6/111401 A2 | IV Y 000000 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 October 2006 (26.10.2006)

(10) International Publication Number

WO 2006/111401 A2

(51) International Patent Classification:
GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/EP2006/003692

(22) International Filing Date: 21 April 2006 (21.04.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

05008925.9 22 April 2005 (22.04.2005) EP
(71) Applicant (for all designated States except US): UBS AG

[CH/CH]; Bahnhofstrasse 45, CH-8001 Ziirich (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BOVE, Aniello
[CH/CH]; Alte Zuercherstrasse 14, CH-8903 Birmens-
dorf (CH). LOACKER, Hansbeat [CH/CH]; Balmholz,
CH-8132 Egg (CH).

(74) Agents: R(")THINGER, Rainer et al.; WUESTHOFF &
WUESTHOFE, Schweigerstrasse 2, 81541 Miinchen (DE).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A TECHNIQUE FOR PLATFORM-INDEPENDENT SERVICE MODELING

W
(=3
(=}

Sl
]

Dev. Tool E"l

B

i X
=== 306 o evvonr e pryECRTRE
oY
304 \]ﬁ services
transformation/ N
generation service models
-
308 | !
T\@__ scm repository _ﬂ
(5] o) eratiol ine: Artifacts:
= Template driven (JSP} » Code frames (sources)
= Access layer (OQL) * Documents
= RDMS support (Oracle, DB2 ...) = Configuration

= Exchange API (XMI}

-for different platforms/languages and
especially architectures

* Packages

->for each (group of) artifact a specific

(set of) template is required

S (57) Abstract: A template-driven system for generating platform-specific artifacts, such as program code, from platform-indepen-
dent service models is described. The system comprises a template storage (102) with platform-specific templates, each template
including platform-specific model transformation information; a repository (104) with a plurality of at least essentially platform-in-
dependent service model elements and one or more service models modeled from the model elements; and a generator (106) adapted
g to generate platform-specific artifacts by applying the transformation information included in the templates to the service models.

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-1-

A Technique for Platform-Independent Service Modeling

Field of the Invention

The invention generally relates to the field of generating platform-independent
service models. More specifically, the invention relates to the generation of platform-
independent service models that form the basis for platform-specific physical
artifacts.

Background of the Invention

Software development conventionally starts with the creation of a logical model
reflecting the functional requirements of the particular process for which the software
is to be developed. At some point of this model-driven approach, the logical model
has to be transformed into a physical representation or artifact (such as a code
representation) that additionally satisfies non-functional requirements. Among the
non-functional requirements are the technical constraints of the particular software
and hardware platform, including the programming language, that have to be taken
into account.

For generating the physical code, a set of rules and patterns will have to be applied
to the logical model. For example, in some cases, the software architecture defines
different kinds of classes. A first kind a classes may represent persistent entities,
while a second kind of classes represents processes or process steps. Whether a
specific element of the logical model is an entity or a process is of course a functional
issue. However, the way how a logical entity will eventually be transformed into the
corresponding physical representation is generally the same for all logical entities,
and the same holds for the transformation of logical processes.

To assist a software developer in his work and to automate as many steps as
possible in the software development process, generative software development
approaches have been introduced. Generative software development exploits the fact
that the step from a logical model to the physical artifact can be regarded as the
application of a set of transformation rules to the various elements of the logical
model. So basically one has to define the individual transformations, specify when to

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-2-

apply them and annotate the logical model with some control information that
controls the automated transformation process.

Transformations are typically defined via templates. For each of the different physical
artifacts that need to be generated, a separate template or set of templates will have
to be provided. The templates include transformation logic specifying how the
individual elements of the logical model are to be transformed into their physical
counterparts. The logical model, in turn, includes annotations specifying which
template to use for a particular type of model element. In an conventional UML
(Unified Modeling Language) scenario, the annotations are for example constituted
by stereotypes or tagged values.

Since not everything can be defined in the model, certain procedural aspects can be
defined by programming inside the generated physical constructs. Therefore, a
model may include protected sections in which the developer can directly write
program code that is to be protected from the transformation run. The protected
section guarantees that the manually entered code survives changes in the model.
So even if the model is (e.g. iteratively) changed, the code in the protected sections
will still remain in the same logical place.

Today, there are attempts to apply the concept of model-driven development (MDD)
to the service paradigm underlying the so-called service-oriented architecture (SOA).
The SOA aims at providing the functionalities of a complex software component via
individual services. In the SOA context, individual services may be used and re-used,
rather than copying the corresponding program code or, more generally, the physical
artifact. This becomes possible as the service is abstracted away from a particular
platform-specific implementation.

In conventional SOAs the individual services are merely regarded as “black boxes”
with interfaces to other services. In other words, the internal structure of the
services does not play a major role for the implementation of a SOA. However, when
applying the principles of MDD to the modeling of individual services, the internal
structure of the service model is of course an important aspect.

Therefore, the object underlying the invention generally relates to an efficient
combination of MDD with SOA. In particular, a technique for efficiently modeling a
service for generative software development is required.

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

Summary of the Invention

According to a first aspect, a template-driven system for generating platform-specific
artifacts, such as program code, from platform-independent service models is
provided. The system comprises a template storage with platform-specific templates,
each template including platform-specific model transformation information; a
repository with a plurality of at least essentially platform-independent service model
elements and one or more service models modeled from the model elements; and a
generator adapted to generate platform-specific artifacts by applying the
transformation information included in the templates to the service models.

Although the service models and the model elements that constitute the services
models may be platform-independent to the largest possible extent, in one variation
the model elements may nonetheless be associated with minor platform-specific
information. For model elements that correspond for example to attributes, this
platform-specific information may include attribute-related format information.

At least some of the service model elements may be shared by two or more service
models. This re-use of previously defined model elements for a plurality of service
models reduces redundant modeling efforts. Moreover, change management is
facilitated as changes to an individual model element will automatically be reflected
in each service model comprising this model element.

The system may further comprise a service model creator for creating at least one of
service model elements and platform-independent service models from the service
model elements. The output of the service model creator is preferably again stored in
the repository.

In one variation, the service model elements included in the repository are
hierarchically structured. Such a hierarchical structure facilitates the creation of
service models and additionally helps to structure the internal design of the
repository. The repository may be configured as a database (e.g. a relational
database).

Based on the hierarchical structured model elements, each service may be modeled
from one or more first model elements of a higher hierarchy level and one or more

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-4 -

second model elements of a lower hierarchy level. In the service model, each first
model element may be associated with one or more second model elements. In such
a case, the one or more second model elements preferably constitute attributes of
the first model elements.

The first model elements may define at least one of one or more service input
parameters and one or more service output parameters. On the other hand, the
second model elements may constitute leaf fields in at least one of a service input
parameter tree and a service output parameter tree.

In a further variation, the service models in the repository are associated with
mappings. The mappings may occur between two or more model elements or
between model elements and database tables. The mappings may define transfer
operations between model elements belonging to the same hierarchy level. In one
implementation, the mappings define transfer operations between one or more
service input parameters and one or more service output parameters. The input
parameters and output parameters may belong to one and the same or, alternatively,
they may belong to different services.

For service modeling, predefined service types and service publicities may be
selectable. The service model creator may then allow for a selection of at least one of
a service type and a service publicity. The service types preferably include one or
more of a process service, an entity service, a presentation service, a technical
service, a batch job and a view. In such a scenario, the template storage may include
at least one dedicated template for each service type. The service type can thus be
interpreted as a transformation control parameter.

Additionally, specific kinds of first model elements may be defined and selectable via
the service model creator for service modeling. The kinds of first model elements
may constitute transformation control parameters when generating the physical
artifacts. The generated artifacts may include at least one of Java code, Cobol code,
HTML code and XML code.

There may exist a plurality of predefined platform types defining the physical
implementation of a particular service model. Preferably, the generator allows for a
selection of a platform type. For each platform type, the template storage may
include at least one dedicated template. Moreover, the template storage may include

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-5-

for various combinations of service type and platform type at least one dedicated
template.

According to a further aspect of the invention, a repository database is provided. The
repository database comprises at least essentially platform-independent model
elements and service models modeled from the model elements, the service models
forming the basis for the generation of platform-specific artifacts under the control of
platform-specific templates, each template including platform-specific model
transformation information.

According to a still further aspect of the invention, a method for generating platform-
specific artifacts, such as program code, from platform-independent service models is
provided. The method comprises the steps of providing platform-specific templates,
each template including platform-specific model transformation information;
providing a plurality of at least essentially platform-independent service model
elements and one or more service models modeled from the model elements; and
generating platform-specific artifacts by applying the transformation information
included in the templates to the service models.

The invention can be practiced in the form of hardware, in the form of software, or in
the form of a combined hardware/software approach. As for a software aspect, a
computer program product is provided. The computer program product comprises
program code portions for performing the steps of the present invention when the
computer program product is run on one or more computing devices. The computer
program product may be stored on a computer-readable recording medium.

Brief Description of the Drawings

In the following, the invention will be described with reference to exemplary
embodiments illustrated in the drawings, wherein:

Fig. 1 is a schematic block diagram illustrating a first device embodiment of the
present invention;

Fig. 2 is a flowchart illustrating a first method embodiment of the present invention;

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-6 -

Fig. 3 is a schematic block diagram illustrating a second device embodiment of the
present invention;

Fig. 4 is a schematic diagram illustrating the major functionalities of the second
device embodiment;

Fig. 5 is a schematic diagram illustrating an iterative development process used in
context with the embodiments and two different service modeling approaches;

Fig. 6 is a schematic diagram illustrating the major entities of the logical data model
used in the embodiments;

Figs. 7 to 9 are schematic diagrams illustrating the individual parts of the logical data
model of Fig. 6;

Fig. 10 is a flowchart illustrating the decision process relating to two fundamental
modeling approaches;

Fig. 11 is a flowchart illustrating the basic steps of a second method embodiment for
generating a service model;

Fig. 11a is an overview illustrating the definition of various kinds of services as used
herein; and

Figs. 12 to 74 illustrate various user interfaces for use in the second method
embodiment.

Description of Preferred Embodiments

In the following description, for purposes of explanation and not limitation, specific
details are set forth, such as particular sequences of steps, user interfaces and
device configurations in order to provide a thorough understanding of the present
invention. It will be apparent to one skilled in the art that the present invention may
be practiced in other embodiments that depart from these specific details.

Moreover, those skilled in the art will appreciate that the functions explained herein
below may be implemented using software functioning in conjunction with a

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-7-

programmed microprocessor or general purpose computer. It will also be appreciated
that while the current invention is primarily described in the form of methods and
devices, the invention may also be embodied in a computer program product as well
as in a system comprising a computer processor and memory coupled to the
processor, wherein the memory is encoded with one or more programs that may
perform the functions disclosed herein.

Fig. 1 shows an embodiment of a template-driven system 100 for generating
platform-specific artifacts from platform-independent service models. The system 100
comprises three main components: a template storage 102, a repository database
104, and a generator for platform-specific artifacts 106. In the template storage 102
platform-specific templates are stored. Each template includes platform-specific
transformation information.

The repository database 104 includes a plurality of at least essentially platform-
independent service model elements and one or more service models modeled from
the model elements. The model elements included in the repository database are
preferably shared by several of the service models. This reduces the overall number
of model elements that have to be stored.

The generator 106 generates platform-specific artifacts. To this end, one or more of
the platform-specific templates included in the template storage 102 are applied to
the platform-independent service models stored in the repository database 104.

Fig. 2 shows a flowchart 200 illustrating a method embodiment for generating
platform-specific artifacts from platform-independent service models. The method
may be performed by the system 100 shown in Fig. 1 or any other device.

The method starts, in step 202, with the provision of platform-specific templates.
Each template includes platform-specific transformation information required for
transforming a particular service model into a particular artifact.

In a next step 204 a plurality of at least essentially platform-independent service
model elements are provided. Additionally, one or more service models modeled
from the model elements are provided.

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-8-

In a further step 206, platform-specific artifacts are generated. For generation of the
artifacts, one or more of the platform-specific templates are applied to a particular
platform-independent service model.

Fig. 3 shows a further system 300 for generating artifacts from platform-independent
service models. The system 300 includes a repository database 302 for service
models (and service model elements) and a template-driven generator 304 for
generating artifacts 308 for the service models stored in the repository database 302.
The transformation of service models to artifacts is controlled by template files 306.
In the present embodiment, for each individual platform a specific set of one or more
template files 306 is provided. If needed, the generated artifacts may manually be
completed (e.g. within so-called protected areas) before storing them in a software
component management repository 310.

Fig. 4 schematically shows the way of a platform-independent model to a platform-
specific artifact as implemented in the systems 100 and 300 discussed above.
Starting with a platform-independent component model, a platform-independent
service model is generated first. The platform-independent service model is then
transformed into a platform-specific artifact such as an executable presentation or
application (business) service.

Fig. 5 illustrates, on the left-hand side, the iterative generation of a service starting
from a service model. On the right-hand side, the two basic approaches for
generating a physical artifact are shown, namely the top-down approach on the one
hand and the bottom-up approach on the other hand. These approaches will later be
described in more detail with reference to the user interfaces of Figs. 12 to 74.

The main elements of the logical data model used in the present embodiments are
shown in Fig. 6. The logical data model provides the basis for the physical database
design of the repository database 302. It is independent of the implementation and
thus makes a clear distinction between specification and implementation on the
database. Its physical model is more complex and contains many more elements,
which are relevant to store all detailed information about each of the main elements.
Nevertheless, the logical data model as shown in Fig. 6 is the key to the overall
repository database.

