用于α-烯烃单体的连续聚合的多区段反应器

摘要

本发明涉及适合于一种或多种α-烯烃单体的连续流化床聚合的多区段反应器，所述单体的至少一种为乙烯或丙烯，所述多区段反应器可在冷凝模式下运行，所述多区段反应器包括第一区段、第二区段、第三区段、第四区段和分配板，其中所述第一区段与所述第二区段被所述分配板分开，其中所述分配板设于所述第二区段上，其中所述分配板设于所述第二区段上。
1. 向适用于多种或多种α-烯烃单体的连续流化床聚合的多区段反应器，所述单体的至少一种为乙烯或丙烯，所述多区段反应器可在冷却模式下运行，所述多区段反应器包括第一区段、第二区段、第三区段、第四区段和分配板，其中所述第一区段与所述第二区段被所述分配板分开，其中所述多区段反应器在竖直方向上延伸，其中所述多区段反应器的所述第二区段位于所述第一区段之上，其中所述多区段反应器的所述第三区段位于所述第二区段之上，其中所述多区段反应器的所述第四区段位于所述第三区段之上，其中所述第二区段包含内壁，其中所述第二区段的所述内壁的至少一部分呈逐渐增加的内部直径的形式或连续开口锥体，其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增加，其中所述第三区段包含内壁，其中所述第三区段的所述内壁的至少一部分呈逐渐增加的内部直径的形式或连续开口锥体，其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增加。其中所述第三区段的所述内壁的最大直径大于所述第二区段的所述内壁的最大直径。

2. 根据权利要求1所述的多区段反应器，其中所述第三区段和/或所述第二区段的至少一部分包含内壁，其中所述内壁的至少一部分具有圆柱形的形状。

3. 根据权利要求1或2中任一项所述的多区段反应器，其中直接在所述分配板之上的区域中的区段(2)呈逐渐增加的内部直径的形式或连续开口锥体(2A)，其中所述直径或所述开口在朝向所述多段反应器顶部的竖直方向上增加。

4. 根据权利要求1-3中任一项所述的多区段反应器，其中所述第三区段的形状是所述第二区段的形状的一部分。

5. 根据权利要求1-4中任一项所述的多区段反应器，其中所述连续开口锥体或逐渐增加的内部直径从所述第二区段延伸至所述第三区段中，和任选地还从所述第三区段延伸至所述第四区段中。

6. 根据权利要求1-2中任一项所述的多区段反应器，其中直接在所述分配板之上的区域中的区段(2)呈逐渐增加的内部直径的形式或连续开口锥体(2A)，其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增加，和其中所述第二区段的顶部部分具有内壁，所述内壁具有圆柱形的形状(2B)和其中所述第二区段的顶部部分连接至所述第三区段的底部部分(3A)，其中所述第三区段的底部部分呈逐渐增加的内部直径的形式或连续开口锥体，其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增加，和其中所述第三区段的顶部部分具有内壁，所述内壁具有圆柱形的形状(3B)和其中所述第三区段的顶部部分连接至所述顶部区段，例如连接至所述第四区段。

7. 根据权利要求1-6中任一项所述的多区段反应器，其中具有逐渐增加的内部直径或具有连续开口锥体的所述第二区段的所述内壁相对于所述多区段反应器(8)的中心线(9)的角度(α)为1至40°。

8. 用于在根据权利要求1-7中任一项所述的多区段反应器中由一种或多种α-烯烃单体连续制备聚烯烃的方法，所述单体的至少一种为乙烯或丙烯，所述方法包括：

- 将固体聚合催化剂进料至多区段反应器(8)的分配板(6)之上的区域中
- 将一种或多种α-烯烃单体进料至所述多区段反应器(8)。
- 从所述多区段反应器(8)取出聚烯烃(30)。
- 从所述多区段反应器(8)的顶部，例如在四个区段构成的多区段反应器情况下
 的所述第四区段(4)的顶部将流体循环至所述第一区段。
- 其中将所述流体冷却至低于它们的露点，产生底部再循环料流，和其中将所述底部再循环料流引入所述第一区段。
- 其中所述表面气速在0.5至5m/s的范围内。

9. 适合于一种或多种α-烯烃单体的连续聚合的系统，所述单体的至少一种为乙烯或丙烯，所述系统包括根据权利要求1-7中任一项所述的多区段反应器(8)。

10. 根据权利要求9所述的系统，还包括压缩机(400)和冷却单元(5)，
 其中所述第一区段包括用于接收底部再循环料流(10)的第一入口
 其中所述第二区段(2)包括用于接收固体聚合催化剂(20)的第一入口
 其中所述第二区段(2)和/或所述第三区段(3)包括用于提供聚烯烃(30)的第一出口
 其中所述第四区段(4)包括用于接收顶部再循环料流(40)的第一出口
 其中用于所述第四区段的顶部再循环料流(40)的第一出口经由第一连接结构(AA)例如管
 道连接至所述压缩机(400)的第一入口
 其中所述压缩机(400)包括用于经压缩的流体(50)的第一出口
 其中所述压缩机(400)的第一出口经由第二连接机构(BB)连接至冷却单元(5)的用于经压缩的流体的第一入口
 其中任选地，所述第二连接机构(BB)例如管道包括用于接收进料(70)的第一入口，
 其中所述冷却单元(5)包括用于提供底部再循环料流(10)的第一出口，所述冷却单元(5)的第二出口连接至所述第一区段的第一入口
 其中所述第一连接结构(AA)包括用于接收进料(60)的第一入口。

11. 使用于在根据权利要求9或权利要求10所述的系统中的一种或多种α-烯烃单体的连续聚合的方法，所述单体的至少一种为乙烯或丙烯，所述方法包括
 一使用用于接收固体聚合催化剂(20)的第一入口为所述第二区段(2)供应固体聚合催化剂
 一将包括α-烯烃单体的进料(60)供应至所述第一连接结构(AA)
 任选地将包括可冷凝的惰性组分的进料(70)供应至所述第二连接机构(BB)
 一使用所述第三区段(3)和/或所述第二区段(2)的第一出口取出聚烯烃(30)。
 一将流体从所述第四区段(4)的第一出口循环至所述第一区段的第一入口
 其中所述流体通过如下循环
 一使用压缩机(400)压缩所述进料(60)和顶部再循环料流(40)，以形成经压缩的流体(50)
 一随后使用冷却单元(5)将经压缩的流体(50)冷却至低于所述经压缩的流体的露点，以形
 成底部再循环料流(10)，和
 一经由用于接收所述第一区段的底部再循环料流的入口将所述底部再循环料流(10)进
 料至所述多区段反应器(8)的所述第一区段，和
 其中在该方法中的表面气速在0.5至5m/s的范围内。
12. 根据权利要求11所述的方法，其中在所述第二区段中进行气-液聚合和在所述第三区段中进行气相聚合。

13. 根据权利要求11或权利要求12所述的方法，其中：
 • 所述进料(60)包括链转移剂，例如氢气并且可以另外包括气态α-烯烃单体和惰性气体组分例如氦气；和/或
 • 所述进料(70)包括可冷凝的惰性组分；并且可以进一步包括可冷凝的α-烯烃单体、
 α-烯烃共聚单体和/或其混合物；和/或
 • 在不可冷凝的共聚单体的情况下，使用进料(60)或(70)供应共聚单体和在可冷凝共聚单体的情况下使用进料(70)供应共聚单体。

