
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2013/093669 Al
27 June 2013 (27.06.2013) P O P C T

(51) International Patent Classification: (74) Agents: MEYER, Michael et al; IBM Research GmbH,
G06F 11/10 (2006.01) IBM Research - Zurich, Intellectual Property Law,

Saeumerstrasse 4, 8803 Rueschlikon (CH).
(21) International Application Number:

PCT/IB2012/056565 (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
20 November 2012 (20.1 1.2012) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

(26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

11194950.9 2 1 December 201 1 (21. 12.201 1) EP NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

(71) Applicant: INTERNATIONAL BUSINESS MA¬ TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
CHINES CORPORATION [US/US]; New Orchard ZM, ZW.
Road, Armonk, New York 10504 (US).

(84) Designated States (unless otherwise indicated, for every
(71) Applicants (for M G only): IBM (CHINA) INVEST¬ kind of regional protection available): ARIPO (BW, GH,

MENT COMPANY LTD. [CN/CN]; 25/F, Pangu Plaza, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
No. 27, Central North 4th Ring Road, Chaoyang District, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Beijing 100101 (CN). IBM RESEARCH GMBH TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
[CH/CH]; IBM Research - Zurich, Saeumerstrasse 4, CH- EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
8803 Rueschlikon (CH). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(72) Inventors: MITTELHOLZER, Thomas; IBM Research

ML, MR, NE, SN, TD, TG).
GmbH, IBM Research - Zurich, Saeumerstrasse 4, CH-
8803 Rueschlikon (CH). PAPANDREOU, Nikolaos; IBM Published:
Research GmbH, IBM Research - Zurich, Saeumerstrasse

— with international search report (Art. 21(3))
4, CH-8803 Rueschlikon (CH). POZIDIS, Charalampos;
IBM Research GmbH, IBM Research - Zurich, Saeumer
strasse 4, CH-8803 Rueschlikon (CH).

(54) Title: READAVRITE OPERATIONS IN SOLID-STATE STORAGE DEVICES

data encoder codewords 4 2
(SPC-based codes) (N q symbols)

read/write -level
»-»

decoder 7

data data codeword
Ύ5 controller PCM

TV-component memory

decoder detector read signals

Figure 1©
(57) Abstract: Methods and apparatus are provided for reading and writing data in q-level cells of solid-state memory (2), where

o q>2. Input data is encoded into codewords having N q 1 symbols, wherein the symbols of each codeword satisfy a single-par
ity-check condition. Each symbol is written in a respective cell of the solid state memory (2) by setting the cell to a level dependent

o on the value of the symbol. Memory cells are read to obtain read signals corresponding to respective codewords. The codewords
corresponding to respective read signals are detected by relating the read signals to a predetermined set of iV-symbol vectors of one
of which each possible codeword is a permutation.

READ/WRITE OPERATIONS IN SOLID-STATE STORAGE DEVICES

This invention relates generally to read/write operations in solid-state storage

devices (SSSDs) and, more particularly, to methods and apparatus for reading and writing

data in multi-level cells of solid-state memory.

In solid-state memory such as flash memory and phase change memory (PCM), the

fundamental storage unit (the "cell") can be set to a number of different states, or "levels",

which exhibit different electrical characteristics. These different levels can be used to store

information. To readout stored information, cell-level is detected via measurements which

exploit the differing electrical characteristics to differentiate between different levels. In so-

called "single-level cell" (SLC) devices, the memory cells can be set to only two levels and

so can record only binary values. Other devices have so-called "multi-level cells" which

can be set to q different levels, where q>2. Multi-level NOR flash memories, for instance,

can store 4 levels, i.e. 2 bits, per cell. Multi-level cell (MLC) NAND flash memory chips

that can store 3 bits of data per single flash cell using 25 nm process technology are

currently available. Storage of 2 bits per cell in PCM chips has also been demonstrated.

When writing information to multi-level cells, each cell can be used to store a -ary

symbol with each of the q possible symbol values being represented by a different cell

level. On readout of multi-level cells, the read signal level is compared with a set of

reference signal levels indicative of the q cell-levels in order to determine which level each

cell is set to and thus detect the stored symbol value. However, a problem in multi-level

SSSDs is that the physical quantity measured during cell readout, such as electrical

resistance in PCM devices, is liable to drift. In particular, the electrical resistance of PCM

cells drifts upwards with time in a stochastic manner. This drift can be data-dependent, i.e.

may vary for different cell levels. As another example, in flash memory cells the physical

quantity measured is the transistor's threshold voltage and this drifts upwards as a function

of the number of write/erase cycles the cell is subjected to. For any given stored symbol

value and hence cell level, therefore, the actual read signal level obtained on cell-readout is

variable.

Drift is a serious problem for multi-level storage in that it severely compromises

reliability. The readback values of neighboring levels may interfere over time, due to

upward drift of the lower level towards the upper level, causing a detection error. The

closer the initial spacing between levels, the more susceptible they are to drift. Hence

packing higher numbers of levels per memory cell becomes more difficult due to the

increased likelihood of error during cell-state detection. On the other hand, packing more

bits per cell is a crucial requirement for all memory technologies, being the best known

way of reducing manufacturing cost per bit.

A few techniques have been proposed to tackle the problem of drift, but most

remain at the academic interest level. One proposal is to use a certain part of the memory

cell array as a reference pool of cells. These cells are written with known signal levels, and

are continuously monitored during device operation, to obtain estimates of drift. The

estimated drift values can then be used to update the reference levels used for level

detection on readback. However, drift is a statistical phenomenon and there is significant

variability between cells in the array, so reference cells may not be representative and the

effectiveness of the proposed reference-cell based approaches will vary substantially over

time and over different portions of the memory array. Other drawbacks of this method

include: the overhead it entails, which translates to a loss of memory capacity; the penalty

in terms of controller complexity and latency due to the readout of the extra cells, and

issues related to the management of the pool of reference cells, e.g. wear-leveling issues.

Model-based drift cancellation techniques seek to model drift based on key

parameters such as temperature, time and wear, and compensate accordingly. It is,

however, difficult to obtain an accurate cell history for the key parameters. There are also

fluctuations from cell to cell and there is no well-established analytical model available for

short-term drift.

Techniques based on coding have been proposed to address other problems in

multi-level memories. For example, rank modulation has been proposed to address

endurance problems and overshoot errors in flash memories (see "Rank Modulation for

Flash Memories", Jiang et al., IEEE Trans. Inf. Theory, vol. 55, no.6, June 2009; and US

Patent Application Publications No's. 2009/0132895A1 and 2009/0132758A1). While rank

modulation may offer some drift benefits, it has two severe drawbacks, namely: (i) it offers

only low code rate for a given number of levels; and (ii) it lacks an efficient mapping of

data bits into codewords. Hence, rank modulation does not provide a practical solution and

is mostly of theoretical interest.