10

15

20

25

WO 2006/111401 PCT/EP2006/003692

-9-

One service is modeled from two basic and hierarchically structured model elements,
complex type model elements (or simply “complex types”), which may again
comprise complex types, on the one hand and data item model elements (or simply
“data items”) on the other hand. These model elements are shown in Fig. 7. The
relationship between a service and these two model element categories is
represented via a field element as shown in Fig. 8. The field element is an instance
of an individual data item and manages the relationship and usage of data items
within complex types. The relationship between individual services is represented via
a mapping element as depicted in Fig. 9.

In the following a tool for generating service models for a particular software
component will be discussed with reference to Figs. 10 to 74. As shown in Fig. 10,
and as already mentioned in context with Fig. 5, the tool permits two ways of service
modeling. The top-down implementation shown on the left hand side of Fig. 10 is
used in the case that no specific artifacts are available for reuse ("green field
modeling™). The bottom-up implementation shown on the right hand side of Fig. 10
has some prerequisites, some physical implementations (such as a database table
description, source code, ..) that will be reused for service design ("modeling based
on physical artifact"). The meta model will be the same in each case.

The top-down implementation will be described first with respect to the steps listed
in the following table and illustrated in Fig. 11:

Step Step Name Description of Step

1 Initiate a New Service Design Create New Service Header

2 Service Interface Design Create new Complex Type
Create new Data Item

2a Tree Modeling Create Attributes with Tree
Editor

2b Graphical Modeling Create Attributes with
Graphical Editor

3 Service Orchestration Create Mappings

4 Exception Management Error Messages Management

5 Documentation Management (optional) Documentation

6 Quality Management (optional) Request for Service Version
Review

The service for which the service model is to be created may for example be the
mutation of a customer address in a database or the search for customers in the

10

15

WO 2006/111401 PCT/EP2006/003692

-10 -

database that fulfill certain criteria. Before starting the modeling of a service, the
software developer has to think about the interfaces of the service to be modeled,
i.e. the input and output parameters, as well as how the input parameters are
transferred ("mapped”) to the output parameters.

Referring now to step 1 of Fig. 11, the initiation of a new service model for a
particular software component (that may include further services) starts with the
display of a graphical user interface as shown in Fig. 12. The user interface of Fig. 12
requests the input of service parameters as illustrated in the following table:

Service Name Unambiguous name of the service. The name and version must
be unigue within the particular software component

Description Short description of the service

Version Version number of the new service (usually 1.0.0 because it is a
new one)

Service Type Selection between:

Entity Read Service

Entity Read List Service

Entity Insert Service

Entity Delete Service

Entity Update Service

Batch Program / Job / Service

Process Service — Request for Information
Process Service — Request for Processing
Service — View

Technical Service

Presentation Service

L JEE JEE R JEE JER R N JER JEE 2

Service Publicity Selection between:

¢ Local within Software Component

¢ Local within Software Component (with publishing)
¢ Local within Business Domain

¢ Local within Business System

¢ Global between Business Systems

The tool supports different service types and different publicity categories. Fig. 11a
schematically illustrates in a layered manner some of the various service types that
can be selected. Presentation services reside on an upper layer. This service type
mainly provide visual functionalities in context with requesting information from a
user and/or displaying information to a user. On a lower layer, database services are

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-11 -

provided. A middle layer provides general application services that are neither
presentation services nor database services (sometimes also called business services
herein). There are two types of application services: process services and entity
services. Entity services generally have database access (e.g. they read data from a
database or write data into a database using the corresponding database service).
Process services, on the other hand, have no (direct) database access. They perform
one or more dedicated processing operations and include the application logic
required for this task.

The selection of a particular service type via the user interface of Fig. 12 influences
the template (or template set) that will later be used when transforming the
corresponding service model into a particular artifact. In other words, there will be
one or more dedicated templates for presentation services (specifying, for example,
the visual appearance of the resulting graphical user interface), one or more
dedicated templates for entity services (specifying, for example, the database
interfaces), and so on.

Each publicity category in the above table indicates the availability of the service
model (or its elements) for re-use a hierarchical software environment that includes,
from a lower hierarchy level to a higher hierarchy level, the levels “Software
Component”, "Business Domain”, and “Business System”. The software components
themselves are also categorized in such a manner that each individual software
component category is associated with particular sub-sets of service types (and,
optionally, publicity categories).

In principle, a service always belongs to a particular software component, which
means that service governance is performed via the associated software component.
Each software component has an owner, which is at the same time the owner of all
the services assigned to this software component. As mentioned above, there are
different categories of software components (such as application components for the
backend, presentation components for the front-end, and technical components for
technical purposes). Accordingly, a presentation service can only exist within a
presentation component, an application service can only exist within an application
component, and so on. Generally speaking, the type of a particular software
component controls the service types that may be associated therewith. A
presentation service may for example not exist within an application component. On
the other hand, a presentation service always requires at least one application

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-12 -

service for performing an operation within the backend (e.g. a backend processing
operation or a database operation). The reason for this is the fact that presentation
services are not allowed to access databases or include backend processing logic.
These tasks are always performed by application/business services.

Returning now to Fig. 12, clicking the “"Next” button leads to the user interface of Fig.
13. Using this user interface, the type of input (only the option “New, empty
interface” is available here) can be selected. By clicking “Finish”, the tool creates the
new service with the version as set in the previous user interface ("1.0.0" if not
changed). In order to change service parameters or add properties to the service,
the service need to be newly opened in a service editor module (not shown). Fig. 14
shows the corresponding user interface that allows for an editing of the “basic data”
of a service that is to be newly generated.

Implementation-specific attributes can be defined via the tab “Attributes” in the lower
left corner of the user interface shown in Fig. 14. The “Attributes” user interface is
illustrated in Fig. 15. It should be noted that although the service modeling is to a
large extent implementation-independent, it might nonetheless be advantageous to
specify a small amount of implementation-specific information already when

modeling the service.

Once the basic data and attributes for a new service have been defined, the
modeling continues with associating one or more model elements of the “complex
type” with the service that is to be modeled. 1t has already been explained with
reference to Fig. 7 that in the service model of the present embodiment, each service
necessarily includes one or more complex types, and each complex type may in turn
include one or more further complex types.

Before discussing the mechanisms of assigning model elements of the complex type
to a service in detail, exemplary service modeling rules with respect to complex types
will be discussed first. In the present embodiment, three different kinds of such
elements are defined: namely the sequence kind (Fig. 16), the list kind (Fig. 17) and
the choice kind (Fig. 18). Each particular kind of complex type is associated with a
particular transformation operation when generating an artifact. Accordingly, and
similar to the service type, the complex type kind specified during model creation
acts as a control parameter for the subsequent transformation process.

10

15

WO 2006/111401 PCT/EP2006/003692

-13-

For a better understanding, the different kinds will now be explained in an exemplary
context with address data fields.

Fig. 16 shows the complex type “Adresse” of the sequence kind. This kind of complex
type consists of a sequence of individual fields (see Fig. 8), here titled “Address-
Element_1" to “"Address_Element_4", as shown in the following table:

Name Typ Implementation Name
Adresse , Complex Type / Sequence ADRESSE
Address_Element_1 | Field ADR-ZEILE-1
Address_Element_2 | Field ADR-ZEILE-2
Address_Element_3 | Field ADR-ZEILE-3
Address_Element_4 | Field ADR-ZEILE-4

When transforming the complex type “Adresse” of Fig. 16 into an exemplary
Document Type Description (DTD) code by the code generator, the following output
(artifact portion) will be generated:

<JELEMENT Output (Adresse)>

<IELEMENT Adresse (Address_Element_1, Address _Element 2,
Address_Element_3, Address_Element_4)>

</ELEMENT Address_Element_1 (#PCDATA)>
<JELEMENT Address _Element 2 (¥PCDATA)>
<IELEMENT Address_FElement_3 (#PCDATA)>

</ELEMENT Address._Element_4 (#PCDATA)>

When transforming the complex type “Adresse” of Fig. 16 into an exemplary COBOL
copybook code, the following output (artifact portion) will be generated:

10

WO 2006/111401

PCT/EP2006/003692

-14 -

* Definition of OUTPUT Interface without flags for Service *

* RWGStuff

05 :BLW:-ADRESSE.
10 :BLW:-ADR-ZEILE-1
10 :BLW:-ADR-ZEILE-2
10 :BLW:-ADR-ZEILE-3
10 :BLW:-ADR-ZEILE-4

PIC X(35).
PIC X(35).
PIC X(35).
PIC X(35).

Fig. 17 shows the complex type “Address_Output” of the list kind. This kind of
complex type consists of one or more complex types of the sequence kind (including
the complex type “Address” explained above) and additionally of individual fields
(including a list length parameter) as shown in the following table:

Name

Type

Address_Output
Address_List_Length
Address_List
Address
Address_Element_1
Address_Element_2
Address_Element_3

Address_Element_4

Complex Type / Sequence
Field / numeric

Complex Type / Sequence
Complex Type / Sequence
Field

Field

Field

Field

When transforming the complex type “Address_Output” of Fig. 17 into an exemplary
Document Type Description (DTD) code, the following output (artifact portion) will be

generated:

WO 2006/111401 PCT/EP2006/003692

- 15 -

<IELEMENT Output (Address_Output)>

<!ELEMENT Address_Output (Address_List_Length, Address_List)>
<IELEMENT Address_List_Length (#PCDATA)>

<IELEMENT Address_List (Address+)>

<!ELEMENT Address (Address_Element_1, Address_Element_2,
Address_Element_3,

Address_Element_4)>

<IELEMENT Address_Element_1 (#PCDATA)>
<!ELEMENT Address_Element_2 (#PCDATA)>
<IELEMENT Address_Element_3 (#PCDATA)>

<!ELEMENT Address_Element_4 (#PCDATA)>

When transforming the complex type “Address_Output” of Fig. 17 into an exemplary
COBOL copybook code, the following output (artifact portion) will be generated:

* Definition of OUTPUT Interface without flags for Service *
* RWGStuff

05:BLW:-ADDRESS-OUTPUT.
10:BLW:-ADDRESS-LIST-LENGTH PIC 9(6).
10:BLW:-ADDRESS-LIST.
15:BLW:-ADDRESS
OCCURS 1 TO 999 TIMES DEPENDING ON
:BLW:-ADDRESS-LIST-LENGTH.

20:BLW:-ADR-ZEILE-1 PICX(35).
20:BLW:-ADR-ZEILE-2 PICX(35).
20:BLW:-ADR-ZEILE-3 PICX(35).

20:BLW:-ADR-ZEILE-4 PICX(35).

WO 2006/111401 PCT/EP2006/003692

- 16 -

Fig. 18 shows the complex type “Choice” of the choice kind. This kind of complex
type typically consists of two or more complex types of the sequence kind (including
the complex type “Address” explained above) as shown in the following table:

Name Type
Choice Complex Type / Choice
AdressePrivat Complex Type / Sequence

Address_Element_1 | Field
Address_Element_2 | Field
Address_Element_3 | Field
Address_Element_4 | Field
AdresseGeschaeft Complex Type / Sequence
Address_Element_1 | Field
Address_Element_2 | Field
Address_Element_3 | Field

Address_Element_4 | Field

When transforming the complex type “Choice” of Fig. 18 into an exemplary DTD
code, the following output (artifact portion) will be generated:

<IELEMENT Output (Choice)>
<!ELEMENT Choice (AdressePrivat | AdresseGeschaeft)>

<IELEMENT AdressePrivat (Address_Element_1, Address_Element_2,
Address_Element_3, Address_Element_4)>

<!ELEMENT AdresseGeschaeft (Address_Element_1, Address_Element_2,

Address_Element_3, Address_Element_4)>

10

20

WO 2006/111401 PCT/EP2006/003692

-17 -

When transforming the complex type “Choice” of Fig. 18 into an exemplary COBOL
copybook code, the following output (artifact portion) will be generated:

* Definition of OUTPUT Interface without flags for Service *
* RWGStuff

05:BLW:-CHOICE.
10:BLW:-ADRESSEPRIVAT.

15:BLW:-ADDRESS-ELEMENT-1 PICX(35).
15:BLW:-ADDRESS-ELEMENT-2 PICX(35).
15:BLW:-ADDRESS-ELEMENT-3 PICX(35).
15:BLW:-ADDRESS-ELEMENT-4 PICX(35).
10:BLW:-ADRESSEGESCHAEFT.
15:BLW:-ADDRESS-ELEMENT-1 PICX(35).
15:BLW:-ADDRESS-ELEMENT-2 PICX(35).
15:BLW:-ADDRESS-ELEMENT-3 PICX(35).
15:BLW:-ADDRESS-ELEMENT-4 PICX(35).

In some cases a service model may re-use an existing complex type, in other cases a
new complex type has to be created. For re-use, the required complex type may
simply be selected from the previously defined complex types included in the
repository database. Re-use of a previously defined complex type may be prevented
by an incompatible publicity.

Creation of new complex type will now be discussed in context with the user
interfaces shown in Figs. 19 to 27. Creation of a new complex type (step 2 of Fig. 11)
starts with the user interface of Fig. 19. This user interface requests the user to
specify the name of the complex type that is to be newly created and the software
component to which the complex type is to be assigned. Once the corresponding
data have been input, they may be saved by clicking the “OK” button.

