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(57) Abstract: Methods., systems and computer program products memorize multiple inputs into an artificial neuron that includes
multiple dendrites each having multiple dendrite compartments. Operations include computing coincidence detection as distal syn-
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METHODS, SYSTEMS AND COMPUTER PROGRAM PRODUCTS FOR
NEUROMORPHIC GRAPH COMPRESSION USING ASSOCIATIVE
MEMORIES

STATEMENT OF PRIORITY
{0681} This application claims priority to U.S. Provisional Application No.
61/979,601, filed April 15, 2014 and entitled Methods, Systems And Computer Program
Products For Newromorphic Graph Compression Using Associative Memorles, the

disclosure of which s hereby incorporated herein by reference as if set forth fully herein.

FIELD OF THE INVENTION
{60621 This invention relates to knowledge management systems, methods and
computer program products, and more particularly to associative memory systeimns,

methods and computer program products.

BACKGROUND

{0003]  Assosiative memories, also referred to gs content addressable memaories,
are widely used in the figld of pattern matching and identification, expert systems and
artificial intelligence, A widely used associative memory is the Hopfield artificial neural
network, Hopfield artificial ncural networks are described, for example, in U.S. Patent
4,660,166 to Hopfield entitled “Electronic Network for Collective Decision Based on
Large Number of Connections Between Signals ™.

[0004] Albthough associative memories may avoid problems in prior back-
propagation networks, associative miemories may present problems of scaling and
spurious memories. Recent improverents in associative memories have aliempted to
solve these and other problems. For example, UK. Patent 6,052,679 to coinventor
Aparicio, IV et al., entitled "Artificial Neyral Networks Including Boolean-Complete
Compartments” provides a plurality of antificial neurons and a plurality of Boolean-
complete compartments, a respective one of which couples a respective pair of artificial

newrons.
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{0003] Beyond single-point neuron models of traditional nearal networks, veal
neurons exhibit complex, nonkinear behavior equivalent to networks within themselves.
{n particular, recent computational neuroscience has focused on understanding the
neuron’s wiring efficiency and computational power, particularly in how dendrites
{structurally linear) compute coincidences (functionally non-linear). However, a
computational level of analysis to better understand neoronal dendrites as well as to
develop neuromarphic devices has remained elusive. The answer is found by assuming a
coincidence matrix {a graph) as the fimdamental object of each neuron’s memery but
without requiring an explicit crossbar as typical of many current neuromorphic efforts.
Tomegraphic projections of each matrix are shown represent a lossiess compression,
expressible by cascading waves of synaptic activation over a receptivity array of dendritic
comparimenis. This simple activation-passing algorithm is capable of veading and
writing graph stractures. Such wiring efficiency explains how each neuron represents a
notlinear gssociative memory and inspires emergent neuromorphic devices to store and
compute such memories without the cost of geometric crossbars. Matrix bandwidth
reduction adds even greater processing speed, and logical reversibility promises adiabatic
enerpy efficiency. As Cognitive Computing continues to emerge as the basis for
machine intelligence, a more brain-like approach will move into operating systems, and
will ultimately require wiring and energy efficiencies o support cognition by cognitive

hardware,

SUMMARY

[0806] Some embodiments of the present invention are directed to methods,
systems and computer program products for neuromerphic graph compression using
associative memories. Some embodiments are directed to an agtificial neuron that
includes multiple dendrites, ones of which include multiple dendrite compartments,
wherein a respective one of the dendrite compartiments is unigunely associated with a
respeetive one of nuuiltiple inputs. Each dendrite compartment includey a first weight
value corresponding to @ synapse activation strength and a second weight value
corresponding to receptivity value of the respective dendrite compartment to other

activations.
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{0007} In some embodiments, the dendrite compartments are lingarly arranged
from an apex that is a distal tip of the dendrite to a soma which is an artificial neuron
summatton point.

{0608} Some embodiments provide that each of the dendrites Is a Hnear array of
the dendrite compartments that are configured to receive inputs from respective other
artificial neurons.

{0609} In some embodiments, ones of the inputs sre received via cascading
synaptic activation via the plurality of dendrite compariments, Some embodiments
provide that dendrite compartments having receptivity values of zeeo are configured to
transmif an activation input from a more distal one of the dendrite compartments as an
activation output to a more proximal one of the dendrite compartments.

{0018} Some embodiments provide that, responsive to the inputs generating a
crossed-switch among ones of the dendrite compartments, the corresponding one of the
dendrites includes an added dendrite compartment at the dendrite apex.

{0011} In some embodiments, responsive to the first weight value in one of the
dendrite compartments being greater than zero and the second weight value in the one of
the dendrite compartments being greater than zevo, the one of the dendrite compartments
sends a coincidence spike signal to & soma that is an artificial neuron summation point.

{0012} Some embodiments provide that, responsive to the first weight value in
one of the dendrite compartments being zero, activation propagation ceases for that one
of the dendrite compartments.

3813} Some embodiments of the present invention include methods of
memorizing maltiple inputs into an artificial neuron that includes multiple dendrites each
having multiple dendrite compartments. Methods may include computing coincidence
detection as distal synapse activation that flows from more proximal ones of the dendrite
compartments to a soma of the artificial newron that is an artificial henron summation
point of the artificial neuron,

{0014} Some embodiments include generating a dendritic action potential
responsive to the comcidence detection from a nenszero activation value input received at
a corresponding one of the dendrite compartments that includes a receptivity value that is

nont-zere, Some embodiments provide that, responsive to generating the dendritic action

L
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potential, the activation value and the receptivity value are decremented and the
decremented activation value is passed to & next one of the dendrite compartments.

{08181 Some embodiments of the present tnvention include methods of
memotizing multiple inputs into an artificial neuron that inclodes multiple dendrites cach
having multiple dendrite compartments. Such methods may include computing
coincidence detection using a cascading activation that cascades from distal ones of the
dendrite compartments more proximal ones of the dendrite compartiments to 8 soma of
the artificial neuron, and detecting and avoiding a crossed-configuration 4-switch.

10816] Some embodiments of the present invention include an artificial neuron
that includes multiple dendrites, ones of which include muliiple dendrite compartments.
Some embodiments provide that a respective one of the dendrite compartments is
uniquely associated with a respective one of multiple inputs, that ones of the dendrite
compartments are configured to receive a cascading activation and fo transmit the
cascading activation in an unmodified state if the corresponding one of the dendrite
compartments includes a first receptivity value and in a modified state that is different
from the unmodified state if the corresponding one of the dendrite compartments includes
a second receptivity that is different from the first receptivity.

{6017} Some embodiments of the present invention are directed 1o a computer
program product for memorizing a phlurality of inputs into an artificial neuron that
includes multiple dendrites each having multiple dendrite compartiments. The conputer
program product includes a non-transitory corputer readable storage medium stoving
computer readable program code that, when executed by a processor of an electronic
device, causes the processor to perform operations including computing coincidence
detection as distal synapse activation that flows from more proximal ones of the dendrite
compariments to a soma of the artificial neuron, generating a dendritic action potential
responsive to the coincidence detection from a non-zero activation value input received at
a corresponding one of the dendrite compartments that includes a non-zero receptivity,
and responsive to generating the dendritic action potential, decrementing the activation
value and the receptivity and passing the decremented activation value o & next one of

the dendrite compartments.
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[G018] Some embodiments of the present invention are directed to methods of
memorizing multiple inputs into an artificial neuron that includes multipls dendrites cach
having multiple dendrite compartments. Such methods may include computing
coincidence detection using a cascading activation that cascades from distal ongs of the
dendrite compartments more proximal ones of the dendrite compartments te a soma of
the artificial neuron and detecting and avoiding of crossed-configuration 4-swijches.

[6019] In some embodiments, the dendrite compartments are linearly atranged
from an apex that is a distal tip of 3 corresponding one of the dendrites to a soma which is
an artificial neuron summation point of the corresponding one of the dendrites.

{0026] Some embodiments include recelving, into ones of the dendrite
compartments, inputs from respective other artificlal neurons. In some embodiments,
gach of the dendrites includes & linear array of the dendrite compartments that ave
configured to receive the inputs from the respective other artificial neurons. Some
embodiments provide that recaiving, into ones of the dendrite compartments, inputs from
respective other artificial neurons comprises receiving the inputs via cascading synaptic
activation via the dendrite compartments.

{0021] Some embodiments include transmitting an activation wnpwt from 8 more
distal one of the dendrite compartments as an activation output 1o 8 more proximal one of
the dendrite compartments.