A technique based on coding, and aimed specifically at drift, is detailed in our

copending US Patent Application Publication No. 201 1/0296274A1. This technique

encodes input data as iV-symbol codewords of a so-called "translation- stable code". Each

codeword symbol can take one of q symbol values and is recorded in a respective g-level

cell by setting the cell to a level dependent on the -ary symbol value. The translation-

stable code is such that each possible input data word is mapped by the coding scheme to a

codeword with a unique sequence of relative symbol values. Such a code can be

constructed from codewords in a set of one or more permutation codes. Each codeword of a

permutation code is a particular permutation of a predefined vector (the "initial vector")

which has N q-ary symbols arranged in order of increasing symbol value. Detection of

codewords on readback can be performed by relating the read signals for codewords to the

initial vectors for the code. With a translation-stable code, information is effectively

encoded in the relative, as opposed to the absolute, read signal component levels. This

feature obviates primary effects of drift on detection accuracy, whereby translation-stable

codes can be considered effectively drift-invariant. Translation-stable codes also offer

higher code rates than rank modulation schemes for a given number of levels. However, the

construction of good translation-stable codes with large minimum-distance and high rates is

based on a case-by-case study as there is no systematic approach to design of such codes.

Moreover, there is no known simple mapping of data bits into translation-stable codewords

and vice versa.

Our copending European Patent Application no. 11183336.4, filed 29 September

2011, discloses a drift-resistant technique for read-detection of permutation-based codes in

multi-level SSSDs. The detection system exploits the fact that all codewords are

permutations of a known set of vectors, e.g. the initial vectors for a union of permutation

codes. The N q-ary symbols of each codeword are again recorded in respective g-level cells

by setting the cell-level in accordance with symbol value. Memory cells are read in batches

to obtain read signals corresponding to a group of codewords. Each read signal has N signal

components corresponding to respective symbols of a codeword, and these components are

ordered according to signal level to obtain an ordered read signal for each codeword.

Components of these ordered read signals are related to symbols of the known set of initial

vectors via a process which involves averaging ordered read signals and relating the

average components to symbol values using predefined probabilities of occurrence of

different symbol values at different symbol positions as derived from the initial vectors. In

this way, reliable estimates can be obtained for the reference signal levels for the g-level

cells in the current batch. These reference levels can then be used in codeword detection for

the current batch. This self-adaptive technique thus uses the actual cells storing encoded

data to estimate the reference levels for those cells on readback, thereby accounting for

drift effects on a dynamic basis. The technique is also robust and lends itself to simple, fast

decoder implementation. Good, practical encoding schemes for use in such systems

nonetheless remain a matter for case-by-case study.

An embodiment of one aspect of the present invention provides a method for

reading and writing data in g-level cells of solid-state memory, where q>2. The method

comprises:

encoding input data into codewords having N < a symbols, wherein the symbols of

each codeword satisfy a single-parity-check condition;

writing each symbol in a respective cell of the solid state memory by setting the cell

to a level dependent on the q y value of the symbol;

reading memory cells to obtain read signals corresponding to respective codewords;

and

detecting the codewords corresponding to respective read signals by relating the

read signals to a predetermined set of N -symbol vectors of one of which each possible

codeword is a permutation.

Methods embodying this invention encode data for storage in multilevel cells using

length-N, g^-symbol codes in which the symbols of each codeword satisfy a single-parity-

check (SPC) condition. The SPC condition may apply to the symbols as a whole or to sub-

symbols thereof as discussed further below. Methods embodying the invention are

predicated on the realization that, because the result of a single parity check is invariant

under permutation of its arguments, the codewords of such SPC-based codes are all

permutations of an identifiable set of N -symbol vectors (where this set of vectors may in

general contain one or more vectors). This permutation feature can be exploited to enable

codeword detection. Thus a practical decoder implementation is available, and advantage

can be taken of the benefits offered by SPC-based codes. In particular, SPC-based codes

provide good, high-rate codes with large minimum distance. This, in conjunction with

efficient permutation-based decoding, offers excellent performance in read/write systems

embodying the invention. In addition, many SPC-based codes have simple encoders with

efficient mapping of data bits into codewords. This can be exploited in preferred

embodiments for exceptionally efficient implementations. In general, the ability to use

SPC-based codes in multilevel SSSDs by exploiting the permutation property for decoding

offers a systematic approach to the construction of high-rate codes for multilevel SSSDs

with simple encoding of user data and good trade-off between gains in minimum distance

and rate loss. Moreover, the permutation property of SPC-based codes allows drift-

resistant techniques to be implemented as discussed earlier. For instance the read-detection

technique of EP 11183336.4 referenced above can be employed in embodiments of the

invention. Particularly preferred embodiments employ SPC-based codes which are also

translation- stable and hence drift-invariant. Overall, therefore, methods embodying the

invention offer very significant advantages in multilevel-cell storage devices.

The single-parity-check condition which the symbols of each codeword satisfy may

be that the q y symbols as a whole, or sub-symbols of these q y symbols, satisfy a single-

parity-check equation. In particular, the SPC-based code may be a single-level code in

some embodiments. The codewords may, for example, be codewords of a length-N SPC

code. Alternatively the codewords may be codewords of a coset of such an SPC code. In

other embodiments, the SPC-based code may be a multilevel code whereby the codeword

symbols each comprise a plurality of sub-symbols corresponding to respective code levels.

In this case, in each codeword, the N sub-symbols of at least one code level may comply

with one of a length-N SPC code or a coset thereof. That is, for at least one code level, each

group of N sub-symbols forms a codeword of an SPC code (or coset). Thus, there can be

multiple single parity checks each applying to a different code level. Examples of these

various SPC-based codes will be given below. With all such codes, preferred embodiments

can take advantage of the SPC-based code to perform simple and efficient encoding of

input user data. This is discussed further below.

The set of possible (i.e. permitted or "valid") codewords used in the system need

not necessarily include all codewords encompassed by the SPC-based code in question. In

particular, some embodiments may employ a limited codeword set obtained from a reduced

set of basic vectors from which one or more vectors has been eliminated. This is explained

in detail below. While this increases encoder complexity, it may be desirable in some

embodiments as the reduced vector set simplifies decoding and so may enhance error

performance.

The permutation property of the SPC-based codes is exploited for detection

purposes by relating the read signals for codewords to the set of vectors of which all

codewords are permutations. The particular detection process, and the particular way in

which read signals are related to the set of basic vectors during this process, can vary in

different embodiments, e.g. depending on the particular SPC-based code employed. The

detection process typically involves an ordering of the components of read signals.

Specifically, each read signal may comprise N signal components corresponding to

respective symbols of a codeword. The components of each read signal are ordered

according to signal level to produce an ordered read signal. The components of ordered

read signals are then related to symbols of the set of vectors during detection. The details of

this process may depend on the particular code, e.g. whether the code is translation stable

or not and the number of vectors in the aforementioned set. For codes with a plurality of

basic vectors, the relating of read signal components to vector symbols may be performed

via an averaging process over a group of ordered read signals, generally as in the

permutation-based detection system of EPl 1183336.4 referenced above. Here, the average

components can be related to corresponding symbols in the basic vectors, using the

aforementioned probabilities, to derive estimates for the reference signal levels for the q

cell-levels. The process can also involve one or more further stage(s) of relating ordered

read signals to basic vectors, e.g. via a clustering process, and/or a trellis decoding stage.