In a next step, the newly created complex type may be edited via the user interface
shown in Fig. 20. This user interface allows for a selection of the kind of complex
type (i.e., either sequence, list or choice as discussed above). Additionally, the user
interface of Fig. 20 basically permits the creation of input or output fields via the
menu shown in Fig. 21. Here, creation of a “sibling” creates an element on the same

10

15

20

25

WO 2006/111401 PCT/EP2006/003692

-18 -

level, and creation of a “child” creates a child to an element. A leaf attribute, based
on a data item type, can not have any children.

When selecting “Create Child” or “Create Sibling”, five option are offered (on the top
level shown in Fig. 21, the option “Create Sibling is disabled). This is illustrated in the
following table:

Field - Existing Data Inserts an attribute based on an existing data item
Item

Field - Existing Complex {Inserts a structure based on an existing complex type
Type '

Field - New Sequence (Inserts a new complex type whose children form a
Complex Type sequence

Field - New Choice Inserts a new complex type. In a concrete instance of the

Complex Type complex type, only one of its children is present

If, in the user interface of Fig. 21, the option “Existing Data Item” is chosen, the user
interface of Fig. 22 is displayed. The user interface of Fig. 22 constitutes a data item
selection dialog that allows for a re-use of an existing data item included in the
repository database. All currently loaded data items are shown in the lower part of
the user interface in Fig. 21. If the required data item is not yet shown, a search for
this data item can be initiated based on search criteria that may be specified in the
upper part of the user interface of Fig. 22. Once the data item that is to be inserted
in the newly created complex type is selected and the button "OK” is clicked, a new
field for the complex type based on the selected data item is created. In this context
the user interface of Fig. 23 will be displayed and an appropriate name for this field
can be entered.

If, in the user interface of Fig. 21, the option “Existing Complex Type” is chosen, the
user interface of Fig. 24 is displayed. The user interface of Fig. 24 constitutes a
complex type selection dialog. All currently loaded complex types are displayed in the
result list in the lower part of the user interface of Fig. 24. If the required complex
type is not yet displayed, a search can be initiated based on search criteria that may
be specified in the upper part of the user interface of Fig. 24. Once the complex type
that is to be inserted in the newly created complex type is selected and the button

10

15

20

25

WO 2006/111401 PCT/EP2006/003692

-19 -

“OK" is clicked, a new field based on the selected complex type is created as shown
in Fig. 25.

If, in the user interface of Fig. 21, the option "New Sequence Complex Type” is
chosen, the user interface of Fig. 26 is displayed for creation of a new complex type.
In the user interface of Fig. 26, the new complex type may be given a characteristic
name and the parameter “Kind” is preset to “Sequence” (see Fig. 27). In a similar
manner, the parameter “Kind" will be preset to “Choice” if the user selects the option
“New Choice Complex Type” in the user interface of Fig. 21.

The modeling tool of the present embodiment not only allows for a creation of a new
complex type, but also for the creation of a new data item (that will then also be
stored in the repository database). In the modeling tool, data items are primarily
used for the definition of service parameters. Every leaf in the input or output tree of

“a service will be based on a data item. In general, existing data items should be re-

used as often as possible (as explained with reference to Figs. 21 to 23). However,
there may still be situations in which the creation of new data items is unavoidable. A
new data item will always be a specific data item, meaning that it is created in a
specific domain, but with its significance and use by other domains it may become a
core data item. Core data items represent the company's main data dictionary.

Fig. 28 shows a user interface that allows for the definition of data item properties
for a data item that is to be newly created. The properties include a name,
description, length, category, a parent and software component. In the present
embodiment, data items must always belong to a particular software component. The
initial properties are explained in more detail in the following table:

Name Name of the data item. The name should comply with predefined
naming guidelines for data items

Description A description for the new data item

Software Allows for a selection of the software component owning the new
Component data item.

Category The choice given for a new data item is:

- Core Data Item

WO 2006/111401

PCT/EP2006/003692

-20 -

- Specific Data Item

- Technical Data Item

Parent Data

Except basic data items, all data items are derived from a parent

Item: data item.
Parent Length |[Shows the length of the parent data item
Length Length of data item. The length must not be empty. It must be less

or equal the parent's length. It must not be zero.

Once the parameters for a new data item have been specified, the "OK" button of
the user interface of Fig. 28 may be clicked to create the date item. The data item
may later be edited via the data items properties user interface shown in Fig. 29.
This user interface has five tabs, namely “Basic”, “Physical”, “Business”, “GUI"” and
“Lifecycle” as shown in Figs. 29, 30, 31, 32 and 33, respectively.

The “Basic” properties as shown in Fig. 29 include the following:

ID

Internal identification, not changeable

DIC-ID / Version-
1D

Identifier

Name (English) name of the data item
Version Version number
Description Data item description

Parent Data Item

Every data item must be based on another data item (except basic
data items

Format

Valid formats may be defined elsewhere

Length

Valid lengths may be defined elsewhere

Valid Value List

A list of valid values.

WO 2006/111401

PCT/EP2006/003692

-21 -

Category A newly created data item is always a specific or technical data
item. The data manager can decide to change it to a core data
item.

Software Software component owning the data item

Component

Ref Table ID Codes are kept in reference tables; this is its identification

Ref Code Value [Name of the table where the reference values are stored

Table

Ref Data Code |{Name of the Code Domain which will be used to resolve the value,

Domain if the Dataltem represents a code. When clicking on "Select

Domain...", a dialog pops up where the Code Domain can be
selected.

Core Proposal

Should be checked if the specific or technical data item should be
promoted to a core data item.

The “Physical” properties as shown in Fig. 30 allow for a specification of some
implementation-specific information already on the model level in relation to the data
item newly created. The physical properties that may be specified include the

following:

Context Implementation environment; physical properties can be set for
every context individually.

Implementation |Physical name of the data item in the selected environment

Name (context)

Default Impl. Type [Selection of available data types in the selected environment

(context)

Resulting Type

Result of the default type and the length of the context
independent DI definition. This type is used during generation of
artifacts for a certain context.

10

WO 2006/111401 PCT/EP2006/003692

-22-

The “Business” (or application) properties as shown in Fig. 31 include the following:

Business Rule One or more rules defining valid values, underlying standards or
inside structure of a data item; includes syntactical and
semantical validation for data items.

Ext. Backus Naur |[Formal definition about inner structure of a data item according
Form to ISO-EBNF (production rules)

Object Constraint [Formal description of constraints, based on declarative semantics
Language according to OCL (a UML)

Information Object |Information object from Application Architecture to which the
data item belongs

Sensitive Data Defines if values are subject to anonymization for test data

The “GUI” properties as shown in Fig. 32 are used to control the presentation of data
items in the respective user interfaces. Care will be taken that data items are always
shown to the user in the same way and with the same labeling. The “GUI" properties
include the following:

Language Informal specification of business rules

Short Label |Label in GUI (short version)

Medium Label |{Label in GUI (medium version)

Long Label |Label in GUI (long version)

The “Lifecycle” properties as shown in Fig. 33 reflect the current state of the
particular data item ("DI"). These properties are primarily used for data item reviews.
Most of the settings can only be set and changed by a user having the corresponding
authorization (“Data Manager”). The “Lifecycle” properties include the following:

10

WO 2006/111401 PCT/EP2006/003692

-23-
DIC Lifecycle Lifecycle in Data Item Catalogue: Proposed, Registered, Inactive
State One of the values for the data item's state: Under Development,
Production, Inactive
Contact Initially the GPN of the Data Manager: The person to ask about

the business meaning of the DI.

Data Manager [The Data Manager is inherited from the parent data item when
You create a new data item.

Review State [The following values are possible: No Review Requested,
Review Requested, Review in Progress, Reviewed and Accepted,
Reviewed and Rejected, Accepted Pre-Version

Data Management [Remarks normally given during review
Remarks

Change Description |Description of the latest change

Change Request Date of the latest request for change
Date

Version valid since |Date from when the current data item version is valid

Lifecycle Start Date (Start of the DI's life as a useful member of society

Lifecycle End Date |Date when the DI gets invalid

Input and output parameters of a service are composite tree structures (in the form
of “complex types”). They are displayed in the modeling tool in a similar manner like
folder structures in a file system. That is, complex types correspond to folders, while
fields (or attributes) correspond to files. Every field must be assigned to a data item.

The modeling tool permits the specification of input and output parameters (i.e. the
creation of attributes) either via a tree editor (step 2a in Fig. 11) or, alternatively, via
a graphical editor (step 2b in Fig. 11). In the following, the tree editor will be
discussed first with reference to the user interfaces shown in Figs. 34 to 36.

10

15

20

25

WO 2006/111401 PCT/EP2006/003692

-24 -

Opening a service and successively selecting the “Interface” (see Fig. 14) and the
“Tree” tabs opens the editor for input and output parameters shown in Fig. 34. The
pull-down menu in the upper part allows for a switching between “Input” and
“Output”. The respective structure of the input or output complex type is shown in
the left frame. In the right frame, the properties of the selected field can be
described. Right-clicking of an element in the complex type shown in the left frame
creates new input or output fields (Fig. 35). Several possibilities are offered when
selecting “Create Child” or “Create Sibling” (see also Fig. 21 and corresponding
description):

Field - Existing Data Item Inserts an attribute based on an existing data item

Field - Existing Complex Inserts a structure based on an existing complex type
Type

Field - New Sequence Inserts a new complex type whose children form a
Complex Type sequence

Field - New Choice Complex | Inserts a new complex type. In a concrete instance of

Type the complex type, only one of its children is present

Inserting a sibling creates an element on the same level; inserting a child creates a
child to an element. A leaf attribute, based on a data item type, can, of course, not
have any children.

It should be noted that no new data items can be created in the editor. New data
items can only be created in the data item explorer as discussed above in context
with Figs. 28 to 33. Further, it is not possible to change the properties of a data item
directly in the service or complex type editor. The user interface of Fig. 36 shows an
example of an “Input” complex type with an element of the “choice” complex type as
displayed by the tree editor.

Opening a service and successively selecting the “Interface” (see Fig. 14) and the
“Graphical” tabs opens the graphical editor for input and output parameters shown in
Fig. 37. In the graphical editor of Fig. 37, input and output parameters are shown in
parallel in their respective hierarchical structure. Different kinds of complex types
may graphically be represented in different colors.

10

15

20

25

WO 2006/111401 PCT/EP2006/003692

-25-

The toolkit on the left side of Fig. 37 allows for a change of the interface with the
following options:

Select Select one or multiple graphical objects

Marquee Select objects by dragging up a rectangle

New Sequence | Drop a new sequence complex type on the diagram

New Choice Drop a new choice complex type on the diagram

Add Complex | Drop an existing complex type on the diagram.
Type -

Add Reference | Add a reference from one complex type to another, i.e., add a field
to the first complex type that uses the second complex type.

As has been mentioned above, complex types can be used as input and output
parameters (or parameter sets) of a service. Mappings (step 3 in Fig. 11) now define
how a complex type is transferred into another complex type and are thus primarily
used for mapping the input parameters of a specific service to its output parameters
as illustrated in Fig. 38 for two exemplary complex types. Mapping an input to an
output complex type of a service means that one specifies the "algorithm" of the
service. It also means that the output can directly be calculated from the input,
without calling another service. Mappings are also used for mapping the input
parameters of a specific service to database tables or for mapping output parameters
of a first service to input parameters of a second service.

In the modeling tool, mappings are defined on a “Mappings” page of the service
editor. In order to be handled correctly by the subsequent artifact generator,
mappings have to adhere to certain naming conventions, depending on the mapping
type. For each mapping a developer can define a name. There are no technical
restrictions on these names, but special characters should be avoided as the names
will also be used as names in the generated code. If there is more than one mapping
in a particular entity service, the same name should be used for all the mappings. In
process services, the same name should be used for two substep mappings.

10

15

WO 2006/111401 PCT/EP2006/003692

-26 -

In order to create a new mapping, the “Add” button in the “"Mappings” page (see Fig.
39) of the service editor has to be clicked. The “Mappings” page can be reached via
the "Mappings” tab of the user interface shown in Fig. 14. In response to activation
of the “Add” button, the main properties of the mapping can be defined by selecting
a mapping type via a window as illustrated in Fig. 40. The mapping kind influences
the generation of the service code frame (the “construct” that can be manually
completed if required). It does not influence the functionalities of the service editor
(such as mapping source, mapping target, mapping operation).

In the present embodiment, there are six kinds of mappings: Input, Output,
Restriction, Substep Input (Invoke or Call), Substep Output and Internal Mapping.
The properties of these mapping kinds are summarized in the following table:

Input The service input or a subset is used without any restrictions

Output A complex type is mapped to the service output without
restrictions

Restriction A constraint is set on the mapping of the two complex types; in

SQL this corresponds to a WHERE clause

Substep - Input | Must be used when calling a service to provide the input
INVOKE parameters
for this service call

Substep - Input | Can be used when calling a service to provide the input

CALL parameters

for this service call (within z/OS for the same Business System or
Shared Services only).