14. 通过根据权利要求11-13中任一项所述的方法获得的或可获得的聚烯烃，优选线形低密度聚乙烯。

15. 根据权利要求1-7中任一项所述的多区段反应器或根据权利要求9或权利要求10所述的系统用于一种或多种α-烯烃单体的连续聚合的用途，所述单体的至少一种为乙烯或丙烯。
用于α-烯烃单体的连续聚合的多区段反应器

【0001】本发明涉及适合于α-烯烃单体的连续聚合的多区段反应器，使用所述反应器的方法，包括所述反应器的系统，使用所述反应器的方法，使用所述系统的方法，通过所述方法可获得的聚烯烃，和涉及所述多区段反应器的用途以及涉及所述系统的用途。

【0002】存在许多不同的用于聚合α-烯烃单体的方法，包括气相流化床法、浆料、回路或搅拌釜反应器，悬浮和溶液法。

【0003】用于在流化床中生产聚烯烃的方法的发现已提供了用于生产不同系列的聚烯烃如聚乙烯、聚丙烯和聚烯烃共聚物的手段。使用流化床聚合方法与其它方法相比实质上降低了能量需求并且最重要的是降低了运行这样的方法生产聚合物所要求的资本投资。

【0004】气态流化床聚合设备通常使用连续循环。在所述循环的一部分中，在反应器中通过聚合的热量来加热循环气体料流。在所述循环的另一部分中通过反应器外部的冷却系统移除该热量。

【0005】然而，在气体流化床聚烯烃反应器中活性的、生长的粉末包含宽范围的粒度并且难于在这样的气体流化床反应器中生产许多期望的聚烯烃产物。如双峰产物、多峰产物、具有宽分子量分布的产物，基于在升高的温度和压力下通常为液体的共聚单体的聚烯烃或其它高级产物。

【0006】此外，气体流化床反应器包括各种限制，例如它们具有在α-烯烃单体的放热聚合期间产生的热量的受限的热量移除。如果不足地移除热量，则发生各种不期望的效果，如聚合催化剂的分解、所生产的聚烯烃的分解、聚烯烃的聚结和/或聚烯烃的结块。因此，热量移除方面的限制的总体效果在于聚烯烃的生产率的限制。

【0007】因此，已存在许多开发以增加热量移除。

【0008】例如，实现热量移除的更有效的方式是通过将气态再循环料流冷却至低于其露点的温度，导致所述再循环料流的至少一部分冷凝，以形成包含液体和气体的底部再循环料流。然后将由此形成的底部再循环料流引入流化床聚合反应器，在其中液体部分将在暴露至反应器的热时蒸发，所述蒸发将会从反应器中移除热量。这种模式的运行在本领域中被称为“冷凝模式”或“冷凝的模式”法。

【0009】然而，以这样的冷凝的模式可以实现的热量移除仍然受到限制，因为使用流化床和冷凝的模式生产聚烯烃的目前的反应器、系统和方法并不允许再循环流体中的大量液体，因为这引起所述流化床的失稳。

【0010】例如，EP 89 691 A2公开了在流化床反应器中使用放热聚合反应增加聚合物生产的方法，其通过将再循环料流冷却至低于其露点并将所得两相流体料流返回至反应器以将所述流化床保持在高于所述再循环料流的露点的期望的温度来实现。EP 89 691 A2的发明人发现再循环料流中的液体的冷凝量可以保持在至多约20重量％。

【0011】为了增加冷却能力并因此增加生产率，因此期望的是在再循环料流中允许更大量的液体而不引起流化床失稳。

【0012】因此，本发明的目的在于提供适合于聚烯烃的生产的流化床系统，并且其可在冷凝模式下运行，其允许引入更大量的液体而不引起流化床失稳。
所述的至少一种为乙烯或丙烯。所述多区段反应器可以以凝固模式运行，所述多区段反应器包括第一区段、第二区段、第三区段、第四区段和分配板，其中所述第一区段与所述第二区段被所述分配板分开，其中所述多区段反应器在竖直方向上延伸，其中所述多区段反应器的所述第二区段位于所述第一区段之上，和其中所述多区段反应器的所述第三区段位于所述第二区段之上，和其中所述多区段反应器的所述第四区段位于所述第三区段之上。其中所述第二区段包含内壁，其中所述第二区段的所述内壁的至少一部分呈逐渐增加的内部直径的形式或是连续开口锥体，其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增加。其中所述第三区段包含内壁，其中所述第三区段的所述内壁的至少一部分呈逐渐增加的内部直径的形式或是连续开口锥体，其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增加。其中所述内壁的最大直径大于所述第二区段的所述内壁的最大直径。在一些实施方案中，本发明的反应器可以由此优选包括所述第二区段的至少一部分和/或所述第三区段包含内壁，其中所述内壁的至少一部分具有圆柱形的形状。所述反应器的所述内壁可以为界定所述反应器的内部封套。在本发明的上下文中，持续增加的直径可以例如意指在朝向反应器顶部的竖直方向上反应器的内壁的直径的增加。所述增加可以例如是逐步的、恒定的、对数的或指数的。这样的一个实例是连续开口锥体。在本发明的上下文中，连续开口锥体可以例如意指包括经由反应器的内壁连接的第一圆柱形开口和第二圆柱形开口的反应器的内壁的锥形部分，其中在朝向反应器顶部的竖直方向上测量的壁的直径变化的导数可以优选具有恒定和正的值。在本发明的一些实施方案中，直接在分配板之上的区域中，所述区段，优选例如所述第二区段呈逐渐增加的内部直径的形式或是连续开口锥体。在本文上下文中，“直接在……之上”可以意指例如呈逐渐增加的内部直径的形式的区段或连续开口锥体（其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增加）相对于分配板定位，从而可以优选防止在分配板的表面上的液体积聚。在一些实施方案中，所述第二区段可以包含内壁，其中所述第二区段的所述内壁的至少一部分呈逐渐增加的内部直径的形式或是连续开口锥体，其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增加。这可以导致至少在所述第二区段的部分中的表面气体速率的变化，因为表面气体速率取决于反应器内部的圆形横截表面。这可以允许在朝向所述多区段反应器顶部的竖直方向上降低表面气体速率，使得结果可以增加所述第二区段中的聚合物颗粒的平均停留时间。所述多区段反应器的第三区段可以包含所述多区段反应器的所述第二区段之上。在一些实施方案中，所述第三区段可以包含内壁，其中所述第三区段的所述内壁的至少一部分呈逐渐增加的内部直径的形式或是连续开口锥体，其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增加。这可以导致至少在所述第三区段的部分中的表面
气体速率的变化，因为表面气体速率取决于反应器内部的圆形横截表面。这可以允许在朝向所述多区段反应器顶部的竖直方向上降低表面气体速率，使得结果可以增加所述第三区段中的聚合物颗粒的平均停留时间。

0028 本发明的多区段反应器是单个单元反应器，其可在冷凝模式下操作，有利之处在于再循环料流中的液体的量可以高得多，而不引起反应器中所包括的流化床的失稳。换言之，所述多区段反应器中的流化床可以在具有大量液体的流程条件下运行。这意指所述反应器可以以更高的聚烯烃生产率下运行。