100221 In some embodiments, respounsive 1o the inpuls generating a crossed-
switch among ones of the dendrite compartments, methods may include providing
another dendrite compartment to the dendrites at the dendrite apex.

[8023] Some embodiments of the present invention are directed to systems that
include a processor and a memory that includes instructions stored therein that, when
executed, cause the processor to perform the operations described herein.

[0024] It is noted that aspects of the invention deseribed with respect to ong
gmbodiment, may be incorporated in a different embodiment although not specifically
deseribed relative thereto. That is, all embodiments andsor features of any embodiment
can be combined in any way and/or combination. These and other objects and/or aspects

of the present Invention are explained in detall in the specification set forth below.

A
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BRIEF DESCRIPTION OF THE DRAWINGS

{B025] PIG. 1 is a graph illustrating wsing projections of & maximal matrix
according to some embodiments of the present invention.

{0026] FIG. 25 a graph illustrating a-4-switch problem using projections of a
matrix according to some embodiments of the present invention,

{027} FIG. 3 is a schematic diagram of a dendrite according to some
embodiments of the present invention.

{0028} FIGS. 4A and 4B are graphs representing all coincident pairs in'a mairix
City;Tamps in the context of “Tampa® from unstructured new sources when rows and
columns are in an arbitrary order and a sorted order, respectively.

{6829 FIG. 5 is a schematic diagram of cascading activations of a dendrite
according to some embodiments of the present imvention.

{0036} TIG. 6 is 2 flow chart ilustrating the synaptic depolatization whenever the
synapse Is turned ON, including the activation signal to the next compartment according
to some embodiments of the present invention.

18031} PIGL 7 15 a flow chart iHustrating the cascading synaptic activation
according to some embodiments of the present invention.

{0032] FI1G. & s a flow chart illustrating the logic for processing & cascading
compartment activation according to some embodiments of the present invention.

{00331 FIG. 9A is a schematic diagram of cascading activations of a dendrite
according to some embodiments of the present invention.

{8034} FIG. 9B is a schematic diagram of cascading activations of a dendrite
according to some embodiments of the present invention.

[0035] FIG. 10 is a schematic dilagram of cascading activations of a dendrite
according to some embodiments of the present invention.

00361 FIG. 11 isa schematic diagram of logically reversing cascading
activations of a dendrite according to some embodiments of the present invention.

{8937} FIG. 12 is a schematic diagram of detection and representation of the

crossed configuration when an inhibitory newron’s inhibitory synapse is ON in a dendrite
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DETAILED DESCRIPTION

{88381 The present invention now will be described more fully hereinafter with
reference (0 the accompanying drawings, iv which iHlustrative embodiments of the
jnvention are shown. However, this invention may be embodied in many different forms
and shounld not be construed as limited to the embodiments set forth herein, Rather, these
embodirnents are provided so that this disclosure will be thorough and complete, and will
fully convey the scope of the invention to those skilled in the art.

{00391 It will be understood that when an element is referred to as being
“coupled”, "connected” or "respensive” to another element, it can be directly coupled,
connected or responsive to the other element or intervening elements may also be present.
In conirast, when an element is referred to as being "directly coupled”, “directly
connected” or "directly responsive” to another element, there are no intervening elements
present. Like numbers refer to like elements throughout, As used herein the tenn
"and/or" includes any and all combinations of on¢ or more of the associated tisted items
and may be abbreviated by /",

{0401 1t will also be undersiood that, althowsgh the terms first, seeond, ete. may
be used herein to describe various elements, these elements should not be timited by
these terms. These terms are only used to distinguish one element from another element.

{6041] The terminology used herein is for the purpose of describing particular
embodiments only and is not intended to be lmiting of the Invention. As used herein, the
singular forms "a", "an® and “the" are intended to include the plural forms as well, unless
the coutext clearly indicates otherwise. It will be further understood that the terms

woat

“comprises,” "comprising.” "includes” and/or "including” when used herein, specify the
presence of stated features, steps, operations, clements, and/or components, but do not
preclude the presence ov addition of one or more other features, steps, operations,
elements, components, and/or groups thereof.

108421 Unless otherwise detined, all terms (incloding technical and scientific
terms) used herein have the same meaning asg commonly understood by one of ordinary
skill in the art to which this invention belongs, It wili be further understond that terms,

such as those defined in commonly used dictionaries, should be inferpreted as having a

.
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meaning that ks consistent with their meaning in the context of the relevant art and will
not be interpreted in an idealized or overly formal sense unless expressiy so defined
herein.

{6843] The present invention is described in part below with reference to block
diagrams and flow charts of methods, systems and computer program products according
to embodiments of the invention, It will be vnderstood that a block of the block diagrams
or flow charts, and combinations of blocks in the block diagrams or flow charts, may be
implemented at least in part by computer program instructions. These computer program
tstructions may be provided to one or more enterprise, application, personal, pervasive
and/or embedded computer systems, such that the instructions, which execute via the
computer system(s) create means, modules, devices or methods for implementing thie
functions/acts specified in the block diagram block or blocks, Combinations of general
purpose computer systems and/or special purpose hardware also may be used in other
embodiments.

{0044] These computer program instructions may also be stored in memory of
the computer systemy{s) that can dirgct the computer system(s) to function in a particular
manuer, such that the instructions stored in the memory produce an article of manufacture
including computer-readable program code which implements the functions/acts
specified in block or blocks, The computer program instructions may also be loaded into
the computer system{s) to cause a series of operational steps to be performed by the
computer system({s) to produce a computer implemented process such that the
instructions which execute on the processor provide steps for implementing the
functions/acts specified in the block or blecks. Accordingly, a given block or blocks of
the block diagrams and/or flow charts provides support for metheds, computer program
products and/or systems (stractural and/or means-plus-function).

{0045} In some embodiments, computer program instructions may he performed
by specific hardware as discisssed herein that is configured to provide the fine-grained
parallelism of simultancous cascades. For example, some embodiments provide that
specific hardware substrates that directly implement one or more computational

operations described herein as a part of thelr intrinsic properties. Non-limiting examples



WO 2015/159242 PCT/IB2015/052757

include memristors and their similarity to Hodgkin-Huxley membrane equations may be
a basis for implementation,

{8046] It should also be noted that in some altemate implementations, the
functions/scts noted in the fow charts may occur out of the order noted in the flow
charts. For example, two blocks shovs in succession may in fact be executed
substantiglly concurrently or the blocks may sometimes be executed 1n the reverse order,
depending upon the functionality/acts involved. Finally, the functionality of ene or more
blocks may be separated and/or combined with that of other blocks.

{6047} In some embodinients, a computational level of analysis to better
understand neuronal dendrites as well as to develop neuromorphic devices may be found
by assuming a coincidence matrix (a graph) as the fundamental object of each neuron’s
memory bul without requiring an explicit crossbar as typical of many current
neuromorphic efforts. Yomegraphic projections of each matrix are shown to represent &
tossless compression, expressible by cascading waves of synaptic activation over a
receptivity array of dendritic compartments. This activation-passing algorithm is capable
of reading and writing graph structures. Such wiring efficiency may explain how each
neuron represents a nonlinear associative memory and inspires emergent neuromorphic
devices to store and compute such memories without the cost of geometric crossbars.
Matrix bandwidth reduction may add even greater processing speed, and logical
reversibility may provide adiabatic energy efficiency.  As cognitive computing continues
to emerge as the basis for machine intelligence, & more brain-like approach will move
into operating systems, and will ultimately require wiring and energy efficiencies to
support cognition by cognitive hardware.

{00481 Cognitive computing may represent an emerging approach to machine
intelligence. Different than historical artificial intelligence (AD), “cognitive” may be
defined as more brain-like and more human-like in its representation and reasoning.
Unlike historical Al inspiration from natural systems regards how well our brains are
adapted to survive and thrive in the real world in real-time. Moreover, computers are cast
as tools o assist humans, and cognitive computing secks to remove the “impedance
misniateh” between current computing and human computing systems. Two cognitive

systems will communicate and work together.
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{0049} If cognitive computing is indeed the answer to machine intelligence, then
it will beconte a fundamental part of computing. “Cognition as a Service” (CaaS) is now
being developed, and this trend may continue to provide cognitive services as a key part
of computing, whether scaling up to big data services or scaling down to embedded
intelligence in “the internet of everything”.  The brain-like aspects of coguitive
computing may drive toward neuromorphic hardware as part of its future.