Substep - Output | Must be used to retrieve the output parameters of a service cali

Internal Mapping | Helper mapping for internal processing

As mentioned above, mappings may also be used as a vehicle for transferring data

between two individual services. An exemplary scenario is illustrated in Fig. 41. The
example shows how the service "GetltemList_V1_0" (A) is called within the service

"GetSingleKunde_V1_0" (B). A first mapping is used for calling service "B”, and a

10

15

20

25

30

WO 2006/111401 PCT/EP2006/003692

-27 -

second mapping is used for returning the result of service "B” to service "A”. A
corresponding user interface is shown in Fig. 42. First, the input complex type of
service “A” is mapped to the input complex type of service “B” in order to provide the
necessary information to service “B”. Next, the output complex type of service “B” is
mapped to the output complex type of service “A”. This means that the return
parameters from the called service "B” are transferred to the output parameters of
“A” (see Fig. 43).

Mapping sources and mapping targets can either be chosen manually or via the “Use
Service” button of the user interface shown in Figs. 39, 42 and 43. Then, a search
dialog appears that permits the selection of a service as a substep. After the
selection has been confirmed, the mapping sources and mapping targets are offered
as shown in the user interface of Fig. 44. This user interface offers the following
options:

Use Input Uses the service input

Use Output | Uses the service output

Use Other ... | Uses another complex type. A search window is opened for finding the
complex type

In addition to defining mapping sources and mapping targets, mapping operations
have to be defined. A mapping operation defines how individual input fields are
transferred to the output fields. Fig. 45 shows a user interface in which the copy
operation is illustrated. Such an operation is for example useful for transferring data
between a database, via one or more entity services and/or process services, and a
presentation service.

In the user interface of Fig 45, a mapping may be added to a service by clicking one
field in the mapping source section, one field in the mapping target section, and by
activating the “Add"” button. If required, more complex operations could be defined
as well.

The modeling tool additionally permits error messages management for a service
that is to be modeled. Error messages management (step 4 in Fig. 11) will now be
explained in more detail with reference to the user interfaces of Figs. 46 to 52.

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-28-

In the service editor start page as illustrated in Fig. 14, the “Error Messages” page
(shown in Fig. 46) can be reached via the corresponding “Error Messages” tab. Error
messages already defined for the particular service are displayed automatically in the
table “Associated user error messages”. The user interface of Fig. 46 shows the page
before any messages have been associated with the exemplary (business) service
GetAddressingImageLlist.

Two types of message can be associated with a business service: Subcomponent-
specific messages and Cormmon messages. Subcomponent-specific messages can be
associated with the service by clicking the button "GAC messages...”, where <GAC>
is the software subcomponent ID in which the services is defined. Likewise, Common
messages can be associated with the service by clicking the button "Common
messages...”. Clicking on either of these two buttons results in a dialog user interface
as shown in Fig. 47.

The table on the left hand side of the dialog user interface shows all possible
messages associated with the subcomponent (or, in the “Common messages”
scenario, of Common messages). Selecting a row of the table displays a summary of
the message on the right hand side of the dialog. It is possible that the user interface
displays no messages, and instead displays an empty table indicating that no error
messages have been defined for the subcomponent in question.

Messages already associated with the service will already be checked when the
dialog is opened. To specify that a message should be associated with the service,
the checkbox of the message has to be marked. To specify that a message should be
disassociated with the service, the checkbox of the message has to be cleared.
Finally, to make the association, the “Associate messages” button has to be clicked.

Fig. 48 shows the original editor screen after both subcomponent-specific and
common messages have been added. The user interface as shown in Fig. 48 offers
to indicated a “"Message Severity”. For each message, one of the following options
may be selected: "Warning", "Exception” or "Severe"

As mentioned above in context with mapping, a service may call additional services.
These calls are defined in the "Mappings" tab of the service editor. After creating a
service mappings, one may reopen the services that are to be called. In the tab

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-29-

"Mapping", all error messages of the called services are listed. The modeling tool
offers the possibility of mapping these "child" error messages into any existing error
message which belongs to the service in work as shown in Fig. 49. In this context,
one or more child messages may be selected first, and then the option "Map to..."
may be chosen and one error message can be selected out of the list as shown in
Fig. 50. The child messages will be mapped to the selected message. After this
action, the corresponding information will be displayed in the column "Mapped to" as
shown in Fig. 51. On the tab "ErrorMessages", all messages which map child
messages are marked with a check-mark (see Fig. 52). Additionally, a mechanism is
provided for removing mappings.

As an example, when generating Cobol service code, for each error message the
following comment will be written into the source:

* <Swscld>:<Messagld> <Productive text in english>
The corresponding output code can look as follows:

« productive Application Error Messages to use for this Service:
x*

* GAC:00001 Invalid input data: {Field}

* GAC:00011 CIF Root {Root}, {Cinr} don't exist or has no business
relationship

* GAC:00012 Business relationship {Busrel-ID} don't exist

* GAC:00013 The relationship management {Role-OE-Krz} already exists

Once the error messages have been specified for a particular service, top-down
modeling is finished and the service model can be transferred to the generator for
generating the required artifacts.

As an alternative to the top-down modeling approach discussed above, bottom-up
modeling can be used (see Figs. 5 and 10). This modeling type uses some previously
defined artifacts to ensure automated fill-out of repository meta information. The
automated processes are called wizards. The following wizards are defined for the
modeling tool of the present embodiment:

10

15

20

25

WO 2006/111401 PCT/EP2006/003692

-30 -

Wizard Name Description

Create Presentation Service | Create Presentation Service Starting from a
Business Component
Create Entity Service Import Database Table and Create Entity Service

Create Service based on DTD | Import DTD

Create Service based on Import Cobol Copybook
copybooks

The operation of each of the four wizards illustrated in the above table will now be
explained separately starting with the creation of a presentation service using an
application component as a starting point.

In order to create a presentation service from a backend application (business
application or technical application), a presentation component must be created first.
The modeling tool can create a presentation service (e.g. WPS) out of an existing
application service. In this context, the application service has to be selected first.
Once the application service has been selected, a container, i.e. the software
subcomponent for the presentation service, has to be chosen. The user interface of
Fig. 53 shows the search function provided by the modeling tool in this regard.
Because only business applications and technical applications are allowed here, these
kinds of software components are set automatically. The user interface of Fig. 53
permits a search for the desired software component. By clicking 'OK' a software
component can be selected and assigned as a container for the presentation service.

The presentation service type has to be selected next via the user interface of Fig.
54. The default presentation service type is “"Simple”. The version of the presentation
service may additionally be entered. In case of a "Simple (Get, Open or Delete)”
presentation service (“simple” e.g. with respect to the corresponding database
operations), a confirmation dialog user interface as shown in Fig. 55 will be
displayed. In case of more complex presentation services (such as a “Modify”
presentation service), additional steps will have to be initiate that will not be
discussed in more detail here. Clicking the “Finish” button initiates the creation of the
requested presentation service. Thereby, elements (objects) are created for the
presentation service in the repository database of the modeling tool and the

10

15

20

25

WO 2006/111401 PCT/EP2006/003692

-31-

presentation service appears in the software component explorer under the selected
application and software subcomponent as shown in Fig. 56. In Fig. 56, the numeral
(1) denotes a presentation service created following the instructions for simple
presentation service, whereas (2) denotes a presentation service created following
the instructions for a “modify” presentation service.

As mentioned above, for bottom-down modeling a further wizard is defined to import
a database table and create an entity service. Based for example on a DB2 table
definition, a so-called DCLGEN file can be generated containing a description of the
table and a mapping to a Cobol copybook. This file can be used for an import of the
table definition in the modeling tool. The DB2 table is represented in the modeling
tool as a complex type. Creation of this complex type out of a DCLGEN file starts with
a table selection dialog as shown in Fig. 57. The directory of DCLGen-Files should
already contain the correct path, e.g.

"|DataSets|Shrxtc1 |SHRXTC1. TRO.DO0.DCLGEN".

Entering the DCLGEN file name pattern refreshes the list of tables available. Selection
of one or more tables and clicking of the “Import” button initiates creation of a new
complex type for each DCLGEN files.

In a next step the one or more created complex types can be selected for the
creation of an entity service (see Fig. 11a). The entity service for the selected
complex types can be defined via the user interface shown in Fig. 58. The following
options exist:

Entity Service Type [Type of Entity Service:
(Read, Search etc)
« Read ("Get") of an object

« Search ("GetList") for objects
« Insert ("Open") a new object

« Update ("Modify") an existing object

« Delete ("Close") an existing object

10

15

20

WO 2006/111401 PCT/EP2006/003692

-32 -

Service Name Logical name of the entity service

Service Version Service version

Module Name Optional module name

Item Name Only available if “Search” as service type has been chosen.

Defines the name used for the result list. For example Item
Name = "Partner" results in the complex type for the service's
result list as shown in Fig. 59.

Fields for Where- [Input complex type of the generated entity service. Fig. 60
Clause shows the configuration for the example.

Fields in Output Output complex type of the generated entity service. Fig. 61

shows the configuration for the example.

After the necessary data have been supplied, the software component release and
the subcomponent in which the entity service will be created can be selected via the
user interface shown in Fig. 62. The release can be opened by use of the “Search”
button (if it is not already open). Clicking “Create” will create the entity service in the
selected software subcomponent as shown in Fig. 63. If the newly created entity
service is opened and the “Mapping” page is displayed, the two mappings are
defined as shown in Figs. 64 and 65.

In the following, another example of bottom-down modeling will be explained with
reference to the import of an existing DTD. To create a new process service, a
software component release must first be opened in the software component
explorer of the modeling tool. Then the software subcomponent which should
provide the service(s) to be created (service provider) is to be selected. The user
interface shown in Fig. 66 allows for a selection of one or more input files containing
the existing DTD(s). After the selection has been performed, clicking on the “Next”
button initiates parsing or the selected DTDs. The complex types that will be created
are then displayed next via a user interface shown in Fig. 67. The import mechanism
merges all complex types that are equivalent. Clicking on the “Finish” button starts
the import process. After the import has finished, the services are shown in the
software component explorer as illustrated in Fig. 68.

10

WO 2006/111401

PCT/EP2006/003692

-33-

Now, a further example of bottom-down modeling will be explained with reference to
the import of an existing copybook file. To create a new process service, a software
component release must be opened in the software component explorer. Then the
software subcomponent which should provide the service(s) to be created (service
provider) has to be selected. The import of a Cobol copybook file can be performed
via the user interface shown in Fig. 69. This user interface offers the following

options.

Software Preset to the selected subcomponent. Clicking “Select...” opens an
Subcomponent | Open Subcomponent dialog

Service Name Service name that will be created

Service Version

Service version that will be created

Service Description for the new service
Description
Service Type Entity Read Service

Entity Read List Service

Entity Insert Service

Entity Delete Service

Entity Update Service

Batch Program / Job / Service

Business Process Service — Request for Information
Business Process Service — Request for Processing
Service - View

Technical Service

Service Publicity

Publicity of service.

Input CopyBook

Copybook structure for the input; see below

Output CopyBook

Copybook structure for the output

Indicator Flags

Ignores the indicator flags found in the selected Copybooks

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-34 -

For the input and output copybook files, a file has to be selected (extension is ".cpy"
or ".cob") via the user interface of Fig. 70. After setting all fields, the “Import
Definition” might look as shown in Fig. 71. Closing this dialog with "OK" will show this
particular import as one row in the copybook import dialog (see Fig. 72). As
illustrated in Fig. 73, the next task is to assign a data item to every field in the
copybooks (by default, all data items are assigned to the "Generic Data Item"). If
one or more fields are to be assigned to an existing data item, corresponding steps
can be initiated via the “Link selected item(s) to existing Data Items...” button, which
launches the data item selection dialog. If a new data item is to be created for one or
more fields, this can be initiated via the corresponding button of the user interface of
Fig. 73. After finishing these assignments, clicking “Finish” will complete the
operation and also complete bottom-up generation of the service model.

Regardless of its creation (top-down or bottom-up), the service model and its
individual model elements will at least temporarily be stored in the repository
database 302 of the system shown in Fig. 3. If a particular artifact is needed, the
service model may then at any time be retrieved from the repository database 302
by the generator 304. The generator will then select one or more template files 306
associated with the underlying service type and with the requested artifact type (e.g.
Java code) and transform the service model into an artifact under control of the
selected template files 306. Accordingly, one and the same model may form the basis
for generating different types of artifacts, including code, test cases, and
specifications such as a physical description of a service. For each of these types of
artifacts, one or more dedicated template files 306 are provided.

In some cases, the generated artifacts may be constructs (or frames) that will have
to be manually completed by entering code (e.g. specific application logic) within
protected areas of the construct. Such a modeling approach has the advantage that
the service model as such is independent of the application logic, which greatly
facilitates the re-use of the service model and its model elements. Moreover,
amendments to the application logic do not require changes of the underlying service
model.

As has become apparent from the above, the provision of the central repository
database permits a guided and highly structured creation of service models. It is
ensured that previously defined model elements such as complex types and data
items can be shared between software developers and software development

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-35-

projects. This sharing increases the re-use of available model elements and thus
reduces redundancies in the modeling process.

It should be noted that in larger software development environments, the central
repository database may include more than 5.000 services, more than 25.000
complex types, and more than 5.000 data items. From these numbers the
advantages of a central repository becomes apparent. The management of service
models and model elements in the repository is much easier (and less resource-
consuming) than the management of the corresponding physical artifacts. For this
purpose, each element (service, complex type, data item) in the repository may be
associated with a unique identifier. The identifier facilitates change management and
allows for an (automatic) change modification. Each repository element may
additionally be associated with a (re-)use indicator. This indicator may serve for
repository management, for example with respect to the deletion and/or archiving of
elements that have not been used for a certain period of time. Furthermore,
authorization profiles may be defined indicating the (re-)usage rights of individual
software developers.