0029 此外，采用本发明的多区段反应器，可以通过尺寸分离聚合物颗粒；即较大的颗粒可以落入反应器的下部部分，而较小的颗粒可以被流体循环夹带通过反应器进入反应器的上部部分。

0030 同样，当使用本发明的多区段反应器时，所述反应器可以使用高速率的流体循环运行，这导致所述反应器以内，例如所述第二区段中的更均匀的温度。

0031 同样，当运行本发明的反应器时，可以实现更均匀的停留时间并且因此所生产的聚烯烃可以具有更均匀的粒度分布，特别是例如尽管使用高的流体循环速率而通过减少具有非常短的停留时间的聚合物颗粒的数量实现。

0032 此外，由于本发明的反应器的形状，可以高度改进混合模式，由此消除停滞区段的存在并因此导致反应器的总利用体积的增加。

0033 此外，在本发明的多区段反应器中生产的聚烯烃的平均粒度可以更大。同样，可以减少聚烯烃中的细粉的量。

0034 此外，可以改进本发明的多区段反应器的可操作性和/或连续性。

0035 同样，本发明的反应器提供了进行两阶段聚合的可能性，例如，在所述第二区段中可以进行气-液聚合且在所述第三区段中可以进行气相聚合。顶部区段或第四区段是脱离区段（气体膨胀区段），对其设计使得在该区段中的表面气体速率优选阻碍聚合物颗粒到达和/或停留在该区段中。其具有使反应混合物和反应的聚合物产物脱离的功能。因此，该区段并不充当反应区段。

0036 本发明的反应器的设计不同于适合于一种或多种a-烯烃单体聚合的其它多区段反应器。

0037 例如，US 6,441,108公开了一种流化床反应器，其包括用于在气相中生产粘性聚合物的圆形截面，其中所述流化床反应器的壁在其下部部分呈圆柱体的形式并且且与其邻近处呈连续开口锥体的形式。所述锥体相对于中心线的角度为2至10°，并且其中所述流化床高于所述圆柱体。

0038 例如US 2009/0062586 A1公开了一种气相流化床反应器，通过如下进行反应：气体穿过位于反应容器下部处的气体分配板进料至在气体分配板上形成的流化床，组装所述反应容器，使得在所述气体分配板上的气流通道在指定位置处具有收窄的部分，并且在从所述收窄的所述下部到上部的区域中形成所述流化床。

0039 本文中所使用的附图意在阐释本发明，而不以任何方式将本发明限制于此。

附图简述

0041 图1示意性描绘了一个实施方案中的本发明的多区段反应器的竖直截面。

0042 图2示意性描绘了在另一实施方案中的本发明的多区段反应器的竖直截面。
图3示意图描绘了本发明的系统。

一种或多种α-烯烃单体的连续聚合的多区段反应器，所述单体的至少一种为乙烯或丙烯，意指能够容纳和控制所述一种或多种α-烯烃单体的聚合的装置，所述装置可以包括流化床。本发明的多段反器优选在顶部和底部通过半球关闭。

在本发明中所使用的“流化床”意指在固体/液体混合物中，有一定量的固体颗粒（在该情况下，优选固体催化剂，或者附着有一种或多种α-烯烃单体（所述单体中至少一种为乙烯或丙烯）的固体催化剂），起流体作用。这可以通过将所述量的固体颗粒置于适合的条件下实现，例如通过以足够高的速率引入流体穿过固体颗粒，从而使固体颗粒悬浮，而且导致它们表现为流体。

一种或多种α-烯烃的连续聚合，或“连续制备聚烯烃”在本发明中是指将一种或多种α-烯烃单体（包括乙烯或丙烯）进料至所述多区段反应器，并将由此产生的聚烯烃通过与所述多区段反应器连接的聚合物排出系统（半）连续地取出。

所述系统适合于一种或多种α-烯烃单体的连续聚合，所述单体的至少一种为乙烯或丙烯。优选的α-烯烃单体包括例如具有4～8个碳原子的α-烯烃。然而，如果需要的话，可以使用少量具有大于8个碳原子的α-烯烃单体，例如9～18个碳原子的α-烯烃单体，例如共轭二烯。因此，可以生产乙烯或丙烯的聚合物，或者乙烯和/或丙烯与一种或多种具有4～8个α-烯烃单体的α-烯烃单体的共聚物。优选的α-烯烃单体包括但不限于，丁-1-烯、异丁烯、戊-1-烯、己-1-烯、己-2-烯、异戊二烯、苯乙烯、4-甲基戊-1-烯、辛-1-烯和丁二烯。可以与乙烯和/或丙烯单体共聚的或可用作为具有4～8个α-烯烃单体的α-烯烃单体的部分替代的具有大于8个碳原子的α-烯烃单体的实例包括，但不限于1-乙烯-环己烷和亚乙基降冰片烯。

将本发明的系统或方法用于乙烯和/或丙烯与α-烯烃单体的共聚时，所述乙烯和/或丙烯优选选用作共聚物的主要组分。例如，存在所述共聚物中的乙烯和/或丙烯的量为至少65重量%，例如至少70重量%，例如至少80重量%，基于总共聚物计。

“冷凝模式”意指将包含液体的料流用于冷却反应器（8）。

所述多区段反应器（8）的所述第一区段（1）与所述第二区段（2）被分配板（6）分开，并且位于所述多区段反应器（8）的所述第二区段（2）之下。

在第一区段中，可以发生气体和液体的分离和分布，这是所述第一区段的主要功能。所述第一区段可以进一步包括与进入管路有关的导流器，用于提供顶部再循环料流以防止固体和液体在所述第一区段中聚集。这样的导流器例如描述于通过引用并入本文中的US4,933,149（的附图）中。

所述第二区段包含内壁，其中所述第二区段的所述内壁的至少一部分呈逐渐增加的内部直径的形状或连续开口锥形，其中所述直径或所述开口在朝向所述多区段反应器顶部的垂直方向上增加。

所述第二区段的逐渐增加的内部直径或连续开口锥形优选位于所述第二区段的下部。所述第二区段直接位于所述分配板之上。

所述第二区段可以包括流化床（的一部分），在此可以发生气相或气-液聚合。所述第二区段（2）适合于气-液聚合（在湍流流态条件下）。

湍流流态条件描述于通过引用并入本文中的US6391985中。
之上。所述第三区段包含内壁，其中所述第三区段的所述内壁的至少一部分呈逐渐增加的内部直径的形式或是连续开口锥体，其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增加。

【0057】在连续开口锥体或逐渐增加的内部直径的情况下，所述第三区段的形状可以是所述第二区段的形状的一部分，如本文图2所描绘。这可能意指所述第二区段和所述第三区段二者可以具有类似的形状。即在该情况下，所述第二区段和所述第三区段二者包含/具有呈逐渐增加的内部直径的形式或是连续开口锥体的内壁，其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增加。例如，所述连续开口锥体或逐渐增加的内部直径可以从第二区段延伸至第三区段中，并且在所述从第三区段延伸到第四区段中。然而，所述反应器可以优选包括具有内壁的至少一个部分，所述内壁具有圆柱形的形状，特别是例如在所述第二区段中和/或在所述第三区段中和/或在所述第三区段与所述顶部区段之间。在一个实施方案中，所述第三区段的所述内壁可以具有与所述第二区段的所述内壁相同的倾角。