{0050] Several initiatives are alveady building such brain-like architectures,
Several examples inclode The European Commission’s Human Brain Project and
DARPA’s Systems of Neuromorphic Adaptive Plastic Scalsble Electronics (SYNAPSE)
project. Their approaches range from very realistic neuron modeling on supercomputers
to the development of specialized chips. Goals for the Human Brain Project include
understanding the brain itself as well as developing new computing methods from such
understanding. The goal of DARPA SyNAPSE is focused on neuromorphic hardware
ihat scales to biological levels, such as to the massive numbsr of neurons and synapses of
a mammalian brain.

[8081] Many different substrates are being used to implement these
neuromorphic approaches, but the theoretical discovery of memristors as a “missing
element” of electronics may promise to become a primary substrate for newromorphic
computing. This 1§ in part because of the memristor’s similarity to the Hodgkin and
Huxley equations, which deseribe the physiology for neural membrane activity and its
propagation. Moving bevond the von Newmana separation of computation fromt memory
and binary logic of transistors, memristors may represent both the non-volatile analog
weights of synaptic connections as well as logical operations and spiking behavior. As
with real neurons, memristors may be capable of both storing and computing.
Furthermore, memristors may provide a substrate that can learn by experience, in the
sense that activity can modify stored weights.

{0052} Neuromorphic computing is being pursued academically and industrialiy.
Hewlett Packard (HP) was considered the first to implement the “missing element”
memristor. The University of Michigan and Hughes Research Lab (HRL) report a
CMOS-based neuromorphic memristor in work for DARPA SyNAPSE. Purdue

University, in association with Intel Corporation, has demonstrated a

18
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spintronic/memristive circuit within a cellular automata design. HP also reports a
universal cellular automata of memristors that is Boolean complete. Although not basing
ity hardware on memristors, IBM is a participant in SYNAPSE for the development of
cognitive hardware in which each neuron is called a “corefet”.

{6053} Larger hardware architectures such as for SyNAPSE include multisneuron
chips and cross-chip communication, in which case the signals between neurons must be
routed across these chips. These methods are “neural” in that they include spiking
signals and spike-based time muktiplexing to connect one neuron to another, All these
approaches are basically "neural™ in having synaptic connections and weights as
fundamental elements.  Most of these methods are additionally “neural” in that they tend
to include spiking signals to reflect Spike Time Dependent Plasticity (STDP) as well
know in neuroscience since Donald Hebb's 1949 Hebbian Leamning Rule: “Neurons that
fire together, wire together”. However, these approaches tend to model the larger scale
issues of neuron-to-neuron connectivity, usually including the Address Event
Representation (AER) protocol for time-multiplexing between neuron chips, However,
they miss the neural point that each neuron is an associative network in itself,

{63341 However, no matter the number of neurons or the hardware substrate, the
most fundamental problem of neurocomputing may be that all such attempts must.
ultimately solve how any synaptic input can potentially connect to any other input ~
without the poor scaling and cost of an explicit crossbar to represent & complete matrix,

The Crosshar Problem

[0655] A crossbar may represent every possible input-outpat connection of an
associative matrix. At small scale, inputs and outputs can be hard-wired to each other in
a complete matrix. For example, early patent filings for using the memnistor were
defined by crossbars. Additionally, each neuron “corelet™ in IBM's approach as well as
the Michigan/HRUL approach are vepresented as crosshars,

{0056} The IBM “corelet™ architecture attempts to solve the crossbar problem
with spike-based multiplexing. However, two levels of network organization ave to be
distinguished, namely, between neurons and within neurons, Regarding network
organization between neurons, each neuron’s axonal output can reach out to 1000 other

newrons: Inoa network of millions and bitlions of neurons, how do the neurons efficiently

il
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connect and comnuunicate with each other? Regarding network organization within
neyrons, each newron’s input can include 10,000 or even 100,000 synapses fronvother
neurons. Howdo these inputs efficiently interact with each other a within-neuron
computation?

{8637] For digital computing, the nano-scaling of molecular crossbars has been
pursued for many decades, and indeed, when 1s and 0s tend to be uniformiy distributed,
the nano-scaling of wires and connections will miniaturize digital computing beyond the
impending limits of Moore’s Law. However, a cressbar scales geometrically with the
nuniber of inputs and becomes physieally inefficient across a growing number of inputs
when applied to cognitive computing.  The first issue must also be addressed (as it is)
for large-scale systems, but the latter question remains open and is more fundamental.
The addition of nano-molecalar wires will not solve this within-neuron crosshar problem.
The nano-scale molecular crossbars have been pursued over the last decade (Chen et al,,
20033, and indeed for digital computing, when 1s and 0s tend to be uniformly distributed
in a binary data code, the nano-sealing of wires and connections will eliminate transistors
to move beyond the impending limits of Moore’s Law.  However, when applied to
cognitive computing, a geometric crossbar becomes physically incfficient across a
growing number of sparsely interconnected wiplet interactions.  {f each post neuron
recelves tens of thousands of pre inputs and these pre inputs interact (bevond simplistic
sammations), then the coincidence matrix between these inputs can become hyper-sparse,
meaning that a very small fraction of the crossbar will contain 1s while hundreds of
millions of crosshar connections will be vastiy wasted when containing s,

{0058] A within-neuron crossbar memory continues to be a challenge of
understanding nevron computation and emulating neurons in hardware, Given one
neuren, emulation may address how the neuron leams the associations of its fnputs to
each other across a very large input field. In other words, if the neuron represents a
coincidence matrix, emulation may address how dominantly linear structure of the
coincidence matrix is not a crosshar of all its connections to each other.

166591 Cellular Neural Networks (CNNs) are similar to neural network
connectionism but may be distinguished by local-only neighborhood connections. More

recently, approaches may include the design of such a CNN antomata in which

2
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interactions are local and propagating. Moving beyond initial memristor crossbar
desigus, HP also more recently reports a neuromorphic device within a tinear arvay
rather than a crosshar. Although the HP report demonstrates only 6 cells and discounts
the universal computing property of the particular ansomata rule that was applied, this
“nroof in principle” demonstrates a pon-trivial computation in a one-dimensional array.
{UNNs of more dimensions have been developed, but a one-dimensional CNN better
represents neural dendrites as thin, linear structures.

16868] The neuroscientific and computational research of STDP may be
informative. A delay line berween pre~synaptie {pre) and post-synaptic (post) spiking
may be the central requirement for STDP to represent before-afier contingencies. Known
as “contiguity”, a stimalus must occur before a response to ensure that the stimulus can
predict the response. Although many other forms of STDP have been found including
reverse contiguity, some form of “time dependency” may be essential to STDP.
Howaver, axonal spiking to transmit from one neuron ta another is not so simple within
the neuron. Although dendritic spiking is also known, synaptic potentiation is found
without spiking behavior. More interestingly, in vive studies show that pairwise pre and
post spiking does not retiably Jnvoke synaptic potentiation, the increase of the synaptic
weight of an association. Beyond the association of the pre input to the post output as a
paired coincidence, atriplet or polysynaptic STDP is being more successfully exploved as
the actual mechanism of neural learning. A triplet of signals interacts within the neuron —
across a thin dendrite. There are many forms of triplet signaling, but here, it is assamed
to represent how at least two pre-synaptic fnputs interact within the context of the post-
synaptic neuron, compating the exact associations of a crossbar with an explicit crossbar.

[00611 A solution to the within-neuron crossbar probiem may be found in the
computation of real necrons and the neuroseientific search for how they detect
coincidences over thin dendrites, Many neurons can be wired together, but if the unit of
computation — the neuron itsel{~ is wrong and incfficient, larger architectures miss the
neuron point.

Coincidence Detection

[0062] Since the re-birth of “neural networks”™ in the 1980s, neuroscience has

criticized most computational algorithms as having little or nothing te do with real
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neurons. For example, the Parallel Distribute Processing (PDP) approach assumed that
neurons were weak and slow, saved only by their parailelism and massive number. In
contrast, neuroscience has increasingly discovered the highly non-linear behavior of
individual neurons. In addition to neurons forming a network with each other, each
single neuron may represent a network in ttself. This deeper approach to neural
computation arose most strongly in the 19905, articulated by McKenna and Davis’™ Stngle
Newron Conynugtion in 1992 and epitomized in Christof Koch's Biophysies of
Compdation: Information Processing in Single Newrons 11 1998, Years of neural
research sinee have inchuded a focus on this unit of computation especiatly to understand
the neuron's miniaturization of wiring and energy. I neurons are powertul nonlinear
devices, then their dendrites, where synapses connect to the neuron and seem to interact
with each other, must be ey to their computation.