Detection techniques for various scenarios will be described in more detail below.

An embodiment of a second aspect of the invention provides apparatus for reading

and writing data in g-level cells of solid-state memory, where q>2. The apparatus

comprises:

an encoder for encoding input data into codewords having N q y symbols, wherein

the symbols of each codeword satisfy a single-parity-check condition;

a read/write controller for writing each symbol in a respective cell of the solid state

memory by setting the cell to a level dependent on the q y value of the symbol, and for

reading memory cells to obtain read signals corresponding to respective codewords; and

a detector for detecting the codewords corresponding to respective read signals by

relating the read signals to a predetermined set of N-symbol vectors of one of which each

possible codeword is a permutation.

In general, where features are described herein with reference to a method

embodying the invention, corresponding features may be provided in apparatus embodying

the invention, and vice versa.

Preferred embodiments of the invention will now be described, by way of example,

with reference to the accompanying drawings in which:

Figure 1 is a schematic block diagram of a solid-state storage device embodying the

invention;

Figure 2 shows a generalized encoder for the Figure 1 device;

Figure 3 indicates key steps in operation of an exemplary codeword detector in the

Figure 1 device;

Figure 4 indicates further steps of a first codeword detection method;

Figure 5 shows an exemplary trellis diagram for use in the method of Figure 4;

Figure 6 indicates steps of a second codeword detection method;

Figure 7 illustrates construction of a simple translation- stable code;

Figure 8 illustrates drift in relation to nominal resistance levels for 4-level and 5-

level PCM cells; and

Figure 9 compares error performance of an embodiment of the invention and an

uncoded scheme with various detection methods.

Figure 1 is a simplified schematic of a solid-state storage device, here a phase-

change memory (PCM) device 1, embodying the invention. The device 1 includes phase-

change memory 2 for storing data in one or more integrated arrays of multilevel PCM cells.

Though shown as a single block in the figure, in general memory 2 may comprise any

desired configuration of PCM storage units ranging, for example, from a single chip or die

to a plurality of storage banks each containing multiple packages of storage chips. Device 1

includes an encoder 3 for encoding input data in accordance with an SPC-based encoding

scheme discussed further below. A read/write controller 4 controls writing of codewords in

memory 2 and subsequent reading of memory cells to obtain read signals corresponding to

codewords. A decoder 5 for processing the read signals comprises a codeword detector 6,

which detects codewords corresponding to the received read signals, and a data decoder 7

which decodes the codewords to recover the original user data.

Each of the PCM cells in memory 2 can be set to one of q>2 nominal levels

designated to lq _i herein. Read/write controller 4 can set a cell to a particular level by

adjusting the resistance of the cell in known manner. To read a cell, controller 4 applies a

small probing signal to obtain a readback signal indicative of the cell's resistance. During

write and read operations, controller 4 addresses individual cells in known manner by

applying appropriate voltage signals to an array of word and bit lines in memory ensemble

2 .

In operation of device 1, the input data to be recorded in memory 2 is supplied to

encoder 3 . The encoder 3 encodes input data into codewords which have N -ary symbols

s„, n = 1, 2, . . ., N , where in general N ≥q . Hence, the symbols of a codeword can each take

one of q possible values (sn e {0, 1, q-l}). The q possible symbol values correspond to

respective predetermined levels to lq . of the g-level cells in memory 2 . In this example, a

direct correspondence between symbol values 0, 1, . .., q-l and cell levels to lq _i is

assumed for simplicity. Controller 4 stores the N symbols of each codeword output by

encoder 3 in respective cells of memory 2 by setting each cell to a level dependent on the

symbol value to be stored in accordance with the predefined correspondence between

symbol values and cell levels. (Note that, when setting a cell to a given level, the actual

resistance value x assumed by the cell may lie within a small interval around the nominal

resistance value / for the level due to write noise).

Encoder 3 implements an SPC-based code such that the N symbols of each

codeword satisfy a parity condition. The SPC-based code may in general be a single-level

code or a multi-level code. Figure 2 is a schematic illustration, in generalized form, of a

simple encoder for use in preferred embodiments of device 1. The encoder 3 is

implemented here by a binary symbol converter 8 and a parity encoder 9 . The binary

symbol converter 8 maps binary input data symbols into converted data symbols in which

the binary data is represented in a different alphabet or alphabets. For single-level codes,

the data conversion is performed directly from binary to q-ary data symbols. For multi

level codes, binary data is mapped to groups of "sub-symbols", with respective "sub-

alphabets", which in combination represent a q-ary value. This is explained further below.

Binary symbol converter 8 thus performs a simple data mapping operation, involving no

SPC-based coding. The converted data symbols are then output to parity encoder 9 which

encodes successive groups of data symbols into length-iV g^-symbol codewords whose

symbols satisfy the parity condition for the code in question. The encoding involves a

simple addition of parity symbols to converted data symbols as discussed further below.

The symbol converter 8 can be implemented for preference using hard-wired logic gates or,

for example, using a look-up table for the alphabet conversion. The parity encoder 9 can

also be implemented in a simple manner using hard-wired logic gates. Suitable

implementations will be readily apparent to those skilled in the art from the description

herein. Data decoder 7 can be constructed in corresponding manner to perform the inverse

of the encoding operation in encoder 3 .

In some embodiments, the SPC-based code used in encoder 3 may be a length-iV

single-parity-check code or a coset of such a code. These are single-level codes. A length-iV

SPC code over the ring of integers modulo q is defined by the single-parity-check equation:

c i + c2 + . . . - ¾ν = 0 (modulo q)

where Ci to cN are the N q symbols of a codeword. The cosets of this code are defined by

the single-parity-check equation:

c i + c2 + . . . - ¾ = p (modulo q)

where p is a predetermined integer between 1 and q-1. Such SPC codes (or cosets) have a

rate of (N-l)/N and a minimum Hamming (and Lee) distance of dH = dL = 2 . In operation of

the Figure 2 encoder with such a code, the symbol converter 8 maps binary input data into

successive groups of (N -l) q data symbols. This mapping of binary to q symbols can be

achieved in known manner. If q is a power of 2 then the mapping is trivial. Otherwise the

mapping can be achieved by performing a base change (i.e. a data conversion) from a

binary to a q y alphabet. In any case, parity encoder 9 then simply encodes each group of

(N -l) q y data symbols into a respective N -symbol codeword by adding a q y parity symbol

so as to satisfy the parity-check equation above.

A particular example of the foregoing is provided by length-9 SPC code over the

ring of integers modulo q=5. Such a code can be used with PCM cells for which q=5

nominal cell-levels are defined for data storage. This code is defined by the single-parity-

check equation :

c i + c2 + . . . + e = 0 (modulo 5).