【0058】所述第三区段的所述内壁可以具有与所述第二区段的所述内壁不同的倾角。所述第三区段的内壁，其中所述第三区段的所述内壁的至少一部分呈逐渐增加的内部直径的形式或是连续开口锥体，其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增加，由此所述内壁的所述部分可以位于所述第三区段的任何部分，例如所述第三区段的下部部分中或上部部分中，但是优选在朝向所述反应器顶部的竖直方向上位于所述第三区段的下部部分中。

【0059】在本发明的该实施方案中的多区段反应器示意性描绘于附图2(图2)中。

【0060】所述第三区段可以包括流化床的一部分。所述第三区段(3)适合于气相聚合。

【0061】当运行所述多区段反应器(8)时，可以区分所述第三区段(3)和所述第二区段(2)；然而，在所述第二和第三区段之间不存在明确边界。典型地，当运行所述多区段反应器时，所述第二区段将包括比所述第三区段更多的液体，并且在所述第三区段中将发生气相聚合。

【0062】所述多区段反应器的顶部区段(其例如为所述多区段反应器的第四区段)位于所述第三区段之上。所述顶部区段或第四区段并不意图用于气相聚合，而是适合气体膨胀。其具有使反应混合物和反应的聚合物产物脱离的功能。因此，该区段并不充当反应区段。所述表面气体速率可以具有如此低的值，从而使得聚合物颗粒优选并不进入顶部区段，优选至少使得顶部再循环料流充分地不含颗粒例如以避免在压缩机中发生堵塞。

【0063】在这样的多区段反应器中，在聚合过程中，通过催化聚合α-烯烃单体生产新鲜的聚合物颗粒。这样的聚合物颗粒在所述第四区段的方向上向上推射通过循环气体。这些颗粒的大部分由于重力隔着第四区段中的表面气体速率下降而优选并不到达第四区段或返回所述第二或第三区段。所述第四区段可以连接至所述第三区段或任选的另外的一个或多个区段。

【0064】本发明的多区段反应器(8)可以包括另外的区段，例如一个、两个或甚至任选地三个另外的区段，所述区段可以例如为第五区段和任选的第六区段和任选的甚至第七区段。这些区段可以提供用于聚合的另外的可能性，其中每个另外的区段可以在不同的反应条件下运行。这些另外的区段可以优选地位于所述第三区段与所述顶部区段之间。
“内部直径”意指由多区段反应器(8)的内壁的内部测量的垂直于多区段反应器(8)的中心线(9)的给定水平面中的直径。

例如，所述第四区段的最大内部直径比所述第三区段的最大内部直径大至少1、例如至少3、例如至少5％和/或例如至多300％、例如至多200％、例如至多150％、例如至多80％、例如至多70％、例如至多60％、例如至多50％、例如至多40％、例如至多30％、例如至多25％、例如至多20％、例如至多15％。例如，所述第四区段的最大内部直径比所述第三区段的最大内部直径大5至30％。

例如，所述第三区段的最大内部直径比所述第二区段的最大内部直径大至少1、例如至少3、例如至少5％和/或例如至多300％、例如至多200％、例如至多150％、例如至多80％、例如至多70％、例如至多60％、例如至多50％、例如至多40％、例如至多30％、例如至多25％、例如至多20％、例如至多15％。例如，所述第三区段的最大内部直径比所述第二区段的最大内部直径大15至30％。

例如，所述第二区段的最大内部直径比所述第一区段的最大内部直径大至少1、例如至少3、例如至少5％和/或例如至多300％、例如至多200％、例如至多150％、例如至多80％、例如至多70％、例如至多60％、例如至多50％、例如至多40％、例如至多30％、例如至多25％、例如至多20％、例如至多15％。例如，所述第二区段的最大内部直径比所述第一区段的最大内部直径大15至30％。

所述分配板(6)可以是这样的任意装置，其适合于将底部再循环料流分布在所述多区段反应器(8)中，以在所述多区段反应器(8)的所述第二区段(2)中保持流化床，并在所述多区段反应器(8)未运行时充当固体聚合催化剂和聚烯烃的静止床的载体。例如，所述分配板可以为筛网、槽板、孔板、泡罩类型的板，或其它常规或商购可得的板或其它流体分布装置。通常使用的分配板的实例是在每个孔的顶部上具有插一些孔上结构的孔板，以防止颗粒散落。在附图1、2和3中，所述分配板(6)采用虚线标明。

所述分配板通常垂直于反应器的纵轴安置，其中流化床位于所述分配板之上且混合室区域(区段1)在所述分配板之下。

所述分配板用于实现良好的气体分布。其可以是筛网、槽板、孔板、泡罩类型的板等。所述板的元件可以全部是固定的或所述板可以是美国专利第3,298,792号中公开的移动类型的。机械扫描分布格栅描述于美国专利第3,254,070号中。无论其设计如何，其必须使再循环流体扩散通过床底部处的颗粒，以将所述床保持在流化状态并且还在反应器未运行时起到支持树脂颗粒的静止床的作用。

出于本发明的目的，优选类型的分配板通常由金属制造和具有穿过其表面分布的孔的类型。所述孔一般地具有大约半英寸的直径。所述孔延伸穿过所述板并且在所述孔上方安置有固定地安装至所述板的角罩(angle caps)。交替行的角铁彼此成角度地，优选以60°在交替的平行队列中取向，如美国专利1,933,149的图4中所示。它们起将流体流沿着板的表面分布的作用，从而避免固体的停滞区段。此外，它们防止树脂颗粒在所述床沉降或静止时通过所述孔落下。

