beads(16zs11)**

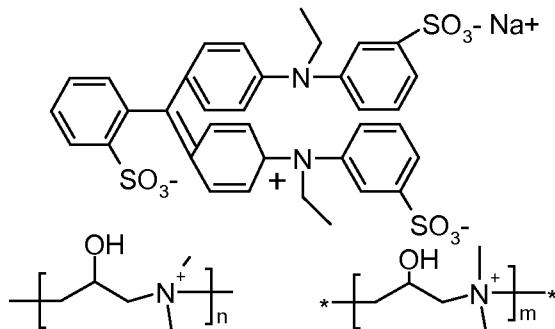
- 44 -



FD&C Red 2 complexed with crosslinked poly-DADMAC

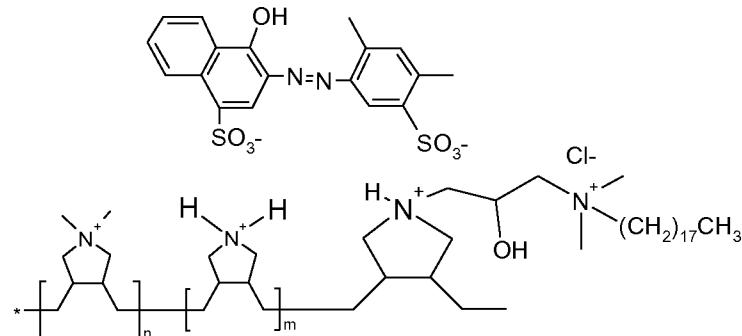
A FD&C Red 2 dye aqueous solution (10 g, 5 % assay by weight, Aldrich) is added to crosslinked poly-DADMAC beads, as prepared in Example 11, 1.3 g on a dry basis, in deionized water (49.7 g) with agitation. After standing overnight for the completion of the dye complexing process, the beads have shrunk and become dark red in colour. The aqueous phase is very light red in colour. The pigment bead slurry is filtered and washed thrice with copious amounts of deionized water. After being dried in an 80°C oven for 5 hours, the product is ground to a powder using a SPEX freezer mill to yield about 1.5 g of red dye-polymer complex which is insoluble in organic solvent and water.

10 **Example 13**


Beads of FD&C Red 6 Dye Complex with Crosslinked poly- DADMAC

D&C Red 6 complexed with crosslinked polyDADMAC

A FD&C Red 6 dye aqueous solution (5.4 g, 0.3 % assay by weight, Ciba CALISHA) is added to crosslinked poly-DADMAC beads (0.2 g on a dry basis) in deionized water (3 g) with agitation. After standing overnight for the completion of the dye complexing process, the hydrogel beads have shrunk and become dark red in colour. The aqueous phase is very light red in colour. The bead slurry is filtered and washed thrice with copious amounts of deionized water. After being dried in an 80°C oven for 5 hours, the product is ground to a powder using a SPEX freezer mill to yield about 0.2 g of red dye-polymer complex which is insoluble in organic solvent and water.


20 **Example 14**

FD&C Blue 1 Dye Complex with polyepiamine

FD&C Blue 1 complexed with polyepiamine

Polyepiamine (6.55 g, 100% solids, molecular weight and other data is located in Example 1) is added to a FD&C blue #1 aqueous solution (32.5 g, 6% assay by weight) with agitation.

5 Soft sticky coagulum precipitates out. The water insoluble precipitate is collected and washed with copious amounts of deionized water until little to no blue colour was seen in the filtrate. After drying in an 80°C oven for 20 hrs, the desired solid product (1 g) is obtained as a lustrous violet dye-polymer complex with a metal shining appearance.

Example 15**10 D&C Red 4 Dye Complex with a Modified DADMAC/Diallylamine Copolymer**

D&C Red 4 complexed with a modified copolymer of DADMAC/DAA

In 1 l reactor equipped with the necessary auxiliary equipment, DADMAC (65 wt.-%, 260 g, Aldrich), diallylamine (97%, 19.4 g, Aldrich, DAA) and Na₄EDTA (0.4 g, dissolved in 2.95 g of deionized water, Aldrich) are added. To the mixture, concentrated hydrochloric acid (19.1 g,

15 37% assay by weight) and deionized water (24 g) are added. The solution is heated to 92°C and ammonium persulphate initiator (3.3 g, dissolved in 18.5 g of deionized water, Aldrich) is added at a rate of 0.05 ml/min. During the polymerization, water is added if the solution vis-

cosity becomes too high. After addition of the initiator, the solution is further stirred for an additional one hour. Sodium metabisulphite (6 g dissolved in 24 g deionized water, Aldrich) is added at 0.5 ml/min and the solution is further stirred for another hour, after which water is added to bring the solid content to about 40% by weight. The molecular weight of the co-
5 polymer is 315 000 atomic mass units.