With this code, binary symbol converter 8 applies a base change from binary to 5 y

symbols based on the fact that 29 < 54 . Applying this base change twice (i.e. once to each of

two groups of nine input bits), the symbol converter 8 maps eighteen bits into the eight 5 y

input symbols (ci, c2, . . . , eg) which are output to parity encoder 9 . The parity encoder is

implemented as a simple rate-8/9 encoder which maps 5 y data symbols into codewords

according to the linear mapping:

(ci, c2, . . . , c8) → (ci, c2, . . ., c8, - (ci + c2 + . . . + c8)) .

The encoder 9 thus simply adds a parity symbol e = - (ci + c2 + . . . + c8) to the eight 5 y

input symbols (ci, c2, . . ., eg). This code has rate 2.06 bit/cell and minimum Hamming

distance dH = 2 . Comparing this code to the closest equivalent uncoded storage (which uses

qo=4 nominal cell-levels distributed over the same programming window), the code has an

asymptotic coding gain of:

s x d2
m = 9/16 x 2 = 1.125 (= 0.51 dB)

where s is the loss factor for the signal-set expansion from q = 4 to q = 5 equally spaced

levels in the interval [0, 1] given by:

s = [dmin(o)/ d min(<?)] 2 = [(<? - l)/(<?o - 1)] 2 ·

This code is particularly advantageous in that it is also a translation-stable code. This is

discussed further below.

In other embodiments, the SPC-based code used in encoder 3 may be a multi-level

code. In this case, the codeword symbols each comprise a group of sub-symbols which

correspond to respective code levels. The SPC condition can be imposed here in that the N

sub-symbols of at least one code level form a codeword of a length -N SPC code or coset

thereof. Two such codes which can be employed in encoder 3 are described in the

following.

The first multi-level code is a two-level code of length N = 8 using q = 4 cell-levels

0, 1, 2, 3 with binary labeling 0 →00, 1 →01, 2 →10, 3 →11 defining the y symbol values

for the code. The code has a multi-level construction with first and second code levels

whose sub-symbols correspond to the most-significant bit (MSB) and least significant bit

(LSB) respectively of the 2-bit symbols defined by the labeling scheme. The cell-levels that

differ in the MSB only of the corresponding symbol value are 0 and 2, and 1 and 3 . In both

cases the distance between these levels is two. Hence a code with a squared minimum

distance of 2 can be obtained by imposing a single-parity constraint on the sub-symbols of

the second code level, i.e. the LSBs, only. The codeword construction for the N =8 code is

given by

(c' i c" i , c'2 c" 2, c' g c")

where:

eight uncoded data bits form the eight most significant bits c' i to c' g of the first code level;

seven uncoded data bits form the first seven bits c" i to c" 7 of the second code level; and

c" is the parity bit calculated such that c" i + c" 2, ... + c" = 0 (mod 2).

With this two-level code, the data conversion required in symbol converter 8 of

Figure 2 is a trivial operation of mapping input bits to sub-symbols c' i to c' g and c" i to

c" 7. Parity encoder 9 then performs simple encoding of the resulting 15-bits into a length-8

codeword (c' i c" i , c'2 c" 2, c' g c") by adding parity bit c" . This code has a rate of

2 215/8 = 1.875 bits/cell and a minimum squared Euclidean distance d mi = 2 x d (0,1). There

is a 3 dB asymptotic gain in exchange for a slight loss in rate from 2 to 1.875 bit/cell.

The second multi-level code is another two-level code of length-8 and is similar to

the code just described except that a single-parity constraint is imposed on both code levels.

Here, therefore, both the eight LSBs and the eight MSBs comply with a length-8 SPC code

(or coset). The codeword construction is again given by

(c' i c" i , c'2 c" 2, c' g c" g)

where:

in level 1, seven data bits c' i to c'7 determine the parity bit c' g; and

in level 2, seven data bits c" i to c" 7 determine the parity bit c" .

With this code, the data conversion required in symbol converter 8 is a trivial

mapping of fourteen input bits to y symbols c' 1 c" 1 to c' c" . Parity encoder 9 then

performs simple linear encoding of these fourteen bits into a length-8, y codeword by

calculating and adding the parity bits c' c" as the final codeword symbol. This code has a

2 2rate of 14/8 = 1.75 bits/cell, and a minimum squared Euclidean distance d mi = 2 x d (0,1).

There is a 3 dB asymptotic gain in exchange for a slight loss in rate from 2 to 1.75 bit/cell.

Although the code rate is lower due to parity coding of both code levels, the resulting code

has a smaller set of initial vectors which are exploited in the decoding process discussed

below. This reduces the likelihood of error in the decoding process, offering improved

accuracy on readback.

While particular examples of single and multi-level SPC-based codes are given

above, similar principles can be applied to obtain numerous other useful SPC-based codes

for embodiments of the invention. The principles of such multilevel codes are generally

known from communications theory, and similar principles can be applied here to obtain

codes for use in multilevel storage device 1. In general, provided q is not prime, the q y

alphabet of a code can be decomposed into a Cartesian product of sub-alphabets for the

different code levels which can be endowed with a field or additive group structure. For

example, a 6 y alphabet can be decomposed into a binary and a ternary sub-alphabet, which

results in the algebraic structure Z/2Z x Z/3Z. Thus in general for multi-level codes,

encoder 3 maps binary data to groups of sub-symbols, with respective sub-alphabets, which

in combination represent a q y value. A single-parity constraint can be imposed on one or

more of the different code levels. For any code level having a parity constraint, encoder 3

encodes groups of (N-l) sub-symbols of that code level into the N sub-symbols of that level

in respective codewords of the overall SPC-based code.

It will be seen that the above parity-based codes offer high-rate codes with good

minimum distances and can be implemented in a simple manner using a base change and

simple linear encoding. The codes thus provide a simple mapping of input data to

codewords and simple encoder construction. Moreover, consideration of these SPC-based

codes shows that the codes are invariant under permutation of their arguments, the parity

condition being satisfied for all permutations of the symbol set (c l c2 , ... , cN) . It follows

that all codewords of such a code are permutations of an identifiable subset of the

codewords. This subset constitutes a set of N -symbol vectors for the code such that each

possible codeword is a permutation of one vector in the set. Hence, these codes can be

viewed as a union of permutation codes. A permutation code is characterized by a real

vector of length -N (the "initial vector") on which the permutation group of N letters

operates. The code is completely determined by its length-N and the initial vector X O which

has N components (symbols). The codewords consist of all length-N vectors that are

obtained through a permutation of the components of the initial vector. The SPC-based

codes described above can be viewed as a union of length-N permutation codes, whereby

each possible codeword is a permutation of one of a set of N-symbol vectors being the set

of initial vectors of the permutation codes.