所述分配板可以例如具有锥形的形状，例如通过引用并入本文中的US2602647A1中所描述，其描述了具有开口的中心锥形段和开口的外部环锥段的锥形分配板，所述中心锥形段和所述环段中的开口沿圆周偏移，从而在延伸至所述环段中的开口的所述中心
段上提供实质上偏斜的表面。
[0074] 所述分配板的其它锥形形状例如描述于通过引用并入本文中的US4,518,750中，
其描述了流化气体的分布器，所述分布器包括由以下组成的双锥体：(a)上部锥体元件，其
布置有向下的顶点，在侧面上配置有多于两个肋条，所述肋条具有连续封闭（containing）
壳的壁一起形成在向上的方向上例如具有减小的横截面的流向的轮廓，从而使得气体的速
率将逐渐和相应地增加，所述肋条关于垂直线以轴对称并以倾角正好相反地彼此相对布
置，例如以向流入的气体流赋予切向分量，所述肋条的轮廓和倾角例如允许通过流入气体
夹带的固体颗粒通过，并且从而不论何时中断气体的进料都阻碍流化床的颗粒落回；和(b)
上部锥体元件，其顶点向上，叠加在所述下部锥体元件上并且具有激活流化床中的固体循
环、消除死区段或滞留区段的功能，所述方法进一步的征在于，在其中进行所述方法的流
化床反应器的分布器包括用于再循环所述气体的装置，所述分布器和所述再循环装置允许
通过再循环气体夹带的流化材料的固体颗粒通过。
[0075] 例如，通过引用并入本文中的US5143705描述了顶点指向上方的锥形分配板，其中
所述锥形分配板具有多个开口。
[0076] 本发明的多区段反应器中的分配板可以例如具有锥形形状，例如其顶点朝向所述
反应器的顶部。
[0077] 例如，通过引用并入本文中的US7225652B2公开了具有多个气流孔口的分配板，所
述孔口的出口侧呈锥形侧面(sidened)，所述出口侧比入口侧更宽。
[0078] 例如，通过引用并入本文中的US627243公开了通过具有指向上方的尖端的回旋
表面的锥体形成的帽状流动控制元件，所述流动控制元件的锥体表面配置有穿孔，在所述
元件的所有侧面上基本上均匀地分散布置所述穿孔。
[0079] 例如，US5381827公开了用于流化床聚合反应器中的具有搅拌器的气相聚合设备
中的气体分布器，所述气体分布器的特征在于，所述分布器具有各自从上方覆盖有罩的孔，
所述罩具有在基本上水平的查面以上于对于围绕反应器的中心为中心的圆的切线向外呈
约90至135°的角度取向的开口。
[0080] 除了所述分配板(6)以外，所述多区段反应器(8)可以进一步配备有其它机构用于
搅拌如机械搅拌，例如搅拌器。优选地，所述多区段反应器不包括机械搅拌。
[0081] 在一个实施方案中，本发明涉及本发明的反应器，其中至少所述第三区段(3)的底
部部分包括呈逐渐增加的内部直径或连续开口锥体形式的内壁，其中所述直径或所述开口
在朝向所述多区段反应器顶部的竖直方向上增加。在该实施方案中，所述第二区段(2)的底
部部分和/or所述第四区段(4)的底部部分还可以包括呈逐渐增加的内部直径或连续开口
锥体形式的内壁，其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增
加。
[0082] 在一个实施方案中，本申请涉及本发明的反应器，其中在直接在所述分配板之
上的区域中的区段(2)呈逐渐增加的内部直径或连续开口锥体(2A)的形式，其中所述直径或
所述开口在朝向所述多区段反应器顶部的竖直方向上增加，和其中所述第二区段的顶部部
分具有内壁，所述内壁具有圆柱形的形状(2B)和其中所述第三区段的顶部部分连接至所述
第三区段的底部部分(3A)，其中所述第三区段的底部部分呈逐渐增加的内部直径的形式或
是连续开口锥体，其中所述直径或所述开口在朝向所述多区段反应器顶部的竖直方向上增
加，和其中所述第三区段的顶部部分具有内壁，所述内壁具有圆柱形的形状(3B)和其中所述第三区段的顶部部分连接至所述顶部区段，例如连接至所述第四区段。

[0083] 在一个实施方案中，本申请涉及本发明的反应器，其中在直接在所述分配板之上的区域中的区段(2)呈逐渐增加的内部直径的形式或是连续开口锥体(2A)，其中所述直径或所述开口在朝向所述多区段反应器顶部的坚直方向上增加，和其中所述第二区段的顶部部分具有内壁，所述内壁具有圆柱形的形状(2B)。

[0084] 在一个实施方案中，本申请涉及本发明的反应器，其中所述第二区段的顶部部分连接至所述第三区段的底部部分(3A)，其中所述第三区段的底部部分呈逐渐增加的内部直径的形式或是连续开口锥体，其中所述直径或所述开口在朝向所述多区段反应器顶部的坚直方向上增加，和其中所述第三区段的顶部部分具有内壁，所述内壁具有圆柱形的形状(3B)和其中所述第三区段的顶部部分连接至所述顶部区段，例如连接至所述第四区段。

[0085] 优选地，所述圆柱形形状为正圆柱的形状。

[0086] 在本发明的实施方案中的多区段反应器(8)示意性地描绘于附图1(图1)中。

[0087] 优选地，本发明涉及本发明的反应器，其中具有逐渐增加的内部直径或具有连续开口锥体的所述第二区段的一部分的内壁相对于所述多区段反应器(8)的中心线(9)的角度(a)为1至40°。

[0088] 例如，所述角度(a)为至少5°、例如至少7°、例如至少10°、例如至少20°和/或例如至少60°、例如至少50°、例如至少40°。例如，所述角度(a)在10至40°范围内。

[0089] 优选地，本发明涉及本发明的反应器，其中具有逐渐增加的内部直径或具有连续开口锥体的所述第三区段的一部分的内壁相对于所述多区段反应器(8)的中心线(9)的角度(a)为1至40°。

[0090] 例如，所述角度(a)为至少5°、例如至少7°、例如至少10°、例如至少20°和/或例如至少60°、例如至少50°、例如至少40°。例如，所述角度(a)在10至40°范围内。

[0091] 在另一方面，本发明涉及用于在本发明的多区段反应器中由一种或多种α-烯烃单体连续制备聚烯烃的方法，所述单体的至少一种为乙烯或丙烯，所述方法包括：

[0092] -将固体聚合催化剂进料至多区段反应器(8)的分配板(6)之上的区域中

[0093] -将一种或多种α-烯烃单体进料至所述多区段反应器(8)

[0094] -从所述多区段反应器(8)取出聚烯烃(30)

[0095] -从所述多区段反应器(8)的顶部，例如在由四个区段构成的多区段反应器的情况下，所述第四区段(4)的顶部将流体循环至所述第一区段

[0096] -其中将所述流体冷却至低于它们的露点，产生底部再循环料流，和其中将所述底部再循环料流引入所述第一区段

[0097] -其中所述表面气体速率为0.5至5m/s的范围内。

[0098] 本领域技术人员应当意识到的是，由于当运行多区段反应器时本发明的多区段反应器中的体积从第一区段向第二区段膨胀和从第二区段向第三区段膨胀和从第三区段向第四区段膨胀的事实，在这些区段中的表面气体速率将会从第一区段向第二区段和从第二区段向第三区段和从第三区段向第四区段降低。例如，本发明的多区段反应器中的表面气体速率，例如当用于生产聚乙烯(例如LLDPE)时，可以在0.7至3.5m/s范围内，然后其可以在第三区段中降低至0.5至2m/s，在其之后所述表面气体速率可以在顶部区段中进一步降低。
在本发明的一个实施方案中，将所述第二区段通过一个或更多个基本上竖直的隔
壁分成两个或更多个子区域，例如管，其从位于分配板之上的点延伸至位于第四区段之下的点，优先地从而防止死区段。
“死区段”意指其中混合不足以提供均匀的反应而在死区段中导致结块或熔融和/或在期望的规格以外(脱离规格)的树脂的区域。规格的实例为期望的密度、分子量、分子量分布和/或熔融流动速率。
这样的竖直的隔壁有时也被称为“导流管”，这例如描述于通过引用并入本文中的
WO2002/04146A1中和US6403730中。
在一个实施方案中，多区段反应器还包括移动床单元，其中所述移动床单元配置
有入口和出口，它们连接至第二区段，其中在所述区段中定位屏蔽机构，使得经由所述移动
床单元的出口从所述区段的气体流至得到抑制并允许聚合颗粒流出。其中优选地所述移动
床单元配置有气体进料机构，用于将气体以一种或多种不同的水平进料至移动床单元中和/或其中优选地所述移动床单元的出口配置有将计量的量的聚合物颗粒从所述移动床单元
转移至分配板之上的区段中的机构。
通过引用并入本文中的US 20100273971公开了这样的移动床单元(也被称为“抽
吸管”)，其中移动床单元配置有入口和出口，它们连接至反应器的第二区段，其中在第二区
段中定位屏蔽装置，使得经由所述移动床单元的出口从第二区段的气体流入得到抑制并允
许聚合颗粒流出。
这样的抽吸管也描述于通过引用并入本文中的US8354483中，其公开了移动床单
元配置有将气体以一种或多种不同的水平进料至移动床单元中的气体进料机构，并且优选地其中移动床单元的出口配置有将计量的量的聚合物颗粒从所述移动床单元转移至第二
区段中的机构。
可以例如通过使用进料机构(如泵)将固体聚合催化剂进料至所述多区段反应器
(8)。可以例如将所述固体聚合催化剂作为在溶剂(例如烃溶剂等)中的悬浮液或在惰性气
体(如氮气)中进料或者可以包括在另一进料中进料至所述多区段反应器(8)。例如在进料
(60)或进料(70)中。还可以将所述固体聚合催化剂作为干催化剂注入所述第二区段(2)。
可以将固体聚合催化剂在高于分配板的区域中的任意位置处或在位置的组合
处进料，但优选地将其进料至所述第二区段(2)。优选地将其进料至所述第二区段(2)的底
部部分。
类似地，取出聚烯烃(30)可以在分配板之上的区域中的任意位置处或在位置的组
合处完成，例如可以从所述第二区段(2)的底部部分、所述第二区段(2)的顶部部分、所述第
三区段(3)的底部部分和/或所述第三区段(3)的顶部部分取出所述聚烯烃。优选地，从所述
第二区段(2)的底部部分和/或从所述第三区段(3)的底部部分取出所述聚烯烃。
本领域技术人员知晓何种固体聚合催化剂适合于α-烯烃单体的连续聚合。
例如，可以使用非均相聚合催化剂，其为负载在惰性基材例如二氧化硅或氧化铝
的催化剂。非均相催化剂的合适实例包括经负载的齐格勒-纳塔(Ziegler Natta)催化剂
和经负载的茂金属催化剂及其组合，例如在混合的催化剂系统中。包含至少两种催化组分
的用于聚烯烃的催化剂组合物的实例例如描述于通过引用并入本文中的EP1764378A1
中。EP1764378A1公开了催化剂组合物，其包括茂金属组分和齐格勒纳塔型过渡金属组分、