10063] The neuron’s solution 1o the crosshar’s wiring problem bhas been cast as
the search for what has been defined as “coincidence detection™ on thin dendrites 85 a
central question about single neuron computation. In other words, it may be desirable to
kuow how synaptic inputs deteet other synaptic inpats within the dendrite. However,
many models exist for more simplistic definitions of “comcidence detection™. This
phrase may have various meanings aside from the one intended here to solve the crossbar
probiem,

{6864] One example is binaural sound localization. Given two ears, sound
arrives slightly fater to one ear. The two activations of the two inputs are thought to
coincide, and the nevral point at which they coincide marks the sound’s direction, Some
models include delay lines to detect when the two signals meet each other as indicating a
spound’s location. As such, sound locatization is not a matter of leaming,

{6065} Another example is pre- and post-synaptic firing, The simplest definition
for leatning involves the coincident firing of two neurons connected by one synapse.
Coincidence activation is thought to be the basis for change in the synaptic weight, This
represents learning as “Cells that fre together, wire together”. One synapse, one weight
schemes only represent pair-wise associations, in contrast with the present nvention,

which allows triple associations in which two inputs interact with a given output.

)
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[0066] Yet another example includes single vector matehing., Some distributed
representations assign one prototype vector to each neuron. Similar to & sparse
distributed memory, the node detects a closest match if its inputs mateh the vector. For
example, some theories predict that pyramidal neurons are coincidence detectors,
However, such models may define that coincidence detection is limited by a fixed-
sparsity distributed representation in which each dendrite stores only one vector point and
not a full associative matrix.

[8667] The first definition may represent only two nputs (o compute a location
and not a learned association, The second definition may represent the fearning of'a
single association between ong inpul and another neuren. The third definition may be
intended to support a more powerful associative memory of input vectors, but each
neyron represents only one vector, not an arbitrary coincidence matrix of many vectors,

{6868} To avoid confusion, the assumed computation should be more clearly
defined, Coincidence detection within gach neuron is assumed to tepresemnts an entire
matrix, an entire graph, within itself. In this definition, the neural dendrite represents
many arbitrary associations between its inputs. How to represent an arbitrary non-lineat
network structare within a dominantly tinear “thin dendrite” becomes desirable. Toward
understanding neurons as well as for efficient neuromorphic devices, an algorithm may
be beneficial. The inspiration for such glgorithm may be sought from real neurons,

[0069] As a CNN, analgorithm should be a hardware algonithm. The neuronisa
device, even i in “wetware™ rather than havdware, utilizing very fine-gratned pacallelism
across its physical structure. Such device-level paralielism can be simulated i software
as much as software can simulate any electronic circuit, but the computation is sffectively
found by reasoning about the neuron as a device per se. It may be helpfil to consider
how to distinguish different levels of analysis for neurocomputation.

{0870} A computational theory level of analysis may determine the goal of the
computation, why that goal is appropriste, and the logic of the strategy for accomplishing
the goal. A representation and algorithm level of analysis may determine how the
computational theory may be implemented, and, in particular, what representation is used

for the input and output, and what algorithm is used for the transformation. A hardware

pren
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implementation level of analysis may determine how can the representation and
algorithm may be realized physically.

{8671} Independent of the physical substrate, memristor or not, the computation
and specific algorithm may be needed first. Given the computational assumption that
each neuron can learn and recall an associative matrix {2 graph or network i itself),

determining the algorithms of transformation for learning and recollecting are desirable,

{0072} As disclosed herein, a dominantly linear dendritic process may learn any
arbitrary coincidence structure across #ts distributed synaptic inputs and dendrites may
store graphs in and of themselves. At a computational level of analysis, graphs ¢an be
cast as Boolean functions. For example, a linear structure can compute Boolean
functions either in conjunctive or disjunctive normal form, depending on two different
strategies for the neural algorithm. In both cases, each synaptic input may be assigned 2
separate weights along the dendritic array, rather than the usual sipgle weight of
traditional neural network models. These computations appear to be biologically
plausible by a simulation of Hodgkin-Huxley equations to represent these weights and
their algorithmic propagation. The report of both algoerithmic strategies ncludes
uncertainties for a complete computation. One uneertainty corresponds to Boolean
incompleteness at larger scale. For 3 and 4 input variables, the algorithm can represent
all Boolean functions, but as the number of inputs increase, the number of Boolean
functions grows exponentially and the method’s coverage of these functions decreases
exponentially. On the other band, it has theoretically been proven that anv Boolean
netwerk function is computable with enough dendritic compartments. Another
uneertainty to a proof of existence that Boolean functions may be computed but does not
identity a method to learn the weights. For example, given the design of two weights per
input, Boolean funciions were generated and tested by exhaustive searci of the weight
space. This result proves that a pair of weight for cach nput can compute Boolean
functions, but there {s no reported method to learn these weights,

108731 A two-weipghts-per-input scheme computes interesting functions while
also being neuro-realistically computed by Hodgkin-Huxley equations. However, fora

specific algorithm to detect coincidences on thin dendrites, additional understanding may

i
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be desirable. Such understanding may determine what is fundamental about twe weights

per input, what conditions canse its representational imperfections, what are the cellular

what s the energy efficient (logical reversibility) of the rules.

{0074] Some issues have been identified and addressed, in part, in previous
Patent Ng. 6,581,049 to Aparicio et al., entitled “Artificial Neurons Including Power
Series Of Weights And Counts That Represent Prior And Next Associations,” which is
incorporated by reference herein in its entirety, included the understanding that more than
one weight per synapse may be required. As further developed in U8, Patent No.
7,016,886 to Cabana et al., entitled “Artificial Nevrons Including Weights That Define
Maximal Projections,” which is incarporated by reference herein in its entivety, this prior-
next representation was further understood as equivalent to matrix projections as defined
by digital tomography. Further propagation and compression methods were further
developed in U.S. Patent No. 7,657,496 1o Aparicio entitled “Nonlinear Associative
Memories Using Linear Arrays Of Associative Memory Cells, And Methods Of
Operating Same” (“Aparicio 2010, which is incorporated by reference herein in its

ntirety.

168757 Inspired to solve coincidence detection of thin dendrites, inventions have
approached the representation of non-linear matrives within Jinear structures. With
addirional exploration in recent years for the now emergent interest in cognitive
hardware, a complete answer Lo the dendritic storage of associative memories is now in
hand.

Digital Tomography

[0876] Tomography is the process of reconstructing the image of an object by
observing it in sections with & penetrating wave. For example, computerized tomography
{CTY uses X-rays and magnetic resonance imagining (MR1) uses radio waves to image
the body’s interior. Rather than slice a living body to see inside s structure, different
projections from different angles can be used to reconstruct its internal image.

[6077] Digital tomography does the same for binary objects such as for a binary

matrix. Using two projections, one looking across the rows and another looking across
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the columns of the matrix, the objective is to “see™ the individual bits in the interior of the
matrix. Beth projections, row and colurun, may be a vector of counts. Each count
represents the number of intersecting bits of the row with all #ts columns or the
intersection of a columun with all its rows. Using such projections for an associative
matrix, these two projections can be seeit as two weight sets. one weight for each row and

ame as the column

e

one weight for each column, In the case where the row labels are the
tabels in order to represent inpnt-input avto-associations, each input label may have two
weights, one in the row projection and one i the column projection.

[6678] However, these projections cannol perfectly represent the state of every
matrix, To be perfect, the projections would need to be invariant, representing one and
only one matrix configuration. As well known in digital tomography, only some
projections arve invariant, only for matrices that are “maximal®, defined as a perfect
packing of bits when the rows and columns are sorted.

{08791 Determining maximality may include sorting the rows and colamns in
projection order. If no holes are left in the packing, the matrix is maximal. Ifand only if
the matrix is maximal, then the projections are invariant. This is to say that the two Hnear
projections perfectly represent a maximal matrix and can be used to read any of its bits by
comparing one projection to the index sort order of the other.

{0088] Reference is now made to FIG. 1, which is a graph illustrating osing
projections of 2 maximal matrix according to some smbodiments of the present
inveution. For example, suppoesg input C (3002} had a row projection of 1 (3003) and H
(3004) was soried as the third largest columa projection as ndex 3 (3006). From thess
two projections, we know that the CH association is not in the matrix because C's
projection does not Yreach™ H. In contrast, imagine A (3008) having a row projection of
4 {3009) and F (3010) in column index erder § (3012). In this case. A’s projection length
clearly reaches F as well as the three other column indices that follow.