The permutation property of the SPC-based codes described herein provides the

basis for efficient decoding of these codes. In particular, the read signals obtained for

codewords on readback can be related to the predetermined set of N-symbol vectors for the

code as the basis of the codeword detection process. The relating of read signals to vectors

can be performed in a variety of ways depending on the particular code employed and the

overall detection process in which is it used. Examples of preferred detection techniques

are described in the following. These are based on the drift-resistant techniques described

in our European Patent Application no. 11183336.4 referenced above, the relevant content

of which is incorporated herein by reference. The detection methods to be described are

performed by codeword detector 6 of device 1. The codeword detector comprises control

logic for implementing the various steps of the codeword detection process, and this

control logic may be embodied in hardware or software or a combination of hardware and

software components. Suitable implementations will be readily apparent to those skilled in

the art from the description of operation herein.

For the first detection method to be described, blocks of codewords are written/read

substantially simultaneously to memory 2 by read/write controller 4 . In a read operation,

the memory cells storing a group of B codewords are read to obtain B real-valued read

signals y each having N signal components yn, n=l, 2, N, indicating the read-back

resistance values of the sequence of cells storing the N symbols of a codeword. The read

signals y are supplied to codeword detector 6 . The signal components y , ... yN of each read

signal correspond to respective symbols si, ... ¾ of a stored codeword. The read-back

resistance levels y corresponding to a given symbol value s are variable due to drift and

noise effects. Drift is of stochastic nature and is modeled here as a deterministic part/

(average trend due to drift) and a stochastic part g (drift and noise) which is data-

dependent:

y=f(x, t) + g(x, t)

where y is the drifted level, x is the original stored value, t is time, f(x,t) is a monotonic

function of x for all fixed t (i.e. levels maintain their order over time), and g(x,t) is a

random process capturing the data-dependent nature of noise. For fixed x and t , additive

noise is modeled as Gaussian with zero mean and data-dependent variance:

g(x, t) ~ N(0, σ(χ))

Hence, the readback resistance level distributions shift in time, with changing means and

potentially variances, and are level-dependent, having data-dependent means and variances.

For accurate detection of codewords from read signals y , codeword detector 6 must account

for the variable resistance level distributions. Most fundamentally, the codeword detector

requires estimates for the reference signal levels which correspond to the different cell

levels /0 to lq .j, and hence to the different symbol values, for the read operation. These

reference signal levels can then be used for codeword detection. An overview of the

codeword detection process is given below with reference to the flow diagram of Figure 3 .

For the ensuing description, we assume that encoder 3 employs an SPC-based code which

is a union of L permutation codes defined by the set of L initial vectors (1) , (2) , ..., () ,

each of length N , whose symbols are ordered in order of increasing symbol value.

Figure 3 indicates the main operational steps performed by codeword detector 6 . As

indicated at step 10, detector operation commences on receipt of a group of B read signals y

from controller 4 corresponding to a group of B codewords read from memory 2 . The read

signals y are temporarily stored in codeword detector 6 for use in the subsequent processing

operation. Next, in step 11, the control logic of detector 6 orders the components y i to y of

each read signal y according to signal level. In particular, the read signal components are

ordered in order of increasing signal level (reflecting the symbol order of the initial vectors

here), to produce a group of B ordered read signals z :

z' = ≤ - S ≤ ·- ≤ y >where = (i)

This ordering process defines a permutation (ki to ¾) of the signal components for each

read signal y . The resulting ordered read signals are stored in codeword detector 6 . Next, in

step 12, the detector logic averages corresponding components of the ordered read signals

to obtain an "average" read signal ∑ at time t :

= ¾ .. f] , z = ∑f= , i = l N (2)

Thus, the first, second, . . ., h components of the ordered read signals are averaged over

the B signals to produce the average read signal . (A straightforward, unweighted

averaging process is performed for simplicity in this example, though a weighted average

could be envisaged for other embodiments if desired). In step 13, the detector logic

determines a current reference signal level λ corresponding to each of the q levels of the

memory cells. For the q nominal cell levels /0 to lq at time t=0, the corresponding drifted

levels at time t are denoted by to λ?_ . These reference signal levels to λ? are

calculated in detector 6 using the average read signal and a set of probabilities which are

predefined in detector 6 based on the particular code C employed in encoder 3 . These

specify the probabilities of occurrence of each possible symbol value at each symbol

position in a codeword whose symbols are ordered according to symbol value. In

particular, considering the ordered code C°, in which all codewords X = [Xi, ¾ , ..., ¾] e

C have been replaced by their ordered versions X°:

X° = [Xki, X , X] with ¾ 1≤ ¾ 2≤ · · · ≤ ¾

the stochastic (iVxg)-matrix P = [P defined as:

m = prob {X° = Sm}

where n = 1 to N, m = 0 to q-1, and Si, ¾ , . . ., Sq i are the symbol values 0, 1, . . ., q-1

respectively. Such a matrix can be defined for any code C based on the known code

structure, i.e. the set of valid codewords for the code. This will be illustrated by example

below.

Assuming that, at each memory-write operation, B codewords are selected

randomly from the code and written simultaneously to the PCM array as described above,

then the recorded signals x = [x l x2, . . ., x] for the B codewords (if rearranged as their

ordered versions ° = [x^i , X 2 · · · , m] with Xki≤ X 2≤ · · · ≤ m) satisfy the relation:

∑ f= = P [to, . , -i + (error vector) (3)

where A' is the set of ordered write signals and the superscript T denotes the vector

transpose. Note that if all codewords are used the error vector is essentially zero. On

readback, the resulting read signals y are ordered and averaged as described in steps 11 and

12 of Figure 3 . The original nominal cell levels , q i have drifted over time and the

levels to λ? at time t are given by = f(m, t), m = , q-1. As f(.) is monotonic, the

same stochastic matrix P defined above gives a relation analog to (3) between the levels

and the components of the average read signal ∑. In particular, when subject to the channel

distortion y=f(x, t) + g(x, t) as defined earlier, the average read signal ϋ satisfies the

relation:

(where, if the group B consists of all codewords, then the error e is the average (component

by component) of the zero-mean noise samples vector g , which is expected to be essentially

zero). Equation (4) represents an over-determined system of N linear equations which can

be solved in known manner for the q unknowns { , λ2, . . ., .ι } .

The above process will now be illustrated for an exemplary code based on the union

of four permutation modulation codes with initial vectors c® given below. (Note that this

code is not itself an SPC-based code and is used simply to illustrate the reference level

estimation technique described).

c = [0112233] #n(c)

c 2 = [0011223] #n(c 2)

c = [0001233] #n(c)

c (4) = [0012333] #n(c(4))

There are 2100 codewords, consisting of a number of permutations of each initial vector as

indicated by #Il(c®). Assuming all codewords are equally likely, then the probabilities

defining the probability matrix P described above depend on the structure of the initial

vectors and the number #Il(c®) of codewords which are permutations of each vector. In

particular, the probabilities p j (j = 1, . . .,) of occurrence of the initial vectors c® can be

easily calculated as:

pi = p2 = 63/210;

P 3 = p4 = 42/210.