The generative software development approach described herein, with a highly
structured repository database assisting the creation of service models, represents an
advantageous model-driven approach for implementing a SOA, i.e. an architecture
communicating via individually executable services, rather than via objects such as in
object-oriented (00) approaches. It will be appreciated by those skilled in the art
that the above-described methods and devices can be adapted or extended in
various ways. While the foregoing description makes reference to preferred
embodiments, the scope of the invention is defined solely by the claims that follow
and the elements recited therein.

10

15

20

25

30

WO 2006/111401 PCT/EP2006/003692

-36 -

Claims

1. Atemplate-driven system (100) for generating platform-specific artifacts, such
as program code, from platform-independent service models, the system
comprising:

- atemplate storage (102) with platform-specific templates, each
template including platform-specific model transformation information;
- a repository (104) with
i. a plurality of at least essentially platform-independent service
model elements and
ii. one or more service models modeled from the model elements;
and :
- agenerator (106) adapted to generate platform-specific artifacts by
applying the transformation information included in the templates to
the service models.

2. The system of claim 1,
wherein at least some of the service-model elements are shared by two or
more service models.

3. The system of claim 1 or 2,
further comprising a service model creator for creating at least one of service
model elements and platform-independent service models from the service
model elements.

4. The system of one of claims 1 to 3,
wherein the service model elements included in the repository are
hierarchically structured.

5. The system of claim 4,
wherein each service is modeled from one or more first model elements of a

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-37-

higher hierarchy level and one or more second model elements of a lower
hierarchy level.

6. The system of claim 5,
wherein in the service model each first model element is associated with one
or more second model elements, the one or more second model elements
constituting attributes of the first model element.

7. The system of claim 5 or 6,
wherein the first model elements define at least one of one or more service
input parameters and one or more service output parameters.

8. The system of one of claims 5 to 7,
wherein the second model elements constitute leaf fields in at least one of a
service input parameter tree and a service output parameter tree.

9. The system of one of claims 1 to 8,
wherein the service models in the repository are associated with mappings
between two or more model elements or between model elements and
database tables.

10.The system of claim 9,
wherein the mappings define transfer operations between model elements
belonging to the same hierarchy level.

11.The system of claim 9 or 10,
wherein the mappings defines transfer operations between one or more
service input parameters and one or more service output parameters.

12.The system of claim 11,
wherein the input parameters and output parameters belong to different
services.

13.The system of one of claims 1 to 12,
wherein predefined service types are selectable for service modeling.

10

15

20

25

30

35

WO 2006/111401 PCT/EP2006/003692

-38-

14.The system of claim 13,
wherein the service types include one or more of a process service, an entity
service, a presentation service, a technical service, a batch job and a view.

15.The system of claim 13 or 14,
wherein the template storage includes at least one dedicated template for
each service type.

16.The system of one of claims 1 to 15,
wherein there exist a plurality of predefined platform types.

17.The system of claim 16,
wherein the template storage includes at least one dedicated tempiate for
each platform type.

18.The system of claim 16,
wherein the template storage includes for various combinations of service type
and platform type at least one dedicated template.

19.The system of one or claims 3 to 18,
wherein the mode! creator allows for a selection of at least one of a service
type and a service publicity.

20.The system of one of claims 1 to 19,
wherein the generator allows for a selection of a platform type.

21.The system of one of claims 5 to 20,
wherein specific kinds of first model elements are defined and selectable via
the service model creator for service modeling.

22.The system of one of claims 1 to 21,
wherein the generated artifacts include at least one of Java code, Cobol code,
HTML code and XML code.

23.A repository database (302) comprising at least essentially platform-
independent model elements and service models modeled from the model
elements, the service models forming the basis for the generation of platform-

WO 2006/111401 PCT/EP2006/003692

-39 -

specific artifacts under the control of platform-specific templates, each
template including platform-specific model transformation information.

24.A method for generating platform-specific artifacts, such as program code,
5 from platform-independent service models, the method comprising:
- providing platform-specific templates, each template including platform-
specific model transformation information;
- providing
i. a plurality of at least essentially platform-independent service
10 model elements and
ii. one or more service models modeled from the model elements;
and
- generating platform-specific artifacts by applying the transformation
information included in the templates to the service models.
15
25.A computer program product comprising program code portions for
performing the steps of claim 24 when the computer program product is run
on one or more computing devices.

20 26.The computer program product of claim 25, stored on a computer-readable
recording medium.

WO 2006/111401 PCT/EP2006/003692
1/47

102 104 106

Fig. 1

WO 2006/111401 PCT/EP2006/003692
2/47

Provide platform-specific templates, 202
each template including platform- Al
specific transformation information

Provide a plurality of at least essentially /\/ 204
platform-independent service model
elements and one or more service
models modeled from the model ele-
ments

Generate platform-specific artefacts by~ |/\/ 206
applying the platform-specific tem-
plates to the platform-independent ser-
vice models.

Fig. 2

PCT/EP2006/003692

WO 2006/111401

3/47

paJinbai si ajejdwas) (o 198) saJlnjoa)yo.e Ajeoadse

o110ads e joeye (Jo dnoub) yoes Joj& pue safienbue|/swiopeld Juasaylp Joj&
sabeyoed = (INX) 1dV 9bueyoxy «

uoneinbyuon (" zaq ‘s|oel0) woddns SINQY =

sjusaWN20Q = (1DO) Johe| sS820Y =

($921n0S) Sawely 3poD) = (dsr) uaaup sjeldwa] =

Sy ‘aujbud uoneIdudgjuodijeliojsuen]

0T¢
\

W

.| Asoysodas wos sjoejpe
J— — 80¢
sjapow aoAles || uopesauab
:\ (J—— Juonewoysuesy
20€ — — —— s
ﬁ SOOIAI9S sejeldway .VOM

Q
Q
(o)

.m.a,gu_

0oL WIS (deyeukq) (wsy)

euasag jooy “AsQ 001 8dlAleg 1001 TAN

€ b4

PCT/EP2006/003692

4/47

b b1

> uodu
JuoneIBUSL) &

- UONBZIUOIYOUAS
juoljewojsuel| ¢«

]MU

@ aosuanbag

* 4 weleep

_ . : 7 jm T - s

Dakdaniadind M hvu‘!’]‘”“uﬁ ! N)

<¥INLUYS> m w “ [N I

n._ixv, A._2xv_ w “)]

x = | I _

S s s

8oIA19G (uoneolddy) ssauisng w 8imonas s,

I Aﬂ sse|n zzzzzzzp

- |
2215 ssausng g;: S = 7 mm D.l _"

I
Yenm 1y, i I
eagino g A& Geagu) oownios Iz TI...IIII.PIIIIIII!IIIII!.V _PJ.”"
TR , t
%u S S 17 SOINISS ¢ [} "“
f N / mC_QQNE =) N ! —.
£ Sh T] "_
{dsr a0 ¢ Uoggpwdwy oo o4 EEERRRsRmms) S T L L L L L LT L -

[N
90IAIBG uoljejussald . @ [9POIN 99IAI8S |apoW Jusuodwiod
1oBjINY Olj10ads wioje|d A-—_ |apolAl Juspuadapu| wiogie|d

WO 2006/111401

G b4

PCT/EP2006/003692

! 7
i

T

=1
3
)

5/47

NI

vounng s 04 £, sond s ST, el

(L # (v #

yoreoidde umop doy € Cmﬁ@w(.

(2001) Ayjeuonouny |ny &
¢ uoneidy|

|(%.04) Anjeuonouny jo ped
T2 UoNeId)|

280 uusvasausosEaRse

Seldjul &
T} uoneisy]

v. o a_m._.nw.

Dunsmassnuvsmuvensanmennsd

LRABEARBENATEAABE AR &

PHUONEENDNUN BN UOBHACRBRAGN AT

jonpoud Bujuuna
e saonpoud
uonesayt A1aag v

juaidiinbay

(uonesay ue jo ued se) [apoj\ Buplopn

(a19h0 8y
uogn|os aiua jo ued se) |apo Bujiopn

(yjuswdojanaq deys-Ag-de)g) ssa20.14 OIIN

WO 2006/111401

(yuswdojanaq aAneIs)|) sS8201d 0IoB)

WO 2006/111401

6/47
% Software Component |
G Pl
1
*
*
‘ {3 Mapping o _has
SR 1
«ijgw
has

. &sarvice™

i

gﬁ"é“-—-—f—ﬁr—#*‘

% Release

«i5»

PCT/EP2006/003692

WO 2006/111401 PCT/EP2006/003692

7/47

‘ éService has {5 Field
e . . B

1 *

has «ig
o Fig. 8
#* . '
1 "
" "

Start Modeling {H

i
‘s physical artifact reusable
- yes
_ha
TOP DOWN Modleling 5 BOTTOM UP Mudeling
S - - vl i ’A /l,
AN . //
\ some reusable meta information will be set automatically
;

} Servie Modeling

— Fig. 10

"’}, Finishing Modeling

WO 2006/111401 PCT/EP2006/003692
8/47

- Design
Start yo\fieiing

Inizta 2 new senvica design

—

s b
i Crezte Sepdce Version Header
k R
7 kY
s .

Service Interiace Design s . N

14 \
’ Creste A:_-ributes\l thera aré‘&i;wn possiilities To creaie interface atiributes
\ - { . T
N [Grzphical Ediz
AN | -
5, 7
__g /,

Service Orchestration | /
| Create Mappings |
[N . ¥

Excaption Manzgement

: Marage Excaphions |
{ 1
" M ettt g e e e o

Dacumentation Management

i sdditional Documentatian

Qualioy Management

Service Review Raguest

J’» Finishing Service Modeling

Fig. 11

PCT/EP2006/003692
9/47

WO 2006/111401

ert "bi4 @ m:m

9JIAI9S $S9204d

2DIMIRS uoned)ddy

X
\
¥ [worees |

2DIAI3S UO1RIUSSA

indno indug

WO 2006/111401 PCT/EP2006/003692
10/47

Service Basic Data

—Service Basic Data

dyBusinessservice

Business Service Name:

Description:

Version: 1 1.0.0

Service Type: ITechnicaI Service ;j
Service Publicity: iGlobal between Business Systems :j

< Back 1 MNext > g Firish Cancel

Fig. 12

WO 2006/111401

Source of Service

11/47

~Source of Service

How should the new interface be initialized?

¢ New, empty interface

Cancel

PCT/EP2006/003692

WO 2006/111401 PCT/EP2006/003692
12/47
ID: {Bogzeas } ”
I-SAC ID: ! 20464 - 516123
Mame: | GetassetobjectList L
Full-qualified Narne: ; BSTECHINF,.GetAssetObjectList.1.0.0
Description: Browse Asset Objects: “show all childs for given asset
Reason new version: l
Pre-Condition:
Post-Condition:

Migration Aspect:
Environment:

Service Type:

‘Target - Business Service that is fully standards compliant

{map oLy

lTechnital Service

LedLed Led Ledbed bed Led

Publicity: IGIobaI between Business Systems

Call Type: iSynchronous

Info Delivery: iFile

Lifecycle: ii..*r:dax Daw

Version:] 1.0.0

Review Head Data:]No Review Requested A.ij
Is service brokered?]m, :j
Decomm. Release Date: i [DD.MM.YYYY or EFP]

yalidity End Date: i [DD.MM.YYYY)

@] Basic Data§ & Interface 38 Mapping

2\ Error Messages t 47 Documentation | BzgReview |

Fig. 14

WO 2006/111401

PCT/EP2006/003692

13/47

~ Service Attributes

Cobol_Module_Name
Connector_Type
Ervor_Handling_Type
HyqgCallMethodCics
HygNamingActivityStatus
HygNamingServiceScope
HygNamingType
HygnInvokeCics
Method_Type
Package_Name
R10001Code
Service_Cache_Timeout
XML Standard

[k Is the name of the main generated class

Jau Rd
Name] Value i Description 1
BaseEntityBean EntityBean the service maps to
Cache_Enabled Default cachable status of the service
Class_Name

Used to create file names for the Cobol programs. Examp...

Connectors like HL, HL-OLD, MQ, IDBC, BAPI, ISI etc,

Specifies Error Handling, MAP or SSP (source of error-tex...
NamingTable: call method for CICS transaction, default bl. ..

Activity status of service

Scope of service

Type of framework. Default is CSF,
HYQNaming Inf Cics Param (INVOKE = 'EXEC")

ReadService=Query, InsertService=0Open, DeleteService. ..