An aliquot of the DADMAC/DAA copolymer described above (100 g, 40 wt.-% solids content, 10 wt.-% DAA) is diluted by adding deionized water (200 g). An aqueous solution of NaOH (2 g, dissolved in 10 g of deionized water, 50 mmol) is added. The mixture is heated to 70°C with stirring. To this solution, Quab 426 (Degussa, 40 wt.-% in propane-1,2-diol/water, 4.6 g,
10 4.3 mmol) is added. The mixture is stirred for ten hours at this temperature. Water is added during the reaction if the solution viscosity becomes too high and agitation becomes difficult. The solid content of final product is 11.8 wt.-%.

Preparation of the Complex

A one % by weight aqueous solution of the copolymer above (30 ml) is added gradually over
15 10 minutes to a one % by weight aqueous solution of Red D&C #4 Dye (Puricolour, Ciba Specialty Chemicals, 30 ml) with rapid stirring. A deep red precipitate is formed throughout the addition. The mixture is stirred for an additional 10 minutes, then let stand so that all solids settle to the bottom. The pale orange/pink solution is decanted from the deep red solid. The solid is then washed with deionized water three times by stirring in 10ml for 10 minutes
20 each and decanting as above. The solid is then air dried for two days and collected. The desired product is obtained (0.41 g) as a brilliant red dye-polymer complex.

Evaluation of Colour Bleed from Complex

Approximately 50 mg of the isolated solid dye-polymer complex is placed in 10 ml of deionized water and shaken briefly. It is then allowed to stand in a sealed vial for one week. Visual
25 evaluation of the water indicates only a very faint orange colour of the aqueous layer indicating little to no bleed into the aqueous layer.

Example 16

Toilet Water

The components below are thoroughly mixed in the cited sequence at 50°C, a clear homogeneous solution being obtained. The UV absorber is, for example, 3-(2H-benzotriazol-2-yl)-
30 4-hydroxy-5-(1-methylpropyl)-benzenesulphonic acid monosodium salt.

<u>Ingredients</u>	<u>(w/w) %</u>
Ethanol, 96%	60
d-Limonene	5
Cedrene	1.5
Citronellol	0.5
Savin	0.5
Dye-polymer complex	0.08
UV-absorber	0.1
S,S-EDDS	0.005
Colourant (D&C Yellow No.5)	0.02
Wwater	ad. 100

Example 17

Leather Dressing and Cleaning Agent

The dye-polymer complexes and other components are stirred in the cited sequence at about 65°C until homogeneous. The mixture is then cooled to room temperature.

<u>Ingredients</u>	<u>(w/w) %</u>
Synthetic soap (Zetesap® 813)	7.85
Glycerol	6.00
Anionic surfactant (Lumorol® 4192; Mulsifan® RT 13)	22.00
Vaseline	11.00
Paraffin 52/54	20.00
Talcum	2.00
Orange terpene	4.00
Instant dye-polymer complex	0.02
Water	27.13

Example 18**Glass Detergent**

The components listed below are formulated in the cited sequence until a clear homogeneous mixture is obtained.

<u>Ingredients</u>	<u>(w/w) %</u>
Anionic / amphoteric surfactants (Lumorol RK)	0.7
Butyl glycol	5.0
Isopropanol	20.0
d-Limonene	4.00
Dye-polymer complex	0.02
Water, demin.	ad 100

Example 19**Dye Augmentation in fabrics**

10 The dye-polymer complexes are each deposited (from water) on a dyed cotton fabric at 0.05, 0.1, 0.2, 0.5 and 1.0 percent by weight, based on the weight of the cotton. The dyed fabrics contain the following dyes at 0.05, 0.1, 0.2 and 0.5 percent by weight based on cotton. This results in 60 separate formulations for each dye listed:

Scarlet HE-3 g, Crimson HE-XL, Yellow HE-6 g, Red HE-XL, Blue HE-XL, Turquoise H-A,

15 Navy HE-XL, Remazol, Red RB, Brilliant Red RBS, Orange FR, Navy CG, Turquoise G, Black B

Example 20**Dye Augmentation in fabrics**

The dye-polymer complexes and UV absorbers, for example 3-(2H-benzotriazol-2-yl)-4-hydroxy-5-(1-methylpropyl)-benzenesulphonic acid monosodium salt, are each deposited (from water) on a dyed cotton fabric at 0.05, 0.1, 0.2, 0.5 and 1.0 percent by weight, based on the weight of the cotton. The dyed fabrics contain the following dyes at 0.05, 0.1, 0.2 and

- 49 -

0.5 percent by weight based on cotton. This results in 60 separate formulations for each dye listed:

Scarlet HE-3 g, Crimson HE-XL, Yellow HE-6 g, Red HE-XL, Blue HE-XL, Turquoise H-A, Navy HE-XL, Remazol, Red RB, Brilliant Red RBS, Orange FR, Navy CG, Turquoise G,