If we denote the i t as

then, based on equation (1) above, the components z„ of the average read signal can be

expressed as:

This equation can be rewritten in matrix form, corresponding to equation (4) above, as:

= (6)

where = [zi, . . . , ΖΝ , and λ = [λ , λι, . . ., λ?]τ is the vector of reference signal levels at

time t . The matrix P is thus defined by the probabilities of occurrence of the initial vectors

and the symbol values at each symbol position in the initial vectors. In particular, relating

the symbol values 0 to 3 in the initial vectors above to reference levels to via equation

(6) gives:

(Pi + P 2 + P 3 + P 4) · = Z\

(>2 + P 3 + P 4) + P λ χ = Z2

(Pi + P 2 +P3 + P 4) · = Zl

As N≥q, this set of linear equations can be solved in known manner for the unknown

reference levels λο, . . ., . In this preferred embodiment, detector 6 solves the equations

using a least-squares method as is well known to those skilled in the art.

It will be seen that, in the above process, the ordered read signals for codewords are

related to symbols of the set of initial vectors via an averaging process over a group of

ordered read signals using the predefined probabilities of occurrence of each symbol value

at each symbol position in a said codeword whose symbols are ordered according to

symbol value. These probabilities depend on the values of symbols of the initial vectors at

positions corresponding to respective components of the average read signal, and thus

inherently involve relating the ordered read signal components to initial vectors as

described above. This relation is used to obtain estimates of the reference levels from the

ordered averaged read signals. The resulting estimates for the reference signal levels λ , . . .,

for the q cell-levels can then be used to detect the current batch of codewords. In some

embodiments, the reference signal levels to could be used directly for codeword

detection by comparing the components y n of each read signal y with these levels to

identify the particular cell level, and hence symbol value, to which each read signal

component corresponds. However, preferred embodiments offer improved detection

accuracy by using the reference signal levels to to identify the initial vector of which

the codeword corresponding to each read signal is a permutation. In effect, the read signals

are divided into clusters, each cluster containing read signals representing codewords

which are permutations of the same initial vector. Examples of such techniques will now be

described with reference to Figures 4 and 5 .

Figure 4 shows the main steps of a first detection process which can be performed

by codeword detector 6 . The operation commences at step 20 with determination of the

current reference signal levels to λ? as already described. Next, in step 21, the detector

produces a vector signal corresponding to each initial vector by replacing each symbol of

the vector by the reference signal level λ corresponding to the symbol value. That is, each

initial vector is mapped to its counterpart iP at time t with real physical quantities (the

reference signal levels λ) as components:

That is, the i-th component cP of p " is mapped into uP using the current reference level

estimates =f m,t), m=0,l,. ..,q-l. The resulting vector signals P are then used to divide

the group of B ordered read signals z (from step 11 of Figure 3) into clusters corresponding

to respective initial vectors Specifically, in step 22, the initial vector of which the

codeword corresponding to each ordered read signal is a permutation is identified by

determining which vector signal is closest to that ordered read signal:

closest initial vector =

where j = 1, L . The minimum can be assessed here using any convenient minimum

distance criterion, e.g. using a simple Euclidean distance metric. Next, in step 23, the

detector logic calculates statistical data for the distribution of the read signal component

levels corresponding to each of the q nominal levels of the memory cells. In particular, by

relating the ordered read signal components to the symbols of the initial vectors in the

various clusters, the read signal level distributions for each of the q cell-levels are obtained.

These distributions are then processed to obtain the means and variances in each case. The

mean values so obtained for the q cell-levels are denoted by λ to 'q-1 and represent

updated values for the reference signal levels λ used in initial clustering step 22. The

variances for each level distribution are denoted by σ . In step 24 of Figure 4, the detector

logic uses the means λ and variances σ in a trellis decoding operation. Trellis decoding is

well known in the art and need not be described in detail here. Suffice to say that, for a

single parity check on an r-level alphabet in an SPC-based code described herein, detection

via a MAP (maximum-a-posteriori) method or a ML (maximum-likelihood) method can be

efficiently implemented by a trellis with at most r states. By way of example, 2-state trellis

for the first two-level code described above, with parity coding on the least-significant bit,

is shown in Figure 5 . The second two-level code, with parity coding on both the LSB and

MSB, can be decoded using a 4-state trellis. An appropriate trellis diagram for any given

parity code will be apparent to those skilled in the art.

The codeword detected in step 24 for each of the group of B read signals is then

output by codeword detector 6 in step 25 of Figure 4 . (Note that, if some operational error

results in detection of an invalid codeword here then detector 6 simply outputs an erasure

symbol for that codeword. This can be addressed by some suitable error-correction

processing in data decoder 7 . Such processes are well known to those skilled in the art and

need not be addressed here). The codeword detection process is then complete.

Figure 6 indicates a modification to the Figure 4 technique. This uses permutation-

based detection instead of the trellis decoding step of Figure 4 . In particular, referring back

to Equation (1) above, the process of ordering read signals defines a permutation ki to ¾)

of the signal components for each read signal y . This permutation is used in the detection

method of Figure 6 . The Figure 6 method commences with steps 20 to 23 of Figure 4 as

before. In step 26, however, the detector logic uses the means λ and variances σ in a

second pass of the clustering operation initially performed in step 22. Hence, the initial

vector to which each ordered reads signal corresponds is again identified, this time using

the statistical data (λ σ) for the level distributions. This process is preferably based on one

of MAP and ML detection, such methods being well known to those skilled in the art. In

this example, the closest initial vector c r for each ordered read signal is identified as:

an ML technique being employed here where:

where: a e the components \ z > of ordered read signal z ;

corresponds to initial vector with symbols replaced by the corresponding

mean reference levels λ and

represents the standard deviation of the distribution for the reference level

with mean λ which corresponds to each component of µ

Having effectively re-clustered the read signals y according to the initial vector

identified using the statistical data in step 25, in step 27 the detector logic can detect the

codeword corresponding to each read signal by applying an inverse permutation to the

initial vector identified for the read signal. For a given read signal, the inverse permutation

is simply the inverse of the permutation (ki to ¾) of that read signal which produced the

ordered read signal via (1) above. The resulting codeword for each read signal (or an

erasure signal if no valid codeword is detected) is then output in step 28, and the process is

complete.