[0110] 茂金属催化剂的组包括许多变型。在一般的形式中，茂金属催化剂包括金属原子，例如钛、锆或铪，其连接至例如四个配体，例如两个被取代的环戊二烯配体和两个烷基、卤根或其它配体，具有任选改性的有机铝氧烷作为活化剂，例如甲基铝氧烷（MAO）或基于硼的化合物。可以用作茂金属催化剂的载体的惰性基材的实例包括无机氧化物，例如SiO₂、MgCl₂、Al₂O₃、MgF₂和CaF₂。优选地，本发明的系统和方法中所使用的固体聚合催化剂是负载在二氧化硅（例如商购可得的二氧化硅，例如Grace Davison 948二氧化硅或Ineos ES 70二氧化硅）上的茂金属催化剂。

[0111] 可以将齐格勒-纳塔催化剂与本发明的系统和方法中的助催化剂一起使用。助催化剂的合适的实例包括但不限于：具有式AlR₃的有机铝化合物，其中R表示具有1至10个C原子的烃。具有式AlR₃的有机铝化合物的实例包括三乙基铝烷基铝、三异丁基三烷基铝、三正己基铝和三辛基铝。

[0112] 可以用作齐格勒-纳塔催化剂的载体的惰性基材的实例包括无机氧化物，例如二氧化硅、氧化铝、镁、钛和/或锆的氧化物；氯化镁、粘土、沸石、聚苯乙烯、聚乙烯、聚丙烯、石墨和/或层状硅酸盐。

[0113] 对于本领域技术人员将显而易见的是，本发明中还可以使用固体聚合催化剂的混合物。

[0114] 可以使用进料机构如泵将一种或多种α-烯烃单体进料至多区段反应器（8）。优选通过将单体添加至在冷却流体之前从多区段反应器顶部循环至第一区段的流体而将单体进料至多区段反应器（8）。优选地，以这样的量添加所述一种或多种α-烯烃单体，使得它们补充在聚合期间消耗的一种或多种α-烯烃单体。

[0115] 所述一种或多种α-烯烃单体可以以一个或多个进料料流进料。例如，可以使一种类型的烯烃单体，典型地为乙烯和/或丙烯包括在进料（60）中并且可以使另一类型的α-烯烃单体（在本文中也称为共聚单体）包括在进料（70）中。

[0116] 可以使用任何合适的机构，例如聚合物排出系统从多区段反应器（8）中取出聚烯烃（30）。所述聚烯烃可以原样使用或可以经过纯化或其它最终加工。

[0117] 为了避免混淆，术语“流体”包括液体、气体及其混合物，其中术语“液体”包括含有固体颗粒的液体，如浆料。

[0118] 可以使用任何合适的冷却手段将流体冷却至低于所述流体的露点。例如，可以使用冷却单元进行流体的冷却。

[0119] 可以通过提高流体的运行压力和/或通过提高流体中可冷凝的流体的百分比且同时降低不可冷凝的气体的百分比来提高露点。

[0120] 为了在本发明的方法中维持流化床，表面气体速率在0.5至5m/s范围内，例如为至
少1，例如至少1.5，例如至少2和/或例如至少4.5，例如至少4，例如至少3.5，例如至少3m/s。【0121】通过将冷却至低于流体的露点的流体进料至第一区段(1)，所述流体将从所述第一区段穿过分配板(6)进入第二区段(2)，导致形成流化床/或泡塔。通过聚合产生的热量将会导致流体中的液体蒸发。将固体聚合催化剂和一种或多种α-烯烃单体进料至多区段反应器(8)将会导致形成聚烯烃(30)，将其从多区段反应器(8)取出。将顶部再循环料流从多区段反应器的顶部再循环至第一区段。可以将一种或多种α-烯烃单体和其它流体如氢气、惰性气体或液体例如可冷凝的烯烃组分添加至顶部再循环料流，以补偿未反应的流体，然后将所述流体冷却至低于所述流体的露点，以形成底部再循环料流。

【0122】通过使用本发明的多区段反应器，在所述第二区段(2)中可以发生气-液聚合并且在所述第三区段中可以发生气相聚合。因此，本发明可以提供两阶段聚合。

【0123】在另一方面，本发明涉及适合于一种或多种α-烯烃单体的连续聚合的系统，所述单体的至少一种为乙烯或丙烯，所述系统包括本发明的多区段反应器(8)。

【0124】该系统的特别的实施方案示意性表示于附图3(图3)中，然而并不将其限制于此。附图3的系统仅为许多可能的示意性布置之一。因此，例如也可以在转在循环的气体线路中的设备项目的顺序，特别是冷却器和压缩机的顺序或可以将另外的设备项目集成至所述线路上。另外的元件如用于排出产物或用于计量催化剂的系统并未示于图3中，这样的元件是本领域技术人员已知的并且可以以已知的方式集成至反应器中。

【0125】图3描绘了适合于一种或多种α-烯烃单体的连续聚合的系统，所述单体的至少一种为乙烯或丙烯，所述系统包括本发明的多区段反应器(8)、压缩机(400)和冷却单元(5)。