Includes the full package name in which the classes will b...
Reference Data Type Code

Period (in seconds) for which the service may be cached
Version of XML standard supported by service

@j Basic Data 3 £ Interface | § Mappings

Sy Errar Messages ﬂ Documentation | §z5;Review

~~~~ ¢ Address_Element_2
i o Addiess_Element_3
i 0 Address_Element_4

Fig. 15

Fig. 16




WO 2006/111401 PCT/EP2006/003692
14/47

=g ﬁﬁﬁ Output_RwWaGStuffClassicThree_Vi_G
&I 000 Address_Output
i o Address_List_Length
B-000 Address_List
E1-000 Address (1..%)
Address_Element_1 -
-~ o Address_Element_2 Flg. 17
i © Address_Element_3
© Address_Element_4

<

=1-060 Output_RWGStuffClassicOne_v2_0
&-010 Choice
£1-000 AdressePrivat
: < Address_Element_1
i~ o hddress_Element_z
i o Address_Element_3 -
‘.o Address_Element_4 Flg' 18
1 000 AdresseGeschaeft
Address_Element_1
Address_Element_2
Address_Element_3
Address_Element_4

[ B IR |

. T
- Create new ComplexType

Enter name and select SoftwareComponent for ComplexType

Properties

Mame: ! MyComplexType

DYRAREF

Software Comporient:

Fig. 19




WO 2006/111401 PCT/EP2006/003692
15/47

[rime B2 I\ Corpentye]

Data Tvpe!

T |

¥, Qeaurs: |
{
t

May. Qasrs:

Complex Type |ehye zat | attroutes |

: D: {75008
Name: f MyComplexiyoe

Knd: g:’»eeuen;e

Gumen:  [DYNAREP

Ll bed L

ufecyde;

[
veson |t

= - =T :
1 Fusld - Exnsung Dataitem 2t | astrbutes |
Create Shing o 2 Eeid - Exsiing ComplexTyoe ;
T P 3R - New Sequenze CorplexType
o $Fslg - New Cholce ComplenTyoe |
Copy ComplexType . ]
e Dasorphon
Lo Data Type: ; ikt l
a3 v, Oetuts: i
: '3'_ o B Max, Oceurs: |

Fig. 21



WO 2006/111401 PCT/EP2006/003692

16/47
M pata Item Selection Dialog [ X}
- Seach Grkerig ~ ————— - - — -- - ——
-~ Previously saved Settings - - s
| Thoose one of your previously saved Settings: { d | @] save settngs... l.
; Data ltem Name - - - + . Description : . Searchlength - -
} Use "%’ as wildcard. Search is case-nsensitve! i Use "%’ &s widcard. Search i case-msenstive! Only rumbers are sbowed!
E l tro% ' : I I
Advanced Criverias - e e e -y
Criterias: .
D Data Item Categuy : ;
[Opata item Lfecyde ;
[ Basic Format .
[J owner swC o
[ service Reviews State
[ core Proposat
‘ Seard l ' Reset ‘
~Result matching given Search Crteria (displaying max. 100 results)
Owner | Name Lispe {Length | cat. [ Ratus [ Dictifecyde =
DYNAREP Trade_Base_Unit_Type_Code nusneric 4 CoreDataltem Production Registered
DYNAREP Yrade_Currency AMT sr;n{Composed)  17;1 SpecificDataltem  Production Regstered
[{DYNAREP Trade Currency FI_ID abhar i SpecticDataltern i t
DYNAREP Trade_Currency_To_Balance_Curre... smn{Composed) ..17;1  SpecficDataltem  Production Inadtive -
DYNAREP Trade_Currency_To_Reference _Cur... smn{Composed) ..17;1  SpecficDataltem  Production Inactive
DYNAREP Trade_Date oumeric 8 CoreDataltem Production Registered
DYNARER Trade_Period_ID slphanumeric 16 SpecificDataltem  Production inactive
DYNAREP Trade_QTY_Unit_Code resmeric .4 SpecificDataltem  Production Regstered :
DYNAREP Trade_Time nmELic [ SpecificDataltem  Progduction Registered §
DYNAREP Trade TS0 rasmeric 14 SpecificDatalter  Production Registered
DYNAREP Traded_Option_Yersion NR nUMSTIC .10 SpecificDataltern  Prochuction Registerad
DYNAREP Traded_Options_Settlement_Price_Y... numeric .4 CoreDataltem Production Registered
DV'NAREP Trading Date Exception Type Code  numeric ’ 4 CoreDataltem Production Reg,istereci—r'_]
4 »

Fig. 22

L &, +1E 1y Comple- x{
-03 MyComplesTypa Fisld ; =
e . lmtvtutes}
i; |-2u8
Marae: TradeCcy )
Cescnption: :j

DataType: | Trade_Curesncy FIID Selact,.. l Fi 2 3
g.

Mn. Occurs: |1

Max, Dceurs: l i

Basic ‘Physv:éi l Busiress l EUF l Ufecyche I

o | 620891

Hame: [ 4 i Tradz_Cuwrency _FI_ID Y

[ES, 1




WO 2006/111401

17/47

PCT/EP2006/003692

‘Comp!ex Type Selection Dialog B

- Search Criteria
S Previously saved Settings

| Choose one of your previowsty saved Setings: }

- Complex Typa Name B

At l2ast 1 none-valdcard char required
Use %' a5 wildcard. Search is case-nsensitive!

- Desapon
Leave blank to ignote.

Use %' as wildcard, Search s case-insensitive!

'_{_! .eil Sava Sethngs... l
PRWANES LTRSS at— |

I
i tes |
[ S s e et - S - o - [
Advanced Crkenas —- - - - - - -
| Criterias:
[Orind
[J Complex Type Lifecyds
[ owner swe
Scarch geser |
r Result matching given Search Critena (displaying max. 100 results)
Owner ' Name: [ Version i Kind l Lifecycle [ Id I Description z‘
CODE TRAMSLATION Text_ldentification H Sequence  Development 587664
CODE TRANSLATION Text_List 1 Sequencs Dsvelopment 587679
CODE TRAHSLATION TextChoice H Sequence  Davelopment 557655
CODE TRANSLATION TextChoke List H Sequence Developmert S87654
ACCOUNTING FEEDER Textlist H Sequerke  Developmend 572664
ACCOUMTING FEEDER Textiecord 1 Sequence Development 572668
CONTACT Theme H Sequence Qaveloprment 575501 __I
ZONTACY ThemeDelete i Sequence  Develapment 575643
CONTACY ThemeDelateList i Sequerce  Development $75642
HCONTACT Themelist i equence  Development S75500
FINANCIAL INSTRUMENT TickerSymbolSchemeld H Sequence  Development 574860
OMIREASURYFRONTERD TimeDateStamp H Seguence Development 576143 .
FIEJANCIAL INSTRUMENT TkRateType H Sequerce Deveh:yo\'nenti 575039 Jﬂ
¢ »
o | came |

Fig. 24

080 MyComplexType

- @ NewField
o NewField

-1 [

i-- © First_Legal_Name

Fig. 25




WO 2006/111401 PCT/EP2006/003692

18/47
Ex
MyComplexType Field 'mmbutesl
< Trads
e !'330
Marne: @
Dascnphion: I :j
=

Data Type: | Setett‘,.! Fig. 26

Min, Orours: ] i

Max. Ocews: |1

. Complex Type Properbies [i«ttﬁb tes l

i 1328
Plama: 5
Description: 3 :J

x|
& MyComplexType Einld .
Fie 3
o TradeCey l&t,rstxutesi
} TradeEntriss iay |-3a0
Baras: (I TradeEnines )
Diescription:

Diaks Tope: i Jradefnbrvlist

i, Ocues: i 1

Max. Seors: |1 . Fig- 27

Complex Type Properties. | attnbies |

1 {-320
tlarme: {i TradeEnkrylist ¥
Crescription:

Kind:

Owner;  |DYNAREP

Ledlelbedle b

tifecycle: IL\E;-:r;ix' vy 1

RS [ 1

4 Structure |




WO 2006/111401

19/47

Create new Dataltem

€3 Lengths mustnotbe emy

tame:

Descrigtion:

Calegory:

Zareni Data fieny

&, DE GeneiicDataltem

1D ‘fro000

DICHD 7 VersiondD:

Mame:

Yersion:
Deserption:

Patent Data ltem

Format:
Length

Valid Value List

Category:

Ref Table ID;
Ref Code Value Table: |
Ref Data Code Domain: |

o

£ Basic; % Plysical 5 Business , 136Ul B Lifecyole

PCT/EP2006/003692

Fig. 28

Fig. 29



WO 2006/111401

20/47

Context: LC,Ot!P_' B ) :_J

Implementation Name: |
Default Impl. Type: ~ |PICX(#)
Resulting Type: IF’IC K1)

:@ Basic | & Physical| 27 Busme;s%’lGUI Q:

Business Rule:

Ext. Backus Naur Fotm:

Dbject Con‘stiaigﬁ %atguage: ]

178

FE

Information Object:
' ’5’555% ;

Language: l‘:"’i”\lf‘ ) “:j
Shert {mnemonic) Label: i ‘ ) f;
Medium Label: i e 3
Long Labek I

# Basic { 8 Physical #F Business 1 & aur Q._;a Lifecycle

PCT/EP2006/003692

Fig. 30

Fig. 31

Fig. 32



WO 2006/111401 PCT/EP2006/003692
21/47

Ll

Contact: [omz1773
Data Manager: l . {} _"}
Review State: foe - -}
Data Managemert Remarks: 3
= Fig. 33
Change Description: = | ]
Change Request Date: | | [DD.MM.YYYY)
Version valid since: {28.11.2004 | [DD.MMYYYY]
Léecycle Star Date: | | DD-MMYYYY]
Liecycle Erd Dot L i EDMMYYY]

) Basic, 4 Physical 7 Business ; 3 GUI [ s, Liecycle

—

H3 Input_GetCustomer ¥1 0 Fisld ;?hys‘mi § Altributes %

ER D i
s % .
Description:

Data Type: | ' j
Min. Ceous: | ' v

SR e i aesemm e SRt

2 : 2 mﬁa@j 25 Mappings . 3 Ereor Messages : &g‘? Documentation ; o Review

Fig. 34



WO 2006/111401 PCT/EP2006/003692
22/47

| Create Sibling »  2Feld - Existing ComplexType $ S ———
i L © 3Feld - New Sequence ComplexType
' ld - New Chize ComplexType
Copy ComplexType 4 Feld - New Choize F&mp&ex vp2
.= { Deascription:

Sal o s

V]

EE;} e e

i
P en . !
pE : #in, Occurs: |
PRt i

Data Type: r?f

Max. Otaws: |

Fig. 35



WO 2006/111401 PCT/EP2006/003692
23/47

spuklsatCustomer_vi_0

e &
s Tustomerid D I 529
o Customer_Address_id

Field | physical | Attributes |

Name: i ftem

Description: |

Data Type: {Ibem’ T ‘_‘Seiaf.t _j
Min. Occurs: i 1

Max, Ocaws: |1

Complex Type | Physical | Attributes |

10: 528
Hame: fliem
Description:
-
{ ¥xind: gchﬁi:p
Cwner: DYMAREP

Ll e

I
Lifecyele: ﬁi aitDts ey
!

Yersion: 1

[ Basic Data @ Interface | @ Mappings 1. Error Messagas & Documentation | [z Review

Fig. 36



WO 2006/111401 PCT/EP2006/003692

24/47
EY -
 Tres  Graphical | [%
5 A
i ,[;g Seleet ,
| 7, Marquee : {7 Input_GetBusinessio... () Output_GetBusinessDomai..,
E New Sequence : T T GerBusinessDomanListin. .. . GetPusinessDomanLIstOpU
i HNew Chaice '
i Add ComplexType |
| AddReferente |
E
r Y
{3 GetBusinessDomainti... (9 GetBusinessDomainList...
© Userld " U BusinessDomaingist
117 MewCT
L Y
5 NeweT (3 BusinessDomainList

L] BusinessDomain {1..%)

v
{9 BusinessbDomain
o

O Mame

& Desc(0..1)

O ArchitedtGPN

O Archectidame

¢ ArchitectEmail

O ContextDiagramii (0..1)
O webPege {0..1)

O ProcessCriticafity (0..1)
© StrategicSignificance (0..13}

[} Basic Data | & Intesface 48 Mappings . 5 Error Messages | ¥ Documentation , iz Review

Fig. 37



WO 2006/111401

25/47

PCT/EP2006/003692

ﬁiwﬂ[}ﬁ Input_GetTransferOrderlist_V1 ﬁ>
=000 Search_Crieria -
'--SSE] Partner (0..1)
--:ﬁﬂﬂ Cash_Account_(Criteria (0..1)
© Employee_Short_Code (0..1)
‘- o Org_Unit_Id (0..1)
b 0 Capture_Clearing_Number (0..1)

Fig. 38

-0 Output_GetTransferOrderList_Y1_|

#1000 Partner (0..1)

t--000 Cash_Account

#1000 Order_List

-~ & Order_Clearing_Number

- © Order_pagency_Code (0..1)
- © Application_Code

----- © Online_Transaction_Number
- @ Qrg_Unit_Id (0..1)

----- © Employee_Short_Code (0..1)

GETGUIDELINE - Substep - Input INVOKE

© UseService... ] £ GETGUIDELINE - Substep - Dutput

'::';Mappings Ty P : vavee T e e

| Add. #/GET-PROF-PRTNR-DET - Substep - Input INVOKE | Up
| % GET-PROF-PRTNR-DET - Substep - Output S
? t__if____] GETNONPOSTALADDRESS - Substep - Input INVOKE omn

T Delete.. || # GETNONPOSTALADDRESS - Substep - Output

Fig. 39



WO 2006/111401

Define Mapping Properties
Mapping between service input and a complex type

PCT/EP2006/003692

26/47

Mapping Type Input - ] =]
. Restricti
Mapping Name: eslnc'lon ‘
Desciiption: Substep - Output |
Intemal Mapping L]
Substep - Input CALL -
o Fig. 40
l. oK I i Cancel 1
CopyGetSingleKunde
-~ © Ttem_ID
-~ © Item_Date (0..1)
w0 Item_Mame
=il i
=S Input_CopyGetSingleKunde_Y1_0 =010 ItemChoice

i 0 Clearing_Number
i o Client_Root

[:_ [ subltemListHolder

& Subltemlist_Length
310 SubItemtist
&-100 Subltem (1..*)
;-0 Subltemld |
tev o SubltemMame |
L o AChoice
=1-300 Additional_Info
i 0 Clearing_Number
e 0 Client_Root

mapping 1:
{calling aservice)

mapping 2:
{returning result)

CopyGetltemList

IBIHE Input_CopyGetItenList_Y1_0
i 0 d201_nl
- o d201_kdst

----- o d201_nl

~ o d201_kest

- & business_rel_id
- o d201_ad4m24_1
AAAA o d201_ad4m24_2
-~ 0 d201_add4m24_3
- © d201_ad4m24_4

Fig. 41




WO 2006/111401

B “SE MyS chul.rgERd

x|

27147

PCT/EP2006/003692

~ Mappros

O vudfy..

i

Hsze Servne ]

Add. 1| & Childbction? - Substep - faput INVOSE
3 Childaction] - Substep - Qup.it

&% ChildAction2 - Substep - [aput CALL
Jeleta.. J #% Childdction? - Substep - Outpt

Up

Magpic Sources-- -

Mapsing Targets - cm e

=10 cut_MyG chalungEHD_vi_0

1888 Inpat_MySchulC elE mployeekey V1_0

& Family_Nane
L. o Firsthame

i o EMP_FAMILY_NAMZ
‘-0 EM2_FIRST_NANE

___ Use Input L; Use Outpu: L Us2 Otrer.. |

L Bemose

It SES LI

Juwnn ]

—Marping I peratinne

i i Mappiic Sources

| Inpu_MyS=bulirgBED_V1_CFirstName
Trpu_MyS tularyBED VT _CFaniile_Nane

| #5dNjior | Viepping Targets.
I | nput_MiSchulSetEmployeekay ¥1_CEMP_FRS™_NAM) |

EvplyeeKzy ¥1_CEMP_FAMILY_NA!

L |

Fig. 42



WO 2006/111401 PCT/EP2006/003692
28/47

1

Add.. II &} Childactioni - Substep - Input INVOKE ' Up ]
Modi % ChildAction? - Substep - Output ot
_Modtr || & Chidactors. Substep - Input CALL _ Do |
Delete. . l % Childaction2 - Substep - Output |
Use Service...l

r Mapping Sources - i Mapping T argets

=1-008 Clulpul_MySchuIGelEmponeeEmail_V‘lLA_2 . | =-080 Cutput_MySchulungBHD_V1_0
-~ o EMPLOYEE_PK ‘oo EmaiAddresse
o VALID_FROM
o VALID_TO

o EMP_CREATION_TS
t o TECHNICAL_FLAG | ;
b o OWN_COMPANY_PK

o COST_PROF_CTR_CD *
i~ o OU_PK :
- o WORKING_IN_OU
i o BUILDING_PK
~- o EMPLOYEE_SHORT_CD |

PO T X ol = DO | A LR ERTARE - okl = N 1

L
b e ; ; ’g’.., B e =T ;
tUseInput L;Use utputl,__’%;jzg% l;iih&fa,i | Femove Lg

~ Mapping Operations = =

| Mapping Targets

_Mapping Souiées 7 ] i e R
Output MySchulungBHD_V1_D.EmailAddiesse

Dutput_MySchuGetE mployeeE mail v1_0...