{8681} In some embodiments, projections are a formy of compression, but they are
a lossy compression because very few matrices ave maximal. Brief reference is now

made to FIG. 2, which is a graph {Hustrating a 4-switch problem using projections of a

be used to approximute 8 matrix, but as the likely problem of some methods, the lossiness
» ¥

i8
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in representing more complex graph configurations will grow exponentially in larger
dimensions. Turning again to digital tomography, the problem is known as the “4-
switch” problem. The most elemental switch involves 4 cells in the matrix. Even with
only 2 rows, A and B, and two colemns, C and D, imagine the case in which all 4
projection weights are equal to 1. Each row is associated to one colunin (and visa versa),
but it Is impossible for the projections to distinguish the AC and BD configuration from
that representing AD and BC instead.

{0082} The d-switch problent of digital tomography is informative, but machine
learning may provide a complimentary problem that allows a solution. Inthe context of
digital tomograply, the projections of the matrix are given, and the task is to imagine the
matrix however it was constructed. In the context of machine learning, each association
can be observed in training, with the oppoertunity to construct a matrix that has readable
projections.

{G083] If the problem of switches can be detected and avoided, then there iy the
potential for matrix projections to perfectly learn and represent an association matrix. To
solve this problem, the twe variants of the d-switch are referred to as “crossed” and
“panded”. Methods of using two weight projections and propagating the weights within a
dendrite are here extended to perfect storage - when this distinction betwoen crossed and
banded switches car be made and detected, Specifically, the crossed form of the 4-
switch s the problem, In this regard, the answer rests in avoiding crosses in the first
place and then extending the activation rule to include higher banded, “longer distatce”
associations.

Strple Activations

[0084] A dendrite is a linear array of compartments with synapiic connections
from other neurons. Hach synapse contains a synaptic weight, defined as the sirength of
connection between the pre-synaptic and post-synaptic neurons. Synaptic weights grow
through experience. Again described as cells that fire together, wire together, the
colncidences of synaptic activity are reflected in the magnitude of this connection weight.

{0085} To represent two projections as two weights per input, a first weight

represents the typical synaptic activation strength while a second weight represents the
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receptivity of each dendritic compartroent to other activations. One synapse and one
compartment are assigned to gach input in this idealized dendritic steucture.

10086} The physiology of neural signaling by the Hodgkin-Huxley equations
describes the voltage difference between intra-celiular and extra-cellular lonic
concentrations and the movement of fons in and out of the cell to account for the newron’s
membrane potential. Signal propagation is by depolarization of this membrane potential.
Resting synaptic and receptivity weights are idealized as intra-cellular potentials,
following the convention of sctting the external side of the membrane as the resting
voltage zero-point. When activated, these weights depolarize to become external to each
synapse and compartment as extrascelivlar weights.

{0087] Reference is made to FIG. 3, which is a schematic diagram of a dendyite
according to some embodiments of the present invention. The dendrite is directionally
activated from the apex, from the distal tip of the dendrite, down to the soma, which is
the neuron’s body, The soma is understood to be a simmation point for the neuron’s
activity, which the axon can transmit to other nevrons.  Although back-propagating
signals also exist in real neurons and can be included herein, coincidence detection is
gomputed by distal synapse activation that flows through each more proximal
compartiment on its way to the sonva. As will be defined, coincidence detections generate
g dendritic action potential, a spike, which travels toward the soma for its summation of
such coincidences across the entive neurorn.

{0088] Synapses and compartments can be active or passive, positive ON or
negative OFF, depending on whether the pre-synaptic input signal ts ON or OFF,
Svnaptic activation of each active synapse travels down the dendrite across the
receptivity gradient. When the positive activation encounters a positive receptivily, the
two nion-zero weights msteh each other, generating a spike. If matched, both the
activation wave and the receptivity gradient are decremented to account for the fournd
association, and the decremented activation proceeds to the next compartmert. -

{00891 This simple propagation rule can detect contiguous runs of associations
within the neighborhood of the activated synapse and non-zero contiguous propagations
to associations farther afield.  For example, the schematic above shows an EB

association, Tmagine the association BB when it is the only association in the dendrite

20
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and all other synaptic and compariment weights set to 0. When E and B are both active, a
synaptic weight of 1 will propagate unimpeded (no decrement) until it reaches the other’s
compartment and receptivity of 1. The activation and receptivity match and will both
decrement to zero, There are no other associations to be found. This example s trivial
but the method extends to larger association blocks — except for the problem of 4~
switches,

Bandwidth Reduction

{0096} Similar to projection sorting in digital tomography to detect and exploit
maximal matrices, this activation rule benefits by sorting the matrix inputs so that each
input is as close a3 possible to its associated other inputs, Such sorting may be equivalent
to matrix bandwidth reduction. A low bandwidth matrix is a sparse matrix that has its
bits packed toward the diagonal. High bandwidth is defined to the degree that bits remain
far away from the diagonal.

{0091] Brief reference is made to FIGS. 44 and 4B, which are graphs
representing all coincident pairs in a matrix City: Tampa in the context of “Tampa™ from
unstructured new sources when rows and columns are in an arbitrary order and a sorted
ovder, vespectively. Asillustrated in FIG. 4A, when rows and columas are in arbitrary
order, the association cells are widely distributed. {n contrast, as thustrated in FIG. 48,
when the rows and columns are sorted to minimize matrix bandwidth, associated inputs
move closer to each other, placing their associations closer 1o the diagonal as well,

{60921 For the activation rule across 2 dendrite, bandwidth reduction tends to
pack associgtions inte contiguous, local blocks. Similar to reading a matrix by seeing if
its projection length of one taput “reaches” the index of another input in digital
tomography, an activation wave detects its associations, decrements itselt, and continues
to find associations down the ling. Sorting benefits this ocal propagation technigue by
creating more local input-input asseciations.

{0093} [ should be clear that this dendritic propagation technique can read an
association without an explicit wire betwveen each and every input pair. The “wires” are
virtual between any two input compartments and ave expressed only by activation

propagation. Because the time to propagate to another between inputs is proportional to

~a
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the distance between them, matrix bandwidth minimization allows the virtual wires to
also become “shorter™ as well as virtual,

Cascading Activations

{0094} 1t may be useful to represent a perfect memory of any graph, including
associations between two synapses that might be otherwise confounded by a 4-switch
even after bandwidih reduction. Simply being farther away is not the problem. in
general, the simple activation rale just described can detect certain coincidences that are
not necessarily continuous, However, higher band associations also tend to live within 4-
switches. For exampie, other associations that might come between B and B in a more
complex and interesting graph, could “get in the way”.

{0095} Reference is made to FIG. 5, which is a schematic diagram of cascading
activations of a dendrite according to some embadiments of the present invention, A
solution may be found in the parallel, cascading propagation of many waves. In addition
to the activations generated by active inputs, non-activated weights also propagate shead
of the positive activations to “clear the way”. This cascade can perfectly represent any
graph of near and far associations across the dendrite ~ so long as there are ne 4-switches
n the crossed configuration. Otherwise, so long as ail 4-switchs are “banded”, both high
and low band associations can be detected across a cascading bands.

{0096] For an example of a banded 4-switch, assums again that E and B are
associated to each other, also with D and € associated between E to B, Usingonlya
single propagation wave as described above, if B and C were ON, E’s positive activation
would encounter C's positive receptivity before reaching its true assopiative receptivity at
B. This is the problem of 4-switches, no maiter if in the crossed or banded configuration.
However, if I propagates in a lower bandwidth cascade before B, then the D activation
wave will correctly mateh C's receptivity, clearing the way for the E wave on the higher
band to proceed to its true connection with B.

{6697} This ceniral idea may be stated differently, namely that cascading
propagation can be seen as processing the lower bands before traveling to the higher
bands. Cascading propagation of all synaptic weights may be required to “clear” the
lowes~band associations so that higher-band activations can “follow™ to their more

remole target associations.
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{0098} For any graph to be presented without loss, non-active synapses must also
propagate their synaptic weights for a full accounting. To distinguish positive input
activation waves from these additional waves, each activation must carry its positive ot
negative sign. In other words, the level of activation is based on the synaptic weight,
while the sign of the activation is based on whether the originating synapse is ON or
OFF. Reference is now made to FIG. &, which is a flow chart Hu%mtmg the synaptic
depolarization whenevey the synapse is turned ON, inciuding the activation signal to the
next compartment according to some embodiments of the present invention, When the
synapse input is turned on {block 3102}, then & determination is made as to whether the
weight is greater than 0 (block 3014). If the weight is greater than ), then the
depolarization synapse value is set to the weight value (block 3106}, Then the activation
gutput is set to the weight value (block 3108) and then the weight value is set to 6 (block
3110} Then the activation output is sent {biock 3112).