【0126】其中所述第一区段包括用于接收底部再循环料流(10)的第一入口

【0127】其中所述第二区段(2)包括用于接收固体聚合催化剂(20)的第一入口

【0128】其中所述第二区段(2)和/或所述第三区段(3)包括用于提供聚烯烃(30)的第一出口

【0129】其中所述第四区段(4)包括用于顶部再循环料流(40)的第一出口

【0130】其中用于所述第四区段的顶部再循环料流(40)的第一出口经由第一连接结构(AA)例如管道连接至所述压缩机(400)的第一入口

【0131】其中所述压缩机(400)包括用于压缩的流体(50)的第一出口

【0132】其中所述压缩机(400)的第一出口经由第二连接机构(BB)连接至用于冷却单元(5)的压缩流的流体的第一入口

【0133】其中任选地，所述第二连接机构(BB)例如管道包括用于接收进料(70)的第一入口

【0134】其中所述冷却单元(5)包括用于提供底部再循环料流(10)的第二出口，所述冷却单元(5)的第二出口连接至第二区段的第一入口

【0135】其中所述第一连接结构(AA)包括用于接收进料(60)的第一入口

【0136】本发明的系统可以进一步包括聚合物取出系统、聚合物脱气系统和排出气体制备系统(图3未示出)。用于来自排出气体制备系统的经回收的组分(呈液体形式)(80)的出口可以连接至所述第二连接结构(BB)的第二进口(70)。

【0137】可以适当地将该系统用于在本发明的系统中的一种和/或多种α-烯烃单体的连续聚合的方法，所述单体的至少一种为乙烯或丙烯，所述方法包括
[0138] 使用用于接收固体聚合催化剂(20)的第一入口为所述第二区段(2)供应固体聚合催化剂，
[0139] 将包括α-烯烃单体的进料(60)供应至所述第一连接结构(2A)，
[0140] 使用所述第三区段(3)和/或所述第二区段(2)的第一出口取出聚烯烃(30)，和
[0141] 将流体从所述第四区段(4)的第一出口循环至所述第一区段的第一入口，
[0142] 其中所述流体通过如下循环：
[0143] 使用压缩机(400)压缩所述进料(60)和顶部再循环料流(40)，以形成经压缩的流体(50)，
[0144] 随后使用冷却单元(5)将经压缩的流体(50)冷却至低于所述经压缩的流体的露点，以形成底部再循环料流(10)，和
[0145] 经由用于接收所述第一区段的底部再循环料流的入口将底部再循环料流(10)进料至所述多区段反应器(8)的所述第一区段，和
[0146] 其中在所述方法中的表面积热速率在0.5至5m/s范围内。
[0147] 在本发明的一个实施方案中，在所述第二区段中进行气-液聚合和在所述第三区段中进行气相聚合。
[0148] 进料(60)包括链转移剂，例如氢气并且可以包括包括气态α-烯烃单体和插入的气态组分例如氮气。
[0149] 进料(70)包括可冷凝的惰性组分，例如选自下组的可冷凝的惰性组分：具有4至20个碳原子，优选4至8个碳原子的烷烃及其混合物，例如丙烷、正丁烷、异丁烷、正戊烷、异戊烷、新戊烷、2-甲基环己烷、具有6个C原子的其它饱和烃、正庚烷、正辛烷和具有7或8个C原子的其它饱和烃及其任意混合物；并且可以进一步包括可冷凝的α-烯烃单体、α-烯烃共聚单体和/或其混合物。
[0150] 所述可冷凝的惰性组分优选选自下组：异戊烷、正己烷、正丁烷和异丁烷及其混合物。因为它们更具吸引力的价格，优选地将异戊烷和/或异丁烷用作进料(70)中的一种或多种可冷凝的惰性组分。
[0151] 当生产共聚物时，本发明的方法进一步包括在不可冷凝的共聚单体的情况下使用进料(60)或(70)供应共聚单体和在可冷凝共聚单体的情况下使用进料(70)来供应。
[0152] 所述底部再循环料流包括流体料流，所述流体料流包括气体和液体。
[0153] 优选地，在本发明的方法中，将流体冷却至这样的程度，使得底部再循环料流(10)中的液体的量为至少7重量％、例如至少9重量％、例如至少14重量％，基于液体和气体的总体量计。例如，底部再循环料流中的液体的量为至少14.5％，例如至少20％，例如至少25％和/或例如至多95％，例如至多90％，例如至多95％，例如至多85％，例如至多80％，例如至多75％，例如至多70％，例如至多65％，例如至多60％，例如至多55％，例如至多55重量％，基于底部再循环料流中的液体和气体的总体量计。优选地，底部再循环料流中的液体的量为至少25％和例如至多55重量％，基于所述底部再循环料流中的液体和气体的总体量计。
[0154] 高的量的底部再循环料流中的液体能够进料一种或多种非常高活性的催化剂系统。
[0155] 所述压缩机(400)可以是任意装置，其适于使用压缩机(400)压缩进料(60)和顶部再循环料流(40)以形成经压缩的流体(50)。通过压缩进料(60)和顶部再循环料流(40)，
经压缩的流体（50）的压力与在使用压缩机（400）之前的流体（60）和顶部再循环流体（40）相比得以升高。

【0156】所述冷却单元（5）可以是任意装置，其适合于将经压缩的流体（50）冷却至低于所述经压缩的流体的露点，以形成底部再循环流体（10）。例如，可以将热交换器用作冷却单元（5）。

【0157】所述顶部再循环流体（40）包含从第四区段（4）的第一出口取出的流体，或在多于四个区段的情况下从多区段反应器（8）的顶部区段的第一出口取出的液体。

【0158】第一连接机构（AA）和第二连接机构（BB）原则上可以为用于分别连接第四区段（4）的第一出口和压缩机（400）的第一入口、压缩机（400）的第一出口和冷却单元（5）的第一入口的任意机构。

【0159】例如可以将氢气用作链转移剂，以调节所生产的聚烯烃（30）的分子量。

【0160】一种或多种α-烯烃单体的连续聚合将生成颗粒形式的聚烯烃（在本文中也被称为“聚烯烃”（30））。可以由此产生的聚烯烃的实例包括大量聚合物，例如聚乙烯，例如线型低密度聚乙烯（LLDPE），其可以例如由乙烯与丁-1-烯、4-甲基戊-1-烯或乙-1-烯制备，高密度聚乙烯（HDPE），其可以例如由乙烯或由乙烯与少量具有4至8个碳原子的α-烯烃单体（例如丁-1-烯、戊-1-烯、己-1-烯或4-甲基戊-1-烯）制备。其它实例包括但不限于聚烯烃、弹性体、中密度聚乙烯、聚丙烯均聚物和聚丙烯共聚物，包括无规共聚物和嵌段或多嵌段共聚物和乙丙橡胶（EPR）。

【0161】优选地，在本发明的方法中，所生成的聚烯烃为聚乙烯，更优选线型低密度聚乙烯。

【0162】取决于它们的组成，通过本发明的方法获得或可获得的所述聚烯烃可以具有多种相对于在不参照本发明反应器的反应器中生成的聚烯烃的有利之处。例如，可以增加聚丙烯抗冲共聚物的冲击性，可以降低乙烯聚合物橡胶（EPR）中的炭黑的含量，可以拓宽聚乙烯的分子量分布，可以增加聚烯烃的均匀性，停留时间分布可以更窄，可以改变球形结构（blockiness），可以改变形态，可以改变体积密度等。