The above techniques exploit the permutation property of SPC-based codes to

achieve efficient, drift-resistant decoding in device 1. In particular, the detection process is

independent of underlying drift characteristics (as long as drift does not reorder the

resistance levels), and also accounts for data-dependent noise whereby different cell-levels

are subject to differing noise effects. Moreover, some SPC-based codes are also translation-

stable codes and as such are fundamentally drift-invariant. Translation-stable codes are

defined and described in US 201 1/0296274A1 mentioned earlier, the relevant content of

which is incorporated herein by reference. Briefly, however, with a translation-stable

encoding scheme, each data word in the set of all possible input data words is encoded as a

codeword with a unique sequence of relative symbol values. This can be understood by

considering the simple translation-stable code of Figure 7 . This code is a permutation code

with N=16 and q=4. The initial vector X0 in this example is as shown in the figure. The set

of codewords {c} for the code C consists of all possible permutations of the initial vector

X0 as indicated in the figure. Inherent in this code is that each of these codewords has a

unique sequence of symbol values relative to the lowest symbol value in the codeword,

whereby adding any real-valued number to all symbol values in a codeword does not result

in another codeword. In particular, if we define the translation vector t = [1 1 1 ... 1] of

length N , here 16, then for all codewords c in the code C :

(c + Rt) = c

where R is the set of real numbers. This provides the definition of a "translation- stable"

code herein for any N -symbol, -ary alphabet code C c {0, 1, . . ., q-1 c RN . While Figure

7 shows a single permutation code, other translation-stable coding schemes can be based on

a union of permutation codes. Such a translation- stable code C can thus be defined as:

C c n(c(1)) u n(c 2) . . . u n(c L)

where c 1 , . . ., c L are L unique initial vectors; n(c®) denotes the permutation modulation

code with initial vector c®; and C n n(c®) ≠ 0 . With translation- stable codes, because

each possible dataword maps to a codeword with a unique sequence of relative symbol

values, input data is effectively encoded in the relative, as opposed to the absolute, symbol

values. The correspondence between symbol values and memory cell levels means that

codewords will be recorded as correspondingly unique sequences of relative levels in

memory 2 . Provided any drift-induced shift in the cell levels does not change the basic

level order, this shift will not change the relative level sequences and so will not affect the

information recorded. By detecting the relative level sequences on read-back, the correct

codewords and hence data words can be recovered regardless of the drift-induced shift.

Translation-stable codes are thus highly-advantageous, being particularly robust to drift

effects. Hence, SPC-based codes which are also translation-stable codes can be selected for

use in some embodiments of device 1, providing benefits associated with both of these

code-types. The length-9, 5 y SPC code detailed earlier is a particular example of such a

translation-stable SPC-based code. Other translation-stable codes can be readily identified,

for example, by considering codes for which the code-length is an odd number N=2m+1

with the requirement that the sum of the N symbols is zero (modulo q).

In the above embodiments using the simple encoder construction of Figure 2, all

potential codewords of the SPC-based code, i.e. all N -symbol words satisfying the

necessary parity constraint, are exploited in the code. This is not, however, essential. In

some applications it may be preferable to use a limited set of codewords. In particular, this

limited codeword set may exclude length -N q y symbol words whose symbols satisfy the

SPC condition but which are contained in the set of all permutations of at least one N-

symbol vector having a smaller orbit under permutation than vectors in said predetermined

set. That is, starting with the set of initial vectors for the "complete" code, one or more

vectors which have the smallest orbit under permutation are eliminated. All codewords

which are permutations of the eliminated initial vector(s) are excluded from the code. More

generally, given an SPC-based code with A codewords, 2 - 1 < A < 2K, one can reduce the

original number of initial vectors to a smaller number M by selecting the M initial vectors

that have the largest orbit under the permutation group such that the total number of
_l

codewords in the reduced code is at least 2 . As an example, for a 2-level SPC-based code

with N=S, q=4, one can reduce the number of initial vectors from 85 to M=12 and still

generate 16800 out of the 32768 codewords. Thus, there is room for 214 = 16384

codewords and the code rate reduces from 15/8 = 1.875 to 14/8 = 1.75 bit/cell.

Where the codeword set of the SPC-based code is limited as above, the encoder 3

must perform coding by mapping input data into the remaining codewords. This could be

implemented, for example, by using a look-up table, in particular for small codes, or using

the well-known technique of enumerative source coding for more efficient operation with

large codes. Decoding of this type of code can be performed, for example, using the

detection process of Figure 6 . In any case, by eliminating initial vectors as described, there

are fewer initial vectors to be considered during detection whereby detection performance

may be enhanced. Simulation results indicate that such "reduced codes" perform well even

small batch sizes B.

Performance results for an exemplary SPC-based code are discussed below in

connection with Figures 8 and 9 . The code considered here is the length-9 translation-stable

SPC code described above. The simulation results of Figure 8 show resistance histograms

after drift for q = 4 cell-levels (top) and q= 5 cell-levels (bottom) where the levels are

unequally- spaced over the same programming window. This illustrates the drift process

with data-dependent noise variances. The nominal programmed cell-levels in the upper

histogram are [4.0, 4.5, 5.0, 6.0] in logR. The standard deviation of noise per level is [1, 1,

1, 3]χσ. In the lower histogram the nominal cell-levels are [4.0, 4.4, 4.8, 5.2, 6.0] in logR

and the standard deviation of noise per level is [1, 1, 1, 1, 3]χσ . Figure 9 compares error

performance of the N=9, q=5 SPC code with an uncoded N=9 , qo=4 scheme with various

detection methods. The performance results were obtained by Monte Carlo simulations by

processing a large number of codeword batches with batch size B=40. The trace labeled [1]

corresponds to the SPC code with trellis or permutation-based decoding as in Figures 4 or 6

above. Trace [2] is the equivalent result for the uncoded case with permutation-based

decoding. Trace [3] is for the SPC code but using a genie (i.e. an impractical detector that

has perfect knowledge of all memory cell data and hence drift) to perform a model-based

correction for drift. Trace [4] is the equivalent result for the uncoded scheme with genie-

aided detection. To illustrate the drift effect, trace [5] shows the result for the SPC code but

using the original, nominal reference levels / at time zero in decoding. It is apparent from

this figure that the 5-level SPC scheme outperforms the 4-level uncoded scheme with

equivalent detection methods. The coded scheme is more robust against data-dependent

noise and its performance is significantly closer to the genie-aided performance than the

uncoded scheme.

It will be seen from the foregoing that embodiments of the invention provide

significant improvements in multilevel solid-state storage devices. The use of SPC-based

codes offers a systematic approach to the construction of high-rate codes with simple

encoding of user data, which provide a good trade-off between minimum distance and rate

loss. The permutation property of these codes can be exploited to achieve efficient, drift

resistant decoding. Moreover, translation-stable codes which are inherently drift-invariant

can be easily constructed based on the principles described.

It will of course be appreciated that many changes and modifications can be made

to the particular embodiments detailed above. For example, other ways might be envisaged

for relating read signals to the set of initial vectors to exploit the permutation property of

the SPC-based codes for codeword detection. Also, while memory 2 uses PCM cells, the

techniques described can be applied to other multilevel solid state memory cells, such as

flash memory cells, where similar considerations apply. Many other changes and

modifications can be made to the above embodiments without departing from the scope of

the invention.

CLAIMS

1. A method for reading and writing data in g-level cells of solid-state memory (2),

where q>2, the method comprising:

encoding input data into codewords having N < a symbols, wherein the symbols of

each codeword satisfy a single-parity-check condition;

writing each symbol in a respective cell of the solid state memory (2) by setting the

cell to a level dependent on the q y value of the symbol;

reading memory cells to obtain read signals corresponding to respective codewords;

and

detecting the codewords corresponding to respective read signals by relating the

read signals to a predetermined set of N -symbol vectors of one of which each possible

codeword is a permutation.

2 . A method as claimed in claim 1 wherein the codewords are codewords of one of a

length-N single-parity-check code or a coset thereof.