edd. | U Remwe | RemoveAl.

. ) B;;i"c“D;atéi & lnte}iét;& | Mapplng.s .2, Retun Codes § Documentationz Q_@Ee;iew .

Fig. 43



WO 2006/111401 PCT/EP2006/003692
29/47
—Mapping Sources —Mapping Targets
BE-000 Output_CopyGetitemList_V1_0 i o Item_Name ia]
... o dz201_nl E£1-0]0 ItemChoice L
o d201_kdst £3-000 SubltemListHolder
..... o business_rel_id { L. o Subltemlist_Length
,,,,, o d201_ad4m24_1 ©-000 Subltemtist |
.- o d201_addm24_2 ‘ 2080 Subltem (1..*) i
o d201_ad4mz4_3 1 - © Subltemld "
----- © d201_ad4m24_4 : - 0 SubltemName 1
‘. 0 AChoice '
000 Additional_Info i
''''' O Clearing_Mumber |
‘. o Client_Root ;,m

'-‘_,..-—— -

Use Input l_ Use Output LUga Other...

Fig.

Use Input 1_ Use Output l_Jse Other... Femove ] {
.q""-—___

44

Remowe L_



WO 2006/111401 PCT/EP2006/003692
30/47
—Mapping Sources —Mapping Targets

=000 Output_CopyGetltemList_Y¥1_0 . E-000 Output_CopyGetSingleKunde_v1_0 A

.. o d201_nl =-000 Ite
L ( o Item_ID )
. b O - Date (0..1)

a0 _ ~~~~~ © Item_Name
.. o d201_addm24 2 { @-010 ItemChoice
- © d201_ad4m24_3 E-000 SubItemistHolder
- 0 d201_ad4m24_4 ¢ 1o SubltemList_Length
5-000 SubltemList

B-000 Subltem (1..%)

i o Subltemld
: i 0 SubltemName

o _ o AChoice A

v
| UseInput l_ Use Output LJse Other...L Pemove L | Use Input L Use Output LiJse Other...l_ Remove LJ

—Mapping Operations

Mapping Sourcesw . . . i Operation 1 Mapping Targets
Output_CopyGetltemlist V1 0.d201 nl =~ copy ~  Output CopyGetSingleKunde_Y¥1_0.Addi
Output_CopyGetitemList_¥1_0.d201_kdst _copy Output_CopyGetSingleKunde_¥1_0.Addil

ikt yGetSinaleKunde v1 0, Itemh

i Remove l Remove all... l

Fig. 45




WO 2006/111401

PCT/EP2006/003692

~ Assorizied user error messages User error message details
L Errccfiocom o . ) Softuare ID:
-i —iToir.oSEoges ] Mapoing !
: : - . = iMessage ID:
| | | SoftrareID lMe"sage D L:n(or Type (S&v rity itﬂaop&d % ]
1 Error Type:
ROD |pr  Jam |oEv |

Englich Text

German Text

French Text

Italian Text

~ Add/Remove error mess

GAC messages .. Fsrn

DVE SO ISTSans] s

s o
CUMe!

| oo

1 Inien‘aceé % Maopings |

o Reviey

ntstion I B

]
H




WO 2006/111401

32/47

PCT/EP2006/003692

Check one or more checkboxes

i associaie error messages

Associate GAC error messages to GetAddressingImagelist v3.0.0

{0 your service,

~GAC error messages

Softuare ID ; Mzssace ID

Ocac 50315
Ocac 50317
Oecac 50318
Ocac 50407
Ocac 501412
Ocac 50413
Ocac 50414
Ocac &0004
Osac A0
O:ac 60027
Oscac 80023
Oecac /0029
Oecac £0030
Ozac 50041
Oecac £0127
Ocac 80123
Os 60404
&0
&0
A &0
Ocac A0
Oecac &0
Ocac &0
O=ac &1
Ocac A1
Ozac 81

O - £
[y N ol et
5 35
M = Mo
?mo™ W
w L]l_ W

.
il
o
m
wn
W

Eusiness

Technical
Technicel
chnical

] ] ] o
I’D‘ﬂll’ﬂl’l

= F;l
0

o
[X)

chnical
chnicsl

DL Y ]

r_n
by

(%)

PR N e R R
[1d
"

w m
)

]
m
)

rUser error message detzils
Al Software IDv GAC
Message 1D 80420
Error Type:  Technical
PROD ],DT |ar o= |

English Text

German Text

Error while dedlaring cursor {cursory {SQLCODE:  # -
{5QLCodel). -

French Text

Fehler in der Cursor-Deklaration: {cursor} R
{SQLCODE: {SQLCade}}). o

Italian Text

Fehler in der Cursor-Deklaration: {oursord
{SQLCODE: {5GLCade}),

Fehler in der Cursor-Deldaration: {cursor} A
{SQLCODE: {SQLCods}). o

Associale messages i

Fig. 47




WO 2006/111401 PCT/EP2006/003692

33/47
i Associated user error messages 7 r-User error messace detalls
Erroriviessages i Mapping ; o aofhesre ID0 933

— ——p || Message ID: 10000
Software iD LMessage D g Error sypei ¢

10000 N i
30001 Business

Error Type:  Technical

PROD o1 Jam  |oEv |

3003 Technical
. Sfich Teyt
GAC 50420 Technical English Text -
GAaC 60427 'iechngv:al E i Sample error in module
Gac 80423 Technical  Exceplion “Module}. The return code is -
{RC}. A
German Text

Sample error in module
Module}', The return code is
{RC}. K

French Text

Sample error in module i
{Madule}d’, The return code is

{RC -

Iizlian Text

Sample error in module ‘{
{Module} . The return code is

{RCE, s
r Add/Remove error messages
GAC messzges ... Common MESE3GES. .. l Remove errar messagels) I
ol Basic Data | 9§ Interface | £ Mappings ! A\ Error Messagas { ﬁ Documentation | fxReview
. i i

Fig. 48



WO 2006/111401 PCT/EP2006/003692

34/47
[- Ascodiated user error g ~User error ge details
! ErrorMessages Mapping [} Softvare ID: 999
! “] - - Message ID: 10001
Error Type: Business
955 10002 Technical Excepnon GatAddressIma.. PROD l PT l ATT } DEV
935 10003 Technical  Exception GetAddressima...
GAC 40004 Technical ~ Exception GetAddressima... English Text
GAC 40006 Technical ~ Exception GetAddressima... XML-Error in Step {Step}.
GAC 40007 Technical  Exception GetAddressima...
German Text

XML Error in Step {Step}.

French Text
XML -Error in Step {Step}.

Italian Text
XML-Error in Step {Step}.

Add/Remove error messages

GART eseEges . ‘ COmanin Messanss. | REFOVE SN0y H5SE ‘“fﬁ}l

@ Basic Data' 9 Interfaie 8% Mappings l A\ Error Messages | P £/ Documentation E QaReviewl

Fig. 49

—Associated user error messages

ErrorMessages Mapping !
Mapped to i Software ID f Message ID l Error Type i Severity f Child Service

299 13001 Business Exception GetAddressima...
333 10002 Technical Exception GetAddressIma...
399 10003 Technical Exception GetaAddressIma...

| leac -~ ]40004  |Technical |Exception |GetAddressima...

999 10000 Technical Exception ssslma...
999 30001 Business Exception :

999 30008 Technical Exception

60420 Technical, Exception
GAC 60427 Technica xception
GAC 60428 Technical Exception

Fig. 50




WO 2006/111401
35/47

~Associated user error messages

ErrorMessages Mapping ]

Mapped to 159&;:37@_10" L”Mesﬁsageﬂm ‘ Error Type ﬂ Severity *1 Child Service |
999 10001 Business Exception GetAddressIma...
999 10002 Technical  Exception GetAddressIma...
3899 10003 Technical  Exception GetAddressima...
GAC:80420 n GAC 40004 Technical  Exception GetAddressIima...
GAC:50420 AC 40006 Technical  Excepiion GetAddressima...
GAC 40007 Technical  Exception GetAddressIma...

— Assodated user error messages

........................................

Software ID ] Message ID l Error Type i Severity i Mapped i

999 10000 Technical  Exception

583 30001 Business Exception

999 30008 Technical  Exception

GAC 50420 Technical  Exception v
GAC 680427 Technical  Exception %

GAC 60428 Technical  Exception

PCT/EP2006/003692

Fig. 51

Fig. 52



WO 2006/111401

PCT/EP2006/003692

Open SubComponent

Plesse select the Softvuare SubComponent to 2dd the new service

- Previgusly seved Settngs

Choose ane of your previousiy savec Settngs: [

Bag'c {nteria | Advenizd Catenz i

- 5o are Component Search Criteria ——
¥ Show cofbware component releases?

=

Sofavare Component Hame: i

Shovi deleted safiv.zre component releases?

{dyna®t or DYNASE)

Software Camponent Id: l {20571}
Software Id: ’ ghe [ascy

~Servize Seerch O

. Service MName: f
1-5AC Servke ID: |
Service Descnipton: E

Agvanceg Criteria Mot Set Reset i Searh ‘
~ Softyrzre Componenis found
IGHWAY TECHMICAL FRONTEND - 211312
crcel | o
A

Fig. 53

New Presentation Service

Enter Presentation Service Basic Data

Select the type ang version of the preseniaton servite 1o be created. -
Type of presentation service
@ simoie {Get, Cpen or Delete)
& Modify

Fig. 54



WO 2006/111401

PCT/EP2006/003692
37/47

! New Presentation Service

Create a Simple Presentation Service

A smple oresentation service sl be generated using the foloving informason,

tocaton HIGHWAY TECHNICAL FRONTEND/Working Area, ST/AYD
Eusiness Service BSCSWIMBB.ClientInformation.GetBLCList.1.0.0

ESY Version 1.0.0

254 Yersion 1.0.0

Fig. 55

<Bark Rl 3 H Firish &; Cance! ]

N COMS
=2 HIGHY R
~ 3 Verkng Area, ST
- TEr a0
o GetsLCust - 1.0 0
‘o HodfyEi{Safe - 1.0.0 @
T AYE

32 MIGHAY TEST « 208821
3 g HIGHWAY TEST FROMTTEND - 208822
RN

MAP-PARTNER - 208482

Fig. 56




WO 2006/111401

38/47

" impoit Database Tabies

Import one or more tables from a database.

o Table Import
5 . Dwner of Imported Tables:

|JPARTNER OPERATIONAL o =
DCLGen[DB2]]

' - Search criteria
Directory of DCLGenFiles: |T:\DataSets\Shratc1\SHRXT(1.TRO.DO.DCLGEN |

File Mame Pattemn: ﬂasgd_ e B |
~ DCLGen—Fileﬁ- matching search éritelia — ’ - -
- |E5 ASGD101.delgen ]

ASGD111.dclgen
| |E2 ASGD201.dclgen !
i EE ASGD211.dclgen
il | |EBASGD212.dclgen
- |EE ASGD213.dclgen

ASGD214.dclgen
' |E ASGD215.dclgen il
ASGD216.dclgen o
ASGD217.dclgen
ASGD219.dclgen |
%9 ASGD220.dclgen :
|{[E ASGD222.dclgen
“|[E1 ASGD225.dclgen
ASGD226.dclgen
] ASGD231.dclgen
"1 ASGD 23X dclgen
- |EB ASGD311.dclgen

{od md )

B Y P - — - B

Fig. 57

PCT/EP2006/003692



WO 2006/111401

39/47

Create Entity Service(s)

Wizard to create entity services for tables

’~Ent11y Service Properties -

'

@ Read ¢ Search € Insert

¢ update ¢ Delete

Service Name: l GetClientTest

Service Version: jt0.0

! Module Name: l

Item Mame: |

Fields for Where-Clause:

Fields in Output:

D201_NL
[ozo1_kpst
OparT_crIT
[JBUSINESS_REL_ID
1] ABA_MUTATION_TSD
[ ssp_MuTATION_TSD
[ manDATOR_ID
Oozo01_patvur
[Joz201_HaTikD
[Jo201_STATREC
[Jp201_FLAGKD
[Jozo01_rLackD2
[OJo201_rFLaGkD3
[Jo201_FLackD4
[Joz01_FLAGKkDS
[Joz01_NLFLAGKD
[JD201_aDRLNR_KD
[Jo201_aGeEnTC
[Jo201_pomziL
D201_NAT
[Joz201_awIrRTC

Select Al l Deselect All

-~ -~
D201_KDST '
' ICJPART_CRIT :

[ BUSINESS_REL_ID
[J aBA_MUTATION_TSD
. i ssp_MUTATION_TSD
: ICIMANDATOR _ID
D201_DATMUT
[Joz01_HaTIKD
[Jo201_sTATREC
Ob2o1_fLackD

- i D201_FLAGKD2
“{[Jp201_FLAGKD3

- {00 Dz01_FLaGKD4
“{dp201_FLAGKDY

[ D201 _NLFLAGKD

. {{JD201_ADRLNR_KD

+ {C]D201_AGENTC

- {[¥1 D201 _pOMZIL

. iMD201_NaT

1 I00201_awirTC d

’ Select all ! Deselect Al l

Create... I

Close '

=000 Partner_List_Holder

Fig. 58

i~ 0 Partner_List_Length (0..1)

E}wﬁﬁﬁ Partner_List
&-000 Partner (0.%)

-©  d201_domzil

w0 d201_branche

fe o d201_adilnr

i © business_rel_id

Fig. 59

PCT/EP2006/003692



WO 2006/111401 PCT/EP2006/003692
40/47

=] CH] Input_GetClientTest_v1_0
— © dz01_nl
t o d201_nat

Fig. 60

=003 Output_GetClientTest_¥1_0

w0 d201_nl

b0 d201_kdst

w0 d201_datmut

i o d201_flagkd2

i o d201_domzil

o d201_nat

i o d201_brancl

‘o d201_branc2

‘o d201_plz Fig- 61



WO 2006/111401 PCT/EP2006/003692
41/47

Create Entity Service
Select Software SubComponent where service should be appended

Basic Criteria | Advanced Criteria ]

 Previously saved Settings
Choose one of your previously saved Settings: r __fJ P I Save Settings... 1 .
- Software Component Search Criteria !
Scftware Componentkind: |~ BA 17 Bc I~ 18 ¥ 1C !
Ic Show software component releases?
Software Component Name: I dyna% {dyna% or DYNA%]
Software Component Id: i _[e05714)
Software Id: ! [abc or ABC)
Service Search Criteria
Service Name: l ) ) {get% or GET%]
Service Id: I . SERVICEIDHINT
Service Description: l - SERVICE DESC HINT
_ Software Components found
Z-45 DYNAREP (Technical Component, 209987)
1.1.3, PROD
1.1.5, 5T
1.1.6, 5T
1.3.0, ST
Working Area, ST

Create Cancel Fi g 6 2
.

-~ Software Cnrnponenf E
5= Technical Components
£ 2, DYNAREP - 2099387
=-Em 1.1.3, PROD
-7 H1Z
=-Ea 1.1.5,5T
B HIZ
----- @p CheckInServiceImplementati
- @, CopyGetSingleKunde - 1.0.1
~Q@p GetTransferOrderList - 1.0.C
@ GetUserPartnerList - 1.0.0
~ Qo WPSMODELER - 1.0.0
2By 1.1.6, 5T

m 551 uir

Fig. 63




WO 2006/111401 PCT/EP2006/003692
42/47

BE SE Gel

~Mappings

.. | [ TR s
ModFy... I # - cutput Down
Delete... l

1

tCliznt TesHADY

~Mapping Sources —————em—— {—Mapping Targets
i
nput_GetClientTest_¥1_0 | =093 TASGD201KUNDE _;J
o d201_nl | -0 D201_NL

.o d201_nat - .o D201_KDST
. o PART_CRIT
‘- o BUSINESS_REL_ID
{. o ABA_MUTATION_TSD
0
o
o

$5P_MUTATION_TSD
MANDATOR _ID

: D20t _DATMUT :J
L__lse IanL'se Outp:j_;e Other.L:'.emweL L_Jse Inpui_lse Outpd_,ze Othar.LRemcweL
(~Mapping Operations
Mapping Sources I Operation | Mapping Targets
Input_GetClientTest_¥1_0.d201_nl  copy TASGD201KUNDE.D201 _hL
Input_GetClientTest_¥1_0,d201_nat  copy TASGD201KUNDE.D201 _NAT
—_— P Fig. 64
Add... L Rewoye ] Remove All... L_

) Basic Data i 4 Interface | & MappingsJ . Return Codes | ;/ Documentation | f-;Review
O ot !

SE GetClient

- Mappings

Add... ! % - Restriction
- - Qutput -

Modify. .. ! ﬂ' . Do

Delete... i i

I

r~Mapping Sources rMapping Targets
{581 TASGD201KUNDE ':‘:j 108 Output_GetClisntTest_v1_0

i~ o D201 -0 d201_nl
i & D201_KDST + 0 d201_kdst
-© PART_CRIT - © d201_datmut
- - BUSINESS_REL_ID ‘- © d201_flagkdz
~~~~~ © ABA_MUTATION_TSD -0 d201_domail
~ © SSP_MUTATION_TSD .o d201_nat
----- © MANDATOR_ID - o d201_branci
.- 0 D201_DATMUT o d201_branc2
»»»»» © D201_HATIKD -0 d201_plz
~ & D201_STATREC
- A D201 R ACYY Ll