{80991 In order for the OFF synapses to also propagate, any activation from mote

i

istal compartments forces additional synaptic depolarizations and activation waves,
This occurs once per compartment, if not already depolarized (the intra-cellular potential
is not ). When these OFF synapses are activated, the propagation Is also equal to the
synaptic weight as with ON synapses, but the sign is negative.

{6108} Reference is now made to FIG. 7, which is a flow chart Hlustrating the
cascading synaptic activation according to some embodiments of the present invention.
When the synapse tnput is turned off (block 3128) and the weight is not equal to 0 (block
3122}, then the depolarization synapse value is set to the weight value (block 3124).
Then the activation output is set to the weight value (bloek 3126) and the weight value is
set to U {block 3128). Then the activation output is sent {block 3130). As all the input
activations are initiated and begin to cascade, the compartments regpond to 4 series of
activations flowing over them as they move down the dendrite.

[0161] Hevery compartment, ON or OFF propagates its signal, then this i
corect for QFF inputs. However, in some erbodiments, OFF inputs wmay be triggarad
only when an ON signal impedes on them. Stated diffevently, rather than all OFF
compartments activating, only those that will be engaged in other ON propagations need

1o Clear themselves out frst

e
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{0182] Reference is now made to FIG. 8, which is & flow chart illustrating the
togic for processing a cascading compartment sctivation according to some embodiments
of the present invention, Activations are propagated only ay they continue 1o be non~
zeros As such, if the activation input is zero, then no activation propagation geeurs (block
3140% When receptivity decrements to zero, the compartiment becomes un-responsive
except to pass the activation from one compartment as its own activation to the next
compartment. 1{the activation input is greater than zero (block 3 149) but the receptivity
is zero (block 3142}, then the activgtion is sent to the next compartment (block 31523

[1303] For additional efficiencies, latching between compartinents can become
transparent when receptivity drops to zero. Compartments that have no further
receptivity have nothing lefi to do, and can clectrotonically tranamit the input activation
as their output activation without sequence latching, In other words, they do not need to
keep passing activations in a bucket brigade. For instance, imagine 1000 connected
compartments that have exhausted their receptivity to 8. Any ioput activation to the 1%
compariment can immiediately become the exact same output activation of the 1000%
compartment. These bypassed compartments can become transparent, simultaneously
passing the non-zero activation value across long distances i one operation. As result,
the number of time steps required to compute the graph is not a function of compartment
distances and the time steps for propagation. The effect is that lower-band, closer
associations will quickly clear and drive receptivity to zero. Longerand longer zerp-
receptivity chains will form to electrotonically transmit the higher band associations over
longer distances in shorter time. As a result, the time to detect associations s a function
onty of e matrix’s bandwidth rather than a dendrite’s fength.

{0104} A non-zero activation meeting a non-zero receplivity accounts for an
association, Butto detect coincidences between only the inputs that are ON, a positive
activation wave must meet a positive input to the current compartment. When both are
positivee, a roateh is detected and signaled as a cotncidence spike to the soma. As such, if
the activation {nput (block 3140) and the receptivity (block 3142) are both greater than
zero, then a coincidence spike signal is sent to the soma (block 3144).

{1105] Additionally, when each compartiment receives a nou-zero activation

sipnal (block 3140) and the receptivity is also non-zero (block 3142), then the
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compattment further depolarizes (block 3146). Compartiment depolarization (block
3146} may include decrementing the compartment receptivity (block 3147} and
decrementing the compartment activation value (block 3149). If the activation remains
non-zero (block 3150), then the compartment sends the remaining activation to the next
compartment (block 3152). Some embodiments provide that the compartments are
latched to each other in the sense that gach compartment may propagate {is own synaptic
activation befory accepting and processing a more distal activation and then the next
distal activation in sequenge.

[0186] This representation of matrix associations as projections allows the
crosshar wires to be virtual,  These virtual wires can be made shorter by matyix
bandwidth reduction, as described above. And whether sorted or not, long distance
“wires” become shorter stitl by the growing transparency of compartments during
propagation.

{0107} The cascading getivation rule may be used to compute any associative
mateix so long as it does not contain any 4-switches in the crossed configuration. As
such, the learning rules must avoid adding any crosses to the matrix in the first place.

[0108] Brief reference is now made to FIG, 9A, which is a schematic diagram of
cascading activations of a dendrite according to some embodiments of the present
invention. A basie “storage prescription formula” for an associative matrix may provide
that if two inputs are coincident, their associative weight is incremented. For example, if
E and C are to also be stored in a given matrix-graph, then E and € weights are
increvnented. As each input has two weights, the formula becomes directional, depending
on whether E s distal (farther from the soma) or proximal (nearer to the somay than €
To learn an association between two inputs across a dendrite, the distal inpul increases s
synaptic weight, which will propagate down the dendrite, while the proximal input
increases its receptivity weight, which will mateh the other’s propagation. To load such a
new association, the new weights may be “imagined” to increment, to see if the inputs
“find™ sach other. If the additional association (or more than one in a vector input
pattern} does not create a crossed 4-switch, the incremented weights will correctly

assimilate into the virtual graph.
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{0109} The learning rule represents a triplet dependency. First, the target neuron
is-assumed to be ON in order to load new associations within its context. Second, a distal
activation propagates an ON input signal, Third, this distal signal interacts with the more
proximal activation of another input signal. While there is growing evidence for teiplet
potentiation. Physiclogics! evidence leans toward more general methods of activation,
spiking or not, for the stronger requivement of teiple activation.

10110} However, if any association creates a crossed configuration, subsequent
propagations will not correctly express the new association. Brief reference is now made
to P10, 9B, which is a schematic diagram of cascading activations of a dendrite aceording
1o some embodiments of the present invention. As fllustrated, i D is distal and A is

1

proximal and connecting them creates as 4«switch, then I’s propagation will be
incorrectly received before reaching A. This problem is apparent when A is lefi
“standing at the altar™ (so to speak), waiting for D to arrive. Aay such ervor is due to the
creation of 8 4-switch.

{0131} The new DA association cannot be directly loaded into the given
projection weights, but several methods can add the agsociations in other ways. Brief
reference is now made to FIG. 10, which is a schematic diagram of cascading activatious
of a dendrite according to some embodiments of the present invention, As one method,
the dendrite can grow at {ts apex, which includes a “growth cone” in real neurons. More
generally for hardwarg, a longer array of compartments is assumad to inchide naused fiee
space. Adding another synapse and testing its association to other synapses can more
likely add the new association to the new synapse. More generaily, crossing assaciations
can be avoided by placing them on another dendrite (or extended free space); if the
associations can be stored elsewhere, store it elsewhere.

0112} To be clear, no claim is made that an O(N"2) object can always be
represented in two O(N) projections. For more complex graph structures, duplicate
synaptic inputs may be required, For example, Peterson Graphs (sometime called
“snarks™ ) at higher dimensions may include crossed configurations that cannot be
reduced to an O(N) configuration of two projections, Buat in one longer linegr dendritic

array or a paraliel set of such arrays as in a dendritic tree, all associations can be loaded at
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one place or another in the representation. It is generally gssumed that input axons may
make more than connection over the fleld of the post-synaptic neural tree.

{0113} Real synapses are alse known to connect, disconnect, and move on the
dendrite, in minutes to hours. So long as the associations can be loaded before they are
lost, reorganizations can follow to reduee synaptic duplication and regain more wiring
efficiency.

{0114} Real neural systems ave also extremely energy efficient. The entire brain
is known to expend only 10-20W of energy, equivalent to a utility light bulb, spread
across trillions of neurons in the human brain. The representation of projections may
offer an astounding compression of associations within a “thin™ dendritic space.

Although cascading propagation is sequential, computation speed is a function of matrix
bandwidth when accelerated by electrotonic “jumps”™ for far-field connections. More
fundamental energy efficiency also seems possible.