3 . A method as claimed in claim 2 including:

mapping binary input data into data symbols; and

encoding groups of (N-l) q y data symbols into respective N -symbol codewords.

4 . A method as claimed in claim 1 wherein:

the codeword symbols each comprise a plurality of sub-symbols corresponding to

respective code levels; and

in each codeword, the N sub-symbols of at least one code level comply with one of

a length-N single-parity-check code or a coset thereof.

5 . A method as claimed in claim 4 wherein:

the codeword symbols each comprise a most-significant sub-symbol and a least-

significant sub-symbol; and

in each codeword, the N least-significant sub-symbols comply with one of a length-

N single parity check code or a coset thereof.

6 . A method as claimed in claim 5 wherein, in each codeword, the N most-significant

sub-symbols also comply with one of a length -N single parity check code or a coset

thereof.

7 . A method as claimed in any one of claims 4 to 6 including:

mapping binary input data into sub-symbols of said code levels; and

for any code level whose sub-symbols comply with a parity check code or coset

thereof, encoding groups of (N-l) sub-symbols of that code level into the N sub-symbols of

that level in respective codewords.

8. A method as claimed in any one of claims 2 and 4 to 6, the method including

encoding input data into codewords of a limited codeword set which excludes length -N

g^-symbol words whose symbols satisfy said single-parity-check condition but which are

contained in the set of all permutations of at least one N -symbol vector having a smaller

orbit under permutation than vectors in said predetermined set.

9 . A method as claimed in any preceding claim wherein the codewords are codewords

of a translation-stable code.

10. A method as claimed in any preceding claim wherein each read signal comprises N

signal components corresponding to respective symbols of a codeword, the method

including detecting the codewords corresponding to respective reads signals by:

ordering the components of each read signal according to signal level to produce an

ordered read signal; and

relating the components of ordered read signals to symbols of said set of vectors.

11. A method as claimed in claim 10 including:

reading the memory cells storing a group of codewords to obtain read signals for

the group;

averaging corresponding components of the ordered read signals for the group to

produce an average read signal;

determining a reference signal level corresponding to each of the q levels of the

memory cells in dependence on the average read signal and predefined probabilities of

occurrence of each symbol value at each symbol position in a said codeword whose

symbols are ordered according to symbol value; and

detecting the codeword corresponding to each read signal in dependence on the

reference signal levels.

12. A method as claimed in claim 11 wherein said predetermined set comprises a

plurality of vectors, the method including detecting the codeword corresponding to each

read signal by:

producing a vector signal corresponding to each N -symbol vector by replacing each

symbol of the vector by the reference signal level corresponding to the symbol value; and

identifying the vector of which each codeword in said group is a permutation by

determining which vector signal is closest to the ordered read signal for that codeword.

13. A method as claimed in claim 12 including:

calculating statistical data for the distribution of the read signal component levels

corresponding to each of the q levels of the memory cells from the ordered read signals and

the vectors identified for the codewords corresponding thereto.

14. A method as claimed in claim 13 including detecting the codeword corresponding

to each read signal by trellis decoding using said statistical data.

15. Apparatus for reading and writing data in g-level cells of solid-state memory (2),

where q>2, the apparatus comprising:

an encoder (3) for encoding input data into codewords having N q y symbols,

wherein the symbols of each codeword satisfy a single-parity-check condition;

a read/write controller (4) for writing each symbol in a respective cell of the solid

state memory (2) by setting the cell to a level dependent on the q y value of the symbol,

and for reading memory cells to obtain read signals corresponding to respective codewords;

and

a detector (6) for detecting the codewords corresponding to respective read signals

by relating the read signals to a predetermined set of N -symbol vectors of one of which

each possible codeword is a permutation.

International application No.
INTERNATIONALSEARCH REPORT

PCT/IB2012/056565

A. CLASSIFICATION OF SUBJECT MATTER

G06F 11/10 (2006.01) i
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: G06F, H03M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

IDWPI; CPRSABS; IEEE; CNKI: phase, change, memory, PCM, solid, state, storage, encode, word, code, symbol, value,

piulti, level, parity, read, write

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US2011/0296274A1 (INTERNATIONALBUSINESS MACHINES CORP.) 1-15

0 1 Dec. 2011 (01.12.2011)

see description paragraphs [0036]-[0049], figures 1 and 2

A EP0969480A1 (SONY CORP.) 05 Jan. 2000 (05.01.2000) see the whole document 1-15

A CN1628357A (INTEL CORP.) 15 Jun. 2005 (15.06.2005) see the whole document 1-15

A WO2007/057885A2 (RAMOT AT TEL-AVIVUNIVERSITY LTD.) 24 May 2007 1-15

(24.05.2007) see the whole document

I I Further documents are listed in the continuation of Box C . patent family annex.

* Special categories of cited documents: later document published after the international filing date
or priority date and not in conflict with the application but

Ά " document defining the general state of the art which is not cited to understand the principle or theory underlying the
considered to be of particular relevance invention

Έ " earlier application or patent but published on or after the ' document of particular relevance; the claimed invention

international filing date cannot be considered novel or cannot be considered to involve
an inventive step when the document is taken alone

'L" document which may throw doubts on priority claim (S) or
Ύ " document of particular relevance; the claimed invention

which is cited to establish the publication date of another
cannot be considered to involve an inventive step when the

citation or other special reason (as specified) document is combined with one or more other such

Ό " document referring to an oral disclosure, use, exhibition or documents, such combination being obvious to a person

other means skilled in the art

'P" document published prior to the international filing date ' & "document member of the same patent family

but later than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

25 Mar. 2013 (25.03.2013) 11 Apr. 2013 (11.04.2013)
Name and mailing address of the ISA/CN

Authorized officer
The State Intellectual Property Office, the P.R.China
6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China YU, Bai
100088

Telephone No. (86-10
Facsimile No. 86-10-62019451

)62412822

Form PCT/ISA /210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members

PCT/IB2012/056565

Patent Documents referred Publication Date Patent Family Publication Date
in the Report

US2011/0296274A1 01.12.2011 NONE

EP0969480A1 05.01.2000 JP11212876A 06.08.1999

JP11213692A 06.08.1999

DE69932962D1 05.10.2006

WO9938170A1 29.07.1999

KR20010005558A 15.01.2001

US6732322B1 04.05.2004

CN1256005A 07.06.2000

EP1496519A2 12.01.2005

CN1628357A 15.06.2005 US2003026134A1 06.02.2003

AU2002331580A1 03.03.2004

TWI239528B 11.09.2005

WO2004017328A1 26.02.2004

DE10297767T5 04.08.2005

KR20050018639A 23.02.2005

WO2007/057885A2 24.05.2007 KR20110014667A 11.02.2011

CN101611549A 23.12.2009

US2007124652A1 31.05.2007

JP20 10509790 A 25.03.2010

EP1949580A2 30.07.2008

US2010169737A1 01.07.2010

KR20080084970A 22.09.2008

US2011276856A1 10.11.2011

Form PCT/ISA /210 (patent family annex) (July 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