【0163】因此，在另一方面，本发明涉及任何通过本发明的方法获得的或可获得的聚烯烃。

【0164】本发明的方法优选在基本上不含水、氧气和二氧化碳的环境中进行，因为水的存在可能对聚合物合成催化剂的活性。

【0165】取决于所生产的聚烯烃，本领域技术人员可以容易地确定最优化的反应条件。

【0166】例如，通常，所述第二区段（2）的温度优选在0至130℃，例如20至110℃的范围内。

【0167】例如，通常，所述第三区段（3）的温度优选在20至130℃的范围内。

【0168】例如所述多区段反应器（8）中的压力优选在0.1至10MPa范围内，例如在0.2至8MPa范围内。

【0169】在另一方面，本发明涉及用于一种或多种α-烯烃单体的连续聚合的本发明的多区段反应器的用途，所述单体的至少一种为乙烯或丙烯。

【0170】在另一方面，本发明涉及用于一种或多种α-烯烃单体的连续聚合的本发明的系统的用途，所述单体的至少一种为乙烯或丙烯。

【0171】需要注意的是，术语“包括”不排除其它要素的存在。然而，还应理解的是，对包
括某些组分的产品的描述还公开了由这些组分组成的产品。类似地，还应理解的是，对包括某些步骤的方法的描述还公开了由这些步骤组成的方法。
【0172】本发明现将借助以下实施例阐明，然而并不将其限制于此。

实施例
【0173】将能够产生沿床反应器的质量和热平衡的基于计算机的数学模型用于运行
在干燥和冷冻模式运行的模拟。首先，使用来自商业聚乙烯生产的实际数据运行所述模型
以验证所述模型。结果示于表1中。

<table>
<thead>
<tr>
<th>表1.用于生产聚乙烯的模拟结果与商业数据的对比</th>
<th>反应器条件</th>
<th>实施例编号</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(商业)</td>
<td>(模拟结果)</td>
</tr>
<tr>
<td>内部反应器直径(m)</td>
<td>4.42</td>
<td>4.42</td>
</tr>
<tr>
<td>再循环气体表面速率(m/s)</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>再循环气体组成(摩尔份额):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>乙烯</td>
<td>0.3370</td>
<td>0.3370</td>
</tr>
<tr>
<td>乙烷</td>
<td>0.0150</td>
<td>0.0150</td>
</tr>
<tr>
<td>氢气</td>
<td>0.0670</td>
<td>0.0670</td>
</tr>
<tr>
<td>氮气</td>
<td>0.3621</td>
<td>0.3621</td>
</tr>
<tr>
<td>异戊烷</td>
<td>0.0770</td>
<td>0.0770</td>
</tr>
<tr>
<td>1-丁烯</td>
<td>0.1145</td>
<td>0.1145</td>
</tr>
<tr>
<td>正丁烷</td>
<td>0.0091</td>
<td>0.0091</td>
</tr>
<tr>
<td>正戊烷</td>
<td>0.0095</td>
<td>0.0095</td>
</tr>
<tr>
<td>新戊烷</td>
<td>0.0088</td>
<td>0.0088</td>
</tr>
<tr>
<td>再循环气体密度(kg/m³)</td>
<td>26.45</td>
<td>26.68</td>
</tr>
<tr>
<td>反应器温度(℃)</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>反应器入口温度(℃)</td>
<td>31.4</td>
<td>31.4</td>
</tr>
<tr>
<td>反应器压力(psig)</td>
<td>308</td>
<td>308</td>
</tr>
<tr>
<td>反应器入口压力(psig)</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>入口湿点温度(℃)</td>
<td>56.3</td>
<td>56.55</td>
</tr>
<tr>
<td>再循环料流中的冷凝的液体(重量%)</td>
<td>23.0</td>
<td>23.3</td>
</tr>
<tr>
<td>生产率(吨/h)</td>
<td>46.14</td>
<td>47.17</td>
</tr>
</tbody>
</table>

【0174】如从表1可以看出，实际数据与来自模型的数据非常具有可比性。

【0175】随后，将在多区段反应器中的聚合方法用于以冷凝模式进行乙烯与1-丁烯的聚
合。首先使用来自商业聚乙烯生产的实际数据以冷凝模式运行所述模型，以生产1-丁烯/乙
烯共聚物，其密度为918kg/m³和熔体流动指数为1.0(根据Turkistani的美国专利6,759,
489 B1的实施例6.2)。随后，根据本发明重新运行所述模型(情形1、2和3)。
【0176】结果示于表2中。
表2.使用本发明的方法、反应器和聚合系统的模拟结果。

<table>
<thead>
<tr>
<th>反应器条件</th>
<th>形情编科</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>形情1</td>
</tr>
<tr>
<td>第三区段的内壁的最大直径(m)</td>
<td>4.42</td>
</tr>
<tr>
<td>第三区段的上部分(3B)的表面气体速率(m/s)</td>
<td>0.74</td>
</tr>
<tr>
<td>第二区段的内壁的最大直径(m)</td>
<td>3.5</td>
</tr>
<tr>
<td>第二区段的上部分(2B)的表面气体速率(m/s)</td>
<td>1.18</td>
</tr>
<tr>
<td>再循环气体组成(摩尔份额):</td>
<td></td>
</tr>
<tr>
<td>乙烯</td>
<td>0.3370</td>
</tr>
<tr>
<td>乙烷</td>
<td>0.0150</td>
</tr>
<tr>
<td>氮气</td>
<td>0.0670</td>
</tr>
<tr>
<td>氮气</td>
<td>0.3191</td>
</tr>
<tr>
<td>异戊烷</td>
<td>0.120</td>
</tr>
<tr>
<td>1-丁烯</td>
<td>0.1145</td>
</tr>
<tr>
<td>正丁烷</td>
<td>0.0091</td>
</tr>
<tr>
<td>正戊烷</td>
<td>0.0095</td>
</tr>
<tr>
<td>新戊烷</td>
<td>0.0088</td>
</tr>
<tr>
<td>再循环气体密度(kg/m³)</td>
<td>28.58</td>
</tr>
<tr>
<td>反应器温度(℃)</td>
<td>86</td>
</tr>
<tr>
<td>反应器入口温度(℃)</td>
<td>31.4</td>
</tr>
<tr>
<td>反应器压力(psigt)</td>
<td>308</td>
</tr>
<tr>
<td>反应器出口压力(psigt)</td>
<td>320</td>
</tr>
<tr>
<td>入口露点温度(℃)</td>
<td>66.05</td>
</tr>
<tr>
<td>再循环料流中的冷凝的液体(重量%)</td>
<td>34.1</td>
</tr>
<tr>
<td>生产率(吨/h)</td>
<td>61.14</td>
</tr>
</tbody>
</table>

[0178]

[0179] 如从表2可以看出，再循环料流(从所述多区段反应器的顶部循环至所述第一区段的流体)中的冷凝的液体越多，则生产率越高。根据本发明的反应器允许在再循环料流中的大量液体，而没有所述反应器中所包括的流化床的失稳。

[0180] 通过对比表1中的商业数据(其中33%的在再循环料流中的冷凝的液体会产生约46吨/h的生产率)与表2中所获得的结果(本发明的方法(形情1、2和3))，使用本发明的方法分别获得了约33%、61%和89%的生产率方面的改进的增加。

[0181] 同样，与商业聚乙烯生产方法相比，在相同量的在循环料流中的液体时，本发明的方法(使用本发明的反应器和系统)将会具有(流化床的)增加的稳定性。
图3