{0115} Adiabatic processes are defined as minimizing the loss of physical energy.
In electronics, adiabatic circuits are being developed 1o minimize the energy cost of
computers, a problem particularly important to mobile and embedded computing devices.
Whether a civcult is adiabatic or not is very dependent on iis speeific design (such as
never passing reverse current through a diode).  This properly may also depend on
whether the operation is logically reversible. A NOT gate is reversible because the input
can also be computed from its output.  An XOR gate is not reversible because two
different input states lead to the same output. Given only the output, the input
information to an XOR gate is lost. When information is lost, energy is also lost,

[6116] Briefreference is now made to FIG. 11, which is a schematic diagram of
logically reversing cascading activations of a dendrite according to some embodiments of
the present invention. Embodiments of coincidence detection on thin dendrites is
described here at the computational and algorithmic level of analysis rather than its
implementation in any specific electronic circuit design, But asa computation, adiabatic
efficiency of embodiments may be questioned in terms of its logical reversibility, One
test of logical reversibility is whether the end state of a cascading propagation can be

reversed to regain the start state.
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{0117} This appears to be true by a reverse propagation irs which the depolarized
synaptic and receptivity weights continue to z‘epfesen't the original two projection vectors.
The end state is perfectly isomorphic to the start state. Reversible circuits must have
input-output symmetry in the same number of lnput as output wires. Given that the
polarized weight vectors ave identical to the depolarized versions, logical reversibility is
true by reason of non-variance. For example, there is 2 one-to-one correspondence
between the projection state and itself (the polarized and depolarized identity ),

{0118} Reversibility may also be proven if the computation can be run in reverse
so that the output always produces the original input. 1f the depolarized receptive
weights were to repolarize and generate a reverse wave that back propagates to maich the
depolarized synaptic weights, the propagation algorithm car be run in reverse.
Cotncidence detection on thin dendrites is a one-dimensional cellular automata in that
each compartment has no more than two neighbors.

{0115} While logical reversibility 13 2 more profound property of these
approaches, a reversed “back propagating” signal completes the leaming rule for triplet
dependencies. For two inputs to associate, both of their compartments must update their
weights, As described above, the weight updates are asymmetrical: an association
updates the distal synaptic weight and the proximal receptivity weight, Given the
activation of the post-synaptic neuron, the orthodromic propagation (toward the soma)
matches the distal activation to a proximal activation. This is sufficient to update the
receptivity weight of the proximal compartment. Reversibility isuot only adiabatic; it
also provides an antidromic propagation (away from the soma) to match the proximal
activation to the distal activation, In the reverse case, the update is recorded in the
synaptic weight of the proximal compartment. The logic of the learning rule is also
reversed, but it again may require a triple dependency,

{0120} In some embodiments, the coincidence learning and detection algorithm
can be improved based on understanding that a single neuron is non-linear unit and is
networks in itself. The pyramidal neuron of the neocortex may be hypothesized to
implement such methods within their thin dendrites. While the pyramidal neuron may be

the centerpicce of the cortical microcolumn, other neural types may surround pyramidal
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cells to form & larger circuit. The circuit may contain many different cell types, including
many types of inhibitory neurons.

{0121} Fanctionally, there are many types of inhibition, For example, inhibition
at the hase of the soma, the point of activity summation from dendrites and output to the
axon, may act as a “veto” controller. As such, no matter a neuron’s own “vote”, strong
inhibition at this output point can limit any output. Another type of inhibition is called
“sculpting inhibition™, Rather than an overall veto power, sculpting inhibition may be
thought to more surgically modify the activity of another neuron.

{0122} Inhibition can evolve the given glgorithim, in the same way inhibitory
neurons may be “late invaders” to the cortical eireuit during development. In some
embodiments, inhibition can “blanket” the pyramidal neuron in order to sculpt it. One
inhibitory neuron of the cortical circuit is referred to as the “double bouquet” neuron and
is potentially most relevant due to Hs location, shape and connectivity, The double
bouguet neuron sits next to the pyramidal nevron, is shaped into a thin column of
dendrites that may be parallel 1o the pyramidal cell, and may innervate itself across the
extent of the pyramidal cell.

{0123] Computationally, such Inhibition might play a role in further addressing
the d-switch problem. For example, reference is now made to FIG. 12, which is'a
schematic diagram of detection and represeutation of the crossed configuration when an
inhibitory neuron’s inhibitory synapse is ON in a dendrite according to some
embodiments of the present inveution.  As illustrated, the DA association may be loaded
as discussed before and which was disalfowed in forming a crossed 4-switch with the BE
association. The DA association can be loaded elsewhere on the dendrite or another
branch of the dendritic tree. Reorganization of synapses might also remove the switch,
but this may take more time. As an additional technique for addvessing crossed
configurations, an inhibitory connection (from the red inhibitory neuron) at synaptic input
B could detect that B will erroneously associated to D and form an inhibitory signal. By
inthibiting B from matehing D's activation, the propagation of activity from I would pass
B io correctly match with A,

{0124] The algorithm for such defection and how the inhibitory signal “skips™ an

activation-receptivity match is an extension of the basic cascading algerithim and is not
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required for a dendrite to represent and express any graph, However, it does show that
larger circuit computation is possible, such as to represent more complex graph
counfigurations than the dendrite alone.

{01251 Other extensions of the technigques berein include the representation of g
weighted graph. In other words, the synaptic and receptivity weights currently represent
the number of associations from one nput to the others. An extended design may also
represent the strength of each association through a power series of weights for each
input to account for the connection strengths, using sepavate synapse and compartment
weights for cach power level. Power weights can be separated across different dendrites,
one dendrite for each power. A power series of synapses can also be made co-local on
one dendrite, one synapse for sach power weight, co-local to their common inpat.
Physiologically, synapses are understood to grow not just in strength but also in
morpholegical structure to include separate transmission sites within a multi-synaptic
bouton.

{0126} The understanding of memory as the fundamental knowledge
representation of the brain further necessitates an understanding of the fundamental unit
of computation, the neuron, and how it supports components of cognitive representation,
namely connections, strengths of connections, and context of connectinus,

{0127} Some embodiments provide that connections may be considered the
fundamental element of neural representation, which is implemented by synaptic links
from one to ancther, In some embodiments, strengths of connections may also be
fundamental in representing the statistical magnitude of these connections. Some
embodiments provide that context of connections and strengths is also be represented as
triple stores, which ate a 3-space presentation of connections and their strengths.

[0128] In orderto represent semantic knowledge, such as in the subject-verb-
objoect structure of all human language, connections are provided at the tevel of “triples?,
not just a pair-wise graph. For statistical knowledge as well, conditional information
“lives™ bevond the assumption of independent variable inputs to each dependent variable
output. Because each neuron represents input-input associations mapped o an output,
each neuron can represent such contextual and conditional triples, collecting forming

larger networks.
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{6129} The brain may be considered as a network of networks of associative
memory networks. The brain organization levels may be considered as the brain overall,
area microcireunits, and individual neurons. Regarding the brain overall organization, the
brain is not a mishmash of spaghetti. Instead, it is composed of many subareas, which
are separate but communicate with each other as one overdrching network.

[0136] At the area microcireuit organization level, within each area of the brain,
connections may be designed to address specific functions within the larger network.

The most fundamental network is at the neuron Jevel owithin each negron. Thus, iy
contrast with simplistic linear summing and threshold models, each neuron may represent
a nonlinear associative matrix, connecting inputs to each other,

{0131} All three of these properties have been described already in commonly
owned US Patent 8,352 488 to Fleming et al,, U.S. Provisional Patent Application No.
61/896,258, filed 10-28-2013 to Hofmann et al., and U.S, Provisional Patent Application
No. 61/904,833, filed 11-15-2013 to Hofmann et al., all o which ave incorporated by
reference as if set forth entirely herein, They deseribe how massive numbers of matrices
can be distributed, parallelized, compressed, and recollected on today’s general purpose
computing clusters. Compressing such mairices and aggregating results across matrices
and submatrices has been solved using software algorithms and special forms of
distributed hash coding, varigble length integer, and zero-run length encoding.

{132} However, the constraints of current von Neumann bottlenecks, such as the
sepavation of computation and memory, sre far from the ideal of neural efficiency. For
example, the “semantic expansion rate”, the scaling cost of graph stores, can be
notoriously larger than data itself. Currently available software cannot compare 10 bow
enir brains must have a better representation when computing with neural devices,
Therefore, it the same way that transistors/area defined the battleground for smaller and
smaller microelectronics, triples/area may become the mark of smarter and smarter
neutomorphic computing. To that end, the embodiments described herein emulate the
more efficient algorithm found in neurons.