| use Input | sse output Jse other..|_ Rewove || | Use tnput| use output] sss sthen. | fernove |

r-Mapping Operations

Mapping Sources ! Operation f Mapping Targets AI

TASGD201KUNDE. D201 _MNL copy Output_GetClientTest_Y1_0.d201_nl

TASGD201KUNDE.D201 _KDST copy Output_GetClientTest_Vl_D.dZOl_kd_st

TASGDZ01KUNDE.D201_DATMUT copy Output_GetClientTest_¥1_0.d201_datmut

TASGD201KUNDE, D201 _FLAGKD2 copy Output_GetClientTest_¥1_0.d201_flagkd2

TASGD201KUNDE.D201 _DOMZIL copy Output_GetClientTest_Y¥1_0.d201_domzil -

“ s Fig. 65
L Add, .. l Pamiie l_ Remove All,.. Ig .

j’_n'j Basic Data .) Interface [i+ MappingsJ ¢+ Return Codes ;.,?f Documentation . §- Review

WO 2006/111401

DTD Import

Please select the files that should be imported

43/47

- DTD Selection

DTD Directory:

| H:ADCI-ALCM-DEYSO - Produkte I

[0 GetTnumber _1_0.dtd

[GetTokenisedLocalPartnerlist_t _0.dtd

[0 GetTokenisedi ocalPartnerListForModification_t _0.dtd
[GetTokenstatistics__0.dtd

. |0 GetTotalControlDataAndApplicationStatus_1_0.dtd

[GetTotalControiDataAndApplicationStatus_3_0.dvd
[GetTotalControlDataAndApplicationStatus_4_3.dtd
O GetransferorderDetail_1_0.dtd
GetTransferOrdertist 1 0.did
[GetTransmitMessageXmi_1_0.dtd

[J GetTypeRefList_1_0.dtd

[Getubskey_2_0.dtd

[GetuUttimoDate_1_0.dtd

[GetuserMessageList 1 _0.dtd
GetUserPartnerList_1_0.dtd

[J GetuserPartnerListForModification_1_0.dtd
[Getuserprofile_1 _0.dtd

[GetuserresultList_1_0.dtd

[GetUserSettings_t_0.dvd

[J GetvalidvalueContainertist_1_0.dtd

[cetvalidvalueList_1_0.ded

[Getvalues_t_0.dtd

O Getwertplis_1_0.dtd

[GetwertplisPosition_t _0.dtd

[GetwertplisPositionList_1 _0.dtd

[GetworkBenchDetail_1 _0.dtd

[GetworkslockList_t_0.dtd

M catuwinbirattom 1 N drd

E Select Al j

=l

Fig. 66

PCT/EP2006/003692

WO 2006/111401 PCT/EP2006/003692
44/47

Merge Complex Types

~Complex Types]

Cash_Account
Cash_Account_Criteria
Creditor_Short_Address
Data_Capture_Person
Debitor_Short_Address
ExpectedOutput
Input_GetTransferOrderlist_¥1_0
Input_GetUserPartnertist_¥1_0
LocalData

MatchParameters

Order

Order _Criteria

Order_List
Output_GetTransferOrderlist_v1_0
Output_GetUserPartrerList_¥1_0
Partner

PartnerData

Partnerld

PartnersList

RelativeMatchWeight
Search_Criteria
SearchParametersist
Specialised_Advisor
SystemContext
WorkListResponsibilityData

Fig. 67

i fevt > ” Finish l Cancel

ftware Componer E

> Business Applications
= Business Components
-5 Technical Applications
=& Technical Components
£-8 DYNAREP - 209987
@I 1.1.3, PROD
B 1.1.5, 5T
:
@, CheckinSer vicelmplemant ation
%y CopyGetSingleKunda - 1.0.1
-8 Getclien
=V GetTransferOrderlist - 1.0,
GetUserPartriertist - 1.0.0

(-G£}
v
=

T -G -£53

i 1.3.0, ST -
Bo pequested, ST F Ig . 68

3 '?bg Working Area, ST

i T

WO 2006/111401 PCT/EP2006/003692
45/47

CopyBook Service Import Definition

Please spedify allinformaton as veell a5 the input/ouiput ConvBook {an be the same)

— CopyBook Service Import Definition

Softvare Subcomponent: IHJZ :_]
Service Mame: [

Service Yersion: l 3.0

Service Description: I

Service Type: gTev: cal Servic __V__!
Service Publicity: jeiobai hetween Susiness Systems _ﬂ
Input CopyBook: i

Qutput CopyBook: i Select... !

vEooks for this service

Indicater Flags:

Fig. 69

(€ s Cancsl 1

My Documents

=)
Wy Cemputar

<)

My e
Placs

i
L4
E

g

e | Fig. 70

WO 2006/111401 PCT/EP2006/003692
46/47

~Copyseck Service Impart Definition

. Softviare Subcomponent: }HJZ 7 _v:J

! Service Mame: QConﬁrmInstance

Service Version: {2.0.0

Service Desorintion: i Service to confirm instance

Service Type: ’Bab:h Job /Program § Service :_]

i

g Service Publidty: iG%obal between Business Systems :J

input CopyBook: l 1y Documenis\Tempi_gen\GetSusingssService_ir Select... 1
! Ouiput CopyBoole IP:Wy Documenis\Tempi_geniGeiBusinessService_ot Select... !
Indicator Ffagg: ¥ ignoreindicator ﬁags in CopyBocks for this service

Fig. 71

[w]
S

Cancel {

CopyBook Impart
Plesse spenfy g sarvices whio you TEnt (o mRert
¢ LopySask Seryies Duports

e i Servistiame {verson | tnput Copyank Quiput GonySoek

i

Fig. 72

rent > Came }

WO 2006/111401

PCT/EP2006/003692

CopyBook Import

Feate ety Gz eelien kv e

-0
D .
g
iB8s ;
K e
CJesen Qi Cansy DA
[Jved son GErerDaiies
L sefecied v fo astop DSITtE M. I 2l ney Saisiion ool Ik vith selemied e, E i

Fig. 73

<geds | -« [mwn Geme |

p .
Project and Team ... | Task Explorer

D{BusinessSe
GetlanfgurationD

Fig. 74

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