5 Black B

Claims

1. A home or fabric care composition comprising
 - a) An effective colourizing amount of at least one dye-polymer complex formed from
 - (i) At least one cationic polymer and
 - (ii) At least one anionic dye,
wherein components a) (i) and a) (ii) are complexed to form particles prior to addition to said home or fabric care composition and wherein said complex remains as particles in the finished product; and
 - b) optional additional ingredients.
- 10 2. A composition according to claim 1, wherein the anionic dyes of component a) (ii) are selected from the group consisting of halogen-containing acid dyes, reactive dyes, azo dyes, anthraquinone dyes and natural acid dyes.
- 15 3. A composition according to claim 1, wherein the cationic polymer of component a) (i) is a reaction product of 1 to 100wt.-% of at least one cationic monomer I_b, 0 to 99wt.-% of at least one other copolymerizable monomers II, and optionally, 0 to 10wt.-% of a crosslinking agent.
- 20 4. A composition according to claim 3, wherein the cationic polymer of component a) (i) contains groups selected from the group consisting of primary, secondary, and tertiary amines and their salts, and quaternary ammonium and phosphonium salts, and mixtures thereof.
- 25 5. A composition according to claim 3, wherein the cationic polymer of component a) (i) is obtained from homopolymerization of at least one cationic monomer I_b or copolymerization of I_b with a copolymerizable monomer II, wherein the cationic monomer is selected from diallyldimethyl ammonium chloride, diallyldimethyl ammonium bromide, diallyldimethyl ammonium sulphate, diallyldimethyl ammonium phosphates, dimethallyldimethyl ammonium chloride, diethylallyl dimethyl ammonium chloride, diallyl di(beta-hydroxyethyl) ammonium chloride, and diallyl di(beta-ethoxyethyl) ammonium chloride; aminoalkyl acrylates; N,N'-dimethylaminopropyl acrylamide and its salts, allylamine and its salts, diallylamine and its salts, vinylamine and its salts, vinyl pyridine and its salts, and mixtures thereof.
- 30 6. A composition according to claim 1 further comprising

c) At least one compound selected from the group consisting of ultraviolet light absorbers, antioxidants, tocopherol, tocopherol acetate, hindered amine light stabilizers, complex formers, optical brighteners, surfactants, and polyorganosiloxanes.

7. A composition according to claim 1 where the ultraviolet light absorbers are selected
5 from the group consisting of 2H-benzotriazoles, s-triazines, benzophenones, alpha-cyanoacrylates, oxanilides, benzoxazinones, benzoates and alpha-alkyl cinnamates.

8. A composition according to claim 1 further comprising

d) A dye or a pigment or mixtures thereof.

9. A composition according to claim 1, wherein the home or fabric care product is selected
10 from the group consisting of laundry products, fabric softeners, liquid cleansing agents, scouring agents, glass detergents, neutral cleaners all-purpose cleaners, acidic bathroom cleaners, bathroom cleaners, washing agents, rinsing agents, dishwashing agents, kitchen cleaners, oven cleaners, clear rinsing agents, dishwasher detergents, shoe polishes, polishing waxes, floor detergents, floor polishes, metal cleaners, glass cleaners, ceramic cleaners, textile-care products, rug cleaners and carpet shampoos, agents for rust removal, agents for stain removal, furniture polishes, multipurpose polishes, leather dressing agents, vinyl dressing agents, and air fresheners.

15 10. A method of colourizing a home or fabric care composition which comprises incorporating therein or applying thereto

20 a) An effective colourizing amount of at least one dye-polymer complexes formed from

(i) At least one cationic polymers and

(ii) At least one anionic dyes,

25 wherein components a) (i) and a) (ii) are complexed to form particles prior to incorporating therein or applying thereto said home or fabric care composition and wherein said complex remains as particles in the finished product.

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2008/061190

A. CLASSIFICATION OF SUBJECT MATTER
INV. C11D3/40 C11D3/37 C11D17/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 2 107 186 A (OREAL) 27 April 1983 (1983-04-27) cited in the application examples 1, B	1-6, 8
P, A	EP 1 852 496 A (PROCTER & GAMBLE [US]) 7 November 2007 (2007-11-07) page 7, line 34 - line 53	1-10
A	WO 00/22077 A (PROCTER & GAMBLE [US]; PANANDIKER RAJAN KESHAV [US]; RANDALL SHERRI LY) 20 April 2000 (2000-04-20) claims 1-9	1-10
A	US 2006/287216 A1 (SONG ZHIQIANG [US]) 21 December 2006 (2006-12-21) claims 1-19	1-10

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

13 November 2008

Date of mailing of the international search report

25/11/2008

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Richards, Michael

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No	
PCT/EP2008/061190	

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
GB 2107186	A	27-04-1983	CA DE FR JP JP JP US	1174170 A1 3238166 A1 2514639 A1 1675604 C 3039042 B 58077809 A 4492686 A		11-09-1984 28-04-1983 22-04-1983 26-06-1992 12-06-1991 11-05-1983 08-01-1985
EP 1852496	A	07-11-2007	WO US	2007125523 A2 2007259800 A1		08-11-2007 08-11-2007
WO 0022077	A	20-04-2000	AU BR CA CN EP JP	6411099 A 9914502 A 2346347 A1 1330705 A 1121407 A1 2002527575 T		01-05-2000 26-06-2001 20-04-2000 09-01-2002 08-08-2001 27-08-2002
US 2006287216	A1	21-12-2006		NONE		