{0133 The growing interests in cognitive computing and neuromorphic hardware
are generally defined as “brain-like™ and “neuron-like™. Drawing inspiration from our

own minds and brains is becoming the basis for more intelligent machines. The brain
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evolved o deal with the real world in real time, also learning in real time as the world
changes. While these capabilitics may be fundamental o intelligence, they have been
fundamentally diffetent from conventional artificial intelligence systems, for which
knowledge engincers must author facts, and from classical statistics, for which data
scientists must build data models, In contrast, emsbodiments described herein have been
focused on associative memories as the true basis of knowledge. When psychologists
speak of semeantic memory, procedural memory, episodic memory, and motor memory,
the function of “memory™ is seen as common to all natural reasoning. Associative
memories satisfy the “single algorithen hypothesis” that underlies how we think and
behave and how computers can do the same:

{03134} As described herein, the natural intelligence of our own minds and brains
are represented using associative memory representation and reasoning and, whether in
software or hardware, assume a matrix orientation, However, the hardware algorithms
have been pursued to represent matrices within linear structures, inspived by the goal of
undetstanding “coincidence detection of thin dendrites” for ultimate efficiency. The
accounting of cascading propagations and avoidance of associative crossings has now
achieved an improved memory representation. As such, significant inereases in computer
efficiencies may now be realized.

{0135] Cognitive computing will continue to require an understanding of real
inteifigence. Althongh not all definitions Include “brajn-like” aspirations, most admit
that our braius represent the best-known way to survive in real-time in a dynamic veal
world. Graph representations are increasingly being accepted as the universal
representation of knowledge to connect people, places, and things, situations, actions, aud
outcomas. Therefore, graph representation and reasoning will become increasingly
central to computing in general, and as such will move into cognitive operating systems
and cognitive hardware fabrics of the near future. Newrons offer the inspiration for how
graphs can be ultimately compressed, quickly expressed, and operated with low energy in
nearomorphic computers.

[0136] Inthe same way that 1s and 0s are the fundamental elements of digital
computing, the connections and counts of synapses will define cognitive computing,

equally broad in all the applications that this new form of computing will support.
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{0137} Some embodiments are directed to a computer program product
comprising a computer usable storage medium having computer-readable program code
gmbodied in the medium, the computer-readable program code comprising eoroputers
readable program code that is configured to perform operations of the systems and
methods herein.

[0138] In the drawings and specification, there have been disclosed
embodivents of the invention and, althongh speeific terms are employed, they are uged in
a generic and descriptive sense only and not for purposes of Hmitation, the scope of the

invention being set forth in the following claims.
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What is Claimed is:

I8 An artificial neuron comprising:

a pluratity of dendrites, ones of which include a plurality of dendsite
compartmenis, wherein a respective one of the dendrite compartments is uniguely
associated with g respective one of a plurality of inputs, cach dendrite compartment
comprising a first weight value corresponding to a synapse activation strength and a
second weight value corresponding to receptivity of the respective dendrite compartment

to other getivations.

2. The artificial nevron according to Clain: 1, wherein the plurality of
dendrite compartments are Hnearly areanged from an apex that {s a distal tip of the
dendrite to 8 soma which is an artificial neuron summation point.

3 The artificial neuron according to Claim 1, wherein cach of the plurality of
18 d*:}.‘i‘;ﬁ\a 3 ;"r AR R E ol S {" h‘) d Feritm : arraante } ke , |f— ) -;Jd revre iy
dendrites is a linear array of the dendrite compartments that are configured to receive

inputs from respective other artificial neurons.

4. The artificial neuron according to Claim 1, wherein ones of the plurality of
inputs ave received via cascading synaptic activation via the plurality of dendrite

compariments.

3. The artifivial neuron according to Claim 1, wherein dendrite
compartments having receptivity vahues of zero are configured to slectrotonically
transmit an dctivation input from a more distal one of the plurality of dendrite
compartiments as an activation output to a more proximal one of the plurality of dendrite

compariments,

6. The artificial neuron according to Claim 1, wherein responsive to the

plurality of inputs generating a crossed-switch among ones of the plurality of dendrite
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compartments; the corresponding one of the plurality of dendrites includes an added

dendrite compartment gt the dendrite apex.

7. The artificial neuron according to Claim 1, wherein responsive to the first
weight value in one of the plurality of dendrite compartments being greater than zero and
the second weight value in the one of the plurality of dendrite compartments being
grester than zero, the one of the plurality of dendrite compartments sends a colncidence

spike signal to a soma that i3 an artificial neuron summation point.

8. The artificial neuron according to Clatm 1, wherein responsive to the first
weight value in one of the plurality of dendrite compartinents being zero, activation
P 8 :

propagation ceases for that one of the plurality of dendrite compartments.

9. A method of memorizing a plurality of inputs into an artificial neuron that
includes a plurality of dendeites each having a plurality of dendrite compariments, the
method comprising:

computing coincidence detection as distal synapse activation that flows from
rore proximal ones of the plurality of dendrite compartments to a soma of the artificial

nearon that is an artificlal neuron stimmation point.

10.  The method according 1o Claim 9, further comprising generating a
dendritic action potential responsive to the coincidence detection from a non-zero
activation value Input received at a corresponding one of the plurality of dendrite

compartments that includes a receptivity value that is not-zero.

11, The method according to Claim 10, wherein responsive to generating the
dendritic action potential, the method further comprises:

decrementing the activation value and the receptivity value; and

passing the decremented activation value to a nexs one of the plurality of dendrite

compartments.,
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12, A method of memorizing a plurality of inputs into an artificial neur
on that includes a phurality of dendrites each having a plurality of dendrite compartments,
the method comprising;

computing coincidence detection using a cascading activation that cascades from
distal ones of the plurality of dendrite compartments more proximal ones of the plurality

of dendrite compartments to & soma of the artificial neuron.

13.  The method according to Claim 12, further comprising detecting and

avoiding a crossed-configuration 4-switch.

14,  Anartificial neuron comprising:

a plurality of dendrites, ones of which include a plarality of dendrite
compartments, wherein a respective one of the dendrite compartments is uniquely
associated with a respective one of a plurality of inputs, ones of the plurality of dendrite
compartments configured to receive a cascading activation and to transmit the cascading
activation in an unmodified state if the corresponding one of the plurality of dendrite
compartments includes a first receptivity value and in a modified state that is different
from the unmodified state if the corresponding one of the plurality of dendrite

compartments includes & second receptivity that is different from the first receplivity.

15, A computer program product for memorizing a plurality of inputs into an
artificial neuron that includes a plurality of dendrites each having a plurality of dendrite
compartments comprising:

@ non-transitory computer readable storage medium stoving computer readable
program code that, when executed by a processor of an electronic deviee, causes the
processor to perform operations comprising:

computing coincidence detection as distal synapse activation that flows from
more proximal ones of the plurality of dendrite compartments to a soma of the artificial

hearon;



WO 2015/159242 PCT/IB2015/052757

generating a dendritic action potential responsive to the coincidence detection
from a non-zero activation value input received at a corresponding one of the plurality of
dendrite compartmuents that includes 2 non-zero receptivity; and

responsive to generating the dendritic action potential, decrementing the
activation value and the receptivity and passing the decremented activation value to a

next one of the plurality of dendrite compartments,

16. A method of memorizing a plurality of inputs into an artificial neuron that
inciudes a plurality of dendrites each having a plurality of dendrite compartments, the
method comprising:

computing coineidence detection using a cascading activation that eascades from
distal ones of the plurality of dendrite compartments mote proximal ones of the plurslity

of dendrite compartments to a soma of the artificial neuron.

17.  The method according to Claim 16, further comprising detecting and

avoiding of crossed-configuration 4-switches.

18.  The method according to Claim 16, wherein the plurality of dendrite
compartments are linearly areanged from an apex that is a distal tip of g corresponding
one of the plurality of dendrites to a soma which is an artificial neuron summation point

of the corresponding one of the plurality of dendrites.

19, The method according to Claim 16, the method further comprising
receiving, into ones of the plurality of dendrite compartments, inputs from respective

other artificial neurons.
20.  The method according to Claim 19, wherein each of the plurality of

dendrites includes a Hnear array of the plurality of dendrite compartments that are

configured to receive the inputs from the respective other artificial neurons,

37



WO 2015/159242 PCT/IB2015/052757

21.  The method according to Claim 19, wherein receiving, into ones of the
plurality of dendrite compartments, Inputs from respective other artificial neurons
comprises recelving the inputs via cascading synaptic activation via the plurality of

dendrite compartments.

22.  The method according to Claim 16, further comprising rapsmitting an
activation input from a more distal one of the plurality of dendrite compartiients as an

activation output to a move proximal one of the plurality of dendrite compartments,

23.  The method according to Claim 16, wherein responsive to the plurality of
inputs generating a crossed-switch among ounes of the plurality of dendrite conpartments,
providing an another dendrite compartment to the plurality of dendrites at the dendrite

apex.

24, A system comprising:
a processor; and
a memory that includes instructions stored therein that, when executed, cause the

processor to perform the operations of Claim 9.

Lo
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